Compare commits

...

265 Commits

Author SHA1 Message Date
Matthias
a31045874e Merge pull request #8224 from freqtrade/new_release
New release 2023.2
2023-02-26 14:53:52 +01:00
Matthias
25724ef729 Version bump 2023.2 2023-02-25 16:02:36 +01:00
Matthias
46458bf5eb Merge branch 'stable' into new_release 2023-02-25 16:02:26 +01:00
Matthias
dc2cfee056 Don't request sorted candles from HitBTC.
Apparently hitBTC cannot properly handle this anymore.

closes #8214
2023-02-25 13:49:16 +01:00
Matthias
c6455c4131 Pin scikit-learn to <1.2.0 for conda as well
closes #8223
2023-02-25 13:39:48 +01:00
Matthias
3471f5204b Don't reuse variable 2023-02-24 14:34:41 +01:00
Matthias
521025037d Merge pull request #8203 from freqtrade/add-bufer-train-data-candles
Add buffer_train_data_candles feature
2023-02-24 13:25:18 +01:00
Matthias
ac2a2512ef Merge pull request #8210 from freqtrade/clean-data-drawer
Allow user to control number of historical model files
2023-02-24 13:19:38 +01:00
Robert Caulk
607d90ca5d Merge pull request #8215 from freqtrade/fix-freqai-index
fix link in freqai index.md
2023-02-24 12:38:56 +01:00
robcaulk
c283e22325 fix purge_old_models description in parameter table 2023-02-24 10:54:43 +01:00
robcaulk
5ac4b81a5d fix link in freqai index.md 2023-02-24 10:50:39 +01:00
Matthias
34c42be74f Fix minor stylistic errors 2023-02-23 20:06:10 +01:00
Matthias
659140e190 Add bt-error to UI backtest method. 2023-02-23 20:06:10 +01:00
Matthias
63e5d33028 Better handle backtest errors 2023-02-23 20:06:10 +01:00
Matthias
2fed924a0d Merge pull request #8211 from TheJoeSchr/refactor-1
refactor(if-gate): use temp variable instead of if-gate
2023-02-23 18:14:21 +01:00
Joe Schr
7d906fd4c2 refactor(if-gate): use temp variable instead of if-gate 2023-02-23 10:58:43 +01:00
Matthias
cdc96136bc Merge pull request #8207 from freqtrade/add-freqai-disclaimer
add imposter disclaimer to FreqAI front page
2023-02-23 06:49:18 +01:00
Matthias
23a71680de Update Doc-box typo 2023-02-23 06:29:58 +01:00
robcaulk
150b7f9c87 lighten the disclaimer message 2023-02-22 22:33:41 +01:00
robcaulk
b8f011a2ab give users ability to decide how many models to keep in dry/live 2023-02-22 22:27:56 +01:00
robcaulk
9633081c31 remove remnants of follower, clean data-drawer, improve doc 2023-02-22 22:01:41 +01:00
Matthias
0f878daa98 Remove some too generic noqa statements 2023-02-22 19:56:32 +01:00
Matthias
01d51aa979 Add necesary noqa statements 2023-02-22 19:56:32 +01:00
Matthias
f8fa5bd969 Fix gone wrong noqa ... 2023-02-22 19:56:32 +01:00
Matthias
18bbfa10e5 Reduce amount of variables for API backtesting 2023-02-22 19:56:32 +01:00
Matthias
ff1258fd20 Better handle random UI backtest errors 2023-02-22 19:56:32 +01:00
Matthias
e56bf067c4 Merge pull request #8205 from amalysh/develop
* fixed filename in model_exists
2023-02-22 17:43:57 +01:00
robcaulk
3fbbc57a37 add imposter disclaimer to FreqAI front page 2023-02-22 17:08:30 +01:00
Alexander Malysh
070a7efd73 * fixed filename in model_exists 2023-02-22 14:52:20 +01:00
robcaulk
2b5c11c7b4 allow users to buffer train data with buffer_train_data_candles parameter 2023-02-21 21:08:34 +01:00
Matthias
62e120a602 Remove special treatment of cryptography for raspberries 2023-02-21 20:34:55 +01:00
Matthias
48ecc7f6dc Update freqai-reinforcement-learning docs
closes #8199
2023-02-21 19:55:32 +01:00
Matthias
43962476aa Remove non-working links, update links to https 2023-02-21 19:53:09 +01:00
Matthias
a4a3d27ac6 Improve FAQ page 2023-02-21 19:52:22 +01:00
Matthias
f4bd424226 Remove deprecated ubuntu image
Follows anouncement in https://github.blog/changelog/2022-08-09-github-actions-the-ubuntu-18-04-actions-runner-image-is-being-deprecated-and-will-be-removed-by-12-1-22/
2023-02-21 18:29:00 +01:00
Matthias
af137188f4 Update wrong FAQ entry 2023-02-21 18:05:20 +01:00
Matthias
352f4962da Merge pull request #8198 from AchmadFathoni/develop
Fix outdated systemd related exception text.
2023-02-20 11:05:42 +01:00
Achmad Fathoni
789c867c8f Fix outdated systemd related exception text. 2023-02-20 16:30:23 +07:00
Matthias
4f794aae61 Merge pull request #8191 from freqtrade/dependabot/pip/develop/mkdocs-material-9.0.13
Bump mkdocs-material from 9.0.12 to 9.0.13
2023-02-20 08:06:53 +01:00
Matthias
bf6560e45b Merge pull request #8194 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.13
Bump types-requests from 2.28.11.12 to 2.28.11.13
2023-02-20 08:06:37 +01:00
Matthias
ccf4fbed60 Merge pull request #8192 from freqtrade/dependabot/pip/develop/ccxt-2.8.17
Bump ccxt from 2.7.93 to 2.8.17
2023-02-20 07:11:49 +01:00
Matthias
250faf012d Bump types-requests for pre-commit 2023-02-20 06:55:58 +01:00
Matthias
3a9ffdf135 Merge pull request #8190 from freqtrade/dependabot/pip/develop/fastapi-0.92.0
Bump fastapi from 0.91.0 to 0.92.0
2023-02-20 06:55:17 +01:00
Matthias
ec1991d165 Merge pull request #8189 from freqtrade/dependabot/pip/develop/scipy-1.10.1
Bump scipy from 1.10.0 to 1.10.1
2023-02-20 06:54:16 +01:00
Matthias
4e1f5354fe Merge pull request #8196 from freqtrade/dependabot/pip/develop/mypy-1.0.1
Bump mypy from 1.0.0 to 1.0.1
2023-02-20 06:53:28 +01:00
dependabot[bot]
0cd28e2cab Bump mypy from 1.0.0 to 1.0.1
Bumps [mypy](https://github.com/python/mypy) from 1.0.0 to 1.0.1.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v1.0.0...v1.0.1)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-20 03:58:03 +00:00
dependabot[bot]
eb08ef6ced Bump types-requests from 2.28.11.12 to 2.28.11.13
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.12 to 2.28.11.13.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-20 03:57:41 +00:00
dependabot[bot]
a4e69574d3 Bump ccxt from 2.7.93 to 2.8.17
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.7.93 to 2.8.17.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/2.7.93...2.8.17)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-20 03:57:17 +00:00
dependabot[bot]
c85fc6c8ca Bump mkdocs-material from 9.0.12 to 9.0.13
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.0.12 to 9.0.13.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.0.12...9.0.13)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-20 03:57:10 +00:00
dependabot[bot]
f19128ad21 Bump fastapi from 0.91.0 to 0.92.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.91.0 to 0.92.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.91.0...0.92.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-20 03:56:55 +00:00
dependabot[bot]
2ef656fac0 Bump scipy from 1.10.0 to 1.10.1
Bumps [scipy](https://github.com/scipy/scipy) from 1.10.0 to 1.10.1.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.10.0...v1.10.1)

---
updated-dependencies:
- dependency-name: scipy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-20 03:56:50 +00:00
Matthias
e9c64c5839 Update dependency to cysystemd
closes #8187
2023-02-19 19:30:27 +01:00
Matthias
b0ec35d526 Merge pull request #7904 from freqtrade/feat/shuffle_after_split
add shuffle_after_split option
2023-02-19 15:03:04 +01:00
Matthias
f89b63b0c5 Fix dry-run stoploss orders filling "in place" after restart. 2023-02-18 19:25:11 +01:00
Matthias
2c0fbd8500 Simplify test slightly 2023-02-18 18:07:35 +01:00
Matthias
c4ec4db050 Merge pull request #8183 from th0rntwig/improve-freqai-docs
fix minor typos
2023-02-17 07:14:39 +01:00
Matthias
31c7b3e136 Update binance leverage tiers 2023-02-17 06:37:03 +01:00
Matthias
22700527ac Convert limit orders to market orders if they cross a threshold
closes #7786
2023-02-17 06:37:03 +01:00
Matthias
9600039686 Update dry-run fill method naming 2023-02-17 06:37:03 +01:00
thorntwig
35fe37199d fix minor typos 2023-02-16 20:04:42 +01:00
robcaulk
351c5fbf7f add shuffle_after_split to conftest 2023-02-16 19:48:22 +01:00
Robert Caulk
f68543b151 Merge pull request #8182 from freqtrade/generalize-model-exists
generalize model_exists() for RL and Keras
2023-02-16 19:41:07 +01:00
robcaulk
be85ef2707 add documentation for shuffle_after_split, add to constants 2023-02-16 18:50:11 +01:00
robcaulk
b6a741b421 merge develop into feat/shuffle_after_split 2023-02-16 18:46:01 +01:00
robcaulk
36d65e00f9 generalize model_exists() for RL and Keras 2023-02-16 18:33:40 +01:00
Matthias
a2e1389943 Update Binance leverage code 2023-02-16 18:06:34 +01:00
Matthias
8ef110cc5f Rename ob variable to orderbook 2023-02-16 06:38:58 +01:00
Matthias
de7d274fcf Pass orderbook to dry-run fill logic 2023-02-16 06:38:58 +01:00
Matthias
7c10921564 Improve Orderbook typing to align for diff. exchanges 2023-02-16 06:38:58 +01:00
Matthias
a11f081d2d Merge pull request #8176 from freqtrade/robcaulk-patch-1
Update freqai.md
2023-02-16 06:14:56 +01:00
Robert Caulk
020c9a5cec Update freqai.md 2023-02-15 21:54:45 +01:00
Matthias
ecff21ac21 type Orderbook 2023-02-15 07:01:36 +01:00
Matthias
3397e47ccf Rename stoploss() to create_stoploss() 2023-02-14 20:42:08 +01:00
Matthias
6e55a873b3 Rename edge.stoploss to get_stoploss
this will make it clear that it's different from
2023-02-14 07:18:11 +01:00
Matthias
bddec476f9 Fix missing typehint in hyper.py 2023-02-13 20:13:26 +01:00
Matthias
cdd324d0a9 Rename stoploss_reached to ft_stoploss_reached 2023-02-13 20:08:54 +01:00
Matthias
ce7d24f529 Extract ft_stoploss_adjust to seperate method 2023-02-13 19:53:04 +01:00
Matthias
a0e2f98086 Merge pull request #8164 from freqtrade/dependabot/pip/develop/tensorboard-2.12.0
Bump tensorboard from 2.11.2 to 2.12.0
2023-02-13 19:34:14 +01:00
Matthias
69d5459460 Improve stop behavior in SIGTERM cases (docker). 2023-02-13 18:25:15 +01:00
Matthias
aafaff877b Merge pull request #8170 from freqtrade/dependabot/pip/develop/ccxt-2.7.93
Bump ccxt from 2.7.80 to 2.7.93
2023-02-13 18:17:29 +01:00
dependabot[bot]
9061c04f1d Bump ccxt from 2.7.80 to 2.7.93
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.7.80 to 2.7.93.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.7.80...2.7.93)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-13 16:09:57 +00:00
Matthias
9a2f6d2416 Merge pull request #8165 from freqtrade/dependabot/pip/develop/aiofiles-23.1.0
Bump aiofiles from 22.1.0 to 23.1.0
2023-02-13 09:50:11 +01:00
Matthias
b5121d3f4c Merge pull request #8166 from freqtrade/dependabot/pip/develop/aiohttp-3.8.4
Bump aiohttp from 3.8.3 to 3.8.4
2023-02-13 09:49:56 +01:00
Matthias
f3a6897870 Bump Docker images to latest minor version 2023-02-13 07:12:46 +01:00
Matthias
f16fd0ad23 Reenable binanceus active test 2023-02-13 07:12:46 +01:00
dependabot[bot]
f681ee7942 Bump aiohttp from 3.8.3 to 3.8.4
Bumps [aiohttp](https://github.com/aio-libs/aiohttp) from 3.8.3 to 3.8.4.
- [Release notes](https://github.com/aio-libs/aiohttp/releases)
- [Changelog](https://github.com/aio-libs/aiohttp/blob/master/CHANGES.rst)
- [Commits](https://github.com/aio-libs/aiohttp/compare/v3.8.3...v3.8.4)

---
updated-dependencies:
- dependency-name: aiohttp
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-13 06:11:49 +00:00
dependabot[bot]
50a9df9b29 Bump aiofiles from 22.1.0 to 23.1.0
Bumps [aiofiles](https://github.com/Tinche/aiofiles) from 22.1.0 to 23.1.0.
- [Release notes](https://github.com/Tinche/aiofiles/releases)
- [Commits](https://github.com/Tinche/aiofiles/compare/v22.1.0...v23.1.0)

---
updated-dependencies:
- dependency-name: aiofiles
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-13 06:11:37 +00:00
dependabot[bot]
2a87ad044d Bump tensorboard from 2.11.2 to 2.12.0
Bumps [tensorboard](https://github.com/tensorflow/tensorboard) from 2.11.2 to 2.12.0.
- [Release notes](https://github.com/tensorflow/tensorboard/releases)
- [Changelog](https://github.com/tensorflow/tensorboard/blob/master/RELEASE.md)
- [Commits](https://github.com/tensorflow/tensorboard/compare/2.11.2...2.12.0)

---
updated-dependencies:
- dependency-name: tensorboard
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-13 06:11:33 +00:00
Matthias
a573976406 Merge pull request #8158 from freqtrade/dependabot/pip/develop/types-requests-2.28.11.12
Bump types-requests from 2.28.11.8 to 2.28.11.12
2023-02-13 07:09:58 +01:00
Matthias
0b5b8e4c97 Merge pull request #8163 from freqtrade/dependabot/pip/develop/fastapi-0.91.0
Bump fastapi from 0.89.1 to 0.91.0
2023-02-13 07:09:44 +01:00
Matthias
ee158c1f55 Merge pull request #8162 from freqtrade/dependabot/pip/develop/mypy-1.0.0
Bump mypy from 0.991 to 1.0.0
2023-02-13 07:08:53 +01:00
Matthias
bf242ac4a2 Merge pull request #8156 from freqtrade/dependabot/pip/develop/mkdocs-material-9.0.12
Bump mkdocs-material from 9.0.11 to 9.0.12
2023-02-13 06:39:34 +01:00
Matthias
a800c19c14 Merge pull request #8157 from freqtrade/dependabot/pip/develop/orjson-3.8.6
Bump orjson from 3.8.5 to 3.8.6
2023-02-13 06:37:39 +01:00
Matthias
d14283b0e7 types-requests - precommit 2023-02-13 06:22:13 +01:00
dependabot[bot]
9faa926803 Bump fastapi from 0.89.1 to 0.91.0
Bumps [fastapi](https://github.com/tiangolo/fastapi) from 0.89.1 to 0.91.0.
- [Release notes](https://github.com/tiangolo/fastapi/releases)
- [Commits](https://github.com/tiangolo/fastapi/compare/0.89.1...0.91.0)

---
updated-dependencies:
- dependency-name: fastapi
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-13 03:58:55 +00:00
dependabot[bot]
48c331785c Bump mypy from 0.991 to 1.0.0
Bumps [mypy](https://github.com/python/mypy) from 0.991 to 1.0.0.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.991...v1.0.0)

---
updated-dependencies:
- dependency-name: mypy
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-13 03:58:34 +00:00
dependabot[bot]
bbb62c8a4b Bump types-requests from 2.28.11.8 to 2.28.11.12
Bumps [types-requests](https://github.com/python/typeshed) from 2.28.11.8 to 2.28.11.12.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-requests
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-13 03:57:16 +00:00
dependabot[bot]
b05999f6d5 Bump orjson from 3.8.5 to 3.8.6
Bumps [orjson](https://github.com/ijl/orjson) from 3.8.5 to 3.8.6.
- [Release notes](https://github.com/ijl/orjson/releases)
- [Changelog](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ijl/orjson/compare/3.8.5...3.8.6)

---
updated-dependencies:
- dependency-name: orjson
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-13 03:57:11 +00:00
dependabot[bot]
ee209e3b44 Bump mkdocs-material from 9.0.11 to 9.0.12
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.0.11 to 9.0.12.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.0.11...9.0.12)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-13 03:56:56 +00:00
Matthias
b3fbb263ce Merge pull request #8152 from Shadyzpop/patch-1
Typo on freqai docs
2023-02-11 20:22:16 +01:00
Shadyzpop
b95ff827d3 Typo on freqai docs
1. `a the` - there is an extra "a" before `the features`
2. `historic` - it should be "historical" to match the correct adjective form.
2023-02-11 17:12:57 +03:00
Matthias
a3b4678ad6 stoploss_price_type for gate 2023-02-11 13:02:55 +01:00
Matthias
a2759b495b Merge pull request #8149 from freqtrade/gate_rename
Update gateio terminology to Gate
2023-02-11 12:40:58 +01:00
Matthias
bedd3688d0 Properly format proxy configuration 2023-02-11 12:37:40 +01:00
Matthias
c229ba97a9 Update gateio terminology to Gate 2023-02-11 08:15:11 +01:00
Matthias
07e6932a17 Reenable longrun test mark 2023-02-11 08:14:55 +01:00
Matthias
0713fc6a6a Merge pull request #8148 from stash86/bt-metrics
Add explicit warning that supported price types gonna differ
2023-02-11 08:14:23 +01:00
Stefano Ariestasia
73992dde8d Add explicit warning that supported price types gonna differ on each exchanges 2023-02-11 11:15:31 +09:00
Matthias
42c76d9e0c Merge pull request #8147 from freqtrade/add-pair-to-env
Add pair to environment for access inside calculate_reward
2023-02-10 19:38:10 +01:00
Matthias
45e24d21d3 Bump ccxt to 2.7.78
closes #8141
2023-02-10 19:35:45 +01:00
Matthias
f440d66210 Add sample_order for gate 2023-02-10 18:12:21 +01:00
robcaulk
8873a565ee expose raw features to the environment for use in calculate_reward 2023-02-10 15:48:18 +01:00
robcaulk
154b6711b3 use function level noqa ignore 2023-02-10 15:26:17 +01:00
robcaulk
4fc0edb8b7 add pair to environment for access inside calculate_reward 2023-02-10 14:45:50 +01:00
Matthias
d47d8c135b Add windows wheel for ta-lib on python 3.11 2023-02-10 07:17:12 +01:00
Matthias
22cbc16238 Merge pull request #8120 from freqtrade/fut/stop_price_type
stoploss price type
2023-02-10 07:02:25 +01:00
Matthias
eab724fe54 Merge branch 'develop' into fut/stop_price_type 2023-02-09 20:02:59 +01:00
Matthias
8d156b2770 Bump ccxt to 2.7.66
closes  #8132
2023-02-08 20:35:24 +01:00
Matthias
3d22ad36b8 Show Config should contain stoploss-on-exchange status 2023-02-08 07:08:42 +01:00
Matthias
102c1e799c realign binance set_leverage override 2023-02-08 07:08:42 +01:00
Matthias
980ffa6bfb Add test for binance rounding leverage 2023-02-08 07:08:42 +01:00
Matthias
997df2032e Add response_log for set_leverage 2023-02-08 07:08:42 +01:00
Matthias
d19ee9c95f Update okx position mode terminology 2023-02-08 07:08:42 +01:00
Matthias
e2d81b0ce0 Skip binanceus ccxt test 2023-02-08 07:08:42 +01:00
Matthias
c15e10fe1f Improve logic for initially placed stoploss 2023-02-08 07:08:42 +01:00
Matthias
2b0e281113 Merge pull request #8136 from freqtrade/dependabot/pip/cryptography-39.0.1
Bump cryptography from 38.0.1 to 39.0.1
2023-02-08 06:33:49 +01:00
dependabot[bot]
67a2cd7086 Bump cryptography from 38.0.1 to 39.0.1
Bumps [cryptography](https://github.com/pyca/cryptography) from 38.0.1 to 39.0.1.
- [Release notes](https://github.com/pyca/cryptography/releases)
- [Changelog](https://github.com/pyca/cryptography/blob/main/CHANGELOG.rst)
- [Commits](https://github.com/pyca/cryptography/compare/38.0.1...39.0.1)

---
updated-dependencies:
- dependency-name: cryptography
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-08 04:07:21 +00:00
Matthias
5a61e076d7 Remove unused import 2023-02-07 19:19:59 +01:00
Matthias
953be8a7f8 Split validate_order_types to 2 functions to allow selective application 2023-02-07 18:00:44 +01:00
Matthias
8c0c2496c2 Temporarily disable gate advanced stop orders 2023-02-07 07:13:57 +01:00
Matthias
e8dc3dd59a Merge pull request #8126 from freqtrade/dependabot/pip/develop/types-cachetools-5.3.0.0
Bump types-cachetools from 5.2.1 to 5.3.0.0
2023-02-07 06:21:03 +01:00
Matthias
81619fb4a0 Properly use sqlalchemy column types 2023-02-06 19:51:51 +01:00
Matthias
82dad7ab17 Merge pull request #8086 from freqtrade/feat/cancel_order
Cancel open orders through UI/telegram
2023-02-06 19:43:21 +01:00
Matthias
a6adcb485e Bump several pre-commit hooks versions 2023-02-06 19:34:30 +01:00
Matthias
be335c401d Merge pull request #8125 from freqtrade/dependabot/pip/develop/ccxt-2.7.45
Bump ccxt from 2.7.12 to 2.7.45
2023-02-06 19:24:23 +01:00
Matthias
b6eb1f9395 Bump pre-commit 2023-02-06 07:09:59 +01:00
Matthias
7f5a624cfd Merge pull request #8127 from freqtrade/dependabot/pip/develop/numpy-1.24.2
Bump numpy from 1.24.1 to 1.24.2
2023-02-06 07:08:27 +01:00
Matthias
b215329456 Merge pull request #8128 from freqtrade/dependabot/pip/develop/pymdown-extensions-9.9.2
Bump pymdown-extensions from 9.9.1 to 9.9.2
2023-02-06 07:07:47 +01:00
dependabot[bot]
c6601cbd89 Bump pymdown-extensions from 9.9.1 to 9.9.2
Bumps [pymdown-extensions](https://github.com/facelessuser/pymdown-extensions) from 9.9.1 to 9.9.2.
- [Release notes](https://github.com/facelessuser/pymdown-extensions/releases)
- [Commits](https://github.com/facelessuser/pymdown-extensions/compare/9.9.1...9.9.2)

---
updated-dependencies:
- dependency-name: pymdown-extensions
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-06 03:01:25 +00:00
dependabot[bot]
f96cb47727 Bump numpy from 1.24.1 to 1.24.2
Bumps [numpy](https://github.com/numpy/numpy) from 1.24.1 to 1.24.2.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/main/doc/RELEASE_WALKTHROUGH.rst)
- [Commits](https://github.com/numpy/numpy/compare/v1.24.1...v1.24.2)

---
updated-dependencies:
- dependency-name: numpy
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-06 03:01:17 +00:00
dependabot[bot]
365522f5c8 Bump types-cachetools from 5.2.1 to 5.3.0.0
Bumps [types-cachetools](https://github.com/python/typeshed) from 5.2.1 to 5.3.0.0.
- [Release notes](https://github.com/python/typeshed/releases)
- [Commits](https://github.com/python/typeshed/commits)

