648 lines
23 KiB
Python
648 lines
23 KiB
Python
import logging
|
|
import random
|
|
from collections import deque
|
|
from enum import Enum
|
|
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
|
|
|
|
import gym
|
|
import matplotlib.pylab as plt
|
|
import numpy as np
|
|
import pandas as pd
|
|
from gym import spaces
|
|
from gym.utils import seeding
|
|
from sklearn.decomposition import PCA, KernelPCA
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# from bokeh.io import output_notebook
|
|
# from bokeh.plotting import figure, show
|
|
# from bokeh.models import (
|
|
# CustomJS,
|
|
# ColumnDataSource,
|
|
# NumeralTickFormatter,
|
|
# Span,
|
|
# HoverTool,
|
|
# Range1d,
|
|
# DatetimeTickFormatter,
|
|
# Scatter,
|
|
# Label, LabelSet
|
|
# )
|
|
|
|
class Actions(Enum):
|
|
Short = 0
|
|
Long = 1
|
|
Neutral = 2
|
|
|
|
class Actions_v2(Enum):
|
|
Neutral = 0
|
|
Long_buy = 1
|
|
Long_sell = 2
|
|
Short_buy = 3
|
|
Short_sell = 4
|
|
|
|
|
|
class Positions(Enum):
|
|
Short = 0
|
|
Long = 1
|
|
Neutral = 0.5
|
|
|
|
def opposite(self):
|
|
return Positions.Short if self == Positions.Long else Positions.Long
|
|
|
|
def mean_over_std(x):
|
|
std = np.std(x, ddof=1)
|
|
mean = np.mean(x)
|
|
return mean / std if std > 0 else 0
|
|
|
|
class DEnv(gym.Env):
|
|
|
|
metadata = {'render.modes': ['human']}
|
|
|
|
def __init__(self, df, prices, reward_kwargs, window_size=10, starting_point=True, ):
|
|
assert df.ndim == 2
|
|
|
|
self.seed()
|
|
self.df = df
|
|
self.signal_features = self.df
|
|
self.prices = prices
|
|
self.window_size = window_size
|
|
self.starting_point = starting_point
|
|
self.rr = reward_kwargs["rr"]
|
|
self.profit_aim = reward_kwargs["profit_aim"]
|
|
|
|
self.fee=0.0015
|
|
|
|
# # spaces
|
|
self.shape = (window_size, self.signal_features.shape[1])
|
|
self.action_space = spaces.Discrete(len(Actions_v2))
|
|
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
|
|
|
|
# episode
|
|
self._start_tick = self.window_size
|
|
self._end_tick = len(self.prices) - 1
|
|
self._done = None
|
|
self._current_tick = None
|
|
self._last_trade_tick = None
|
|
self._position = Positions.Neutral
|
|
self._position_history = None
|
|
self.total_reward = None
|
|
self._total_profit = None
|
|
self._first_rendering = None
|
|
self.history = None
|
|
self.trade_history = []
|
|
|
|
# self.A_t, self.B_t = 0.000639, 0.00001954
|
|
self.r_t_change = 0.
|
|
|
|
self.returns_report = []
|
|
|
|
|
|
def seed(self, seed=None):
|
|
self.np_random, seed = seeding.np_random(seed)
|
|
return [seed]
|
|
|
|
|
|
def reset(self):
|
|
|
|
self._done = False
|
|
|
|
if self.starting_point == True:
|
|
self._position_history = (self._start_tick* [None]) + [self._position]
|
|
else:
|
|
self._position_history = (self.window_size * [None]) + [self._position]
|
|
|
|
self._current_tick = self._start_tick
|
|
self._last_trade_tick = None
|
|
#self._last_trade_tick = self._current_tick - 1
|
|
self._position = Positions.Neutral
|
|
|
|
self.total_reward = 0.
