stable/freqtrade/freqai/prediction_models/RL/RLPrediction_env.py

648 lines
23 KiB
Python
Raw Normal View History

2022-08-12 17:25:13 +00:00
import logging
import random
from collections import deque
from enum import Enum
2022-08-12 17:25:13 +00:00
from typing import Any, Callable, Dict, List, Optional, Tuple, Type, Union
import gym
2022-08-12 17:25:13 +00:00
import matplotlib.pylab as plt
import numpy as np
2022-08-12 17:25:13 +00:00
import pandas as pd
from gym import spaces
from gym.utils import seeding
2022-08-12 17:25:13 +00:00
from sklearn.decomposition import PCA, KernelPCA
2022-08-12 17:25:13 +00:00
logger = logging.getLogger(__name__)
# from bokeh.io import output_notebook
# from bokeh.plotting import figure, show
# from bokeh.models import (
# CustomJS,
# ColumnDataSource,
# NumeralTickFormatter,
# Span,
# HoverTool,
# Range1d,
# DatetimeTickFormatter,
# Scatter,
# Label, LabelSet
# )
class Actions(Enum):
2022-08-12 17:25:13 +00:00
Short = 0
Long = 1
Neutral = 2
class Actions_v2(Enum):
Neutral = 0
Long_buy = 1
Long_sell = 2
Short_buy = 3
Short_sell = 4
class Positions(Enum):
Short = 0
Long = 1
2022-08-12 17:25:13 +00:00
Neutral = 0.5
def opposite(self):
return Positions.Short if self == Positions.Long else Positions.Long
2022-08-12 17:25:13 +00:00
def mean_over_std(x):
std = np.std(x, ddof=1)
mean = np.mean(x)
return mean / std if std > 0 else 0
2022-08-12 17:25:13 +00:00
class DEnv(gym.Env):
metadata = {'render.modes': ['human']}
2022-08-12 17:25:13 +00:00
def __init__(self, df, prices, reward_kwargs, window_size=10, starting_point=True, ):
assert df.ndim == 2
self.seed()
2022-08-12 17:25:13 +00:00
self.df = df
self.signal_features = self.df
self.prices = prices
self.window_size = window_size
2022-08-12 17:25:13 +00:00
self.starting_point = starting_point
self.rr = reward_kwargs["rr"]
self.profit_aim = reward_kwargs["profit_aim"]
2022-08-12 17:25:13 +00:00
self.fee=0.0015
# # spaces
self.shape = (window_size, self.signal_features.shape[1])
self.action_space = spaces.Discrete(len(Actions_v2))
self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=self.shape, dtype=np.float32)
# episode
self._start_tick = self.window_size
self._end_tick = len(self.prices) - 1
self._done = None
self._current_tick = None
self._last_trade_tick = None
2022-08-12 17:25:13 +00:00
self._position = Positions.Neutral
self._position_history = None
2022-08-12 17:25:13 +00:00
self.total_reward = None
self._total_profit = None
self._first_rendering = None
self.history = None
2022-08-12 17:25:13 +00:00
self.trade_history = []
# self.A_t, self.B_t = 0.000639, 0.00001954
self.r_t_change = 0.
self.returns_report = []
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
2022-08-12 17:25:13 +00:00
def reset(self):
2022-08-12 17:25:13 +00:00
self._done = False
2022-08-12 17:25:13 +00:00
if self.starting_point == True:
self._position_history = (self._start_tick* [None]) + [self._position]
else:
self._position_history = (self.window_size * [None]) + [self._position]
self._current_tick = self._start_tick
2022-08-12 17:25:13 +00:00
self._last_trade_tick = None
#self._last_trade_tick = self._current_tick - 1
self._position = Positions.Neutral
self.total_reward = 0.
self._total_profit = 1. # unit
self._first_rendering = True
self.history = {}
2022-08-12 17:25:13 +00:00
self.trade_history = []
self.portfolio_log_returns = np.zeros(len(self.prices))
self._profits = [(self._start_tick, 1)]
self.close_trade_profit = []
self.r_t_change = 0.