---
updated-dependencies:
- dependency-name: types-cachetools
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-06 03:00:52 +00:00
dependabot[bot]
8dde7ab6b8 Bump ccxt from 2.7.12 to 2.7.45
Bumps [ccxt](https://github.com/ccxt/ccxt) from 2.7.12 to 2.7.45.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/exchanges.cfg)
- [Commits](https://github.com/ccxt/ccxt/compare/2.7.12...2.7.45)

---
updated-dependencies:
- dependency-name: ccxt
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-06 03:00:49 +00:00
Matthias
e964377edf Add new field to full config 2023-02-05 14:58:12 +01:00
Matthias
d904e91663 Add documentation for new setting 2023-02-05 14:55:11 +01:00
Matthias
61ba1a0dc7 Pin telegram in conda environment to <20
closes #8111
2023-02-05 14:39:20 +01:00
Matthias
48d78d8df9 Merge pull request #8116 from freqtrade/dependabot/pip/develop/technical-1.4.0
Bump technical from 1.3.0 to 1.4.0
2023-02-05 13:16:23 +01:00
Matthias
797993d0b7 Merge pull request #8118 from freqtrade/dependabot/pip/develop/isort-5.12.0
Bump isort from 5.11.4 to 5.12.0
2023-02-05 13:15:37 +01:00
Matthias
79d279b99b Merge pull request #8114 from freqtrade/dependabot/pip/develop/plotly-5.13.0
Bump plotly from 5.11.0 to 5.13.0
2023-02-05 12:43:46 +01:00
Matthias
a577d6ab36 Merge pull request #8112 from freqtrade/dependabot/pip/develop/mkdocs-material-9.0.11
Bump mkdocs-material from 9.0.8 to 9.0.11
2023-02-05 12:42:58 +01:00
Matthias
389e576b3e Merge pull request #8113 from freqtrade/dependabot/pip/develop/nbconvert-7.2.9
Bump nbconvert from 7.2.8 to 7.2.9
2023-02-05 12:42:17 +01:00
Matthias
47f47a33e3 Merge pull request #8115 from freqtrade/dependabot/pip/develop/pre-commit-3.0.4
Bump pre-commit from 2.21.0 to 3.0.4
2023-02-05 12:41:47 +01:00
Matthias
b8a527e4a0 Add gateio price type field 2023-02-05 10:46:24 +01:00
Matthias
3497de3dd5 Add more validation 2023-02-05 10:38:58 +01:00
Matthias
cf9e99b8e1 Add tests for ordertype validation 2023-02-05 10:38:58 +01:00
Matthias
2738c37845 Test stoploss validation ... 2023-02-05 10:38:58 +01:00
Matthias
c4fc811619 Add stop_price_type support (futures only!). 2023-02-05 10:38:58 +01:00
Matthias
a9241f61f9 Add Price Type Enum 2023-02-05 10:38:58 +01:00
dependabot[bot]
e38e41ab97 Bump isort from 5.11.4 to 5.12.0
Bumps [isort](https://github.com/pycqa/isort) from 5.11.4 to 5.12.0.
- [Release notes](https://github.com/pycqa/isort/releases)
- [Changelog](https://github.com/PyCQA/isort/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pycqa/isort/compare/5.11.4...5.12.0)

---
updated-dependencies:
- dependency-name: isort
  dependency-type: direct:development
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-05 09:20:10 +00:00
dependabot[bot]
e3f0e66b9a Bump technical from 1.3.0 to 1.4.0
Bumps [technical](https://github.com/freqtrade/technical) from 1.3.0 to 1.4.0.
- [Release notes](https://github.com/freqtrade/technical/releases)
- [Commits](https://github.com/freqtrade/technical/compare/1.3.0...1.4.0)

---
updated-dependencies:
- dependency-name: technical
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-05 09:19:44 +00:00
dependabot[bot]
b80d196d56 Bump pre-commit from 2.21.0 to 3.0.4
Bumps [pre-commit](https://github.com/pre-commit/pre-commit) from 2.21.0 to 3.0.4.
- [Release notes](https://github.com/pre-commit/pre-commit/releases)
- [Changelog](https://github.com/pre-commit/pre-commit/blob/main/CHANGELOG.md)
- [Commits](https://github.com/pre-commit/pre-commit/compare/v2.21.0...v3.0.4)

---
updated-dependencies:
- dependency-name: pre-commit
  dependency-type: direct:development
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-05 09:19:39 +00:00
dependabot[bot]
c61995aad9 Bump plotly from 5.11.0 to 5.13.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 5.11.0 to 5.13.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v5.11.0...v5.13.0)

---
updated-dependencies:
- dependency-name: plotly
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-05 09:19:31 +00:00
dependabot[bot]
34711eb683 Bump nbconvert from 7.2.8 to 7.2.9
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 7.2.8 to 7.2.9.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Changelog](https://github.com/jupyter/nbconvert/blob/main/CHANGELOG.md)
- [Commits](https://github.com/jupyter/nbconvert/compare/v7.2.8...v7.2.9)

---
updated-dependencies:
- dependency-name: nbconvert
  dependency-type: direct:development
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-05 09:19:25 +00:00
dependabot[bot]
5ed06cd79b Bump mkdocs-material from 9.0.8 to 9.0.11
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.0.8 to 9.0.11.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.0.8...9.0.11)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-05 09:19:18 +00:00
Matthias
a7fec1f871 Merge pull request #8109 from freqtrade/add-metadata-to-feature-engineering
Pass metadata dictionary to feature_engineering_* and set_freqai_targets()
2023-02-05 09:56:21 +01:00
Matthias
801714a588 Update function signatures in all templates
add typehints to help the user's editor suggest the right things.
2023-02-04 20:04:16 +01:00
robcaulk
0dd2472385 add metadata param to docstrings 2023-02-04 16:56:36 +01:00
robcaulk
e569f6f6df add explicit metadata argument to example strat, include it with backtesting 2023-02-04 16:53:17 +01:00
robcaulk
5da60b718d pass metadata dictionary to feature_engineering_* and set_freqai_targets functions. Add doc 2023-02-04 13:47:11 +01:00
Matthias
55850a5ccd Skip orders when correlated trade was deleted.
closes #8107
2023-02-04 08:39:25 +01:00
Matthias
7991124794 Merge pull request #8102 from TheJoeSchr/develop
setup.sh: checks if git directory is dirty before bothering user with…
2023-02-03 16:56:52 +01:00
Joe Schr
02c0f91f4d fix: removes duplicated if branch 2023-02-03 16:16:30 +01:00
Joe Schr
3fd6d72984 setup.sh: fix truty/falsy return of check_git_changes() 2023-02-03 08:52:26 +01:00
Matthias
3c4ff2e037 Merge pull request #8095 from freqtrade/remove-follow-mode
remove follow mode in favor of producer consumer
2023-02-03 07:02:56 +01:00
Matthias
ef1738fbf6 Remove follow_mode from docs 2023-02-02 19:30:59 +01:00
Matthias
618eb951d3 Add ft_bot_start to notebook docs
part of #8066
2023-02-02 19:26:48 +01:00
Joe Schr
330461cf1e setup.sh: checks if git directory is dirty before bothering user with potentially scary question 2023-02-02 17:00:07 +01:00
Matthias
e95eb220c5 Merge pull request #8101 from obseries/develop
[kucoin] manage kucoin numeric password passed as environment variabl…
2023-02-02 16:58:29 +01:00
Matthias
c093934c24 Merge pull request #8099 from raphaelstar/raphaelstar-patch-2
`order.amount` -> `order.safe_amount`
2023-02-02 16:28:04 +01:00
Luca Forni
b7787a9846 [kucoin] manage kucoin numeric password passed as environment variable as a string 2023-02-02 16:15:23 +01:00
raphaelstar
b4c3e1fd58 order.amount -> order.safe_amount 2023-02-02 15:52:27 +01:00
Matthias
300e9acd37 Merge pull request #8096 from raphaelstar/raphaelstar-patch-1
Make test for `None` explicit
2023-02-02 14:53:46 +01:00
raphaelstar
36f95fb35d Make test for None explicit
Make test for `None` explicit
2023-02-02 13:29:37 +01:00
robcaulk
ccb4efbe88 remove follow mode in favor of producer consumer 2023-02-02 11:40:23 +01:00
Matthias
1d6738778b Merge pull request #8088 from Ezrahel/patch-1
Update README.md
2023-02-02 10:22:09 +01:00
Ezrahel
ba7883f549 Update README.md 2023-02-02 03:02:52 +01:00
Matthias
ceaaac6c3a Improve install sequence to install ta-lib after user interactivity 2023-02-01 18:36:48 +00:00
Matthias
21618594b2 Update setup.sh queries to not ask redundant questions 2023-02-01 17:16:11 +00:00
Matthias
8c9de445e7 Merge pull request #8089 from freqtrade/dependabot/pip/setuptools-65.5.1
Bump setuptools from 65.5.0 to 65.5.1
2023-02-01 12:32:43 +01:00
Matthias
d8583ab6e6 Bump setuptools in setup.sh 2023-02-01 11:06:30 +00:00
dependabot[bot]
7569e72f55 Bump setuptools from 65.5.0 to 65.5.1
Bumps [setuptools](https://github.com/pypa/setuptools) from 65.5.0 to 65.5.1.
- [Release notes](https://github.com/pypa/setuptools/releases)
- [Changelog](https://github.com/pypa/setuptools/blob/main/CHANGES.rst)
- [Commits](https://github.com/pypa/setuptools/compare/v65.5.0...v65.5.1)

---
updated-dependencies:
- dependency-name: setuptools
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-02-01 10:11:12 +00:00
Ezrahel
1e12e888d1 Update README.md 2023-02-01 11:06:32 +01:00
Matthias
fb742361e9 Merge pull request #8083 from leonardocustodio/patch-1
Gym aid
2023-02-01 11:05:38 +01:00
Matthias
322d4b5351 improve fix for setup.sh 2023-02-01 09:20:40 +00:00
Matthias
c1a34396d0 Merge branch 'develop' into feat/cancel_order 2023-02-01 07:06:17 +00:00
Matthias
72a98943b1 bybit: Add correct funding_fee_timeframe 2023-02-01 06:58:45 +01:00
Matthias
9bb376296d Update parse_order test 2023-01-31 20:59:55 +01:00
Matthias
839215c437 Fix Doc box error 2023-01-31 20:58:20 +01:00
Matthias
8a0fabed0e Ensure we don't overwrite valid values by invalid exchange responses 2023-01-31 20:55:11 +01:00
Matthias
680136f57d Add workaround patch for kucoin create_order returning empty
While the actual problem is caused by a ccxt change, the change itself makes sense.
once ccxt starts returning the correct status (open) for create-orders, we can remove the fix.

closes #8079
2023-01-31 20:46:34 +01:00
Matthias
448505fbfb Fix minor issue where amount could be empty in rest calls 2023-01-31 20:38:18 +01:00
Matthias
50d3b7bdef Add bybit sample order 2023-01-31 20:00:05 +01:00
Matthias
42f07e6ec2 Improve order_parse tests 2023-01-31 19:45:27 +01:00
Matthias
6012a55828 Improve test 2023-01-31 19:40:42 +01:00
Matthias
9cfbb21cd7 Improve error messages 2023-01-31 19:38:43 +01:00
Matthias
bbc663fce1 Add telegram test 2023-01-31 19:26:26 +01:00
Matthias
1c47c118d6 Add cancel-order api test 2023-01-31 19:26:21 +01:00
Matthias
daafc1c90f Update test and help 2023-01-31 18:16:59 +01:00
Matthias
bd2839fa40 Reorder documentation 2023-01-31 18:13:42 +01:00
Matthias
e291d1bb17 Document telegram /coo command 2023-01-31 18:12:18 +01:00
Matthias
1bdc0e3917 Add coo command to telegram 2023-01-31 18:09:40 +01:00
Leonardo Custodio
152aa994a6 Fix test 2023-01-31 12:46:21 -03:00
Leonardo Custodio
baf2090f9e Just change the docs 2023-01-31 12:42:39 -03:00
Leonardo Custodio
592eebe516 Add to setup 2023-01-31 12:10:41 -03:00
Leonardo Custodio
8b307357f3 Add to setup 2023-01-31 12:09:14 -03:00
Leonardo Custodio
d27d5624e0 Merge branch 'freqtrade:develop' into patch-1 2023-01-31 12:00:00 -03:00
Matthias
5073c780d8 .agg would like strings, not the sum function. 2023-01-31 11:22:04 +00:00
Matthias
2c1457fb95 Ensure limit is integer (on server) 2023-01-31 11:06:23 +00:00
Matthias
1dc3c58775 Convert missing candle count to int
closes #8082
2023-01-31 11:04:56 +00:00
Matthias
410324ac19 time-jump detection should happen on the trimmed dataframe
Fixes comment in #7615
2023-01-31 10:13:21 +00:00
Matthias
9e619ecc50 Update rest api documentation 2023-01-31 07:26:12 +01:00
Matthias
03302fa0b0 Add cancel_open_order to rest script 2023-01-31 07:24:19 +01:00
Matthias
c43e857cbc Bump API version 2023-01-31 07:09:07 +01:00
Matthias
c855e2d79c Add delete open order endpoint 2023-01-31 07:09:03 +01:00
Matthias
a704c43402 provide cancel-reason to handle_cancel_order 2023-01-31 07:08:12 +01:00
Leonardo Custodio
2b09f01293 Fixes gym issue
https://github.com/freqtrade/freqtrade/issues/8078
2023-01-30 18:52:56 -03:00
Matthias
5a7008f377 rename handle_timedout to handle_cancel_order 2023-01-30 20:02:01 +01:00
Matthias
c3ef8ebb10 Merge pull request #8059 from freqtrade/bybit
Bybit futures support 🎉
2023-01-30 18:10:46 +01:00
Matthias
b5c0daa069 Merge pull request #8028 from freqtrade/dependabot/pip/develop/sb3-contrib-1.7.0
Bump sb3-contrib from 1.6.2 to 1.7.0
2023-01-30 11:42:24 +01:00
Matthias
da0ac8190f Merge pull request #8075 from freqtrade/dependabot/pip/develop/pyarrow-11.0.0
Bump pyarrow from 10.0.1 to 11.0.0
2023-01-30 11:33:23 +01:00
Matthias
3cb9cc63b3 add pyarrow-11 rpi wheel file 2023-01-30 10:04:10 +00:00
Matthias
e77c16d510 Merge pull request #8073 from freqtrade/dependabot/pip/develop/lightgbm-3.3.5
Bump lightgbm from 3.3.4 to 3.3.5
2023-01-30 09:42:14 +01:00
Matthias
f57394c1ce Merge branch 'develop' into bybit 2023-01-30 07:23:41 +01:00
Matthias
f22f613b24 Merge pull request #8074 from freqtrade/dependabot/pip/develop/mkdocs-material-9.0.8
Bump mkdocs-material from 9.0.5 to 9.0.8
2023-01-30 07:22:46 +01:00
Matthias
2593a929d4 Bump version to 2023.2.dev 2023-01-30 07:19:35 +01:00
dependabot[bot]
411ad5641a Bump pyarrow from 10.0.1 to 11.0.0
Bumps [pyarrow](https://github.com/apache/arrow) from 10.0.1 to 11.0.0.
- [Release notes](https://github.com/apache/arrow/releases)
- [Commits](https://github.com/apache/arrow/compare/go/v10.0.1...apache-arrow-11.0.0)

---
updated-dependencies:
- dependency-name: pyarrow
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-30 03:02:06 +00:00
dependabot[bot]
0dd852516a Bump mkdocs-material from 9.0.5 to 9.0.8
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 9.0.5 to 9.0.8.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/9.0.5...9.0.8)

---
updated-dependencies:
- dependency-name: mkdocs-material
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-30 03:01:33 +00:00
dependabot[bot]
2fea23d31a Bump lightgbm from 3.3.4 to 3.3.5
Bumps [lightgbm](https://github.com/microsoft/LightGBM) from 3.3.4 to 3.3.5.
- [Release notes](https://github.com/microsoft/LightGBM/releases)
- [Commits](https://github.com/microsoft/LightGBM/compare/v3.3.4...v3.3.5)

---
updated-dependencies:
- dependency-name: lightgbm
  dependency-type: direct:production
  update-type: version-update:semver-patch
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-30 03:01:12 +00:00
Matthias
f6ba0fe6ae bybit: fix broken ccxt tests 2023-01-28 18:23:23 +01:00
Matthias
7294db81e2 Bump ccxt to 2.7.7 2023-01-28 18:17:09 +01:00
Matthias
d1b069abfb bybit: Update test to align with defaultType change 2023-01-27 20:33:34 +01:00
Matthias
7029b9602c Merge branch 'develop' into bybit 2023-01-27 20:30:05 +01:00
Matthias
fa033965c8 use "swap" for bybit 2023-01-27 19:34:29 +01:00
Matthias
08ede37795 Add documentation note about stoploss on exchange 2023-01-26 19:58:58 +01:00
Matthias
8665d0866d Add test for bybit startup magic 2023-01-26 19:58:42 +01:00
Matthias
1431f7cc3e Set position mode to one-way on startup 2023-01-26 19:54:35 +01:00
Matthias
73ef1d5191 Improve exception wording on binance 2023-01-26 19:53:14 +01:00
Matthias
c12fb1a49c bybit: Some final cleanup 2023-01-24 20:12:50 +01:00
Matthias
25fa6bee74 Override get_funding_fees for bybit 2023-01-24 07:21:56 +01:00
Matthias
051c3be99e add test case for bybit 2023-01-24 07:21:56 +01:00
Matthias
3a83427f92 Add Bybit stoploss support 2023-01-24 07:21:56 +01:00
Matthias
c14553bacb Add bybit to supported Futures exchanges 2023-01-24 07:21:56 +01:00
Matthias
c2b33a0f58 Fix set-leverage function sig 2023-01-24 07:21:56 +01:00
Matthias
7a18e96042 bybit: hot-fix funding fees (temporary - must be changed) 2023-01-24 07:21:56 +01:00
Matthias
f681ce9139 Allow margin and leverage setting failures
(this is important when an exchange "fails" a request if the setting didn't change).
2023-01-24 07:21:56 +01:00
Matthias
31745a9dc2 bybit: Initial implementation liquidation calculation 2023-01-24 07:21:56 +01:00
Matthias
93ce963e9b Update test name 2023-01-24 07:21:56 +01:00
Matthias
752110a268 Add online tests for bybit 2023-01-24 07:21:56 +01:00
Matthias
d05ecd630f Update tests for new liquidation parameter 2023-01-24 07:21:56 +01:00
Matthias
34e7433844 Add leverage to dry-run liquidation price calculation 2023-01-24 07:21:56 +01:00
Matthias
a7b030fff9 Add note about bybit futures 2023-01-24 07:21:56 +01:00
Matthias
3192af8df8 Limit bybit futures markets to USDT 2023-01-24 07:21:56 +01:00
Matthias
63c732a560 Bybit futures data download 2023-01-24 07:21:56 +01:00
Matthias
75804a7f85 Bump stable-baselines3 alongside with sb3-contrib. 2023-01-16 15:53:44 +01:00
dependabot[bot]
a77fdb1594 Bump sb3-contrib from 1.6.2 to 1.7.0
Bumps [sb3-contrib](https://github.com/Stable-Baselines-Team/stable-baselines3-contrib) from 1.6.2 to 1.7.0.
- [Release notes](https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/releases)
- [Commits](https://github.com/Stable-Baselines-Team/stable-baselines3-contrib/compare/v1.6.2...v1.7.0)

---
updated-dependencies:
- dependency-name: sb3-contrib
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
2023-01-16 08:53:21 +00:00
robcaulk
c9bc91c75b add shuffle_after_split option 2022-12-16 11:20:37 +01:00
126 changed files with 5099 additions and 2336 deletions

View File

@@ -23,7 +23,7 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-18.04, ubuntu-20.04, ubuntu-22.04 ]
os: [ ubuntu-20.04, ubuntu-22.04 ]
python-version: ["3.8", "3.9", "3.10"]
steps:

View File

@@ -2,7 +2,7 @@
# See https://pre-commit.com/hooks.html for more hooks
repos:
- repo: https://github.com/pycqa/flake8
rev: "4.0.1"
rev: "6.0.0"
hooks:
- id: flake8
# stages: [push]
@@ -13,22 +13,22 @@ repos:
- id: mypy
exclude: build_helpers
additional_dependencies:
- types-cachetools==5.2.1
- types-cachetools==5.3.0.0
- types-filelock==3.2.7
- types-requests==2.28.11.8
- types-requests==2.28.11.13
- types-tabulate==0.9.0.0
- types-python-dateutil==2.8.19.6
# stages: [push]
- repo: https://github.com/pycqa/isort
rev: "5.10.1"
rev: "5.12.0"
hooks:
- id: isort
name: isort (python)
# stages: [push]
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v2.4.0
rev: v4.4.0
hooks:
- id: end-of-file-fixer
exclude: |

View File

@@ -1,4 +1,4 @@
FROM python:3.10.7-slim-bullseye as base
FROM python:3.10.10-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8

View File

@@ -40,6 +40,7 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/)
- [X] [Bybit](https://bybit.com/)
Please make sure to read the [exchange specific notes](docs/exchanges.md), as well as the [trading with leverage](docs/leverage.md) documentation before diving in.
@@ -164,6 +165,10 @@ first. If it hasn't been reported, please
ensure you follow the template guide so that the team can assist you as
quickly as possible.
For every [issue](https://github.com/freqtrade/freqtrade/issues/new/choose) created, kindly follow up and mark satisfaction or reminder to close issue when equilibrium ground is reached.
--Maintain github's [community policy](https://docs.github.com/en/site-policy/github-terms/github-community-code-of-conduct)--
### [Feature Requests](https://github.com/freqtrade/freqtrade/labels/enhancement)
Have you a great idea to improve the bot you want to share? Please,

Binary file not shown.

View File

@@ -14,5 +14,8 @@ if ($pyv -eq '3.9') {
if ($pyv -eq '3.10') {
pip install build_helpers\TA_Lib-0.4.25-cp310-cp310-win_amd64.whl
}
if ($pyv -eq '3.11') {
pip install build_helpers\TA_Lib-0.4.25-cp311-cp311-win_amd64.whl
}
pip install -r requirements-dev.txt
pip install -e .