|
|
self._total_profit = 1. # unit
|
|
self._first_rendering = True
|
|
self.history = {}
|
|
self.trade_history = []
|
|
self.portfolio_log_returns = np.zeros(len(self.prices))
|
|
|
|
|
|
self._profits = [(self._start_tick, 1)]
|
|
self.close_trade_profit = []
|
|
self.r_t_change = 0.
|
|
|
|
self.returns_report = []
|
|
|
|
return self._get_observation()
|
|
|
|
|
|
def step(self, action):
|
|
self._done = False
|
|
self._current_tick += 1
|
|
|
|
if self._current_tick == self._end_tick:
|
|
self._done = True
|
|
|
|
self.update_portfolio_log_returns(action)
|
|
|
|
self._update_profit(action)
|
|
step_reward = self._calculate_reward(action)
|
|
self.total_reward += step_reward
|
|
|
|
|
|
|
|
|
|
|
|
trade_type = None
|
|
if self.is_tradesignal_v2(action): # exclude 3 case not trade
|
|
# Update position
|
|
"""
|
|
Action: Neutral, position: Long -> Close Long
|
|
Action: Neutral, position: Short -> Close Short
|
|
|
|
Action: Long, position: Neutral -> Open Long
|
|
Action: Long, position: Short -> Close Short and Open Long
|
|
|
|
Action: Short, position: Neutral -> Open Short
|
|
Action: Short, position: Long -> Close Long and Open Short
|
|
"""
|
|
|
|
|
|
temp_position = self._position
|
|
if action == Actions_v2.Neutral.value:
|
|
self._position = Positions.Neutral
|
|
trade_type = "neutral"
|
|
elif action == Actions_v2.Long_buy.value:
|
|
self._position = Positions.Long
|
|
trade_type = "long"
|
|
elif action == Actions_v2.Short_buy.value:
|
|
self._position = Positions.Short
|
|
trade_type = "short"
|
|
elif action == Actions_v2.Long_sell.value:
|
|
self._position = Positions.Neutral
|
|
trade_type = "neutral"
|
|
elif action == Actions_v2.Short_sell.value:
|
|
self._position = Positions.Neutral
|
|
trade_type = "neutral"
|
|
else:
|
|
print("case not defined")
|
|
|
|
# Update last trade tick
|
|
self._last_trade_tick = self._current_tick
|
|
|
|
if trade_type != None:
|
|
self.trade_history.append(
|
|
{'price': self.current_price(), 'index': self._current_tick, 'type': trade_type})
|
|
|
|
if self._total_profit < 0.2:
|
|
self._done = True
|
|
|
|
self._position_history.append(self._position)
|
|
observation = self._get_observation()
|
|
info = dict(
|
|
tick = self._current_tick,
|
|
total_reward = self.total_reward,
|
|
total_profit = self._total_profit,
|
|
position = self._position.value
|
|
)
|
|
self._update_history(info)
|
|
|
|
return observation, step_reward, self._done, info
|
|
|
|
|
|
def processState(self, state):
|
|
return state.to_numpy()
|
|
|
|
def convert_mlp_Policy(self, obs_):
|
|
pass
|
|
|
|
def _get_observation(self):
|
|
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
|
|
|
|
|
|
def get_unrealized_profit(self):
|
|
|
|
if self._last_trade_tick == None:
|
|
return 0.
|
|
|
|
if self._position == Positions.Neutral:
|
|
return 0.
|
|
elif self._position == Positions.Short:
|
|
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
|
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
return (last_trade_price - current_price)/last_trade_price
|
|
elif self._position == Positions.Long:
|
|
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
|
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
return (current_price - last_trade_price)/last_trade_price
|
|
else:
|
|
return 0.