self.returns_report = []
return self._get_observation()
2022-08-12 17:25:13 +00:00
def step(self, action):
self._done = False
self._current_tick += 1
if self._current_tick == self._end_tick:
self._done = True
2022-08-12 17:25:13 +00:00
self.update_portfolio_log_returns(action)
self._update_profit(action)
2022-08-12 17:25:13 +00:00
step_reward = self._calculate_reward(action)
self.total_reward += step_reward
2022-08-12 17:25:13 +00:00
trade_type = None
if self.is_tradesignal_v2(action): # exclude 3 case not trade
# Update position
"""
Action: Neutral, position: Long -> Close Long
Action: Neutral, position: Short -> Close Short
Action: Long, position: Neutral -> Open Long
Action: Long, position: Short -> Close Short and Open Long
Action: Short, position: Neutral -> Open Short
Action: Short, position: Long -> Close Long and Open Short
"""
temp_position = self._position
if action == Actions_v2.Neutral.value:
self._position = Positions.Neutral
trade_type = "neutral"
elif action == Actions_v2.Long_buy.value:
self._position = Positions.Long
trade_type = "long"
elif action == Actions_v2.Short_buy.value:
self._position = Positions.Short
trade_type = "short"
elif action == Actions_v2.Long_sell.value:
self._position = Positions.Neutral
trade_type = "neutral"
elif action == Actions_v2.Short_sell.value:
self._position = Positions.Neutral
trade_type = "neutral"
else:
print("case not defined")
# Update last trade tick
self._last_trade_tick = self._current_tick
2022-08-12 17:25:13 +00:00
if trade_type != None:
self.trade_history.append(
{'price': self.current_price(), 'index': self._current_tick, 'type': trade_type})
if self._total_profit < 0.2:
self._done = True
self._position_history.append(self._position)
observation = self._get_observation()
info = dict(
2022-08-12 17:25:13 +00:00
tick = self._current_tick,
total_reward = self.total_reward,
total_profit = self._total_profit,
position = self._position.value
)
self._update_history(info)
return observation, step_reward, self._done, info
2022-08-12 17:25:13 +00:00
def processState(self, state):
return state.to_numpy()
def convert_mlp_Policy(self, obs_):
pass
def _get_observation(self):
return self.signal_features[(self._current_tick - self.window_size):self._current_tick]
2022-08-12 17:25:13 +00:00
def get_unrealized_profit(self):
if self._last_trade_tick == None:
return 0.
if self._position == Positions.Neutral:
return 0.
elif self._position == Positions.Short:
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
return (last_trade_price - current_price)/last_trade_price
elif self._position == Positions.Long:
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
return (current_price - last_trade_price)/last_trade_price
else:
return 0.
def is_tradesignal(self, action):
# trade signal
"""
not trade signal is :
Action: Neutral, position: Neutral -> Nothing
Action: Long, position: Long -> Hold Long
Action: Short, position: Short -> Hold Short
"""
return not ((action == Actions.Neutral.value and self._position == Positions.Neutral)
or (action == Actions.Short.value and self._position == Positions.Short)
or (action == Actions.Long.value and self._position == Positions.Long))
def is_tradesignal_v2(self, action):
# trade signal
"""
not trade signal is :
Action: Neutral, position: Neutral -> Nothing
Action: Long, position: Long -> Hold Long
Action: Short, position: Short -> Hold Short
"""
return not ((action == Actions_v2.Neutral.value and self._position == Positions.Neutral) or
(action == Actions_v2.Short_buy.value and self._position == Positions.Short) or