View File

@@ -48,7 +48,7 @@
],
"freqai": {
"enabled": true,
"purge_old_models": true,
"purge_old_models": 2,
"train_period_days": 15,
"backtest_period_days": 7,
"live_retrain_hours": 0,

View File

@@ -60,6 +60,7 @@
"force_entry": "market",
"stoploss": "market",
"stoploss_on_exchange": false,
"stoploss_price_type": "last",
"stoploss_on_exchange_interval": 60,
"stoploss_on_exchange_limit_ratio": 0.99
},

View File

@@ -1,4 +1,4 @@
FROM python:3.9.12-slim-bullseye as base
FROM python:3.9.16-slim-bullseye as base
# Setup env
ENV LANG C.UTF-8

View File

@@ -192,7 +192,7 @@ $RepeatedMsgReduction on
### Logging to journald
This needs the `systemd` python package installed as the dependency, which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
This needs the `cysystemd` python package installed as dependency (`pip install cysystemd`), which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
To send Freqtrade log messages to `journald` system service use the `--logfile` command line option with the value in the following format:

View File

@@ -666,7 +666,7 @@ You should also make sure to read the [Exchanges](exchanges.md) section of the d
### Using proxy with Freqtrade
To use a proxy with freqtrade, export your proxy settings using the variables `"HTTP_PROXY"` and `"HTTPS_PROXY"` set to the appropriate values.
This will have the proxy settings applied to everything (telegram, coingecko, ...) except exchange requests.
This will have the proxy settings applied to everything (telegram, coingecko, ...) **except** for exchange requests.
``` bash
export HTTP_PROXY="http://addr:port"
@@ -682,11 +682,12 @@ To use a proxy for exchange connections - you will have to define the proxies as
{
"exchange": {
"ccxt_config": {
"aiohttp_proxy": "http://addr:port",
"proxies": {
"http": "http://addr:port",
"https": "http://addr:port"
},
"aiohttp_proxy": "http://addr:port",
"proxies": {
"http": "http://addr:port",
"https": "http://addr:port"
},
}
}
}
```

View File

@@ -363,7 +363,7 @@ from pathlib import Path
exchange = ccxt.binance({
'apiKey': '<apikey>',
'secret': '<secret>'
'options': {'defaultType': 'future'}
'options': {'defaultType': 'swap'}
})
_ = exchange.load_markets()

View File

@@ -243,8 +243,8 @@ OKX requires a passphrase for each api key, you will therefore need to add this
OKX only provides 100 candles per api call. Therefore, the strategy will only have a pretty low amount of data available in backtesting mode.
!!! Warning "Futures"
OKX Futures has the concept of "position mode" - which can be Net or long/short (hedge mode).
Freqtrade supports both modes (we recommend to use net mode) - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
OKX Futures has the concept of "position mode" - which can be "Buy/Sell" or long/short (hedge mode).
Freqtrade supports both modes (we recommend to use Buy/Sell mode) - but changing the mode mid-trading is not supported and will lead to exceptions and failures to place trades.
OKX also only provides MARK candles for the past ~3 months. Backtesting futures prior to that date will therefore lead to slight deviations, as funding-fees cannot be calculated correctly without this data.
## Gate.io
@@ -255,6 +255,18 @@ OKX requires a passphrase for each api key, you will therefore need to add this
Gate.io allows the use of `POINT` to pay for fees. As this is not a tradable currency (no regular market available), automatic fee calculations will fail (and default to a fee of 0).
The configuration parameter `exchange.unknown_fee_rate` can be used to specify the exchange rate between Point and the stake currency. Obviously, changing the stake-currency will also require changes to this value.
## Bybit
Futures trading on bybit is currently supported for USDT markets, and will use isolated futures mode.
Users with unified accounts (there's no way back) can create a Sub-account which will start as "non-unified", and can therefore use isolated futures.
On startup, freqtrade will set the position mode to "One-way Mode" for the whole (sub)account. This avoids making this call over and over again (slowing down bot operations), but means that changes to this setting may result in exceptions and errors.
As bybit doesn't provide funding rate history, the dry-run calculation is used for live trades as well.
!!! Tip "Stoploss on Exchange"
Bybit (futures only) supports `stoploss_on_exchange` and uses `stop-loss-limit` orders. It provides great advantages, so we recommend to benefit from it by enabling stoploss on exchange.
On futures, Bybit supports both `stop-limit` as well as `stop-market` orders. You can use either `"limit"` or `"market"` in the `order_types.stoploss` configuration setting to decide which type to use.
## All exchanges
Should you experience constant errors with Nonce (like `InvalidNonce`), it is best to regenerate the API keys. Resetting Nonce is difficult and it's usually easier to regenerate the API keys.

View File

@@ -2,7 +2,7 @@
## Supported Markets
Freqtrade supports spot trading only.
Freqtrade supports spot trading, as well as (isolated) futures trading for some selected exchanges. Please refer to the [documentation start page](index.md#supported-futures-exchanges-experimental) for an uptodate list of supported exchanges.
### Can my bot open short positions?
@@ -248,8 +248,26 @@ The Edge module is mostly a result of brainstorming of [@mishaker](https://githu
You can find further info on expectancy, win rate, risk management and position size in the following sources:
- https://www.tradeciety.com/ultimate-math-guide-for-traders/
- http://www.vantharp.com/tharp-concepts/expectancy.asp
- https://samuraitradingacademy.com/trading-expectancy/
- https://www.learningmarkets.com/determining-expectancy-in-your-trading/
- http://www.lonestocktrader.com/make-money-trading-positive-expectancy/
- https://www.lonestocktrader.com/make-money-trading-positive-expectancy/
- https://www.babypips.com/trading/trade-expectancy-matter
## Official channels
Freqtrade is using exclusively the following official channels:
* [Freqtrade discord server](https://discord.gg/p7nuUNVfP7)
* [Freqtrade documentation (https://freqtrade.io)](https://freqtrade.io)
* [Freqtrade github organization](https://github.com/freqtrade)
Nobody affiliated with the freqtrade project will ask you about your exchange keys or anything else exposing your funds to exploitation.
Should you be asked to expose your exchange keys or send funds to some random wallet, then please don't follow these instructions.
Failing to follow these guidelines will not be responsibility of freqtrade.
## "Freqtrade token"
Freqtrade does not have a Crypto token offering.
Token offerings you find on the internet referring Freqtrade, FreqAI or freqUI must be considered to be a scam, trying to exploit freqtrade's popularity for their own, nefarious gains.

View File

@@ -9,7 +9,7 @@ FreqAI is configured through the typical [Freqtrade config file](configuration.m
```json
"freqai": {
"enabled": true,
"purge_old_models": true,
"purge_old_models": 2,
"train_period_days": 30,
"backtest_period_days": 7,
"identifier" : "unique-id",
@@ -165,10 +165,10 @@ Below are the values you can expect to include/use inside a typical strategy dat
## Setting the `startup_candle_count`
The `startup_candle_count` in the FreqAI strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., Ta-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`.
The `startup_candle_count` in the FreqAI strategy needs to be set up in the same way as in the standard Freqtrade strategy (see details [here](strategy-customization.md#strategy-startup-period)). This value is used by Freqtrade to ensure that a sufficient amount of data is provided when calling the `dataprovider`, to avoid any NaNs at the beginning of the first training. You can easily set this value by identifying the longest period (in candle units) which is passed to the indicator creation functions (e.g., TA-Lib functions). In the presented example, `startup_candle_count` is 20 since this is the maximum value in `indicators_periods_candles`.
!!! Note
There are instances where the Ta-Lib functions actually require more data than just the passed `period` or else the feature dataset gets populated with NaNs. Anecdotally, multiplying the `startup_candle_count` by 2 always leads to a fully NaN free training dataset. Hence, it is typically safest to multiply the expected `startup_candle_count` by 2. Look out for this log message to confirm that the data is clean:
There are instances where the TA-Lib functions actually require more data than just the passed `period` or else the feature dataset gets populated with NaNs. Anecdotally, multiplying the `startup_candle_count` by 2 always leads to a fully NaN free training dataset. Hence, it is typically safest to multiply the expected `startup_candle_count` by 2. Look out for this log message to confirm that the data is clean:
```
2022-08-31 15:14:04 - freqtrade.freqai.data_kitchen - INFO - dropped 0 training points due to NaNs in populated dataset 4319.
@@ -205,7 +205,7 @@ All of the aforementioned model libraries implement gradient boosted decision tr
* LightGBM: https://lightgbm.readthedocs.io/en/v3.3.2/#
* XGBoost: https://xgboost.readthedocs.io/en/stable/#
There are also numerous online articles describing and comparing the algorithms. Some relatively light-weight examples would be [CatBoost vs. LightGBM vs. XGBoost — Which is the best algorithm?](https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924#:~:text=In%20CatBoost%2C%20symmetric%20trees%2C%20or,the%20same%20depth%20can%20differ.) and [XGBoost, LightGBM or CatBoost — which boosting algorithm should I use?](https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc). Keep in mind that the performance of each model is highly dependent on the application and so any reported metrics might not be true for your particular use of the model.
There are also numerous online articles describing and comparing the algorithms. Some relatively lightweight examples would be [CatBoost vs. LightGBM vs. XGBoost — Which is the best algorithm?](https://towardsdatascience.com/catboost-vs-lightgbm-vs-xgboost-c80f40662924#:~:text=In%20CatBoost%2C%20symmetric%20trees%2C%20or,the%20same%20depth%20can%20differ.) and [XGBoost, LightGBM or CatBoost — which boosting algorithm should I use?](https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc). Keep in mind that the performance of each model is highly dependent on the application and so any reported metrics might not be true for your particular use of the model.
Apart from the models already available in FreqAI, it is also possible to customize and create your own prediction models using the `IFreqaiModel` class. You are encouraged to inherit `fit()`, `train()`, and `predict()` to customize various aspects of the training procedures. You can place custom FreqAI models in `user_data/freqaimodels` - and freqtrade will pick them up from there based on the provided `--freqaimodel` name - which has to correspond to the class name of your custom model.
Make sure to use unique names to avoid overriding built-in models.

View File

@@ -8,7 +8,7 @@ Low level feature engineering is performed in the user strategy within a set of
|---------------|-------------|
| `feature_engineering__expand_all()` | This optional function will automatically expand the defined features on the config defined `indicator_periods_candles`, `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`.
| `feature_engineering__expand_basic()` | This optional function will automatically expand the defined features on the config defined `include_timeframes`, `include_shifted_candles`, and `include_corr_pairs`. Note: this function does *not* expand across `include_periods_candles`.
| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g. day of the week).
| `feature_engineering_standard()` | This optional function will be called once with the dataframe of the base timeframe. This is the final function to be called, which means that the dataframe entering this function will contain all the features and columns from the base asset created by the other `feature_engineering_expand` functions. This function is a good place to do custom exotic feature extractions (e.g. tsfresh). This function is also a good place for any feature that should not be auto-expanded upon (e.g., day of the week).
| `set_freqai_targets()` | Required function to set the targets for the model. All targets must be prepended with `&` to be recognized by the FreqAI internals.
Meanwhile, high level feature engineering is handled within `"feature_parameters":{}` in the FreqAI config. Within this file, it is possible to decide large scale feature expansions on top of the `base_features` such as "including correlated pairs" or "including informative timeframes" or even "including recent candles."
@@ -16,7 +16,7 @@ Meanwhile, high level feature engineering is handled within `"feature_parameters
It is advisable to start from the template `feature_engineering_*` functions in the source provided example strategy (found in `templates/FreqaiExampleStrategy.py`) to ensure that the feature definitions are following the correct conventions. Here is an example of how to set the indicators and labels in the strategy:
```python
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
def feature_engineering_expand_all(self, dataframe, period, metadata, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
@@ -28,8 +28,13 @@ It is advisable to start from the template `feature_engineering_*` functions in
All features must be prepended with `%` to be recognized by FreqAI internals.
Access metadata such as the current pair/timeframe/period with:
`metadata["pair"]` `metadata["tf"]` `metadata["period"]`
:param df: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
:param metadata: metadata of current pair
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
@@ -62,7 +67,7 @@ It is advisable to start from the template `feature_engineering_*` functions in
return dataframe
def feature_engineering_expand_basic(self, dataframe, **kwargs):
def feature_engineering_expand_basic(self, dataframe, metadata, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
@@ -75,9 +80,14 @@ It is advisable to start from the template `feature_engineering_*` functions in
Features defined here will *not* be automatically duplicated on user defined
`indicator_periods_candles`
Access metadata such as the current pair/timeframe with:
`metadata["pair"]` `metadata["tf"]`
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
:param metadata: metadata of current pair
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
@@ -86,7 +96,7 @@ It is advisable to start from the template `feature_engineering_*` functions in
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(self, dataframe, **kwargs):
def feature_engineering_standard(self, dataframe, metadata, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
@@ -98,22 +108,32 @@ It is advisable to start from the template `feature_engineering_*` functions in
This function is a good place for any feature that should not be auto-expanded upon
(e.g. day of the week).
Access metadata such as the current pair with:
`metadata["pair"]`
All features must be prepended with `%` to be recognized by FreqAI internals.
:param df: strategy dataframe which will receive the features
:param metadata: metadata of current pair
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
dataframe["%-hour_of_day"] = (dataframe["date"].dt.hour + 1) / 25
return dataframe
def set_freqai_targets(self, dataframe, **kwargs):
def set_freqai_targets(self, dataframe, metadata, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
Access metadata such as the current pair with:
`metadata["pair"]`
:param df: strategy dataframe which will receive the targets
:param metadata: metadata of current pair
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
dataframe["&-s_close"] = (
@@ -161,6 +181,19 @@ You can ask for each of the defined features to be included also for informative
In total, the number of features the user of the presented example strat has created is: length of `include_timeframes` * no. features in `feature_engineering_expand_*()` * length of `include_corr_pairlist` * no. `include_shifted_candles` * length of `indicator_periods_candles`
$= 3 * 3 * 3 * 2 * 2 = 108$.
### Gain finer control over `feature_engineering_*` functions with `metadata`
All `feature_engineering_*` and `set_freqai_targets()` functions are passed a `metadata` dictionary which contains information about the `pair`, `tf` (timeframe), and `period` that FreqAI is automating for feature building. As such, a user can use `metadata` inside `feature_engineering_*` functions as criteria for blocking/reserving features for certain timeframes, periods, pairs etc.
```py
def feature_engineering_expand_all(self, dataframe, period, metadata, **kwargs):
if metadata["tf"] == "1h":
dataframe["%-roc-period"] = ta.ROC(dataframe, timeperiod=period)
```
This will block `ta.ROC()` from being added to any timeframes other than `"1h"`.
### Returning additional info from training
Important metrics can be returned to the strategy at the end of each model training by assigning them to `dk.data['extra_returns_per_train']['my_new_value'] = XYZ` inside the custom prediction model class.
@@ -201,7 +234,7 @@ This will perform PCA on the features and reduce their dimensionality so that th
## Inlier metric
The `inlier_metric` is a metric aimed at quantifying how similar a the features of a data point are to the most recent historic data points.
The `inlier_metric` is a metric aimed at quantifying how similar the features of a data point are to the most recent historical data points.
You define the lookback window by setting `inlier_metric_window` and FreqAI computes the distance between the present time point and each of the previous `inlier_metric_window` lookback points. A Weibull function is fit to each of the lookback distributions and its cumulative distribution function (CDF) is used to produce a quantile for each lookback point. The `inlier_metric` is then computed for each time point as the average of the corresponding lookback quantiles. The figure below explains the concept for an `inlier_metric_window` of 5.

View File

@@ -15,10 +15,9 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `identifier` | **Required.** <br> A unique ID for the current model. If models are saved to disk, the `identifier` allows for reloading specific pre-trained models/data. <br> **Datatype:** String.
| `live_retrain_hours` | Frequency of retraining during dry/live runs. <br> **Datatype:** Float > 0. <br> Default: `0` (models retrain as often as possible).
| `expiration_hours` | Avoid making predictions if a model is more than `expiration_hours` old. <br> **Datatype:** Positive integer. <br> Default: `0` (models never expire).
| `purge_old_models` | Delete all unused models during live runs (not relevant to backtesting). If set to false (not default), dry/live runs will accumulate all unused models to disk. If <br> **Datatype:** Boolean. <br> Default: `True`.
| `purge_old_models` | Number of models to keep on disk (not relevant to backtesting). Default is 2, which means that dry/live runs will keep the latest 2 models on disk. Setting to 0 keeps all models. This parameter also accepts a boolean to maintain backwards compatibility. <br> **Datatype:** Integer. <br> Default: `2`.
| `save_backtest_models` | Save models to disk when running backtesting. Backtesting operates most efficiently by saving the prediction data and reusing them directly for subsequent runs (when you wish to tune entry/exit parameters). Saving backtesting models to disk also allows to use the same model files for starting a dry/live instance with the same model `identifier`. <br> **Datatype:** Boolean. <br> Default: `False` (no models are saved).
| `fit_live_predictions_candles` | Number of historical candles to use for computing target (label) statistics from prediction data, instead of from the training dataset (more information can be found [here](freqai-configuration.md#creating-a-dynamic-target-threshold)). <br> **Datatype:** Positive integer.
| `follow_mode` | Use a `follower` that will look for models associated with a specific `identifier` and load those for inferencing. A `follower` will **not** train new models. <br> **Datatype:** Boolean. <br> Default: `False`.
| `continual_learning` | Use the final state of the most recently trained model as starting point for the new model, allowing for incremental learning (more information can be found [here](freqai-running.md#continual-learning)). <br> **Datatype:** Boolean. <br> Default: `False`.
| `write_metrics_to_disk` | Collect train timings, inference timings and cpu usage in json file. <br> **Datatype:** Boolean. <br> Default: `False`
| `data_kitchen_thread_count` | <br> Designate the number of threads you want to use for data processing (outlier methods, normalization, etc.). This has no impact on the number of threads used for training. If user does not set it (default), FreqAI will use max number of threads - 2 (leaving 1 physical core available for Freqtrade bot and FreqUI) <br> **Datatype:** Positive integer.
@@ -46,13 +45,15 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| `noise_standard_deviation` | If set, FreqAI adds noise to the training features with the aim of preventing overfitting. FreqAI generates random deviates from a gaussian distribution with a standard deviation of `noise_standard_deviation` and adds them to all data points. `noise_standard_deviation` should be kept relative to the normalized space, i.e., between -1 and 1. In other words, since data in FreqAI is always normalized to be between -1 and 1, `noise_standard_deviation: 0.05` would result in 32% of the data being randomly increased/decreased by more than 2.5% (i.e., the percent of data falling within the first standard deviation). <br> **Datatype:** Integer. <br> Default: `0`.
| `outlier_protection_percentage` | Enable to prevent outlier detection methods from discarding too much data. If more than `outlier_protection_percentage` % of points are detected as outliers by the SVM or DBSCAN, FreqAI will log a warning message and ignore outlier detection, i.e., the original dataset will be kept intact. If the outlier protection is triggered, no predictions will be made based on the training dataset. <br> **Datatype:** Float. <br> Default: `30`.
| `reverse_train_test_order` | Split the feature dataset (see below) and use the latest data split for training and test on historical split of the data. This allows the model to be trained up to the most recent data point, while avoiding overfitting. However, you should be careful to understand the unorthodox nature of this parameter before employing it. <br> **Datatype:** Boolean. <br> Default: `False` (no reversal).
| `shuffle_after_split` | Split the data into train and test sets, and then shuffle both sets individually. <br> **Datatype:** Boolean. <br> Default: `False`.
| `buffer_train_data_candles` | Cut `buffer_train_data_candles` off the beginning and end of the training data *after* the indicators were populated. The main example use is when predicting maxima and minima, the argrelextrema function cannot know the maxima/minima at the edges of the timerange. To improve model accuracy, it is best to compute argrelextrema on the full timerange and then use this function to cut off the edges (buffer) by the kernel. In another case, if the targets are set to a shifted price movement, this buffer is unnecessary because the shifted candles at the end of the timerange will be NaN and FreqAI will automatically cut those off of the training dataset.<br> **Datatype:** Boolean. <br> Default: `False`.
### Data split parameters
| Parameter | Description |
|------------|-------------|
| | **Data split parameters within the `freqai.data_split_parameters` sub dictionary**
| `data_split_parameters` | Include any additional parameters available from Scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). <br> **Datatype:** Dictionary.
| `data_split_parameters` | Include any additional parameters available from scikit-learn `test_train_split()`, which are shown [here](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website). <br> **Datatype:** Dictionary.
| `test_size` | The fraction of data that should be used for testing instead of training. <br> **Datatype:** Positive float < 1.
| `shuffle` | Shuffle the training data points during training. Typically, to not remove the chronological order of data in time-series forecasting, this is set to `False`. <br> **Datatype:** Boolean. <br> Defaut: `False`.
@@ -89,6 +90,6 @@ Mandatory parameters are marked as **Required** and have to be set in one of the
| Parameter | Description |
|------------|-------------|
| | **Extraneous parameters**
| `freqai.keras` | If the selected model makes use of Keras (typical for Tensorflow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
| `freqai.keras` | If the selected model makes use of Keras (typical for TensorFlow-based prediction models), this flag needs to be activated so that the model save/loading follows Keras standards. <br> **Datatype:** Boolean. <br> Default: `False`.
| `freqai.conv_width` | The width of a convolutional neural network input tensor. This replaces the need for shifting candles (`include_shifted_candles`) by feeding in historical data points as the second dimension of the tensor. Technically, this parameter can also be used for regressors, but it only adds computational overhead and does not change the model training/prediction. <br> **Datatype:** Integer. <br> Default: `2`.
| `freqai.reduce_df_footprint` | Recast all numeric columns to float32/int32, with the objective of reducing ram/disk usage and decreasing train/inference timing. This parameter is set in the main level of the Freqtrade configuration file (not inside FreqAI). <br> **Datatype:** Boolean. <br> Default: `False`.

View File

@@ -24,7 +24,7 @@ The framework is built on stable_baselines3 (torch) and OpenAI gym for the base
### Important considerations
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free-will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
As explained above, the agent is "trained" in an artificial trading "environment". In our case, that environment may seem quite similar to a real Freqtrade backtesting environment, but it is *NOT*. In fact, the RL training environment is much more simplified. It does not incorporate any of the complicated strategy logic, such as callbacks like `custom_exit`, `custom_stoploss`, leverage controls, etc. The RL environment is instead a very "raw" representation of the true market, where the agent has free will to learn the policy (read: stoploss, take profit, etc.) which is enforced by the `calculate_reward()`. Thus, it is important to consider that the agent training environment is not identical to the real world.
## Running Reinforcement Learning
@@ -175,10 +175,21 @@ As you begin to modify the strategy and the prediction model, you will quickly r
pnl = self.get_unrealized_profit()
factor = 100
# you can use feature values from dataframe
# Assumes the shifted RSI indicator has been generated in the strategy.
rsi_now = self.raw_features[f"%-rsi-period-10_shift-1_{self.pair}_"
f"{self.config['timeframe']}"].iloc[self._current_tick]
# reward agent for entering trades
if action in (Actions.Long_enter.value, Actions.Short_enter.value) \
and self._position == Positions.Neutral:
return 25
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
and self._position == Positions.Neutral):
if rsi_now < 40:
factor = 40 / rsi_now
else:
factor = 1
return 25 * factor
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1

View File

@@ -120,7 +120,7 @@ In the presented example config, the user will only allow predictions on models
Model training parameters are unique to the selected machine learning library. FreqAI allows you to set any parameter for any library using the `model_training_parameters` dictionary in the config. The example config (found in `config_examples/config_freqai.example.json`) shows some of the example parameters associated with `Catboost` and `LightGBM`, but you can add any parameters available in those libraries or any other machine learning library you choose to implement.
Data split parameters are defined in `data_split_parameters` which can be any parameters associated with Scikit-learn's `train_test_split()` function. `train_test_split()` has a parameters called `shuffle` which allows to shuffle the data or keep it unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data. More details about these parameters can be found the [Scikit-learn website](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website).
Data split parameters are defined in `data_split_parameters` which can be any parameters associated with scikit-learn's `train_test_split()` function. `train_test_split()` has a parameters called `shuffle` which allows to shuffle the data or keep it unshuffled. This is particularly useful to avoid biasing training with temporally auto-correlated data. More details about these parameters can be found the [scikit-learn website](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) (external website).
The FreqAI specific parameter `label_period_candles` defines the offset (number of candles into the future) used for the `labels`. In the presented [example config](freqai-configuration.md#setting-up-the-configuration-file), the user is asking for `labels` that are 24 candles in the future.
@@ -165,20 +165,3 @@ tensorboard --logdir user_data/models/unique-id
where `unique-id` is the `identifier` set in the `freqai` configuration file. This command must be run in a separate shell if you wish to view the output in your browser at 127.0.0.1:6060 (6060 is the default port used by Tensorboard).
![tensorboard](assets/tensorboard.jpg)
## Setting up a follower
You can indicate to the bot that it should not train models, but instead should look for models trained by a leader with a specific `identifier` by defining:
```json
"freqai": {
"enabled": true,
"follow_mode": true,
"identifier": "example",
"feature_parameters": {
// leader bots feature_parameters inserted here
},
}
```
In this example, the user has a leader bot with the `"identifier": "example"`. The leader bot is already running or is launched simultaneously with the follower. The follower will load models created by the leader and inference them to obtain predictions instead of training its own models. The user will also need to duplicate the `feature_parameters` parameters from from the leaders freqai configuration file into the freqai section of the followers config.

View File

@@ -4,7 +4,10 @@
## Introduction
FreqAI is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input signals. In general, the FreqAI aims to be a sand-box for easily deploying robust machine-learning libraries on real-time data ([details])(#freqai-position-in-open-source-machine-learning-landscape).
FreqAI is a software designed to automate a variety of tasks associated with training a predictive machine learning model to generate market forecasts given a set of input signals. In general, FreqAI aims to be a sandbox for easily deploying robust machine learning libraries on real-time data ([details](#freqai-position-in-open-source-machine-learning-landscape)).
!!! Note
FreqAI is, and always will be, a not-for-profit, open-source project. FreqAI does *not* have a crypto token, FreqAI does *not* sell signals, and FreqAI does not have a domain besides the present [freqtrade documentation](https://www.freqtrade.io/en/latest/freqai/).
Features include:
@@ -19,7 +22,7 @@ Features include:
* **Automatic data download** - Compute timeranges for data downloads and update historic data (in live deployments)
* **Cleaning of incoming data** - Handle NaNs safely before training and model inferencing
* **Dimensionality reduction** - Reduce the size of the training data via [Principal Component Analysis](freqai-feature-engineering.md#data-dimensionality-reduction-with-principal-component-analysis)
* **Deploying bot fleets** - Set one bot to train models while a fleet of [follower bots](freqai-running.md#setting-up-a-follower) inference the models and handle trades
* **Deploying bot fleets** - Set one bot to train models while a fleet of [consumers](producer-consumer.md) use signals.
## Quick start
@@ -70,11 +73,11 @@ pip install -r requirements-freqai.txt
### Usage with docker
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker-compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
If you are using docker, a dedicated tag with FreqAI dependencies is available as `:freqai`. As such - you can replace the image line in your docker compose file with `image: freqtradeorg/freqtrade:develop_freqai`. This image contains the regular FreqAI dependencies. Similar to native installs, Catboost will not be available on ARM based devices.
### FreqAI position in open-source machine learning landscape
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data-exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data-collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
Forecasting chaotic time-series based systems, such as equity/cryptocurrency markets, requires a broad set of tools geared toward testing a wide range of hypotheses. Fortunately, a recent maturation of robust machine learning libraries (e.g. `scikit-learn`) has opened up a wide range of research possibilities. Scientists from a diverse range of fields can now easily prototype their studies on an abundance of established machine learning algorithms. Similarly, these user-friendly libraries enable "citzen scientists" to use their basic Python skills for data exploration. However, leveraging these machine learning libraries on historical and live chaotic data sources can be logistically difficult and expensive. Additionally, robust data collection, storage, and handling presents a disparate challenge. [`FreqAI`](#freqai) aims to provide a generalized and extensible open-sourced framework geared toward live deployments of adaptive modeling for market forecasting. The `FreqAI` framework is effectively a sandbox for the rich world of open-source machine learning libraries. Inside the `FreqAI` sandbox, users find they can combine a wide variety of third-party libraries to test creative hypotheses on a free live 24/7 chaotic data source - cryptocurrency exchange data.
### Citing FreqAI

View File

@@ -52,6 +52,7 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual,
- [X] [Binance](https://www.binance.com/)
- [X] [Gate.io](https://www.gate.io/ref/6266643)
- [X] [OKX](https://okx.com/)
- [X] [Bybit](https://bybit.com/)
Please make sure to read the [exchange specific notes](exchanges.md), as well as the [trading with leverage](leverage.md) documentation before diving in.

View File

@@ -30,6 +30,12 @@ The easiest way to install and run Freqtrade is to clone the bot Github reposito
!!! Warning "Up-to-date clock"
The clock on the system running the bot must be accurate, synchronized to a NTP server frequently enough to avoid problems with communication to the exchanges.
!!! Error "Running setup.py install for gym did not run successfully."
If you get an error related with gym we suggest you to downgrade setuptools it to version 65.5.0 you can do it with the following command:
```bash
pip install setuptools==65.5.0
```
------
## Requirements

View File

@@ -1,6 +1,6 @@
markdown==3.3.7
mkdocs==1.4.2
mkdocs-material==9.0.5
mkdocs-material==9.0.13
mdx_truly_sane_lists==1.3
pymdown-extensions==9.9.1
pymdown-extensions==9.9.2
jinja2==3.1.2

View File

@@ -163,7 +163,7 @@ python3 scripts/rest_client.py --config rest_config.json <command> [optional par
| `strategy <strategy>` | Get specific Strategy content. **Alpha**
| `available_pairs` | List available backtest data. **Alpha**
| `version` | Show version.
| `sysinfo` | Show informations about the system load.
| `sysinfo` | Show information about the system load.
| `health` | Show bot health (last bot loop).
!!! Warning "Alpha status"
@@ -192,6 +192,11 @@ blacklist
:param add: List of coins to add (example: "BNB/BTC")
cancel_open_order
Cancel open order for trade.
:param trade_id: Cancels open orders for this trade.
count
Return the amount of open trades.
@@ -274,7 +279,6 @@ reload_config
Reload configuration.
show_config
Returns part of the configuration, relevant for trading operations.
start
@@ -320,6 +324,7 @@ version
whitelist
Show the current whitelist.
```
### Message WebSocket