|
|
|
|
|
|
def is_tradesignal(self, action):
|
|
# trade signal
|
|
"""
|
|
not trade signal is :
|
|
Action: Neutral, position: Neutral -> Nothing
|
|
Action: Long, position: Long -> Hold Long
|
|
Action: Short, position: Short -> Hold Short
|
|
"""
|
|
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
|
|
or (action == Actions.Short.value and self._position == Positions.Short)
|
|
or (action == Actions.Long.value and self._position == Positions.Long))
|
|
|
|
def is_tradesignal_v2(self, action):
|
|
# trade signal
|
|
"""
|
|
not trade signal is :
|
|
Action: Neutral, position: Neutral -> Nothing
|
|
Action: Long, position: Long -> Hold Long
|
|
Action: Short, position: Short -> Hold Short
|
|
"""
|
|
return not ((action == Actions_v2.Neutral.value and self._position == Positions.Neutral) or
|
|
(action == Actions_v2.Short_buy.value and self._position == Positions.Short) or
|
|
(action == Actions_v2.Short_sell.value and self._position == Positions.Short) or
|
|
(action == Actions_v2.Short_buy.value and self._position == Positions.Long) or
|
|
(action == Actions_v2.Short_sell.value and self._position == Positions.Long) or
|
|
|
|
(action == Actions_v2.Long_buy.value and self._position == Positions.Long) or
|
|
(action == Actions_v2.Long_sell.value and self._position == Positions.Long) or
|
|
(action == Actions_v2.Long_buy.value and self._position == Positions.Short) or
|
|
(action == Actions_v2.Long_sell.value and self._position == Positions.Short))
|
|
|
|
|
|
|
|
def _is_trade(self, action: Actions):
|
|
return ((action == Actions.Long.value and self._position == Positions.Short) or
|
|
(action == Actions.Short.value and self._position == Positions.Long) or
|
|
(action == Actions.Neutral.value and self._position == Positions.Long) or
|
|
(action == Actions.Neutral.value and self._position == Positions.Short)
|
|
)
|
|
|
|
def _is_trade_v2(self, action: Actions_v2):
|
|
return ((action == Actions_v2.Long_buy.value and self._position == Positions.Short) or
|
|
(action == Actions_v2.Short_buy.value and self._position == Positions.Long) or
|
|
(action == Actions_v2.Neutral.value and self._position == Positions.Long) or
|
|
(action == Actions_v2.Neutral.value and self._position == Positions.Short) or
|
|
|
|
(action == Actions_v2.Neutral.Short_sell and self._position == Positions.Long) or
|
|
(action == Actions_v2.Neutral.Long_sell and self._position == Positions.Short)
|
|
)
|
|
|
|
|
|
def is_hold(self, action):
|
|
return ((action == Actions.Short.value and self._position == Positions.Short)
|
|
or (action == Actions.Long.value and self._position == Positions.Long))
|
|
|
|
def is_hold_v2(self, action):
|
|
return ((action == Actions_v2.Short_buy.value and self._position == Positions.Short)
|
|
or (action == Actions_v2.Long_buy.value and self._position == Positions.Long))
|
|
|
|
|
|
def add_buy_fee(self, price):
|
|
return price * (1 + self.fee)
|
|
|
|
def add_sell_fee(self, price):
|
|
return price / (1 + self.fee)
|
|
|
|
def _update_history(self, info):
|
|
if not self.history:
|
|
self.history = {key: [] for key in info.keys()}
|
|
|
|
for key, value in info.items():
|
|
self.history[key].append(value)
|
|
|
|
|
|
def render(self, mode='human'):
|
|
|
|
def _plot_position(position, tick):
|
|
color = None
|
|
if position == Positions.Short:
|
|
color = 'red'
|
|
elif position == Positions.Long:
|
|
color = 'green'
|
|
if color:
|
|
plt.scatter(tick, self.prices.loc[tick].open, color=color)