(action == Actions_v2.Short_sell.value and self._position == Positions.Short) or
(action == Actions_v2.Short_buy.value and self._position == Positions.Long) or
(action == Actions_v2.Short_sell.value and self._position == Positions.Long) or
(action == Actions_v2.Long_buy.value and self._position == Positions.Long) or
(action == Actions_v2.Long_sell.value and self._position == Positions.Long) or
(action == Actions_v2.Long_buy.value and self._position == Positions.Short) or
(action == Actions_v2.Long_sell.value and self._position == Positions.Short))
def _is_trade(self, action: Actions):
return ((action == Actions.Long.value and self._position == Positions.Short) or
(action == Actions.Short.value and self._position == Positions.Long) or
(action == Actions.Neutral.value and self._position == Positions.Long) or
(action == Actions.Neutral.value and self._position == Positions.Short)
)
def _is_trade_v2(self, action: Actions_v2):
return ((action == Actions_v2.Long_buy.value and self._position == Positions.Short) or
(action == Actions_v2.Short_buy.value and self._position == Positions.Long) or
(action == Actions_v2.Neutral.value and self._position == Positions.Long) or
(action == Actions_v2.Neutral.value and self._position == Positions.Short) or
(action == Actions_v2.Neutral.Short_sell and self._position == Positions.Long) or
(action == Actions_v2.Neutral.Long_sell and self._position == Positions.Short)
)
def is_hold(self, action):
return ((action == Actions.Short.value and self._position == Positions.Short)
or (action == Actions.Long.value and self._position == Positions.Long))
def is_hold_v2(self, action):
return ((action == Actions_v2.Short_buy.value and self._position == Positions.Short)
or (action == Actions_v2.Long_buy.value and self._position == Positions.Long))
def add_buy_fee(self, price):
return price * (1 + self.fee)
def add_sell_fee(self, price):
return price / (1 + self.fee)
def _update_history(self, info):
if not self.history:
self.history = {key: [] for key in info.keys()}
for key, value in info.items():
self.history[key].append(value)
2022-08-12 17:25:13 +00:00
def render(self, mode='human'):
2022-08-12 17:25:13 +00:00
def _plot_position(position, tick):
color = None
if position == Positions.Short:
color = 'red'
elif position == Positions.Long:
color = 'green'
if color:
2022-08-12 17:25:13 +00:00
plt.scatter(tick, self.prices.loc[tick].open, color=color)
if self._first_rendering:
self._first_rendering = False
plt.cla()
plt.plot(self.prices)
start_position = self._position_history[self._start_tick]
_plot_position(start_position, self._start_tick)
2022-08-12 17:25:13 +00:00
plt.cla()
plt.plot(self.prices)
_plot_position(self._position, self._current_tick)
2022-08-12 17:25:13 +00:00
plt.suptitle("Total Reward: %.6f" % self.total_reward + ' ~ ' + "Total Profit: %.6f" % self._total_profit)
plt.pause(0.01)
2022-08-12 17:25:13 +00:00
def render_all(self):
plt.figure()
window_ticks = np.arange(len(self._position_history))
2022-08-12 17:25:13 +00:00
plt.plot(self.prices['open'], alpha=0.5)
short_ticks = []
long_ticks = []
2022-08-12 17:25:13 +00:00
neutral_ticks = []
for i, tick in enumerate(window_ticks):
if self._position_history[i] == Positions.Short:
2022-08-12 17:25:13 +00:00
short_ticks.append(tick - 1)
elif self._position_history[i] == Positions.Long:
2022-08-12 17:25:13 +00:00
long_ticks.append(tick - 1)
elif self._position_history[i] == Positions.Neutral:
neutral_ticks.append(tick - 1)
plt.plot(neutral_ticks, self.prices.loc[neutral_ticks].open,