View File

@@ -24,7 +24,7 @@ These modes can be configured with these values:
```
!!! Note
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), Gateio (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
Stoploss on exchange is only supported for Binance (stop-loss-limit), Huobi (stop-limit), Kraken (stop-loss-market, stop-loss-limit), Gate (stop-limit), and Kucoin (stop-limit and stop-market) as of now.
<ins>Do not set too low/tight stoploss value if using stop loss on exchange!</ins>
If set to low/tight then you have greater risk of missing fill on the order and stoploss will not work.
@@ -52,6 +52,18 @@ The bot cannot do these every 5 seconds (at each iteration), otherwise it would
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
### stoploss_price_type
!!! Warning "Only applies to futures"
`stoploss_price_type` only applies to futures markets (on exchanges where it's available).
Freqtrade will perform a validation of this setting on startup, failing to start if an invalid setting for your exchange has been selected.
Supported price types are gonna differs between each exchanges. Please check with your exchange on which price types it supports.
Stoploss on exchange on futures markets can trigger on different price types.
The naming for these prices in exchange terminology often varies, but is usually something around "last" (or "contract price" ), "mark" and "index".
Acceptable values for this setting are `"last"`, `"mark"` and `"index"` - which freqtrade will transfer automatically to the corresponding API type, and place the [stoploss on exchange](#stoploss_on_exchange-and-stoploss_on_exchange_limit_ratio) order correspondingly.
### force_exit
`force_exit` is an optional value, which defaults to the same value as `exit` and is used when sending a `/forceexit` command from Telegram or from the Rest API.

View File

@@ -80,6 +80,7 @@ from freqtrade.resolvers import StrategyResolver
from freqtrade.data.dataprovider import DataProvider
strategy = StrategyResolver.load_strategy(config)
strategy.dp = DataProvider(config, None, None)
strategy.ft_bot_start()
# Generate buy/sell signals using strategy
df = strategy.analyze_ticker(candles, {'pair': pair})

View File

@@ -162,26 +162,33 @@ official commands. You can ask at any moment for help with `/help`.
| Command | Description |
|----------|-------------|
| **System commands**
| `/start` | Starts the trader
| `/stop` | Stops the trader
| `/stopbuy | /stopentry` | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
| `/reload_config` | Reloads the configuration file
| `/show_config` | Shows part of the current configuration with relevant settings to operation
| `/logs [limit]` | Show last log messages.
| `/help` | Show help message
| `/version` | Show version
| **Status** |
| `/status` | Lists all open trades
| `/status <trade_id>` | Lists one or more specific trade. Separate multiple <trade_id> with a blank space.
| `/status table` | List all open trades in a table format. Pending buy orders are marked with an asterisk (*) Pending sell orders are marked with a double asterisk (**)
| `/trades [limit]` | List all recently closed trades in a table format.
| `/delete <trade_id>` | Delete a specific trade from the Database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `/count` | Displays number of trades used and available
| `/locks` | Show currently locked pairs.
| `/unlock <pair or lock_id>` | Remove the lock for this pair (or for this lock id).
| `/profit [<n>]` | Display a summary of your profit/loss from close trades and some stats about your performance, over the last n days (all trades by default)
| **Modify Trade states** |
| `/forceexit <trade_id> | /fx <tradeid>` | Instantly exits the given trade (Ignoring `minimum_roi`).
| `/forceexit all | /fx all` | Instantly exits all open trades (Ignoring `minimum_roi`).
| `/fx` | alias for `/forceexit`
| `/forcelong <pair> [rate]` | Instantly buys the given pair. Rate is optional and only applies to limit orders. (`force_entry_enable` must be set to True)
| `/forceshort <pair> [rate]` | Instantly shorts the given pair. Rate is optional and only applies to limit orders. This will only work on non-spot markets. (`force_entry_enable` must be set to True)
| `/delete <trade_id>` | Delete a specific trade from the Database. Tries to close open orders. Requires manual handling of this trade on the exchange.
| `/cancel_open_order <trade_id> | /coo <trade_id>` | Cancel an open order for a trade.
| **Metrics** |
| `/profit [<n>]` | Display a summary of your profit/loss from close trades and some stats about your performance, over the last n days (all trades by default)
| `/performance` | Show performance of each finished trade grouped by pair
| `/balance` | Show account balance per currency
| `/daily <n>` | Shows profit or loss per day, over the last n days (n defaults to 7)
@@ -193,8 +200,7 @@ official commands. You can ask at any moment for help with `/help`.
| `/whitelist [sorted] [baseonly]` | Show the current whitelist. Optionally display in alphabetical order and/or with just the base currency of each pairing.
| `/blacklist [pair]` | Show the current blacklist, or adds a pair to the blacklist.
| `/edge` | Show validated pairs by Edge if it is enabled.
| `/help` | Show help message
| `/version` | Show version
## Telegram commands in action

View File

@@ -12,7 +12,7 @@ dependencies:
- py-find-1st
- aiohttp
- SQLAlchemy
- python-telegram-bot
- python-telegram-bot<20.0.0
- arrow
- cachetools
- requests
@@ -54,7 +54,7 @@ dependencies:
# 3/4 req hyperopt
- scipy
- scikit-learn
- scikit-learn<1.2.0
- filelock
- scikit-optimize
- progressbar2

View File

@@ -1,5 +1,5 @@
""" Freqtrade bot """
__version__ = '2023.1'
__version__ = '2023.2'
if 'dev' in __version__:
from pathlib import Path

0
freqtrade/__main__.py Normal file → Executable file
View File

0
freqtrade/commands/analyze_commands.py Executable file → Normal file
View File

View File

@@ -108,7 +108,7 @@ def ask_user_config() -> Dict[str, Any]:
"binance",
"binanceus",
"bittrex",
"gateio",
"gate",
"huobi",
"kraken",
"kucoin",
@@ -123,7 +123,7 @@ def ask_user_config() -> Dict[str, Any]:
"message": "Do you want to trade Perpetual Swaps (perpetual futures)?",
"default": False,
"filter": lambda val: 'futures' if val else 'spot',
"when": lambda x: x["exchange_name"] in ['binance', 'gateio', 'okx'],
"when": lambda x: x["exchange_name"] in ['binance', 'gate', 'okx'],
},
{
"type": "autocomplete",

0
freqtrade/commands/hyperopt_commands.py Executable file → Normal file
View File

View File

@@ -1,4 +1,5 @@
import logging
import signal
from typing import Any, Dict
@@ -12,15 +13,20 @@ def start_trading(args: Dict[str, Any]) -> int:
# Import here to avoid loading worker module when it's not used
from freqtrade.worker import Worker
def term_handler(signum, frame):
# Raise KeyboardInterrupt - so we can handle it in the same way as Ctrl-C
raise KeyboardInterrupt()
# Create and run worker
worker = None
try:
signal.signal(signal.SIGTERM, term_handler)
worker = Worker(args)
worker.run()
except Exception as e:
logger.error(str(e))
logger.exception("Fatal exception!")
except KeyboardInterrupt:
except (KeyboardInterrupt):
logger.info('SIGINT received, aborting ...')
finally:
if worker:

View File

@@ -32,7 +32,7 @@ def flat_vars_to_nested_dict(env_dict: Dict[str, Any], prefix: str) -> Dict[str,
:param prefix: Prefix to consider (usually FREQTRADE__)
:return: Nested dict based on available and relevant variables.
"""
no_convert = ['CHAT_ID']
no_convert = ['CHAT_ID', 'PASSWORD']
relevant_vars: Dict[str, Any] = {}
for env_var, val in sorted(env_dict.items()):

View File

@@ -5,7 +5,7 @@ bot constants
"""
from typing import Any, Dict, List, Literal, Tuple
from freqtrade.enums import CandleType, RPCMessageType
from freqtrade.enums import CandleType, PriceType, RPCMessageType
DEFAULT_CONFIG = 'config.json'
@@ -25,6 +25,7 @@ PRICING_SIDES = ['ask', 'bid', 'same', 'other']
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
_ORDERTIF_POSSIBILITIES = ['GTC', 'FOK', 'IOC', 'PO']
ORDERTIF_POSSIBILITIES = _ORDERTIF_POSSIBILITIES + [t.lower() for t in _ORDERTIF_POSSIBILITIES]
STOPLOSS_PRICE_TYPES = [p for p in PriceType]
HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
'SharpeHyperOptLoss', 'SharpeHyperOptLossDaily',
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily',
@@ -229,6 +230,7 @@ CONF_SCHEMA = {
'default': 'market'},
'stoploss': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
'stoploss_on_exchange': {'type': 'boolean'},
'stoploss_price_type': {'type': 'string', 'enum': STOPLOSS_PRICE_TYPES},
'stoploss_on_exchange_interval': {'type': 'number'},
'stoploss_on_exchange_limit_ratio': {'type': 'number', 'minimum': 0.0,
'maximum': 1.0}
@@ -544,7 +546,7 @@ CONF_SCHEMA = {
"enabled": {"type": "boolean", "default": False},
"keras": {"type": "boolean", "default": False},
"write_metrics_to_disk": {"type": "boolean", "default": False},
"purge_old_models": {"type": "boolean", "default": True},
"purge_old_models": {"type": ["boolean", "number"], "default": 2},
"conv_width": {"type": "integer", "default": 1},
"train_period_days": {"type": "integer", "default": 0},
"backtest_period_days": {"type": "number", "default": 7},
@@ -566,7 +568,9 @@ CONF_SCHEMA = {
"shuffle": {"type": "boolean", "default": False},
"nu": {"type": "number", "default": 0.1}
},
}
},
"shuffle_after_split": {"type": "boolean", "default": False},
"buffer_train_data_candles": {"type": "integer", "default": 0}
},
"required": ["include_timeframes", "include_corr_pairlist", ]
},
@@ -679,6 +683,7 @@ EntryExit = Literal['entry', 'exit']
BuySell = Literal['buy', 'sell']
MakerTaker = Literal['maker', 'taker']
BidAsk = Literal['bid', 'ask']
OBLiteral = Literal['asks', 'bids']
Config = Dict[str, Any]
IntOrInf = float

View File

@@ -9,7 +9,7 @@ from collections import deque
from datetime import datetime, timezone
from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame, to_timedelta
from pandas import DataFrame, Timedelta, Timestamp, to_timedelta
from freqtrade.configuration import TimeRange
from freqtrade.constants import (FULL_DATAFRAME_THRESHOLD, Config, ListPairsWithTimeframes,
@@ -18,6 +18,7 @@ from freqtrade.data.history import load_pair_history
from freqtrade.enums import CandleType, RPCMessageType, RunMode
from freqtrade.exceptions import ExchangeError, OperationalException
from freqtrade.exchange import Exchange, timeframe_to_seconds
from freqtrade.exchange.types import OrderBook
from freqtrade.misc import append_candles_to_dataframe
from freqtrade.rpc import RPCManager
from freqtrade.util import PeriodicCache
@@ -206,9 +207,11 @@ class DataProvider:
existing_df, _ = self.__producer_pairs_df[producer_name][pair_key]
# CHECK FOR MISSING CANDLES
timeframe_delta = to_timedelta(timeframe) # Convert the timeframe to a timedelta for pandas
local_last = existing_df.iloc[-1]['date'] # We want the last date from our copy
incoming_first = dataframe.iloc[0]['date'] # We want the first date from the incoming
# Convert the timeframe to a timedelta for pandas
timeframe_delta: Timedelta = to_timedelta(timeframe)
local_last: Timestamp = existing_df.iloc[-1]['date'] # We want the last date from our copy
# We want the first date from the incoming
incoming_first: Timestamp = dataframe.iloc[0]['date']
# Remove existing candles that are newer than the incoming first candle
existing_df1 = existing_df[existing_df['date'] < incoming_first]
@@ -221,7 +224,7 @@ class DataProvider:
# we missed some candles between our data and the incoming
# so return False and candle_difference.
if candle_difference > 1:
return (False, candle_difference)
return (False, int(candle_difference))
if existing_df1.empty:
appended_df = dataframe
else:
@@ -421,10 +424,8 @@ class DataProvider:
"""
if self._exchange is None:
raise OperationalException(NO_EXCHANGE_EXCEPTION)
if helping_pairs:
self._exchange.refresh_latest_ohlcv(pairlist + helping_pairs)
else:
self._exchange.refresh_latest_ohlcv(pairlist)
final_pairs = (pairlist + helping_pairs) if helping_pairs else pairlist
self._exchange.refresh_latest_ohlcv(final_pairs)
@property
def available_pairs(self) -> ListPairsWithTimeframes:
@@ -487,7 +488,7 @@ class DataProvider:
except ExchangeError:
return {}
def orderbook(self, pair: str, maximum: int) -> Dict[str, List]:
def orderbook(self, pair: str, maximum: int) -> OrderBook:
"""
Fetch latest l2 orderbook data
Warning: Does a network request - so use with common sense.

0
freqtrade/data/entryexitanalysis.py Executable file → Normal file
View File

View File

@@ -308,7 +308,7 @@ class IDataHandler(ABC):
timerange=timerange_startup,
candle_type=candle_type
)
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data, True):
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
return pairdf
else:
enddate = pairdf.iloc[-1]['date']
@@ -316,7 +316,7 @@ class IDataHandler(ABC):
if timerange_startup:
self._validate_pairdata(pair, pairdf, timeframe, candle_type, timerange_startup)
pairdf = trim_dataframe(pairdf, timerange_startup)
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data):
if self._check_empty_df(pairdf, pair, timeframe, candle_type, warn_no_data, True):
return pairdf
# incomplete candles should only be dropped if we didn't trim the end beforehand.

View File

@@ -195,7 +195,7 @@ class Edge:
def stake_amount(self, pair: str, free_capital: float,
total_capital: float, capital_in_trade: float) -> float:
stoploss = self.stoploss(pair)
stoploss = self.get_stoploss(pair)
available_capital = (total_capital + capital_in_trade) * self._capital_ratio
allowed_capital_at_risk = available_capital * self._allowed_risk
max_position_size = abs(allowed_capital_at_risk / stoploss)
@@ -214,7 +214,7 @@ class Edge:
)
return round(position_size, 15)
def stoploss(self, pair: str) -> float:
def get_stoploss(self, pair: str) -> float:
if pair in self._cached_pairs:
return self._cached_pairs[pair].stoploss
else:

View File

@@ -6,6 +6,7 @@ from freqtrade.enums.exittype import ExitType
from freqtrade.enums.hyperoptstate import HyperoptState
from freqtrade.enums.marginmode import MarginMode
from freqtrade.enums.ordertypevalue import OrderTypeValues
from freqtrade.enums.pricetype import PriceType
from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType

View File

@@ -0,0 +1,8 @@
from enum import Enum
class PriceType(str, Enum):
"""Enum to distinguish possible trigger prices for stoplosses"""
LAST = "last"
MARK = "mark"
INDEX = "index"

View File

@@ -17,7 +17,7 @@ from freqtrade.exchange.exchange_utils import (amount_to_contract_precision, amo
timeframe_to_next_date, timeframe_to_prev_date,
timeframe_to_seconds, validate_exchange,
validate_exchanges)
from freqtrade.exchange.gateio import Gateio
from freqtrade.exchange.gate import Gate
from freqtrade.exchange.hitbtc import Hitbtc
from freqtrade.exchange.huobi import Huobi
from freqtrade.exchange.kraken import Kraken

View File

@@ -7,7 +7,7 @@ from typing import Dict, List, Optional, Tuple
import arrow
import ccxt
from freqtrade.enums import CandleType, MarginMode, TradingMode
from freqtrade.enums import CandleType, MarginMode, PriceType, TradingMode
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
@@ -28,11 +28,16 @@ class Binance(Exchange):
"trades_pagination": "id",
"trades_pagination_arg": "fromId",
"l2_limit_range": [5, 10, 20, 50, 100, 500, 1000],
"ccxt_futures_name": "swap"
}
_ft_has_futures: Dict = {
"stoploss_order_types": {"limit": "stop", "market": "stop_market"},
"tickers_have_price": False,
"floor_leverage": True,
"stop_price_type_field": "workingType",
"stop_price_type_value_mapping": {
PriceType.LAST: "CONTRACT_PRICE",
PriceType.MARK: "MARK_PRICE",
},
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
@@ -78,33 +83,9 @@ class Binance(Exchange):
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
f'Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}'
) from e
@retrier
def _set_leverage(
self,
leverage: float,
pair: Optional[str] = None,
trading_mode: Optional[TradingMode] = None
):
"""
Set's the leverage before making a trade, in order to not
have the same leverage on every trade
"""
trading_mode = trading_mode or self.trading_mode
if self._config['dry_run'] or trading_mode != TradingMode.FUTURES:
return
try:
self._api.set_leverage(symbol=pair, leverage=round(leverage))
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
@@ -150,6 +131,7 @@ class Binance(Exchange):
is_short: bool,
amount: float,
stake_amount: float,
leverage: float,
wallet_balance: float, # Or margin balance
mm_ex_1: float = 0.0, # (Binance) Cross only
upnl_ex_1: float = 0.0, # (Binance) Cross only
@@ -159,11 +141,12 @@ class Binance(Exchange):
MARGIN: https://www.binance.com/en/support/faq/f6b010588e55413aa58b7d63ee0125ed
PERPETUAL: https://www.binance.com/en/support/faq/b3c689c1f50a44cabb3a84e663b81d93
:param exchange_name:
:param pair: Pair to calculate liquidation price for
:param open_rate: Entry price of position
:param is_short: True if the trade is a short, false otherwise
:param amount: Absolute value of position size incl. leverage (in base currency)
:param stake_amount: Stake amount - Collateral in settle currency.
:param leverage: Leverage used for this position.
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
:param margin_mode: Either ISOLATED or CROSS
:param wallet_balance: Amount of margin_mode in the wallet being used to trade

File diff suppressed because it is too large Load Diff

View File

@@ -1,9 +1,16 @@
""" Bybit exchange subclass """
import logging
from typing import Dict, List, Tuple
from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
from freqtrade.enums import MarginMode, TradingMode
import ccxt
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, PriceType, TradingMode
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange
from freqtrade.exchange.common import retrier
from freqtrade.exchange.exchange_utils import timeframe_to_msecs
logger = logging.getLogger(__name__)
@@ -21,17 +28,27 @@ class Bybit(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 1000,
"ccxt_futures_name": "linear",
"ohlcv_has_history": False,
}
_ft_has_futures: Dict = {
"ohlcv_candle_limit": 200,
"ohlcv_has_history": True,
"mark_ohlcv_timeframe": "4h",
"funding_fee_timeframe": "8h",
"stoploss_on_exchange": True,
"stoploss_order_types": {"limit": "limit", "market": "market"},
"stop_price_type_field": "triggerBy",
"stop_price_type_value_mapping": {
PriceType.LAST: "LastPrice",
PriceType.MARK: "MarkPrice",
PriceType.INDEX: "IndexPrice",
},
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
# TradingMode.SPOT always supported and not required in this list
# (TradingMode.FUTURES, MarginMode.CROSS),
# (TradingMode.FUTURES, MarginMode.ISOLATED)
(TradingMode.FUTURES, MarginMode.ISOLATED)
]
@property
@@ -47,3 +64,158 @@ class Bybit(Exchange):
})
config.update(super()._ccxt_config)
return config
def market_is_future(self, market: Dict[str, Any]) -> bool:
main = super().market_is_future(market)
# For ByBit, we'll only support USDT markets for now.
return (
main and market['settle'] == 'USDT'
)
@retrier
def additional_exchange_init(self) -> None:
"""
Additional exchange initialization logic.
.api will be available at this point.
Must be overridden in child methods if required.
"""
try:
if self.trading_mode == TradingMode.FUTURES and not self._config['dry_run']:
position_mode = self._api.set_position_mode(False)
self._log_exchange_response('set_position_mode', position_mode)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Error in additional_exchange_init due to {e.__class__.__name__}. Message: {e}'
) from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
async def _fetch_funding_rate_history(
self,
pair: str,
timeframe: str,
limit: int,
since_ms: Optional[int] = None,
) -> List[List]:
"""
Fetch funding rate history
Necessary workaround until https://github.com/ccxt/ccxt/issues/15990 is fixed.
"""
params = {}
if since_ms:
until = since_ms + (timeframe_to_msecs(timeframe) * self._ft_has['ohlcv_candle_limit'])
params.update({'until': until})
# Funding rate
data = await self._api_async.fetch_funding_rate_history(
pair, since=since_ms,
params=params)
# Convert funding rate to candle pattern
data = [[x['timestamp'], x['fundingRate'], 0, 0, 0, 0] for x in data]
return data
def _lev_prep(self, pair: str, leverage: float, side: BuySell):
if self.trading_mode != TradingMode.SPOT:
params = {'leverage': leverage}
self.set_margin_mode(pair, self.margin_mode, accept_fail=True, params=params)
self._set_leverage(leverage, pair, accept_fail=True)
def _get_params(
self,
side: BuySell,
ordertype: str,
leverage: float,
reduceOnly: bool,
time_in_force: str = 'GTC',
) -> Dict:
params = super()._get_params(
side=side,
ordertype=ordertype,
leverage=leverage,
reduceOnly=reduceOnly,
time_in_force=time_in_force,
)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode:
params['position_idx'] = 0
return params
def dry_run_liquidation_price(
self,
pair: str,
open_rate: float, # Entry price of position
is_short: bool,
amount: float,
stake_amount: float,
leverage: float,
wallet_balance: float, # Or margin balance
mm_ex_1: float = 0.0, # (Binance) Cross only
upnl_ex_1: float = 0.0, # (Binance) Cross only
) -> Optional[float]:
"""
Important: Must be fetching data from cached values as this is used by backtesting!
PERPETUAL:
bybit:
https://www.bybithelp.com/HelpCenterKnowledge/bybitHC_Article?language=en_US&id=000001067
Long:
Liquidation Price = (
Entry Price * (1 - Initial Margin Rate + Maintenance Margin Rate)
- Extra Margin Added/ Contract)
Short:
Liquidation Price = (
Entry Price * (1 + Initial Margin Rate - Maintenance Margin Rate)
+ Extra Margin Added/ Contract)
Implementation Note: Extra margin is currently not used.
:param pair: Pair to calculate liquidation price for
:param open_rate: Entry price of position
:param is_short: True if the trade is a short, false otherwise
:param amount: Absolute value of position size incl. leverage (in base currency)
:param stake_amount: Stake amount - Collateral in settle currency.
:param leverage: Leverage used for this position.