|
|
|
|
if self._first_rendering:
|
|
self._first_rendering = False
|
|
plt.cla()
|
|
plt.plot(self.prices)
|
|
start_position = self._position_history[self._start_tick]
|
|
_plot_position(start_position, self._start_tick)
|
|
|
|
plt.cla()
|
|
plt.plot(self.prices)
|
|
_plot_position(self._position, self._current_tick)
|
|
|
|
plt.suptitle("Total Reward: %.6f" % self.total_reward + ' ~ ' + "Total Profit: %.6f" % self._total_profit)
|
|
plt.pause(0.01)
|
|
|
|
|
|
def render_all(self):
|
|
plt.figure()
|
|
window_ticks = np.arange(len(self._position_history))
|
|
plt.plot(self.prices['open'], alpha=0.5)
|
|
|
|
short_ticks = []
|
|
long_ticks = []
|
|
neutral_ticks = []
|
|
for i, tick in enumerate(window_ticks):
|
|
if self._position_history[i] == Positions.Short:
|
|
short_ticks.append(tick - 1)
|
|
elif self._position_history[i] == Positions.Long:
|
|
long_ticks.append(tick - 1)
|
|
elif self._position_history[i] == Positions.Neutral:
|
|
neutral_ticks.append(tick - 1)
|
|
|
|
plt.plot(neutral_ticks, self.prices.loc[neutral_ticks].open,
|
|
'o', color='grey', ms=3, alpha=0.1)
|
|
plt.plot(short_ticks, self.prices.loc[short_ticks].open,
|
|
'o', color='r', ms=3, alpha=0.8)
|
|
plt.plot(long_ticks, self.prices.loc[long_ticks].open,
|
|
'o', color='g', ms=3, alpha=0.8)
|
|
|
|
plt.suptitle("Generalising")
|
|
fig = plt.gcf()
|
|
fig.set_size_inches(15, 10)
|
|
|
|
|
|
|
|
|
|
def close_trade_report(self):
|
|
small_trade = 0
|
|
positive_big_trade = 0
|
|
negative_big_trade = 0
|
|
small_profit = 0.003
|
|
for i in self.close_trade_profit:
|
|
if i < small_profit and i > -small_profit:
|
|
small_trade+=1
|
|
elif i > small_profit:
|
|
positive_big_trade += 1
|
|
elif i < -small_profit:
|
|
negative_big_trade += 1
|
|
print(f"small trade={small_trade/len(self.close_trade_profit)}; positive_big_trade={positive_big_trade/len(self.close_trade_profit)}; negative_big_trade={negative_big_trade/len(self.close_trade_profit)}")
|
|
|
|
|
|
def report(self):
|
|
|
|
# get total trade
|
|
long_trade = 0
|
|
short_trade = 0
|
|
neutral_trade = 0
|
|
for trade in self.trade_history:
|
|
if trade['type'] == 'long':
|
|
long_trade += 1
|
|
|
|
elif trade['type'] == 'short':
|
|
short_trade += 1
|
|
else:
|
|
neutral_trade += 1
|
|
|
|
negative_trade = 0
|
|
positive_trade = 0
|
|
for tr in self.close_trade_profit:
|
|
if tr < 0.:
|
|
negative_trade += 1
|
|
|
|
if tr > 0.:
|
|
positive_trade += 1
|
|
|
|
total_trade_lr = negative_trade+positive_trade
|
|
|
|
|
|
total_trade = long_trade + short_trade
|
|
sharp_ratio = self.sharpe_ratio()
|
|
sharp_log = self.get_sharpe_ratio()
|
|
|
|
from tabulate import tabulate
|
|
|
|
headers = ["Performance", ""]
|
|
performanceTable = [["Total Trade", "{0:.2f}".format(total_trade)],
|
|
["Total reward", "{0:.3f}".format(self.total_reward)],
|
|
["Start profit(unit)", "{0:.2f}".format(1.)],
|
|
["End profit(unit)", "{0:.3f}".format(self._total_profit)],
|
|
["Sharp ratio", "{0:.3f}".format(sharp_ratio)],
|
|
["Sharp log", "{0:.3f}".format(sharp_log)],
|
|
# ["Sortino ratio", "{0:.2f}".format(0) + '%'],
|
|
["winrate", "{0:.2f}".format(positive_trade*100/total_trade_lr) + '%']
|
|
]
|
|
tabulation = tabulate(performanceTable, headers, tablefmt="fancy_grid", stralign="center")
|
|
print(tabulation)
|
|
|
|
result = {
|
|
"Start": "{0:.2f}".format(1.),
|
|
"End": "{0:.2f}".format(self._total_profit),
|
|
"Sharp": "{0:.3f}".format(sharp_ratio),