'o', color='grey', ms=3, alpha=0.1)
plt.plot(short_ticks, self.prices.loc[short_ticks].open,
'o', color='r', ms=3, alpha=0.8)
plt.plot(long_ticks, self.prices.loc[long_ticks].open,
'o', color='g', ms=3, alpha=0.8)
plt.suptitle("Generalising")
fig = plt.gcf()
fig.set_size_inches(15, 10)
def close_trade_report(self):
small_trade = 0
positive_big_trade = 0
negative_big_trade = 0
small_profit = 0.003
for i in self.close_trade_profit:
if i < small_profit and i > -small_profit:
small_trade+=1
elif i > small_profit:
positive_big_trade += 1
elif i < -small_profit:
negative_big_trade += 1
print(f"small trade={small_trade/len(self.close_trade_profit)}; positive_big_trade={positive_big_trade/len(self.close_trade_profit)}; negative_big_trade={negative_big_trade/len(self.close_trade_profit)}")
def report(self):
# get total trade
long_trade = 0
short_trade = 0
neutral_trade = 0
for trade in self.trade_history:
if trade['type'] == 'long':
long_trade += 1
elif trade['type'] == 'short':
short_trade += 1
else:
neutral_trade += 1
negative_trade = 0
positive_trade = 0
for tr in self.close_trade_profit:
if tr < 0.:
negative_trade += 1
if tr > 0.:
positive_trade += 1
total_trade_lr = negative_trade+positive_trade
total_trade = long_trade + short_trade
sharp_ratio = self.sharpe_ratio()
sharp_log = self.get_sharpe_ratio()
from tabulate import tabulate
headers = ["Performance", ""]
performanceTable = [["Total Trade", "{0:.2f}".format(total_trade)],
["Total reward", "{0:.3f}".format(self.total_reward)],
["Start profit(unit)", "{0:.2f}".format(1.)],
["End profit(unit)", "{0:.3f}".format(self._total_profit)],
["Sharp ratio", "{0:.3f}".format(sharp_ratio)],
["Sharp log", "{0:.3f}".format(sharp_log)],
# ["Sortino ratio", "{0:.2f}".format(0) + '%'],
["winrate", "{0:.2f}".format(positive_trade*100/total_trade_lr) + '%']
]
tabulation = tabulate(performanceTable, headers, tablefmt="fancy_grid", stralign="center")
print(tabulation)
result = {
"Start": "{0:.2f}".format(1.),
"End": "{0:.2f}".format(self._total_profit),
"Sharp": "{0:.3f}".format(sharp_ratio),
"Winrate": "{0:.2f}".format(positive_trade*100/total_trade_lr)
}
return result
def close(self):
plt.close()
2022-08-12 17:25:13 +00:00
def get_sharpe_ratio(self):
return mean_over_std(self.get_portfolio_log_returns())
def save_rendering(self, filepath):
plt.savefig(filepath)
2022-08-12 17:25:13 +00:00
def pause_rendering(self):
plt.show()
2022-08-12 17:25:13 +00:00
def _calculate_reward(self, action):
2022-08-12 17:25:13 +00:00
# rw = self.transaction_profit_reward(action)
#rw = self.reward_rr_profit_config(action)
rw = self.reward_rr_profit_config_v2(action)
return rw
2022-08-12 17:25:13 +00:00
def _update_profit(self, action):
#if self._is_trade(action) or self._done:
if self._is_trade_v2(action) or self._done:
pnl = self.get_unrealized_profit()
if self._position == Positions.Long:
2022-08-12 17:25:13 +00:00
self._total_profit = self._total_profit + self._total_profit*pnl
self._profits.append((self._current_tick, self._total_profit))
self.close_trade_profit.append(pnl)
2022-08-12 17:25:13 +00:00
if self._position == Positions.Short:
self._total_profit = self._total_profit + self._total_profit*pnl
self._profits.append((self._current_tick, self._total_profit))
self.close_trade_profit.append(pnl)
2022-08-12 17:25:13 +00:00
def most_recent_return(self, action):
"""
We support Long, Neutral and Short positions.
Return is generated from rising prices in Long
and falling prices in Short positions.
The actions Sell/Buy or Hold during a Long position trigger the sell/buy-fee.