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
:param margin_mode: Either ISOLATED or CROSS
:param wallet_balance: Amount of margin_mode in the wallet being used to trade
Cross-Margin Mode: crossWalletBalance
Isolated-Margin Mode: isolatedWalletBalance
"""
market = self.markets[pair]
mm_ratio, _ = self.get_maintenance_ratio_and_amt(pair, stake_amount)
if self.trading_mode == TradingMode.FUTURES and self.margin_mode == MarginMode.ISOLATED:
if market['inverse']:
raise OperationalException(
"Freqtrade does not yet support inverse contracts")
initial_margin_rate = 1 / leverage
# See docstring - ignores extra margin!
if is_short:
return open_rate * (1 + initial_margin_rate - mm_ratio)
else:
return open_rate * (1 - initial_margin_rate + mm_ratio)
else:
raise OperationalException(
"Freqtrade only supports isolated futures for leverage trading")
def get_funding_fees(
self, pair: str, amount: float, is_short: bool, open_date: datetime) -> float:
"""
Fetch funding fees, either from the exchange (live) or calculates them
based on funding rate/mark price history
:param pair: The quote/base pair of the trade
:param is_short: trade direction
:param amount: Trade amount
:param open_date: Open date of the trade
:return: funding fee since open_date
:raises: ExchangeError if something goes wrong.
"""
# Bybit does not provide "applied" funding fees per position.
if self.trading_mode == TradingMode.FUTURES:
return self._fetch_and_calculate_funding_fees(
pair, amount, is_short, open_date)
return 0.0

View File

@@ -46,13 +46,13 @@ MAP_EXCHANGE_CHILDCLASS = {
'binanceje': 'binance',
'binanceusdm': 'binance',
'okex': 'okx',
'gate': 'gateio',
'gateio': 'gate',
}
SUPPORTED_EXCHANGES = [
'binance',
'bittrex',
'gateio',
'gate',
'huobi',
'kraken',
'okx',

View File

@@ -7,6 +7,7 @@ import inspect
import logging
from copy import deepcopy
from datetime import datetime, timedelta, timezone
from math import floor
from threading import Lock
from typing import Any, Coroutine, Dict, List, Literal, Optional, Tuple, Union
@@ -20,9 +21,10 @@ from pandas import DataFrame, concat
from freqtrade.constants import (DEFAULT_AMOUNT_RESERVE_PERCENT, NON_OPEN_EXCHANGE_STATES, BidAsk,
BuySell, Config, EntryExit, ListPairsWithTimeframes, MakerTaker,
PairWithTimeframe)
OBLiteral, PairWithTimeframe)
from freqtrade.data.converter import clean_ohlcv_dataframe, ohlcv_to_dataframe, trades_dict_to_list
from freqtrade.enums import OPTIMIZE_MODES, CandleType, MarginMode, TradingMode
from freqtrade.enums.pricetype import PriceType
from freqtrade.exceptions import (DDosProtection, ExchangeError, InsufficientFundsError,
InvalidOrderException, OperationalException, PricingError,
RetryableOrderError, TemporaryError)
@@ -35,7 +37,7 @@ from freqtrade.exchange.exchange_utils import (CcxtModuleType, amount_to_contrac
price_to_precision, timeframe_to_minutes,
timeframe_to_msecs, timeframe_to_next_date,
timeframe_to_prev_date, timeframe_to_seconds)
from freqtrade.exchange.types import OHLCVResponse, Ticker, Tickers
from freqtrade.exchange.types import OHLCVResponse, OrderBook, Ticker, Tickers
from freqtrade.misc import (chunks, deep_merge_dicts, file_dump_json, file_load_json,
safe_value_fallback2)
from freqtrade.plugins.pairlist.pairlist_helpers import expand_pairlist
@@ -599,12 +601,27 @@ class Exchange:
if not self.exchange_has('createMarketOrder'):
raise OperationalException(
f'Exchange {self.name} does not support market orders.')
self.validate_stop_ordertypes(order_types)
def validate_stop_ordertypes(self, order_types: Dict) -> None:
"""
Validate stoploss order types
"""
if (order_types.get("stoploss_on_exchange")
and not self._ft_has.get("stoploss_on_exchange", False)):
raise OperationalException(
f'On exchange stoploss is not supported for {self.name}.'
)
if self.trading_mode == TradingMode.FUTURES:
price_mapping = self._ft_has.get('stop_price_type_value_mapping', {}).keys()
if (
order_types.get("stoploss_on_exchange", False) is True
and 'stoploss_price_type' in order_types
and order_types['stoploss_price_type'] not in price_mapping
):
raise OperationalException(
f'On exchange stoploss price type is not supported for {self.name}.'
)
def validate_pricing(self, pricing: Dict) -> None:
if pricing.get('use_order_book', False) and not self.exchange_has('fetchL2OrderBook'):
@@ -833,7 +850,7 @@ class Exchange:
'remaining': _amount,
'datetime': arrow.utcnow().strftime('%Y-%m-%dT%H:%M:%S.%fZ'),
'timestamp': arrow.utcnow().int_timestamp * 1000,
'status': "closed" if ordertype == "market" and not stop_loss else "open",
'status': "open",
'fee': None,
'info': {},
'leverage': leverage
@@ -843,20 +860,33 @@ class Exchange:
dry_order["stopPrice"] = dry_order["price"]
# Workaround to avoid filling stoploss orders immediately
dry_order["ft_order_type"] = "stoploss"
orderbook: Optional[OrderBook] = None
if self.exchange_has('fetchL2OrderBook'):
orderbook = self.fetch_l2_order_book(pair, 20)
if ordertype == "limit" and orderbook:
# Allow a 3% price difference
allowed_diff = 0.03
if self._dry_is_price_crossed(pair, side, rate, orderbook, allowed_diff):
logger.info(
f"Converted order {pair} to market order due to price {rate} crossing spread "
f"by more than {allowed_diff:.2%}.")
dry_order["type"] = "market"
if dry_order["type"] == "market" and not dry_order.get("ft_order_type"):
# Update market order pricing
average = self.get_dry_market_fill_price(pair, side, amount, rate)
average = self.get_dry_market_fill_price(pair, side, amount, rate, orderbook)
dry_order.update({
'average': average,
'filled': _amount,
'remaining': 0.0,
'status': "closed",
'cost': (dry_order['amount'] * average) / leverage
})
# market orders will always incurr taker fees
dry_order = self.add_dry_order_fee(pair, dry_order, 'taker')
dry_order = self.check_dry_limit_order_filled(dry_order, immediate=True)
dry_order = self.check_dry_limit_order_filled(
dry_order, immediate=True, orderbook=orderbook)
self._dry_run_open_orders[dry_order["id"]] = dry_order
# Copy order and close it - so the returned order is open unless it's a market order
@@ -878,20 +908,22 @@ class Exchange:
})
return dry_order
def get_dry_market_fill_price(self, pair: str, side: str, amount: float, rate: float) -> float:
def get_dry_market_fill_price(self, pair: str, side: str, amount: float, rate: float,
orderbook: Optional[OrderBook]) -> float:
"""
Get the market order fill price based on orderbook interpolation
"""
if self.exchange_has('fetchL2OrderBook'):
ob = self.fetch_l2_order_book(pair, 20)
ob_type = 'asks' if side == 'buy' else 'bids'
if not orderbook:
orderbook = self.fetch_l2_order_book(pair, 20)
ob_type: OBLiteral = 'asks' if side == 'buy' else 'bids'
slippage = 0.05
max_slippage_val = rate * ((1 + slippage) if side == 'buy' else (1 - slippage))
remaining_amount = amount
filled_amount = 0.0
book_entry_price = 0.0
for book_entry in ob[ob_type]:
for book_entry in orderbook[ob_type]:
book_entry_price = book_entry[0]
book_entry_coin_volume = book_entry[1]
if remaining_amount > 0:
@@ -919,20 +951,20 @@ class Exchange:
return rate
def _is_dry_limit_order_filled(self, pair: str, side: str, limit: float) -> bool:
def _dry_is_price_crossed(self, pair: str, side: str, limit: float,
orderbook: Optional[OrderBook] = None, offset: float = 0.0) -> bool:
if not self.exchange_has('fetchL2OrderBook'):
return True
ob = self.fetch_l2_order_book(pair, 1)
if not orderbook:
orderbook = self.fetch_l2_order_book(pair, 1)
try:
if side == 'buy':
price = ob['asks'][0][0]
logger.debug(f"{pair} checking dry buy-order: price={price}, limit={limit}")
if limit >= price:
price = orderbook['asks'][0][0]
if limit * (1 - offset) >= price:
return True
else:
price = ob['bids'][0][0]
logger.debug(f"{pair} checking dry sell-order: price={price}, limit={limit}")
if limit <= price:
price = orderbook['bids'][0][0]
if limit * (1 + offset) <= price:
return True
except IndexError:
# Ignore empty orderbooks when filling - can be filled with the next iteration.
@@ -940,7 +972,8 @@ class Exchange:
return False
def check_dry_limit_order_filled(
self, order: Dict[str, Any], immediate: bool = False) -> Dict[str, Any]:
self, order: Dict[str, Any], immediate: bool = False,
orderbook: Optional[OrderBook] = None) -> Dict[str, Any]:
"""
Check dry-run limit order fill and update fee (if it filled).
"""
@@ -948,7 +981,7 @@ class Exchange:
and order['type'] in ["limit"]
and not order.get('ft_order_type')):
pair = order['symbol']
if self._is_dry_limit_order_filled(pair, order['side'], order['price']):
if self._dry_is_price_crossed(pair, order['side'], order['price'], orderbook):
order.update({
'status': 'closed',
'filled': order['amount'],
@@ -1114,8 +1147,8 @@ class Exchange:
return params
@retrier(retries=0)
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict,
side: BuySell, leverage: float) -> Dict:
def create_stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict,
side: BuySell, leverage: float) -> Dict:
"""
creates a stoploss order.
requires `_ft_has['stoploss_order_types']` to be set as a dict mapping limit and market
@@ -1160,6 +1193,10 @@ class Exchange:
stop_price=stop_price_norm)
if self.trading_mode == TradingMode.FUTURES:
params['reduceOnly'] = True
if 'stoploss_price_type' in order_types and 'stop_price_type_field' in self._ft_has:
price_type = self._ft_has['stop_price_type_value_mapping'][
order_types.get('stoploss_price_type', PriceType.LAST)]
params[self._ft_has['stop_price_type_field']] = price_type
amount = self.amount_to_precision(pair, self._amount_to_contracts(pair, amount))
@@ -1490,7 +1527,7 @@ class Exchange:
return result
@retrier
def fetch_l2_order_book(self, pair: str, limit: int = 100) -> dict:
def fetch_l2_order_book(self, pair: str, limit: int = 100) -> OrderBook:
"""
Get L2 order book from exchange.
Can be limited to a certain amount (if supported).
@@ -1533,7 +1570,7 @@ class Exchange:
def get_rate(self, pair: str, refresh: bool,
side: EntryExit, is_short: bool,
order_book: Optional[dict] = None, ticker: Optional[Ticker] = None) -> float:
order_book: Optional[OrderBook] = None, ticker: Optional[Ticker] = None) -> float:
"""
Calculates bid/ask target
bid rate - between current ask price and last price
@@ -1571,7 +1608,8 @@ class Exchange:
logger.debug('order_book %s', order_book)
# top 1 = index 0
try:
rate = order_book[f"{price_side}s"][order_book_top - 1][0]
obside: OBLiteral = 'bids' if price_side == 'bid' else 'asks'
rate = order_book[obside][order_book_top - 1][0]
except (IndexError, KeyError) as e:
logger.warning(
f"{pair} - {name} Price at location {order_book_top} from orderbook "
@@ -1977,9 +2015,9 @@ class Exchange:
continue
# Deconstruct tuple (has 5 elements)
pair, timeframe, c_type, ticks, drop_hint = res
drop_incomplete = drop_hint if drop_incomplete is None else drop_incomplete
drop_incomplete_ = drop_hint if drop_incomplete is None else drop_incomplete
ohlcv_df = self._process_ohlcv_df(
pair, timeframe, c_type, ticks, cache, drop_incomplete)
pair, timeframe, c_type, ticks, cache, drop_incomplete_)
results_df[(pair, timeframe, c_type)] = ohlcv_df
@@ -2484,7 +2522,8 @@ class Exchange:
self,
leverage: float,
pair: Optional[str] = None,
trading_mode: Optional[TradingMode] = None
trading_mode: Optional[TradingMode] = None,
accept_fail: bool = False,
):
"""
Set's the leverage before making a trade, in order to not
@@ -2493,12 +2532,18 @@ class Exchange:
if self._config['dry_run'] or not self.exchange_has("setLeverage"):
# Some exchanges only support one margin_mode type
return
if self._ft_has.get('floor_leverage', False) is True:
# Rounding for binance ...
leverage = floor(leverage)
try:
res = self._api.set_leverage(symbol=pair, leverage=leverage)
self._log_exchange_response('set_leverage', res)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except ccxt.BadRequest as e:
if not accept_fail:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set leverage due to {e.__class__.__name__}. Message: {e}') from e
@@ -2520,7 +2565,8 @@ class Exchange:
return open_date.minute > 0 or open_date.second > 0
@retrier
def set_margin_mode(self, pair: str, margin_mode: MarginMode, params: dict = {}):
def set_margin_mode(self, pair: str, margin_mode: MarginMode, accept_fail: bool = False,
params: dict = {}):
"""
Set's the margin mode on the exchange to cross or isolated for a specific pair
:param pair: base/quote currency pair (e.g. "ADA/USDT")
@@ -2534,6 +2580,10 @@ class Exchange:
self._log_exchange_response('set_margin_mode', res)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except ccxt.BadRequest as e:
if not accept_fail:
raise TemporaryError(
f'Could not set margin mode due to {e.__class__.__name__}. Message: {e}') from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not set margin mode due to {e.__class__.__name__}. Message: {e}') from e
@@ -2687,6 +2737,7 @@ class Exchange:
is_short: bool,
amount: float, # Absolute value of position size
stake_amount: float,
leverage: float,
wallet_balance: float,
mm_ex_1: float = 0.0, # (Binance) Cross only
upnl_ex_1: float = 0.0, # (Binance) Cross only
@@ -2708,6 +2759,7 @@ class Exchange:
open_rate=open_rate,
is_short=is_short,
amount=amount,
leverage=leverage,
stake_amount=stake_amount,
wallet_balance=wallet_balance,
mm_ex_1=mm_ex_1,
@@ -2719,7 +2771,7 @@ class Exchange:
pos = positions[0]
isolated_liq = pos['liquidationPrice']
if isolated_liq:
if isolated_liq is not None:
buffer_amount = abs(open_rate - isolated_liq) * self.liquidation_buffer
isolated_liq = (
isolated_liq - buffer_amount
@@ -2737,6 +2789,7 @@ class Exchange:
is_short: bool,
amount: float,
stake_amount: float,
leverage: float,
wallet_balance: float, # Or margin balance
mm_ex_1: float = 0.0, # (Binance) Cross only
upnl_ex_1: float = 0.0, # (Binance) Cross only
@@ -2744,7 +2797,7 @@ class Exchange:
"""
Important: Must be fetching data from cached values as this is used by backtesting!
PERPETUAL:
gateio: https://www.gate.io/help/futures/futures/27724/liquidation-price-bankruptcy-price
gate: https://www.gate.io/help/futures/futures/27724/liquidation-price-bankruptcy-price
> Liquidation Price = (Entry Price ± Margin / Contract Multiplier / Size) /
[ 1 ± (Maintenance Margin Ratio + Taker Rate)]
Wherein, "+" or "-" depends on whether the contract goes long or short:
@@ -2758,13 +2811,14 @@ class Exchange:
:param is_short: True if the trade is a short, false otherwise
:param amount: Absolute value of position size incl. leverage (in base currency)
:param stake_amount: Stake amount - Collateral in settle currency.
:param leverage: Leverage used for this position.
:param trading_mode: SPOT, MARGIN, FUTURES, etc.
:param margin_mode: Either ISOLATED or CROSS
:param wallet_balance: Amount of margin_mode in the wallet being used to trade
Cross-Margin Mode: crossWalletBalance
Isolated-Margin Mode: isolatedWalletBalance
# * Not required by Gateio or OKX
# * Not required by Gate or OKX
:param mm_ex_1:
:param upnl_ex_1:
"""

View File

@@ -4,7 +4,7 @@ from datetime import datetime
from typing import Any, Dict, List, Optional, Tuple
from freqtrade.constants import BuySell
from freqtrade.enums import MarginMode, TradingMode
from freqtrade.enums import MarginMode, PriceType, TradingMode
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
from freqtrade.misc import safe_value_fallback2
@@ -13,7 +13,7 @@ from freqtrade.misc import safe_value_fallback2
logger = logging.getLogger(__name__)
class Gateio(Exchange):
class Gate(Exchange):
"""
Gate.io exchange class. Contains adjustments needed for Freqtrade to work
with this exchange.
@@ -34,6 +34,12 @@ class Gateio(Exchange):
"needs_trading_fees": True,
"fee_cost_in_contracts": False, # Set explicitly to false for clarity
"order_props_in_contracts": ['amount', 'filled', 'remaining'],
"stop_price_type_field": "price_type",
"stop_price_type_value_mapping": {
PriceType.LAST: 0,
PriceType.MARK: 1,
PriceType.INDEX: 2,
},
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
@@ -49,6 +55,7 @@ class Gateio(Exchange):
if any(v == 'market' for k, v in order_types.items()):
raise OperationalException(
f'Exchange {self.name} does not support market orders.')
super().validate_stop_ordertypes(order_types)
def _get_params(
self,
@@ -77,7 +84,7 @@ class Gateio(Exchange):
if self.trading_mode == TradingMode.FUTURES:
# Futures usually don't contain fees in the response.
# As such, futures orders on gateio will not contain a fee, which causes
# As such, futures orders on gate will not contain a fee, which causes
# a repeated "update fee" cycle and wrong calculations.
# Therefore we patch the response with fees if it's not available.
# An alternative also contianing fees would be

View File

@@ -19,5 +19,4 @@ class Hitbtc(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 1000,
"ohlcv_params": {"sort": "DESC"}
}

View File

@@ -97,8 +97,8 @@ class Kraken(Exchange):
))
@retrier(retries=0)
def stoploss(self, pair: str, amount: float, stop_price: float,
order_types: Dict, side: BuySell, leverage: float) -> Dict:
def create_stoploss(self, pair: str, amount: float, stop_price: float,
order_types: Dict, side: BuySell, leverage: float) -> Dict:
"""
Creates a stoploss market order.
Stoploss market orders is the only stoploss type supported by kraken.
@@ -158,7 +158,8 @@ class Kraken(Exchange):
self,
leverage: float,
pair: Optional[str] = None,
trading_mode: Optional[TradingMode] = None
trading_mode: Optional[TradingMode] = None,
accept_fail: bool = False,
):
"""
Kraken set's the leverage as an option in the order object, so we need to

View File

@@ -36,3 +36,34 @@ class Kucoin(Exchange):
'stop': 'loss'
})
return params
def create_order(
self,
*,
pair: str,
ordertype: str,
side: BuySell,
amount: float,
rate: float,
leverage: float,
reduceOnly: bool = False,
time_in_force: str = 'GTC',
) -> Dict:
res = super().create_order(
pair=pair,
ordertype=ordertype,
side=side,
amount=amount,
rate=rate,
leverage=leverage,
reduceOnly=reduceOnly,
time_in_force=time_in_force,
)
# Kucoin returns only the order-id.
# ccxt returns status = 'closed' at the moment - which is information ccxt invented.
# Since we rely on status heavily, we must set it to 'open' here.
# ref: https://github.com/ccxt/ccxt/pull/16674, (https://github.com/ccxt/ccxt/pull/16553)
res['type'] = ordertype
res['status'] = 'open'
return res

View File

@@ -5,6 +5,7 @@ import ccxt
from freqtrade.constants import BuySell
from freqtrade.enums import CandleType, MarginMode, TradingMode
from freqtrade.enums.pricetype import PriceType
from freqtrade.exceptions import DDosProtection, OperationalException, TemporaryError
from freqtrade.exchange import Exchange, date_minus_candles
from freqtrade.exchange.common import retrier
@@ -27,6 +28,12 @@ class Okx(Exchange):
_ft_has_futures: Dict = {
"tickers_have_quoteVolume": False,
"fee_cost_in_contracts": True,
"stop_price_type_field": "tpTriggerPxType",
"stop_price_type_value_mapping": {
PriceType.LAST: "last",
PriceType.MARK: "index",
PriceType.INDEX: "mark",
},
}
_supported_trading_mode_margin_pairs: List[Tuple[TradingMode, MarginMode]] = [
@@ -118,13 +125,15 @@ class Okx(Exchange):
if self.trading_mode != TradingMode.SPOT and self.margin_mode is not None:
try:
# TODO-lev: Test me properly (check mgnMode passed)
self._api.set_leverage(
res = self._api.set_leverage(
leverage=leverage,
symbol=pair,
params={
"mgnMode": self.margin_mode.value,
"posSide": self._get_posSide(side, False),
})
self._log_exchange_response('set_leverage', res)
except ccxt.DDoSProtection as e:
raise DDosProtection(e) from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:

View File

@@ -15,6 +15,15 @@ class Ticker(TypedDict):
# Several more - only listing required.
class OrderBook(TypedDict):
symbol: str
bids: List[Tuple[float, float]]
asks: List[Tuple[float, float]]
timestamp: Optional[int]
datetime: Optional[str]
nonce: Optional[int]
Tickers = Dict[str, Ticker]
# pair, timeframe, candleType, OHLCV, drop last?,

View File

@@ -45,7 +45,8 @@ class BaseEnvironment(gym.Env):
def __init__(self, df: DataFrame = DataFrame(), prices: DataFrame = DataFrame(),
reward_kwargs: dict = {}, window_size=10, starting_point=True,
id: str = 'baseenv-1', seed: int = 1, config: dict = {}, live: bool = False,
fee: float = 0.0015, can_short: bool = False):
fee: float = 0.0015, can_short: bool = False, pair: str = "",
df_raw: DataFrame = DataFrame()):
"""
Initializes the training/eval environment.
:param df: dataframe of features
@@ -60,12 +61,14 @@ class BaseEnvironment(gym.Env):
:param fee: The fee to use for environmental interactions.
:param can_short: Whether or not the environment can short
"""
self.config = config
self.rl_config = config['freqai']['rl_config']
self.add_state_info = self.rl_config.get('add_state_info', False)
self.id = id
self.max_drawdown = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8)
self.compound_trades = config['stake_amount'] == 'unlimited'
self.config: dict = config
self.rl_config: dict = config['freqai']['rl_config']
self.add_state_info: bool = self.rl_config.get('add_state_info', False)
self.id: str = id
self.max_drawdown: float = 1 - self.rl_config.get('max_training_drawdown_pct', 0.8)
self.compound_trades: bool = config['stake_amount'] == 'unlimited'
self.pair: str = pair
self.raw_features: DataFrame = df_raw
if self.config.get('fee', None) is not None:
self.fee = self.config['fee']
else:
@@ -74,8 +77,8 @@ class BaseEnvironment(gym.Env):
# set here to default 5Ac, but all children envs can override this
self.actions: Type[Enum] = BaseActions
self.tensorboard_metrics: dict = {}
self.can_short = can_short
self.live = live
self.can_short: bool = can_short
self.live: bool = live
if not self.live and self.add_state_info:
self.add_state_info = False
logger.warning("add_state_info is not available in backtesting. Deactivating.")
@@ -93,13 +96,12 @@ class BaseEnvironment(gym.Env):
:param reward_kwargs: extra config settings assigned by user in `rl_config`
:param starting_point: start at edge of window or not
"""
self.df = df
self.signal_features = self.df
self.prices = prices
self.window_size = window_size
self.starting_point = starting_point
self.rr = reward_kwargs["rr"]