|
|
"Winrate": "{0:.2f}".format(positive_trade*100/total_trade_lr)
|
|
}
|
|
return result
|
|
|
|
def close(self):
|
|
plt.close()
|
|
|
|
def get_sharpe_ratio(self):
|
|
return mean_over_std(self.get_portfolio_log_returns())
|
|
|
|
|
|
def save_rendering(self, filepath):
|
|
plt.savefig(filepath)
|
|
|
|
|
|
def pause_rendering(self):
|
|
plt.show()
|
|
|
|
|
|
def _calculate_reward(self, action):
|
|
# rw = self.transaction_profit_reward(action)
|
|
#rw = self.reward_rr_profit_config(action)
|
|
rw = self.reward_rr_profit_config_v2(action)
|
|
return rw
|
|
|
|
|
|
def _update_profit(self, action):
|
|
#if self._is_trade(action) or self._done:
|
|
if self._is_trade_v2(action) or self._done:
|
|
pnl = self.get_unrealized_profit()
|
|
|
|
if self._position == Positions.Long:
|
|
self._total_profit = self._total_profit + self._total_profit*pnl
|
|
self._profits.append((self._current_tick, self._total_profit))
|
|
self.close_trade_profit.append(pnl)
|
|
|
|
if self._position == Positions.Short:
|
|
self._total_profit = self._total_profit + self._total_profit*pnl
|
|
self._profits.append((self._current_tick, self._total_profit))
|
|
self.close_trade_profit.append(pnl)
|
|
|
|
|
|
def most_recent_return(self, action):
|
|
"""
|
|
We support Long, Neutral and Short positions.
|
|
Return is generated from rising prices in Long
|
|
and falling prices in Short positions.
|
|
The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
|
|
"""
|
|
# Long positions
|
|
if self._position == Positions.Long:
|
|
current_price = self.prices.iloc[self._current_tick].open
|
|
#if action == Actions.Short.value or action == Actions.Neutral.value:
|
|
if action == Actions_v2.Short_buy.value or action == Actions_v2.Neutral.value:
|
|
current_price = self.add_sell_fee(current_price)
|
|
|
|
previous_price = self.prices.iloc[self._current_tick - 1].open
|
|
|
|
if (self._position_history[self._current_tick - 1] == Positions.Short
|
|
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
|
previous_price = self.add_buy_fee(previous_price)
|
|
|
|
return np.log(current_price) - np.log(previous_price)
|
|
|
|
# Short positions
|
|
if self._position == Positions.Short:
|
|
current_price = self.prices.iloc[self._current_tick].open
|
|
#if action == Actions.Long.value or action == Actions.Neutral.value:
|
|
if action == Actions_v2.Long_buy.value or action == Actions_v2.Neutral.value:
|
|
current_price = self.add_buy_fee(current_price)
|
|
|
|
previous_price = self.prices.iloc[self._current_tick - 1].open
|
|
if (self._position_history[self._current_tick - 1] == Positions.Long
|
|
or self._position_history[self._current_tick - 1] == Positions.Neutral):
|
|
previous_price = self.add_sell_fee(previous_price)
|
|
|
|
return np.log(previous_price) - np.log(current_price)
|
|
|
|
return 0
|
|
|
|
def get_portfolio_log_returns(self):
|
|
return self.portfolio_log_returns[1:self._current_tick + 1]
|
|
|
|
|
|
def get_trading_log_return(self):
|
|
return self.portfolio_log_returns[self._start_tick:]
|
|
|
|
def update_portfolio_log_returns(self, action):
|
|
self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
|
|
|
|
def current_price(self) -> float:
|
|
return self.prices.iloc[self._current_tick].open
|
|
|
|
def prev_price(self) -> float:
|
|
return self.prices.iloc[self._current_tick-1].open
|
|
|
|
|
|
|
|
def sharpe_ratio(self):
|
|
if len(self.close_trade_profit) == 0:
|
|
return 0.