"""
# Long positions
if self._position == Positions.Long:
current_price = self.prices.iloc[self._current_tick].open
#if action == Actions.Short.value or action == Actions.Neutral.value:
if action == Actions_v2.Short_buy.value or action == Actions_v2.Neutral.value:
current_price = self.add_sell_fee(current_price)
previous_price = self.prices.iloc[self._current_tick - 1].open
if (self._position_history[self._current_tick - 1] == Positions.Short
or self._position_history[self._current_tick - 1] == Positions.Neutral):
previous_price = self.add_buy_fee(previous_price)
return np.log(current_price) - np.log(previous_price)
# Short positions
if self._position == Positions.Short:
current_price = self.prices.iloc[self._current_tick].open
#if action == Actions.Long.value or action == Actions.Neutral.value:
if action == Actions_v2.Long_buy.value or action == Actions_v2.Neutral.value:
current_price = self.add_buy_fee(current_price)
previous_price = self.prices.iloc[self._current_tick - 1].open
if (self._position_history[self._current_tick - 1] == Positions.Long
or self._position_history[self._current_tick - 1] == Positions.Neutral):
previous_price = self.add_sell_fee(previous_price)
return np.log(previous_price) - np.log(current_price)
return 0
2022-08-12 17:25:13 +00:00
def get_portfolio_log_returns(self):
return self.portfolio_log_returns[1:self._current_tick + 1]
def get_trading_log_return(self):
return self.portfolio_log_returns[self._start_tick:]
def update_portfolio_log_returns(self, action):
self.portfolio_log_returns[self._current_tick] = self.most_recent_return(action)
def current_price(self) -> float:
return self.prices.iloc[self._current_tick].open
def prev_price(self) -> float:
return self.prices.iloc[self._current_tick-1].open
def sharpe_ratio(self):
if len(self.close_trade_profit) == 0:
return 0.
returns = np.array(self.close_trade_profit)
reward = (np.mean(returns) - 0. + 1e-9) / (np.std(returns) + 1e-9)
return reward
def get_bnh_log_return(self):
return np.diff(np.log(self.prices['open'][self._start_tick:]))
def transaction_profit_reward(self, action):
rw = 0.
pt = self.prev_price()
pt_1 = self.current_price()
if self._position == Positions.Long:
a_t = 1
elif self._position == Positions.Short:
a_t = -1
else:
a_t = 0
# close long
if (action == Actions.Short.value or action == Actions.Neutral.value) and self._position == Positions.Long:
pt_1 = self.add_sell_fee(self.current_price())
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
rw = a_t*(pt_1 - po)/po
#rw = rw*2
# close short
elif (action == Actions.Long.value or action == Actions.Neutral.value) and self._position == Positions.Short:
pt_1 = self.add_buy_fee(self.current_price())
po = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
rw = a_t*(pt_1 - po)/po
#rw = rw*2
else:
rw = a_t*(pt_1 - pt)/pt
return np.clip(rw, 0, 1)
def reward_rr_profit_config_v2(self, action):
rw = 0.
pt_1 = self.current_price()
if len(self.close_trade_profit) > 0:
# long
if self._position == Positions.Long:
2022-08-12 17:25:13 +00:00
pt_1 = self.add_sell_fee(self.current_price())
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
if action == Actions_v2.Short_buy.value:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
rw = 10 * 2
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
rw = 10 * 1 * 1
elif self.close_trade_profit[-1] < 0:
rw = 10 * -1
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
rw = 10 * 3 * -1
if action == Actions_v2.Long_sell.value:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
rw = 10 * 5
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < self.profit_aim * self.rr:
rw = 10 * 1 * 3
elif self.close_trade_profit[-1] < 0:
rw = 10 * -1
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
rw = 10 * 3 * -1
if action == Actions_v2.Neutral.value:
if self.close_trade_profit[-1] > 0:
rw = 2
elif self.close_trade_profit[-1] < 0:
rw = 2 * -1
# short
if self._position == Positions.Short:
pt_1 = self.add_sell_fee(self.current_price())
po = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
if action == Actions_v2.Long_buy.value:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
rw = 10 * 2
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
rw = 10 * 1 * 1
elif self.close_trade_profit[-1] < 0:
rw = 10 * -1
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
rw = 10 * 3 * -1
if action == Actions_v2.Short_sell.value:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
rw = 10 * 5
elif self.close_trade_profit[-1] > 0 and self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
rw = 10 * 1 * 3
elif self.close_trade_profit[-1] < 0:
rw = 10 * -1
elif self.close_trade_profit[-1] < (self.profit_aim * -1) * self.rr:
rw = 10 * 3 * -1
if action == Actions_v2.Neutral.value:
if self.close_trade_profit[-1] > 0:
rw = 2
elif self.close_trade_profit[-1] < 0:
rw = 2 * -1
return np.clip(rw, 0, 1)