self.profit_aim = reward_kwargs["profit_aim"]
self.signal_features: DataFrame = df
self.prices: DataFrame = prices
self.window_size: int = window_size
self.starting_point: bool = starting_point
self.rr: float = reward_kwargs["rr"]
self.profit_aim: float = reward_kwargs["profit_aim"]
# # spaces
if self.add_state_info:

View File

@@ -1,3 +1,4 @@
import copy
import importlib
import logging
from abc import abstractmethod
@@ -50,6 +51,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
self.eval_callback: Optional[EvalCallback] = None
self.model_type = self.freqai_info['rl_config']['model_type']
self.rl_config = self.freqai_info['rl_config']
self.df_raw: DataFrame = DataFrame()
self.continual_learning = self.freqai_info.get('continual_learning', False)
if self.model_type in SB3_MODELS:
import_str = 'stable_baselines3'
@@ -107,6 +109,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
data_dictionary: Dict[str, Any] = dk.make_train_test_datasets(
features_filtered, labels_filtered)
self.df_raw = copy.deepcopy(data_dictionary["train_features"])
dk.fit_labels() # FIXME useless for now, but just satiating append methods
# normalize all data based on train_dataset only
@@ -143,7 +146,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
env_info = self.pack_env_dict()
env_info = self.pack_env_dict(dk.pair)
self.train_env = self.MyRLEnv(df=train_df,
prices=prices_train,
@@ -158,7 +161,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
actions = self.train_env.get_actions()
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
def pack_env_dict(self) -> Dict[str, Any]:
def pack_env_dict(self, pair: str) -> Dict[str, Any]:
"""
Create dictionary of environment arguments
"""
@@ -166,7 +169,9 @@ class BaseReinforcementLearningModel(IFreqaiModel):
"reward_kwargs": self.reward_params,
"config": self.config,
"live": self.live,
"can_short": self.can_short}
"can_short": self.can_short,
"pair": pair,
"df_raw": self.df_raw}
if self.data_provider:
env_info["fee"] = self.data_provider._exchange \
.get_fee(symbol=self.data_provider.current_whitelist()[0]) # type: ignore
@@ -347,7 +352,7 @@ class BaseReinforcementLearningModel(IFreqaiModel):
sets a custom reward based on profit and trade duration.
"""
def calculate_reward(self, action: int) -> float:
def calculate_reward(self, action: int) -> float: # noqa: C901
"""
An example reward function. This is the one function that users will likely
wish to inject their own creativity into.
@@ -363,10 +368,19 @@ class BaseReinforcementLearningModel(IFreqaiModel):
pnl = self.get_unrealized_profit()
factor = 100.
# you can use feature values from dataframe
rsi_now = self.raw_features[f"%-rsi-period-10_shift-1_{self.pair}_"
f"{self.config['timeframe']}"].iloc[self._current_tick]
# reward agent for entering trades
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
and self._position == Positions.Neutral):
return 25
if rsi_now < 40:
factor = 40 / rsi_now
else:
factor = 1
return 25 * factor
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
return -1

View File

@@ -59,7 +59,7 @@ class FreqaiDataDrawer:
Juha Nykänen @suikula, Wagner Costa @wagnercosta, Johan Vlugt @Jooopieeert
"""
def __init__(self, full_path: Path, config: Config, follow_mode: bool = False):
def __init__(self, full_path: Path, config: Config):
self.config = config
self.freqai_info = config.get("freqai", {})
@@ -72,21 +72,13 @@ class FreqaiDataDrawer:
self.model_return_values: Dict[str, DataFrame] = {}
self.historic_data: Dict[str, Dict[str, DataFrame]] = {}
self.historic_predictions: Dict[str, DataFrame] = {}
self.follower_dict: Dict[str, pair_info] = {}
self.full_path = full_path
self.follower_name: str = self.config.get("bot_name", "follower1")
self.follower_dict_path = Path(
self.full_path / f"follower_dictionary-{self.follower_name}.json"
)
self.historic_predictions_path = Path(self.full_path / "historic_predictions.pkl")
self.historic_predictions_bkp_path = Path(
self.full_path / "historic_predictions.backup.pkl")
self.pair_dictionary_path = Path(self.full_path / "pair_dictionary.json")
self.global_metadata_path = Path(self.full_path / "global_metadata.json")
self.metric_tracker_path = Path(self.full_path / "metric_tracker.json")
self.follow_mode = follow_mode
if follow_mode:
self.create_follower_dict()
self.load_drawer_from_disk()
self.load_historic_predictions_from_disk()
self.metric_tracker: Dict[str, Dict[str, Dict[str, list]]] = {}
@@ -149,13 +141,8 @@ class FreqaiDataDrawer:
if exists:
with open(self.pair_dictionary_path, "r") as fp:
self.pair_dict = rapidjson.load(fp, number_mode=rapidjson.NM_NATIVE)
elif not self.follow_mode:
logger.info("Could not find existing datadrawer, starting from scratch")
else:
logger.warning(
f"Follower could not find pair_dictionary at {self.full_path} "
"sending null values back to strategy"
)
logger.info("Could not find existing datadrawer, starting from scratch")
def load_metric_tracker_from_disk(self):
"""
@@ -193,13 +180,8 @@ class FreqaiDataDrawer:
self.historic_predictions = cloudpickle.load(fp)
logger.warning('FreqAI successfully loaded the backup historical predictions file.')
elif not self.follow_mode:
logger.info("Could not find existing historic_predictions, starting from scratch")
else:
logger.warning(
f"Follower could not find historic predictions at {self.full_path} "
"sending null values back to strategy"
)
logger.info("Could not find existing historic_predictions, starting from scratch")
return exists
@@ -231,14 +213,6 @@ class FreqaiDataDrawer:
rapidjson.dump(self.pair_dict, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def save_follower_dict_to_disk(self):
"""
Save follower dictionary to disk (used by strategy for persistent prediction targets)
"""
with open(self.follower_dict_path, "w") as fp:
rapidjson.dump(self.follower_dict, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def save_global_metadata_to_disk(self, metadata: Dict[str, Any]):
"""
Save global metadata json to disk
@@ -248,28 +222,11 @@ class FreqaiDataDrawer:
rapidjson.dump(metadata, fp, default=self.np_encoder,
number_mode=rapidjson.NM_NATIVE)
def create_follower_dict(self):
"""
Create or dictionary for each follower to maintain unique persistent prediction targets
"""
whitelist_pairs = self.config.get("exchange", {}).get("pair_whitelist")
exists = self.follower_dict_path.is_file()
if exists:
logger.info("Found an existing follower dictionary")
for pair in whitelist_pairs:
self.follower_dict[pair] = {}
self.save_follower_dict_to_disk()
def np_encoder(self, object):
if isinstance(object, np.generic):
return object.item()
def get_pair_dict_info(self, pair: str) -> Tuple[str, int, bool]:
def get_pair_dict_info(self, pair: str) -> Tuple[str, int]:
"""
Locate and load existing model metadata from persistent storage. If not located,
create a new one and append the current pair to it and prepare it for its first
@@ -278,32 +235,19 @@ class FreqaiDataDrawer:
:return:
model_filename: str = unique filename used for loading persistent objects from disk
trained_timestamp: int = the last time the coin was trained
return_null_array: bool = Follower could not find pair metadata
"""
pair_dict = self.pair_dict.get(pair)
data_path_set = self.pair_dict.get(pair, self.empty_pair_dict).get("data_path", "")
return_null_array = False
if pair_dict:
model_filename = pair_dict["model_filename"]
trained_timestamp = pair_dict["trained_timestamp"]
elif not self.follow_mode:
else:
self.pair_dict[pair] = self.empty_pair_dict.copy()
model_filename = ""
trained_timestamp = 0
if not data_path_set and self.follow_mode:
logger.warning(
f"Follower could not find current pair {pair} in "
f"pair_dictionary at path {self.full_path}, sending null values "
"back to strategy."
)
trained_timestamp = 0
model_filename = ''
return_null_array = True
return model_filename, trained_timestamp, return_null_array
return model_filename, trained_timestamp
def set_pair_dict_info(self, metadata: dict) -> None:
pair_in_dict = self.pair_dict.get(metadata["pair"])
@@ -311,7 +255,6 @@ class FreqaiDataDrawer:
return
else:
self.pair_dict[metadata["pair"]] = self.empty_pair_dict.copy()
return
def set_initial_return_values(self, pair: str, pred_df: DataFrame) -> None:
@@ -423,6 +366,12 @@ class FreqaiDataDrawer:
def purge_old_models(self) -> None:
num_keep = self.freqai_info["purge_old_models"]
if not num_keep:
return
elif type(num_keep) == bool:
num_keep = 2
model_folders = [x for x in self.full_path.iterdir() if x.is_dir()]
pattern = re.compile(r"sub-train-(\w+)_(\d{10})")
@@ -445,11 +394,11 @@ class FreqaiDataDrawer:
delete_dict[coin]["timestamps"][int(timestamp)] = dir
for coin in delete_dict:
if delete_dict[coin]["num_folders"] > 2:
if delete_dict[coin]["num_folders"] > num_keep:
sorted_dict = collections.OrderedDict(
sorted(delete_dict[coin]["timestamps"].items())
)
num_delete = len(sorted_dict) - 2
num_delete = len(sorted_dict) - num_keep
deleted = 0
for k, v in sorted_dict.items():
if deleted >= num_delete:
@@ -458,12 +407,6 @@ class FreqaiDataDrawer:
shutil.rmtree(v)
deleted += 1
def update_follower_metadata(self):
# follower needs to load from disk to get any changes made by leader to pair_dict
self.load_drawer_from_disk()
if self.config.get("freqai", {}).get("purge_old_models", False):
self.purge_old_models()
def save_metadata(self, dk: FreqaiDataKitchen) -> None:
"""
Saves only metadata for backtesting studies if user prefers

View File

@@ -1,6 +1,7 @@
import copy
import inspect
import logging
import random
import shutil
from datetime import datetime, timezone
from math import cos, sin
@@ -170,6 +171,19 @@ class FreqaiDataKitchen:
train_labels = labels
train_weights = weights
if feat_dict["shuffle_after_split"]:
rint1 = random.randint(0, 100)
rint2 = random.randint(0, 100)
train_features = train_features.sample(
frac=1, random_state=rint1).reset_index(drop=True)
train_labels = train_labels.sample(frac=1, random_state=rint1).reset_index(drop=True)
train_weights = pd.DataFrame(train_weights).sample(
frac=1, random_state=rint1).reset_index(drop=True).to_numpy()[:, 0]
test_features = test_features.sample(frac=1, random_state=rint2).reset_index(drop=True)
test_labels = test_labels.sample(frac=1, random_state=rint2).reset_index(drop=True)
test_weights = pd.DataFrame(test_weights).sample(
frac=1, random_state=rint2).reset_index(drop=True).to_numpy()[:, 0]
# Simplest way to reverse the order of training and test data:
if self.freqai_config['feature_parameters'].get('reverse_train_test_order', False):
return self.build_data_dictionary(
@@ -1247,17 +1261,19 @@ class FreqaiDataKitchen:
tfs: List[str] = self.freqai_config["feature_parameters"].get("include_timeframes")
for tf in tfs:
metadata = {"pair": pair, "tf": tf}
informative_df = self.get_pair_data_for_features(
pair, tf, strategy, corr_dataframes, base_dataframes, is_corr_pairs)
informative_copy = informative_df.copy()
for t in self.freqai_config["feature_parameters"]["indicator_periods_candles"]:
df_features = strategy.feature_engineering_expand_all(
informative_copy.copy(), t)
informative_copy.copy(), t, metadata=metadata)
suffix = f"{t}"
informative_df = self.merge_features(informative_df, df_features, tf, tf, suffix)
generic_df = strategy.feature_engineering_expand_basic(informative_copy.copy())
generic_df = strategy.feature_engineering_expand_basic(
informative_copy.copy(), metadata=metadata)
suffix = "gen"
informative_df = self.merge_features(informative_df, generic_df, tf, tf, suffix)
@@ -1326,8 +1342,8 @@ class FreqaiDataKitchen:
"include_corr_pairlist", [])
dataframe = self.populate_features(dataframe.copy(), pair, strategy,
corr_dataframes, base_dataframes)
dataframe = strategy.feature_engineering_standard(dataframe.copy())
metadata = {"pair": pair}
dataframe = strategy.feature_engineering_standard(dataframe.copy(), metadata=metadata)
# ensure corr pairs are always last
for corr_pair in corr_pairs:
if pair == corr_pair:
@@ -1336,7 +1352,7 @@ class FreqaiDataKitchen:
dataframe = self.populate_features(dataframe.copy(), corr_pair, strategy,
corr_dataframes, base_dataframes, True)
dataframe = strategy.set_freqai_targets(dataframe.copy())
dataframe = strategy.set_freqai_targets(dataframe.copy(), metadata=metadata)
self.get_unique_classes_from_labels(dataframe)
@@ -1546,3 +1562,25 @@ class FreqaiDataKitchen:
dataframe.columns = dataframe.columns.str.replace(c, "")
return dataframe
def buffer_timerange(self, timerange: TimeRange):
"""
Buffer the start and end of the timerange. This is used *after* the indicators
are populated.
The main example use is when predicting maxima and minima, the argrelextrema
function cannot know the maxima/minima at the edges of the timerange. To improve
model accuracy, it is best to compute argrelextrema on the full timerange
and then use this function to cut off the edges (buffer) by the kernel.
In another case, if the targets are set to a shifted price movement, this
buffer is unnecessary because the shifted candles at the end of the timerange
will be NaN and FreqAI will automatically cut those off of the training
dataset.
"""
buffer = self.freqai_config["feature_parameters"]["buffer_train_data_candles"]
if buffer:
timerange.stopts -= buffer * timeframe_to_seconds(self.config["timeframe"])
timerange.startts += buffer * timeframe_to_seconds(self.config["timeframe"])
return timerange

View File

@@ -66,12 +66,11 @@ class IFreqaiModel(ABC):
self.retrain = False
self.first = True
self.set_full_path()
self.follow_mode: bool = self.freqai_info.get("follow_mode", False)
self.save_backtest_models: bool = self.freqai_info.get("save_backtest_models", True)
if self.save_backtest_models:
logger.info('Backtesting module configured to save all models.')
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config, self.follow_mode)
self.dd = FreqaiDataDrawer(Path(self.full_path), self.config)
# set current candle to arbitrary historical date
self.current_candle: datetime = datetime.fromtimestamp(637887600, tz=timezone.utc)
self.dd.current_candle = self.current_candle
@@ -153,7 +152,7 @@ class IFreqaiModel(ABC):
# (backtest window, i.e. window immediately following the training window).
# FreqAI slides the window and sequentially builds the backtesting results before returning
# the concatenated results for the full backtesting period back to the strategy.
elif not self.follow_mode:
else:
self.dk = FreqaiDataKitchen(self.config, self.live, metadata["pair"])
if not self.config.get("freqai_backtest_live_models", False):
logger.info(f"Training {len(self.dk.training_timeranges)} timeranges")
@@ -228,7 +227,7 @@ class IFreqaiModel(ABC):
logger.warning(f'{pair} not in current whitelist, removing from train queue.')
continue
(_, trained_timestamp, _) = self.dd.get_pair_dict_info(pair)
(_, trained_timestamp) = self.dd.get_pair_dict_info(pair)
dk = FreqaiDataKitchen(self.config, self.live, pair)
(
@@ -286,7 +285,7 @@ class IFreqaiModel(ABC):
# following tr_train. Both of these windows slide through the
# entire backtest
for tr_train, tr_backtest in zip(dk.training_timeranges, dk.backtesting_timeranges):
(_, _, _) = self.dd.get_pair_dict_info(pair)
(_, _) = self.dd.get_pair_dict_info(pair)
train_it += 1
total_trains = len(dk.backtesting_timeranges)
self.training_timerange = tr_train
@@ -325,9 +324,13 @@ class IFreqaiModel(ABC):
populate_indicators = False
dataframe_base_train = dataframe.loc[dataframe["date"] < tr_train.stopdt, :]
dataframe_base_train = strategy.set_freqai_targets(dataframe_base_train)
dataframe_base_train = strategy.set_freqai_targets(
dataframe_base_train, metadata=metadata)
dataframe_base_backtest = dataframe.loc[dataframe["date"] < tr_backtest.stopdt, :]
dataframe_base_backtest = strategy.set_freqai_targets(dataframe_base_backtest)
dataframe_base_backtest = strategy.set_freqai_targets(
dataframe_base_backtest, metadata=metadata)
tr_train = dk.buffer_timerange(tr_train)
dataframe_train = dk.slice_dataframe(tr_train, dataframe_base_train)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe_base_backtest)
@@ -379,18 +382,9 @@ class IFreqaiModel(ABC):
:returns:
dk: FreqaiDataKitchen = Data management/analysis tool associated to present pair only
"""
# update follower
if self.follow_mode:
self.dd.update_follower_metadata()
# get the model metadata associated with the current pair
(_, trained_timestamp, return_null_array) = self.dd.get_pair_dict_info(metadata["pair"])
# if the metadata doesn't exist, the follower returns null arrays to strategy
if self.follow_mode and return_null_array:
logger.info("Returning null array from follower to strategy")
self.dd.return_null_values_to_strategy(dataframe, dk)
return dk
(_, trained_timestamp) = self.dd.get_pair_dict_info(metadata["pair"])
# append the historic data once per round
if self.dd.historic_data:
@@ -398,27 +392,18 @@ class IFreqaiModel(ABC):
logger.debug(f'Updating historic data on pair {metadata["pair"]}')
self.track_current_candle()
if not self.follow_mode:
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
trained_timestamp
)
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
(_, new_trained_timerange, data_load_timerange) = dk.check_if_new_training_required(
trained_timestamp
)
dk.set_paths(metadata["pair"], new_trained_timerange.stopts)
# load candle history into memory if it is not yet.
if not self.dd.historic_data:
self.dd.load_all_pair_histories(data_load_timerange, dk)
# load candle history into memory if it is not yet.
if not self.dd.historic_data:
self.dd.load_all_pair_histories(data_load_timerange, dk)
if not self.scanning:
self.scanning = True
self.start_scanning(strategy)
elif self.follow_mode:
dk.set_paths(metadata["pair"], trained_timestamp)
logger.info(
"FreqAI instance set to follow_mode, finding existing pair "
f"using { self.identifier }"
)
if not self.scanning:
self.scanning = True
self.start_scanning(strategy)
# load the model and associated data into the data kitchen
self.model = self.dd.load_data(metadata["pair"], dk)
@@ -580,7 +565,13 @@ class IFreqaiModel(ABC):
:return:
:boolean: whether the model file exists or not.
"""
path_to_modelfile = Path(dk.data_path / f"{dk.model_filename}_model.joblib")
if self.dd.model_type == 'joblib':
file_type = ".joblib"
elif self.dd.model_type == 'keras':
file_type = ".h5"
elif 'stable_baselines' in self.dd.model_type or 'sb3_contrib' == self.dd.model_type:
file_type = ".zip"
path_to_modelfile = Path(dk.data_path / f"{dk.model_filename}_model{file_type}")
file_exists = path_to_modelfile.is_file()
if file_exists:
logger.info("Found model at %s", dk.data_path / dk.model_filename)
@@ -625,6 +616,8 @@ class IFreqaiModel(ABC):
strategy, corr_dataframes, base_dataframes, pair
)
new_trained_timerange = dk.buffer_timerange(new_trained_timerange)
unfiltered_dataframe = dk.slice_dataframe(new_trained_timerange, unfiltered_dataframe)
# find the features indicated by strategy and store in datakitchen
@@ -640,8 +633,7 @@ class IFreqaiModel(ABC):
if self.plot_features:
plot_feature_importance(model, pair, dk, self.plot_features)
if self.freqai_info.get("purge_old_models", False):
self.dd.purge_old_models()
self.dd.purge_old_models()
def set_initial_historic_predictions(
self, pred_df: DataFrame, dk: FreqaiDataKitchen, pair: str, strat_df: DataFrame

View File

@@ -34,7 +34,7 @@ class ReinforcementLearner_multiproc(ReinforcementLearner):
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
env_info = self.pack_env_dict()
env_info = self.pack_env_dict(dk.pair)
env_id = "train_env"
self.train_env = SubprocVecEnv([make_env(self.MyRLEnv, env_id, i, 1,

View File

@@ -344,7 +344,15 @@ class FreqtradeBot(LoggingMixin):
try:
fo = self.exchange.fetch_order_or_stoploss_order(order.order_id, order.ft_pair,
order.ft_order_side == 'stoploss')
if not order.trade:
# This should not happen, but it does if trades were deleted manually.
# This can only incur on sqlite, which doesn't enforce foreign constraints.
logger.warning(
f"Order {order.order_id} has no trade attached. "
"This may suggest a database corruption. "
f"The expected trade ID is {order.ft_trade_id}. Ignoring this order."
)
continue
self.update_trade_state(order.trade, order.order_id, fo,
stoploss_order=(order.ft_order_side == 'stoploss'))
@@ -355,7 +363,7 @@ class FreqtradeBot(LoggingMixin):
"Order is older than 5 days. Assuming order was fully cancelled.")
fo = order.to_ccxt_object()
fo['status'] = 'canceled'
self.handle_timedout_order(fo, order.trade)
self.handle_cancel_order(fo, order.trade, constants.CANCEL_REASON['TIMEOUT'])
except ExchangeError as e:
@@ -750,13 +758,15 @@ class FreqtradeBot(LoggingMixin):
self.exchange.name, order['filled'], order['amount'],
order['remaining']
)
amount = safe_value_fallback(order, 'filled', 'amount')
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
amount = safe_value_fallback(order, 'filled', 'amount', amount)
enter_limit_filled_price = safe_value_fallback(
order, 'average', 'price', enter_limit_filled_price)
# in case of FOK the order may be filled immediately and fully
elif order_status == 'closed':
amount = safe_value_fallback(order, 'filled', 'amount')
enter_limit_filled_price = safe_value_fallback(order, 'average', 'price')
amount = safe_value_fallback(order, 'filled', 'amount', amount)
enter_limit_filled_price = safe_value_fallback(
order, 'average', 'price', enter_limit_requested)
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
@@ -1068,7 +1078,7 @@ class FreqtradeBot(LoggingMixin):
datetime.now(timezone.utc),
enter=enter,
exit_=exit_,
force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0
force_stoploss=self.edge.get_stoploss(trade.pair) if self.edge else 0
)
for should_exit in exits:
if should_exit.exit_flag:
@@ -1088,7 +1098,7 @@ class FreqtradeBot(LoggingMixin):
:return: True if the order succeeded, and False in case of problems.
"""
try:
stoploss_order = self.exchange.stoploss(
stoploss_order = self.exchange.create_stoploss(
pair=trade.pair,
amount=trade.amount,
stop_price=stop_price,
@@ -1160,15 +1170,13 @@ class FreqtradeBot(LoggingMixin):
# If enter order is fulfilled but there is no stoploss, we add a stoploss on exchange
if not stoploss_order:
stoploss = (