|
|
returns = np.array(self.close_trade_profit)
|
|
reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
|
|
return reward
|
|
|
|
def get_bnh_log_return(self):
|
|
return np.diff(np.log(self.prices['open'][self._start_tick:]))
|
|
|
|
|
|
def transaction_profit_reward(self, action):
|
|
rw = 0.
|
|
|
|
pt = self.prev_price()
|
|
pt_1 = self.current_price()
|
|
|
|
|
|
if self._position == Positions.Long:
|
|
a_t = 1
|
|
elif self._position == Positions.Short:
|
|
a_t = -1
|
|
else:
|
|
a_t = 0
|
|
|
|
# close long
|
|
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
|
|
pt_1 = self.add_sell_fee(self.current_price())
|
|
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
|
|
rw = a_t*(pt_1 - po)/po
|
|
#rw = rw*2
|
|
# close short
|
|
elif (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
|
|
pt_1 = self.add_buy_fee(self.current_price())
|
|
po = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
rw = a_t*(pt_1 - po)/po
|
|
#rw = rw*2
|
|
else:
|
|
rw = a_t*(pt_1 - pt)/pt
|
|
|
|
return np.clip(rw, 0, 1)
|
|
|
|
|
|
|
|
def reward_rr_profit_config_v2(self, action):
|
|
rw = 0.
|
|
|
|
pt_1 = self.current_price()
|
|
|
|
|
|
if len(self.close_trade_profit) > 0:
|
|
# long
|
|
if self._position == Positions.Long:
|
|
pt_1 = self.add_sell_fee(self.current_price())
|
|
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
|
|
if action == Actions_v2.Short_buy.value:
|
|
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
|
rw = 10 * 2
|
|
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
|
rw = 10 * 1 * 1
|
|
elif self.close_trade_profit[-1] < 0:
|
|
rw = 10 * -1
|
|
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
|
rw = 10 * 3 * -1
|
|
|
|
if action == Actions_v2.Long_sell.value:
|
|
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
|
rw = 10 * 5
|
|
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
|
|
rw = 10 * 1 * 3
|
|
elif self.close_trade_profit[-1] < 0:
|
|
rw = 10 * -1
|
|
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
|
rw = 10 * 3 * -1
|
|
|
|
if action == Actions_v2.Neutral.value:
|
|
if self.close_trade_profit[-1] > 0:
|
|
rw = 2
|
|
elif self.close_trade_profit[-1] < 0:
|
|
rw = 2 * -1
|
|
|
|
# short
|
|
if self._position == Positions.Short:
|
|
pt_1 = self.add_sell_fee(self.current_price())
|
|
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
|
|
if action == Actions_v2.Long_buy.value:
|
|
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
|
rw = 10 * 2
|
|
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
|
rw = 10 * 1 * 1
|
|
elif self.close_trade_profit[-1] < 0:
|
|
rw = 10 * -1
|
|
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
|
rw = 10 * 3 * -1
|
|
|
|
if action == Actions_v2.Short_sell.value:
|
|
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
|
rw = 10 * 5
|
|
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
|
rw = 10 * 1 * 3
|
|
elif self.close_trade_profit[-1] < 0:
|
|
rw = 10 * -1
|
|
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
|
|
rw = 10 * 3 * -1
|
|
|
|
if action == Actions_v2.Neutral.value:
|
|
if self.close_trade_profit[-1] > 0:
|
|
rw = 2
|
|
elif self.close_trade_profit[-1] < 0:
|
|
rw = 2 * -1
|
|
|
|
return np.clip(rw, 0, 1)
|