self.edge.stoploss(pair=trade.pair)
if self.edge else
trade.stop_loss_pct / trade.leverage
)
if trade.is_short:
stop_price = trade.open_rate * (1 - stoploss)
else:
stop_price = trade.open_rate * (1 + stoploss)
stop_price = trade.stoploss_or_liquidation
if self.edge:
stoploss = self.edge.get_stoploss(pair=trade.pair)
stop_price = (
trade.open_rate * (1 - stoploss) if trade.is_short
else trade.open_rate * (1 + stoploss)
)
if self.create_stoploss_order(trade=trade, stop_price=stop_price):
# The above will return False if the placement failed and the trade was force-sold.
@@ -1253,11 +1261,11 @@ class FreqtradeBot(LoggingMixin):
if not_closed:
if fully_cancelled or (order_obj and self.strategy.ft_check_timed_out(
trade, order_obj, datetime.now(timezone.utc))):
self.handle_timedout_order(order, trade)
self.handle_cancel_order(order, trade, constants.CANCEL_REASON['TIMEOUT'])
else:
self.replace_order(order, order_obj, trade)
def handle_timedout_order(self, order: Dict, trade: Trade) -> None:
def handle_cancel_order(self, order: Dict, trade: Trade, reason: str) -> None:
"""
Check if current analyzed order timed out and cancel if necessary.
:param order: Order dict grabbed with exchange.fetch_order()
@@ -1265,10 +1273,10 @@ class FreqtradeBot(LoggingMixin):
:return: None
"""
if order['side'] == trade.entry_side:
self.handle_cancel_enter(trade, order, constants.CANCEL_REASON['TIMEOUT'])
self.handle_cancel_enter(trade, order, reason)
else:
canceled = self.handle_cancel_exit(
trade, order, constants.CANCEL_REASON['TIMEOUT'])
trade, order, reason)
canceled_count = trade.get_exit_order_count()
max_timeouts = self.config.get('unfilledtimeout', {}).get('exit_timeout_count', 0)
if canceled and max_timeouts > 0 and canceled_count >= max_timeouts:
@@ -1626,7 +1634,7 @@ class FreqtradeBot(LoggingMixin):
# second condition is for mypy only; order will always be passed during sub trade
if sub_trade and order is not None:
amount = order.safe_filled if fill else order.amount
amount = order.safe_filled if fill else order.safe_amount
order_rate: float = order.safe_price
profit = trade.calc_profit(rate=order_rate, amount=amount, open_rate=trade.open_rate)
@@ -1789,6 +1797,7 @@ class FreqtradeBot(LoggingMixin):
is_short=trade.is_short,
amount=trade.amount,
stake_amount=trade.stake_amount,
leverage=trade.leverage,
wallet_balance=trade.stake_amount,
))

View File

@@ -1,2 +1 @@
# flake8: noqa: F401
from freqtrade.leverage.interest import interest
from freqtrade.leverage.interest import interest # noqa: F401

View File

@@ -103,9 +103,9 @@ def setup_logging(config: Config) -> None:
logging.root.addHandler(handler_sl)
elif s[0] == 'journald': # pragma: no cover
try:
from systemd.journal import JournaldLogHandler
from cysystemd.journal import JournaldLogHandler
except ImportError:
raise OperationalException("You need the systemd python package be installed in "
raise OperationalException("You need the cysystemd python package be installed in "
"order to use logging to journald.")
handler_jd = get_existing_handlers(JournaldLogHandler)
if handler_jd:

View File

@@ -1,2 +1 @@
# flake8: noqa: F401
from freqtrade.mixins.logging_mixin import LoggingMixin
from freqtrade.mixins.logging_mixin import LoggingMixin # noqa: F401

View File

@@ -868,6 +868,7 @@ class Backtesting:
open_rate=propose_rate,
amount=amount,
stake_amount=trade.stake_amount,
leverage=trade.leverage,
wallet_balance=trade.stake_amount,
is_short=is_short,
))

View File

@@ -44,7 +44,7 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
sum_daily = (
results.resample(resample_freq, on='close_date').agg(
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
{"profit_ratio_after_slippage": 'sum'}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_ratio_after_slippage"] - risk_free_rate

View File

@@ -46,7 +46,7 @@ class SortinoHyperOptLossDaily(IHyperOptLoss):
sum_daily = (
results.resample(resample_freq, on='close_date').agg(
{"profit_ratio_after_slippage": sum}).reindex(t_index).fillna(0)
{"profit_ratio_after_slippage": 'sum'}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_ratio_after_slippage"] - minimum_acceptable_return

0
freqtrade/optimize/hyperopt_tools.py Executable file → Normal file
View File

View File

@@ -1,4 +1,3 @@
# flake8: noqa: F401
from skopt.space import Categorical, Dimension, Integer, Real
from skopt.space import Categorical, Dimension, Integer, Real # noqa: F401
from .decimalspace import SKDecimal
from .decimalspace import SKDecimal # noqa: F401

View File

@@ -21,9 +21,9 @@ class PairLock(_DECL_BASE):
side = Column(String(25), nullable=False, default="*")
reason = Column(String(255), nullable=True)
# Time the pair was locked (start time)
lock_time = Column(DateTime, nullable=False)
lock_time = Column(DateTime(), nullable=False)
# Time until the pair is locked (end time)
lock_end_time = Column(DateTime, nullable=False, index=True)
lock_end_time = Column(DateTime(), nullable=False, index=True)
active = Column(Boolean, nullable=False, default=True, index=True)

View File

@@ -46,31 +46,31 @@ class Order(_DECL_BASE):
trade = relationship("Trade", back_populates="orders")
# order_side can only be 'buy', 'sell' or 'stoploss'
ft_order_side: str = Column(String(25), nullable=False)
ft_pair: str = Column(String(25), nullable=False)
ft_order_side = Column(String(25), nullable=False)
ft_pair = Column(String(25), nullable=False)
ft_is_open = Column(Boolean, nullable=False, default=True, index=True)
ft_amount = Column(Float, nullable=False)
ft_price = Column(Float, nullable=False)
ft_amount = Column(Float(), nullable=False)
ft_price = Column(Float(), nullable=False)
order_id: str = Column(String(255), nullable=False, index=True)
order_id = Column(String(255), nullable=False, index=True)
status = Column(String(255), nullable=True)
symbol = Column(String(25), nullable=True)
order_type: str = Column(String(50), nullable=True)
order_type = Column(String(50), nullable=True)
side = Column(String(25), nullable=True)
price = Column(Float, nullable=True)
average = Column(Float, nullable=True)
amount = Column(Float, nullable=True)
filled = Column(Float, nullable=True)
remaining = Column(Float, nullable=True)
cost = Column(Float, nullable=True)
stop_price = Column(Float, nullable=True)
order_date = Column(DateTime, nullable=True, default=datetime.utcnow)
order_filled_date = Column(DateTime, nullable=True)
order_update_date = Column(DateTime, nullable=True)
price = Column(Float(), nullable=True)
average = Column(Float(), nullable=True)
amount = Column(Float(), nullable=True)
filled = Column(Float(), nullable=True)
remaining = Column(Float(), nullable=True)
cost = Column(Float(), nullable=True)
stop_price = Column(Float(), nullable=True)
order_date = Column(DateTime(), nullable=True, default=datetime.utcnow)
order_filled_date = Column(DateTime(), nullable=True)
order_update_date = Column(DateTime(), nullable=True)
funding_fee = Column(Float, nullable=True)
funding_fee = Column(Float(), nullable=True)
ft_fee_base = Column(Float, nullable=True)
ft_fee_base = Column(Float(), nullable=True)
@property
def order_date_utc(self) -> datetime:
@@ -151,7 +151,7 @@ class Order(_DECL_BASE):
self.order_update_date = datetime.now(timezone.utc)
def to_ccxt_object(self) -> Dict[str, Any]:
return {
order = {
'id': self.order_id,
'symbol': self.ft_pair,
'price': self.price,
@@ -169,10 +169,13 @@ class Order(_DECL_BASE):
'fee': None,
'info': {},
}
if self.ft_order_side == 'stoploss':
order['ft_order_type'] = 'stoploss'
return order
def to_json(self, entry_side: str, minified: bool = False) -> Dict[str, Any]:
resp = {
'amount': self.amount,
'amount': self.safe_amount,
'safe_price': self.safe_price,
'ft_order_side': self.ft_order_side,
'order_filled_timestamp': int(self.order_filled_date.replace(
@@ -1177,44 +1180,44 @@ class Trade(_DECL_BASE, LocalTrade):
base_currency = Column(String(25), nullable=True)
stake_currency = Column(String(25), nullable=True)
is_open = Column(Boolean, nullable=False, default=True, index=True)
fee_open = Column(Float, nullable=False, default=0.0)
fee_open_cost = Column(Float, nullable=True)
fee_open = Column(Float(), nullable=False, default=0.0)
fee_open_cost = Column(Float(), nullable=True)
fee_open_currency = Column(String(25), nullable=True)
fee_close = Column(Float, nullable=False, default=0.0)
fee_close_cost = Column(Float, nullable=True)
fee_close = Column(Float(), nullable=False, default=0.0)
fee_close_cost = Column(Float(), nullable=True)
fee_close_currency = Column(String(25), nullable=True)
open_rate: float = Column(Float)
open_rate_requested = Column(Float)
open_rate: float = Column(Float())
open_rate_requested = Column(Float())
# open_trade_value - calculated via _calc_open_trade_value
open_trade_value = Column(Float)
close_rate: Optional[float] = Column(Float)
close_rate_requested = Column(Float)
realized_profit = Column(Float, default=0.0)
close_profit = Column(Float)
close_profit_abs = Column(Float)
stake_amount = Column(Float, nullable=False)
max_stake_amount = Column(Float)
amount = Column(Float)
amount_requested = Column(Float)
open_date = Column(DateTime, nullable=False, default=datetime.utcnow)
close_date = Column(DateTime)
open_trade_value = Column(Float())
close_rate: Optional[float] = Column(Float())
close_rate_requested = Column(Float())
realized_profit = Column(Float(), default=0.0)
close_profit = Column(Float())
close_profit_abs = Column(Float())
stake_amount = Column(Float(), nullable=False)
max_stake_amount = Column(Float())
amount = Column(Float())
amount_requested = Column(Float())
open_date = Column(DateTime(), nullable=False, default=datetime.utcnow)
close_date = Column(DateTime())
open_order_id = Column(String(255))
# absolute value of the stop loss
stop_loss = Column(Float, nullable=True, default=0.0)
stop_loss = Column(Float(), nullable=True, default=0.0)
# percentage value of the stop loss
stop_loss_pct = Column(Float, nullable=True)
stop_loss_pct = Column(Float(), nullable=True)
# absolute value of the initial stop loss
initial_stop_loss = Column(Float, nullable=True, default=0.0)
initial_stop_loss = Column(Float(), nullable=True, default=0.0)
# percentage value of the initial stop loss
initial_stop_loss_pct = Column(Float, nullable=True)
initial_stop_loss_pct = Column(Float(), nullable=True)
# stoploss order id which is on exchange
stoploss_order_id = Column(String(255), nullable=True, index=True)
# last update time of the stoploss order on exchange
stoploss_last_update = Column(DateTime, nullable=True)
stoploss_last_update = Column(DateTime(), nullable=True)
# absolute value of the highest reached price
max_rate = Column(Float, nullable=True, default=0.0)
max_rate = Column(Float(), nullable=True, default=0.0)
# Lowest price reached
min_rate = Column(Float, nullable=True)
min_rate = Column(Float(), nullable=True)
exit_reason = Column(String(100), nullable=True)
exit_order_status = Column(String(100), nullable=True)
strategy = Column(String(100), nullable=True)
@@ -1222,21 +1225,21 @@ class Trade(_DECL_BASE, LocalTrade):
timeframe = Column(Integer, nullable=True)
trading_mode = Column(Enum(TradingMode), nullable=True)
amount_precision = Column(Float, nullable=True)
price_precision = Column(Float, nullable=True)
amount_precision = Column(Float(), nullable=True)
price_precision = Column(Float(), nullable=True)
precision_mode = Column(Integer, nullable=True)
contract_size = Column(Float, nullable=True)
contract_size = Column(Float(), nullable=True)
# Leverage trading properties
leverage = Column(Float, nullable=True, default=1.0)
leverage = Column(Float(), nullable=True, default=1.0)
is_short = Column(Boolean, nullable=False, default=False)
liquidation_price = Column(Float, nullable=True)
liquidation_price = Column(Float(), nullable=True)
# Margin Trading Properties
interest_rate = Column(Float, nullable=False, default=0.0)
interest_rate = Column(Float(), nullable=False, default=0.0)
# Futures properties
funding_fees = Column(Float, nullable=True, default=None)
funding_fees = Column(Float(), nullable=True, default=None)
def __init__(self, **kwargs):
super().__init__(**kwargs)

View File

@@ -1,3 +1,2 @@
# flake8: noqa: F401
from .rpc import RPC, RPCException, RPCHandler
from .rpc_manager import RPCManager
from .rpc import RPC, RPCException, RPCHandler # noqa: F401
from .rpc_manager import RPCManager # noqa: F401

View File

@@ -1,2 +1 @@
# flake8: noqa: F401
from .webserver import ApiServer
from .webserver import ApiServer # noqa: F401

View File

@@ -10,7 +10,7 @@ from fastapi.exceptions import HTTPException
from freqtrade.configuration.config_validation import validate_config_consistency
from freqtrade.data.btanalysis import get_backtest_resultlist, load_and_merge_backtest_result
from freqtrade.enums import BacktestState
from freqtrade.exceptions import DependencyException
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.misc import deep_merge_dicts
from freqtrade.rpc.api_server.api_schemas import (BacktestHistoryEntry, BacktestRequest,
BacktestResponse)
@@ -26,9 +26,10 @@ router = APIRouter()
@router.post('/backtest', response_model=BacktestResponse, tags=['webserver', 'backtest'])
# flake8: noqa: C901
async def api_start_backtest(bt_settings: BacktestRequest, background_tasks: BackgroundTasks,
config=Depends(get_config), ws_mode=Depends(is_webserver_mode)):
async def api_start_backtest( # noqa: C901
bt_settings: BacktestRequest, background_tasks: BackgroundTasks,
config=Depends(get_config), ws_mode=Depends(is_webserver_mode)):
ApiServer._bt['bt_error'] = None
"""Start backtesting if not done so already"""
if ApiServer._bgtask_running:
raise RPCException('Bot Background task already running')
@@ -60,30 +61,31 @@ async def api_start_backtest(bt_settings: BacktestRequest, background_tasks: Bac
asyncio.set_event_loop(asyncio.new_event_loop())
try:
# Reload strategy
lastconfig = ApiServer._bt_last_config
lastconfig = ApiServer._bt['last_config']
strat = StrategyResolver.load_strategy(btconfig)
validate_config_consistency(btconfig)
if (
not ApiServer._bt
not ApiServer._bt['bt']
or lastconfig.get('timeframe') != strat.timeframe
or lastconfig.get('timeframe_detail') != btconfig.get('timeframe_detail')
or lastconfig.get('timerange') != btconfig['timerange']
):
from freqtrade.optimize.backtesting import Backtesting
ApiServer._bt = Backtesting(btconfig)
ApiServer._bt.load_bt_data_detail()
ApiServer._bt['bt'] = Backtesting(btconfig)
ApiServer._bt['bt'].load_bt_data_detail()
else:
ApiServer._bt.config = btconfig
ApiServer._bt.init_backtest()
ApiServer._bt['bt'].config = btconfig
ApiServer._bt['bt'].init_backtest()
# Only reload data if timeframe changed.
if (
not ApiServer._bt_data
or not ApiServer._bt_timerange
not ApiServer._bt['data']
or not ApiServer._bt['timerange']
or lastconfig.get('timeframe') != strat.timeframe
or lastconfig.get('timerange') != btconfig['timerange']
):
ApiServer._bt_data, ApiServer._bt_timerange = ApiServer._bt.load_bt_data()
ApiServer._bt['data'], ApiServer._bt['timerange'] = ApiServer._bt[
'bt'].load_bt_data()
lastconfig['timerange'] = btconfig['timerange']
lastconfig['timeframe'] = strat.timeframe
@@ -91,34 +93,35 @@ async def api_start_backtest(bt_settings: BacktestRequest, background_tasks: Bac
lastconfig['enable_protections'] = btconfig.get('enable_protections')
lastconfig['dry_run_wallet'] = btconfig.get('dry_run_wallet')
ApiServer._bt.enable_protections = btconfig.get('enable_protections', False)
ApiServer._bt.strategylist = [strat]
ApiServer._bt.results = {}
ApiServer._bt.load_prior_backtest()
ApiServer._bt['bt'].enable_protections = btconfig.get('enable_protections', False)
ApiServer._bt['bt'].strategylist = [strat]
ApiServer._bt['bt'].results = {}
ApiServer._bt['bt'].load_prior_backtest()
ApiServer._bt.abort = False
if (ApiServer._bt.results and
strat.get_strategy_name() in ApiServer._bt.results['strategy']):
ApiServer._bt['bt'].abort = False
if (ApiServer._bt['bt'].results and
strat.get_strategy_name() in ApiServer._bt['bt'].results['strategy']):
# When previous result hash matches - reuse that result and skip backtesting.
logger.info(f'Reusing result of previous backtest for {strat.get_strategy_name()}')
else:
min_date, max_date = ApiServer._bt.backtest_one_strategy(
strat, ApiServer._bt_data, ApiServer._bt_timerange)
min_date, max_date = ApiServer._bt['bt'].backtest_one_strategy(
strat, ApiServer._bt['data'], ApiServer._bt['timerange'])
ApiServer._bt.results = generate_backtest_stats(
ApiServer._bt_data, ApiServer._bt.all_results,
ApiServer._bt['bt'].results = generate_backtest_stats(
ApiServer._bt['data'], ApiServer._bt['bt'].all_results,
min_date=min_date, max_date=max_date)
if btconfig.get('export', 'none') == 'trades':
store_backtest_stats(
btconfig['exportfilename'], ApiServer._bt.results,
btconfig['exportfilename'], ApiServer._bt['bt'].results,
datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
)
logger.info("Backtest finished.")
except DependencyException as e:
logger.info(f"Backtesting caused an error: {e}")
except (Exception, OperationalException, DependencyException) as e:
logger.exception(f"Backtesting caused an error: {e}")
ApiServer._bt['bt_error'] = str(e)
pass
finally:
ApiServer._bgtask_running = False
@@ -146,13 +149,14 @@ def api_get_backtest(ws_mode=Depends(is_webserver_mode)):
return {
"status": "running",
"running": True,
"step": ApiServer._bt.progress.action if ApiServer._bt else str(BacktestState.STARTUP),
"progress": ApiServer._bt.progress.progress if ApiServer._bt else 0,
"step": (ApiServer._bt['bt'].progress.action if ApiServer._bt['bt']
else str(BacktestState.STARTUP)),
"progress": ApiServer._bt['bt'].progress.progress if ApiServer._bt['bt'] else 0,
"trade_count": len(LocalTrade.trades),
"status_msg": "Backtest running",
}
if not ApiServer._bt:
if not ApiServer._bt['bt']:
return {
"status": "not_started",
"running": False,
@@ -160,6 +164,14 @@ def api_get_backtest(ws_mode=Depends(is_webserver_mode)):
"progress": 0,
"status_msg": "Backtest not yet executed"
}
if ApiServer._bt['bt_error']:
return {
"status": "error",
"running": False,
"step": "",
"progress": 0,
"status_msg": f"Backtest failed with {ApiServer._bt['bt_error']}"
}
return {
"status": "ended",
@@ -167,7 +179,7 @@ def api_get_backtest(ws_mode=Depends(is_webserver_mode)):
"status_msg": "Backtest ended",
"step": "finished",
"progress": 1,
"backtest_result": ApiServer._bt.results,
"backtest_result": ApiServer._bt['bt'].results,
}
@@ -182,12 +194,12 @@ def api_delete_backtest(ws_mode=Depends(is_webserver_mode)):
"progress": 0,
"status_msg": "Backtest running",
}
if ApiServer._bt:
ApiServer._bt.cleanup()
del ApiServer._bt
ApiServer._bt = None
del ApiServer._bt_data
ApiServer._bt_data = None
if ApiServer._bt['bt']:
ApiServer._bt['bt'].cleanup()
del ApiServer._bt['bt']
ApiServer._bt['bt'] = None
del ApiServer._bt['data']
ApiServer._bt['data'] = None
logger.info("Backtesting reset")
return {
"status": "reset",
@@ -208,7 +220,7 @@ def api_backtest_abort(ws_mode=Depends(is_webserver_mode)):
"progress": 0,
"status_msg": "Backtest ended",
}
ApiServer._bt.abort = True
ApiServer._bt['bt'].abort = True
return {
"status": "stopping",
"running": False,
@@ -218,14 +230,17 @@ def api_backtest_abort(ws_mode=Depends(is_webserver_mode)):
}
@router.get('/backtest/history', response_model=List[BacktestHistoryEntry], tags=['webserver', 'backtest'])
@router.get('/backtest/history', response_model=List[BacktestHistoryEntry],
tags=['webserver', 'backtest'])
def api_backtest_history(config=Depends(get_config), ws_mode=Depends(is_webserver_mode)):
# Get backtest result history, read from metadata files
return get_backtest_resultlist(config['user_data_dir'] / 'backtest_results')
@router.get('/backtest/history/result', response_model=BacktestResponse, tags=['webserver', 'backtest'])
def api_backtest_history_result(filename: str, strategy: str, config=Depends(get_config), ws_mode=Depends(is_webserver_mode)):
@router.get('/backtest/history/result', response_model=BacktestResponse,
tags=['webserver', 'backtest'])
def api_backtest_history_result(filename: str, strategy: str, config=Depends(get_config),
ws_mode=Depends(is_webserver_mode)):
# Get backtest result history, read from metadata files
fn = config['user_data_dir'] / 'backtest_results' / filename
results: Dict[str, Any] = {

View File

@@ -168,6 +168,7 @@ class ShowConfig(BaseModel):
max_open_trades: IntOrInf
minimal_roi: Dict[str, Any]
stoploss: Optional[float]
stoploss_on_exchange: bool
trailing_stop: Optional[bool]
trailing_stop_positive: Optional[float]
trailing_stop_positive_offset: Optional[float]

View File

@@ -41,7 +41,8 @@ logger = logging.getLogger(__name__)
# 2.21: Add new_candle messagetype
# 2.22: Add FreqAI to backtesting
# 2.23: Allow plot config request in webserver mode
API_VERSION = 2.23
# 2.24: Add cancel_open_order endpoint
API_VERSION = 2.24
# Public API, requires no auth.
router_public = APIRouter()
@@ -123,6 +124,12 @@ def trades_delete(tradeid: int, rpc: RPC = Depends(get_rpc)):
return rpc._rpc_delete(tradeid)
@router.delete('/trades/{tradeid}/open-order', response_model=OpenTradeSchema, tags=['trading'])
def cancel_open_order(tradeid: int, rpc: RPC = Depends(get_rpc)):
rpc._rpc_cancel_open_order(tradeid)
return rpc._rpc_trade_status([tradeid])[0]
# TODO: Missing response model
@router.get('/edge', tags=['info'])
def edge(rpc: RPC = Depends(get_rpc)):

View File

@@ -90,7 +90,7 @@ async def _process_consumer_request(
elif type == RPCRequestType.ANALYZED_DF:
# Limit the amount of candles per dataframe to 'limit' or 1500
limit = min(data.get('limit', 1500), 1500) if data else None
limit = int(min(data.get('limit', 1500), 1500)) if data else None
pair = data.get('pair', None) if data else None
# For every pair in the generator, send a separate message

View File

@@ -36,10 +36,13 @@ class ApiServer(RPCHandler):
_rpc: RPC
# Backtesting type: Backtesting
_bt = None
_bt_data = None
_bt_timerange = None
_bt_last_config: Config = {}
_bt: Dict[str, Any] = {
'bt': None,
'data': None,
'timerange': None,
'last_config': {},
'bt_error': None,
}
_has_rpc: bool = False
_bgtask_running: bool = False
_config: Config = {}

View File

@@ -1,7 +1,6 @@
# flake8: noqa: F401
# isort: off
from freqtrade.rpc.api_server.ws.types import WebSocketType
from freqtrade.rpc.api_server.ws.proxy import WebSocketProxy
from freqtrade.rpc.api_server.ws.serializer import HybridJSONWebSocketSerializer
from freqtrade.rpc.api_server.ws.channel import WebSocketChannel
from freqtrade.rpc.api_server.ws.message_stream import MessageStream
from freqtrade.rpc.api_server.ws.types import WebSocketType # noqa: F401
from freqtrade.rpc.api_server.ws.proxy import WebSocketProxy # noqa: F401
from freqtrade.rpc.api_server.ws.serializer import HybridJSONWebSocketSerializer # noqa: F401
from freqtrade.rpc.api_server.ws.channel import WebSocketChannel # noqa: F401
from freqtrade.rpc.api_server.ws.message_stream import MessageStream # noqa: F401

View File

@@ -122,6 +122,7 @@ class RPC:
if config['max_open_trades'] != float('inf') else -1),
'minimal_roi': config['minimal_roi'].copy() if 'minimal_roi' in config else {},
'stoploss': config.get('stoploss'),
'stoploss_on_exchange': config.get('stoploss_on_exchange', False),
'trailing_stop': config.get('trailing_stop'),
'trailing_stop_positive': config.get('trailing_stop_positive'),
'trailing_stop_positive_offset': config.get('trailing_stop_positive_offset'),
@@ -812,6 +813,29 @@ class RPC:
else:
raise RPCException(f'Failed to enter position for {pair}.')
def _rpc_cancel_open_order(self, trade_id: int):
if self._freqtrade.state != State.RUNNING:
raise RPCException('trader is not running')
with self._freqtrade._exit_lock:
# Query for trade
trade = Trade.get_trades(
trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True), ]
).first()
if not trade:
logger.warning('cancel_open_order: Invalid trade_id received.')
raise RPCException('Invalid trade_id.')
if not trade.open_order_id:
logger.warning('cancel_open_order: No open order for trade_id.')
raise RPCException('No open order for trade_id.')
try:
order = self._freqtrade.exchange.fetch_order(trade.open_order_id, trade.pair)
except ExchangeError as e:
logger.info(f"Cannot query order for {trade} due to {e}.", exc_info=True)
raise RPCException("Order not found.")
self._freqtrade.handle_cancel_order(order, trade, CANCEL_REASON['USER_CANCEL'])
Trade.commit()
def _rpc_delete(self, trade_id: int) -> Dict[str, Union[str, int]]:
"""
Handler for delete <id>.

View File

@@ -174,6 +174,7 @@ class Telegram(RPCHandler):
self._force_enter, order_side=SignalDirection.SHORT)),
CommandHandler('trades', self._trades),
CommandHandler('delete', self._delete_trade),
CommandHandler(['coo', 'cancel_open_order'], self._cancel_open_order),
CommandHandler('performance', self._performance),
CommandHandler(['buys', 'entries'], self._enter_tag_performance),
CommandHandler(['sells', 'exits'], self._exit_reason_performance),
@@ -1144,10 +1145,25 @@ class Telegram(RPCHandler):
raise RPCException("Trade-id not set.")
trade_id = int(context.args[0])
msg = self._rpc._rpc_delete(trade_id)
self._send_msg((
self._send_msg(
f"`{msg['result_msg']}`\n"
'Please make sure to take care of this asset on the exchange manually.'
))
)
@authorized_only
def _cancel_open_order(self, update: Update, context: CallbackContext) -> None:
"""
Handler for /cancel_open_order <id>.
Cancel open order for tradeid
:param bot: telegram bot
:param update: message update
:return: None
"""
if not context.args or len(context.args) == 0:
raise RPCException("Trade-id not set.")
trade_id = int(context.args[0])
self._rpc._rpc_cancel_open_order(trade_id)
self._send_msg('Open order canceled.')
@authorized_only
def _performance(self, update: Update, context: CallbackContext) -> None:
@@ -1456,6 +1472,10 @@ class Telegram(RPCHandler):
"*/fx <trade_id>|all:* `Alias to /forceexit`\n"
f"{force_enter_text if self._config.get('force_entry_enable', False) else ''}"
"*/delete <trade_id>:* `Instantly delete the given trade in the database`\n"
"*/cancel_open_order <trade_id>:* `Cancels open orders for trade. "
"Only valid when the trade has open orders.`\n"
"*/coo <trade_id>|all:* `Alias to /cancel_open_order`\n"
"*/whitelist [sorted] [baseonly]:* `Show current whitelist. Optionally in "
"order and/or only displaying the base currency of each pairing.`\n"
"*/blacklist [pair]:* `Show current blacklist, or adds one or more pairs "

View File

@@ -163,7 +163,7 @@ class HyperStrategyMixin:
else:
logger.info(f'Strategy Parameter(default): {attr_name} = {attr.value}')
def get_no_optimize_params(self):
def get_no_optimize_params(self) -> Dict[str, Dict]:
"""
Returns list of Parameters that are not part of the current optimize job
"""
@@ -173,7 +173,7 @@ class HyperStrategyMixin:
'protection': {},
}
for name, p in self.enumerate_parameters():
if not p.optimize or not p.in_space:
if p.category and (not p.optimize or not p.in_space):
params[p.category][name] = p.value
return params

View File

@@ -614,8 +614,8 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
return df
def feature_engineering_expand_all(self, dataframe: DataFrame,
period: int, **kwargs):
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
@@ -634,13 +634,14 @@ class IStrategy(ABC, HyperStrategyMixin):
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
:param dataframe: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
:param metadata: metadata of current pair
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
return dataframe
def feature_engineering_expand_basic(self, dataframe: DataFrame, **kwargs):
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
@@ -662,13 +663,14 @@ class IStrategy(ABC, HyperStrategyMixin):
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
return dataframe
def feature_engineering_standard(self, dataframe: DataFrame, **kwargs):
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
@@ -686,12 +688,13 @@ class IStrategy(ABC, HyperStrategyMixin):
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the features
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
return dataframe
def set_freqai_targets(self, dataframe, **kwargs):
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
@@ -701,7 +704,8 @@ class IStrategy(ABC, HyperStrategyMixin):
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the targets
:param dataframe: strategy dataframe which will receive the targets
:param metadata: metadata of current pair
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
return dataframe
@@ -1079,10 +1083,10 @@ class IStrategy(ABC, HyperStrategyMixin):
trade.adjust_min_max_rates(high or current_rate, low or current_rate)
stoplossflag = self.stop_loss_reached(current_rate=current_rate, trade=trade,
current_time=current_time,
current_profit=current_profit,
force_stoploss=force_stoploss, low=low, high=high)
stoplossflag = self.ft_stoploss_reached(current_rate=current_rate, trade=trade,
current_time=current_time,
current_profit=current_profit,
force_stoploss=force_stoploss, low=low, high=high)
# Set current rate to high for backtesting exits
current_rate = (low if trade.is_short else high) or rate
@@ -1149,13 +1153,12 @@ class IStrategy(ABC, HyperStrategyMixin):
return exits
def stop_loss_reached(self, current_rate: float, trade: Trade,
current_time: datetime, current_profit: float,
force_stoploss: float, low: Optional[float] = None,
high: Optional[float] = None) -> ExitCheckTuple:
def ft_stoploss_adjust(self, current_rate: float, trade: Trade,
current_time: datetime, current_profit: float,
force_stoploss: float, low: Optional[float] = None,
high: Optional[float] = None) -> None:
"""
Based on current profit of the trade and configured (trailing) stoploss,
decides to exit or not
Adjust stop-loss dynamically if configured to do so.
:param current_profit: current profit as ratio
:param low: Low value of this candle, only set in backtesting
:param high: High value of this candle, only set in backtesting
@@ -1201,6 +1204,20 @@ class IStrategy(ABC, HyperStrategyMixin):
trade.adjust_stop_loss(bound or current_rate, stop_loss_value)
def ft_stoploss_reached(self, current_rate: float, trade: Trade,
current_time: datetime, current_profit: float,
force_stoploss: float, low: Optional[float] = None,
high: Optional[float] = None) -> ExitCheckTuple:
"""
Based on current profit of the trade and configured (trailing) stoploss,
decides to exit or not
:param current_profit: current profit as ratio
:param low: Low value of this candle, only set in backtesting
:param high: High value of this candle, only set in backtesting
"""
self.ft_stoploss_adjust(current_rate, trade, current_time, current_profit,
force_stoploss, low, high)
sl_higher_long = (trade.stop_loss >= (low or current_rate) and not trade.is_short)
sl_lower_short = (trade.stop_loss <= (high or current_rate) and trade.is_short)
liq_higher_long = (trade.liquidation_price

View File

@@ -1,12 +1,13 @@
import logging
from typing import Dict
import numpy as np
import pandas as pd
import numpy as np # noqa
import pandas as pd # noqa
import talib.abstract as ta
from pandas import DataFrame
from technical import qtpylib
from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair
from freqtrade.strategy import IntParameter, IStrategy, merge_informative_pair # noqa
logger = logging.getLogger(__name__)
@@ -26,7 +27,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
"freqai": {
"enabled": true,
"purge_old_models": true,
"purge_old_models": 2,
"train_period_days": 15,
"identifier": "uniqe-id",
"feature_parameters": {
@@ -95,7 +96,8 @@ class FreqaiExampleHybridStrategy(IStrategy):
short_rsi = IntParameter(low=51, high=100, default=70, space='sell', optimize=True, load=True)
exit_short_rsi = IntParameter(low=1, high=50, default=30, space='buy', optimize=True, load=True)
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
@@ -114,8 +116,9 @@ class FreqaiExampleHybridStrategy(IStrategy):
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
:param dataframe: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
:param metadata: metadata of current pair
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
@@ -148,7 +151,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
return dataframe
def feature_engineering_expand_basic(self, dataframe, **kwargs):
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
@@ -170,7 +173,8 @@ class FreqaiExampleHybridStrategy(IStrategy):
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
@@ -179,7 +183,7 @@ class FreqaiExampleHybridStrategy(IStrategy):
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(self, dataframe, **kwargs):
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
@@ -197,14 +201,15 @@ class FreqaiExampleHybridStrategy(IStrategy):
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the features
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
def set_freqai_targets(self, dataframe, **kwargs):
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
@@ -214,16 +219,16 @@ class FreqaiExampleHybridStrategy(IStrategy):
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the targets
:param dataframe: strategy dataframe which will receive the targets
:param metadata: metadata of current pair
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
dataframe['&s-up_or_down'] = np.where(dataframe["close"].shift(-50) >
dataframe["close"], 'up', 'down')
dataframe["close"], 'up', 'down')
return dataframe
# flake8: noqa: C901
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: # noqa: C901
# User creates their own custom strat here. Present example is a supertrend
# based strategy.

View File

@@ -1,5 +1,6 @@
import logging
from functools import reduce
from typing import Dict
import talib.abstract as ta
from pandas import DataFrame
@@ -46,7 +47,8 @@ class FreqaiExampleStrategy(IStrategy):
std_dev_multiplier_sell = CategoricalParameter(
[0.75, 1, 1.25, 1.5, 1.75], space="sell", default=1.25, optimize=True)
def feature_engineering_expand_all(self, dataframe, period, **kwargs):
def feature_engineering_expand_all(self, dataframe: DataFrame, period: int,
metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
@@ -58,6 +60,10 @@ class FreqaiExampleStrategy(IStrategy):
All features must be prepended with `%` to be recognized by FreqAI internals.
Access metadata such as the current pair/timeframe with:
`metadata["pair"]` `metadata["tf"]`
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
@@ -65,8 +71,9 @@ class FreqaiExampleStrategy(IStrategy):
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
:param dataframe: strategy dataframe which will receive the features
:param period: period of the indicator - usage example:
:param metadata: metadata of current pair
dataframe["%-ema-period"] = ta.EMA(dataframe, timeperiod=period)
"""
@@ -99,7 +106,7 @@ class FreqaiExampleStrategy(IStrategy):
return dataframe
def feature_engineering_expand_basic(self, dataframe, **kwargs):
def feature_engineering_expand_basic(self, dataframe: DataFrame, metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This function will automatically expand the defined features on the config defined
@@ -114,6 +121,10 @@ class FreqaiExampleStrategy(IStrategy):
All features must be prepended with `%` to be recognized by FreqAI internals.
Access metadata such as the current pair/timeframe with:
`metadata["pair"]` `metadata["tf"]`
More details on how these config defined parameters accelerate feature engineering
in the documentation at:
@@ -121,7 +132,8 @@ class FreqaiExampleStrategy(IStrategy):
https://www.freqtrade.io/en/latest/freqai-feature-engineering/#defining-the-features
:param df: strategy dataframe which will receive the features
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-ema-200"] = ta.EMA(dataframe, timeperiod=200)
"""
@@ -130,7 +142,7 @@ class FreqaiExampleStrategy(IStrategy):
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
def feature_engineering_standard(self, dataframe, **kwargs):
def feature_engineering_standard(self, dataframe: DataFrame, metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
This optional function will be called once with the dataframe of the base timeframe.
@@ -144,28 +156,38 @@ class FreqaiExampleStrategy(IStrategy):
All features must be prepended with `%` to be recognized by FreqAI internals.
Access metadata such as the current pair with:
`metadata["pair"]`
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the features
:param dataframe: strategy dataframe which will receive the features
:param metadata: metadata of current pair
usage example: dataframe["%-day_of_week"] = (dataframe["date"].dt.dayofweek + 1) / 7
"""
dataframe["%-day_of_week"] = dataframe["date"].dt.dayofweek
dataframe["%-hour_of_day"] = dataframe["date"].dt.hour
return dataframe
def set_freqai_targets(self, dataframe, **kwargs):
def set_freqai_targets(self, dataframe: DataFrame, metadata: Dict, **kwargs):
"""
*Only functional with FreqAI enabled strategies*
Required function to set the targets for the model.
All targets must be prepended with `&` to be recognized by the FreqAI internals.
Access metadata such as the current pair with:
`metadata["pair"]`
More details about feature engineering available:
https://www.freqtrade.io/en/latest/freqai-feature-engineering
:param df: strategy dataframe which will receive the targets
:param dataframe: strategy dataframe which will receive the targets
:param metadata: metadata of current pair
usage example: dataframe["&-target"] = dataframe["close"].shift(-1) / dataframe["close"]
"""
dataframe["&-s_close"] = (

View File

@@ -118,6 +118,7 @@
"from freqtrade.data.dataprovider import DataProvider\n",
"strategy = StrategyResolver.load_strategy(config)\n",
"strategy.dp = DataProvider(config, None, None)\n",
"strategy.ft_bot_start()\n",
"\n",
"# Generate buy/sell signals using strategy\n",
"df = strategy.analyze_ticker(candles, {'pair': pair})\n",

View File

@@ -1,3 +1,2 @@
# flake8: noqa: F401
from freqtrade.util.ft_precise import FtPrecise
from freqtrade.util.periodic_cache import PeriodicCache
from freqtrade.util.ft_precise import FtPrecise # noqa: F401
from freqtrade.util.periodic_cache import PeriodicCache # noqa: F401

View File

@@ -1,4 +1,3 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# QTPyLib: Quantitative Trading Python Library

0
freqtrade/worker.py Executable file → Normal file
View File

View File

@@ -9,25 +9,25 @@
coveralls==3.3.1
flake8==6.0.0
flake8-tidy-imports==4.8.0
mypy==0.991
pre-commit==2.21.0
mypy==1.0.1
pre-commit==3.0.4
pytest==7.2.1
pytest-asyncio==0.20.3
pytest-cov==4.0.0
pytest-mock==3.10.0
pytest-random-order==1.1.0
isort==5.11.4
isort==5.12.0
# For datetime mocking
time-machine==2.9.0
# fastapi testing
httpx==0.23.3
# Convert jupyter notebooks to markdown documents
nbconvert==7.2.8
nbconvert==7.2.9
# mypy types
types-cachetools==5.2.1
types-cachetools==5.3.0.0
types-filelock==3.2.7
types-requests==2.28.11.8
types-requests==2.28.11.13
types-tabulate==0.9.0.0
types-python-dateutil==2.8.19.6

View File

@@ -3,7 +3,8 @@
# Required for freqai-rl
torch==1.13.1
stable-baselines3==1.6.2
sb3-contrib==1.6.2
stable-baselines3==1.7.0
sb3-contrib==1.7.0
# Gym is forced to this version by stable-baselines3.
setuptools==65.5.1 # Should be removed when gym is fixed.
gym==0.21

View File

@@ -6,6 +6,6 @@
scikit-learn==1.1.3
joblib==1.2.0
catboost==1.1.1; platform_machine != 'aarch64'
lightgbm==3.3.4
lightgbm==3.3.5
xgboost==1.7.3
tensorboard==2.11.2
tensorboard==2.12.0

View File

@@ -2,7 +2,7 @@
-r requirements.txt
# Required for hyperopt
scipy==1.10.0
scipy==1.10.1
scikit-learn==1.1.3
scikit-optimize==0.9.0
filelock==3.9.0

View File

@@ -1,4 +1,4 @@
# Include all requirements to run the bot.
-r requirements.txt
plotly==5.11.0
plotly==5.13.0

View File

@@ -1,12 +1,10 @@
numpy==1.24.1
numpy==1.24.2
pandas==1.5.3
pandas-ta==0.3.14b
ccxt==2.7.12
# Pin cryptography for now due to rust build errors with piwheels
cryptography==38.0.1; platform_machine == 'armv7l'
cryptography==39.0.0; platform_machine != 'armv7l'
aiohttp==3.8.3
ccxt==2.8.17
cryptography==39.0.1
aiohttp==3.8.4
SQLAlchemy==1.4.46
python-telegram-bot==13.15
arrow==1.2.3
@@ -15,14 +13,14 @@ requests==2.28.2
urllib3==1.26.14
jsonschema==4.17.3
TA-Lib==0.4.25
technical==1.3.0
technical==1.4.0
tabulate==0.9.0
pycoingecko==3.1.0
jinja2==3.1.2
tables==3.8.0
blosc==1.11.1
joblib==1.2.0
pyarrow==10.0.1; platform_machine != 'armv7l'
pyarrow==11.0.0; platform_machine != 'armv7l'
# find first, C search in arrays
py_find_1st==1.1.5
@@ -30,17 +28,17 @@ py_find_1st==1.1.5
# Load ticker files 30% faster
python-rapidjson==1.9
# Properly format api responses
orjson==3.8.5
orjson==3.8.6
# Notify systemd
sdnotify==0.3.2
# API Server
fastapi==0.89.1
fastapi==0.92.0
pydantic==1.10.4
uvicorn==0.20.0
pyjwt==2.6.0
aiofiles==22.1.0
aiofiles==23.1.0
psutil==5.9.4
# Support for colorized terminal output

View File

@@ -177,8 +177,7 @@ class FtRestClient():
return self._get("version")
def show_config(self):
"""
Returns part of the configuration, relevant for trading operations.
""" Returns part of the configuration, relevant for trading operations.
:return: json object containing the version
"""
return self._get("show_config")
@@ -232,6 +231,14 @@ class FtRestClient():
"""
return self._delete(f"trades/{trade_id}")
def cancel_open_order(self, trade_id):
"""Cancel open order for trade.
:param trade_id: Cancels open orders for this trade.
:return: json object
"""
return self._delete(f"trades/{trade_id}/open-order")
def whitelist(self):
"""Show the current whitelist.

0
scripts/ws_client.py Normal file → Executable file
View File

View File

@@ -49,48 +49,50 @@ function updateenv() {
source .env/bin/activate
SYS_ARCH=$(uname -m)
echo "pip install in-progress. Please wait..."
${PYTHON} -m pip install --upgrade pip
read -p "Do you want to install dependencies for dev [y/N]? "
# Setuptools 65.5.0 is the last version that can install gym==0.21.0
${PYTHON} -m pip install --upgrade pip wheel setuptools==65.5.1
REQUIREMENTS_HYPEROPT=""
REQUIREMENTS_PLOT=""
REQUIREMENTS_FREQAI=""
REQUIREMENTS_FREQAI_RL=""
REQUIREMENTS=requirements.txt
read -p "Do you want to install dependencies for development (Performs a full install with all dependencies) [y/N]? "
dev=$REPLY
if [[ $REPLY =~ ^[Yy]$ ]]
then
REQUIREMENTS=requirements-dev.txt
else
REQUIREMENTS=requirements.txt
fi
REQUIREMENTS_HYPEROPT=""
REQUIREMENTS_PLOT=""
read -p "Do you want to install plotting dependencies (plotly) [y/N]? "
if [[ $REPLY =~ ^[Yy]$ ]]
then
REQUIREMENTS_PLOT="-r requirements-plot.txt"
fi
if [ "${SYS_ARCH}" == "armv7l" ] || [ "${SYS_ARCH}" == "armv6l" ]; then
echo "Detected Raspberry, installing cython, skipping hyperopt installation."
${PYTHON} -m pip install --upgrade cython
else
# Is not Raspberry
read -p "Do you want to install hyperopt dependencies [y/N]? "
# requirements-dev.txt includes all the below requirements already, so further questions are pointless.
read -p "Do you want to install plotting dependencies (plotly) [y/N]? "
if [[ $REPLY =~ ^[Yy]$ ]]
then
REQUIREMENTS_HYPEROPT="-r requirements-hyperopt.txt"
REQUIREMENTS_PLOT="-r requirements-plot.txt"
fi
if [ "${SYS_ARCH}" == "armv7l" ] || [ "${SYS_ARCH}" == "armv6l" ]; then
echo "Detected Raspberry, installing cython, skipping hyperopt installation."
${PYTHON} -m pip install --upgrade cython
else
# Is not Raspberry
read -p "Do you want to install hyperopt dependencies [y/N]? "
if [[ $REPLY =~ ^[Yy]$ ]]
then
REQUIREMENTS_HYPEROPT="-r requirements-hyperopt.txt"
fi
fi
fi
REQUIREMENTS_FREQAI=""
REQUIREMENTS_FREQAI_RL=""
read -p "Do you want to install dependencies for freqai [y/N]? "
dev=$REPLY
if [[ $REPLY =~ ^[Yy]$ ]]
then
REQUIREMENTS_FREQAI="-r requirements-freqai.txt --use-pep517"
read -p "Do you also want dependencies for freqai-rl (~700mb additional space required) [y/N]? "
dev=$REPLY
read -p "Do you want to install dependencies for freqai [y/N]? "
if [[ $REPLY =~ ^[Yy]$ ]]
then
REQUIREMENTS_FREQAI="-r requirements-freqai-rl.txt"
REQUIREMENTS_FREQAI="-r requirements-freqai.txt --use-pep517"
read -p "Do you also want dependencies for freqai-rl (~700mb additional space required) [y/N]? "
if [[ $REPLY =~ ^[Yy]$ ]]
then
REQUIREMENTS_FREQAI="-r requirements-freqai-rl.txt"
fi
fi
fi
install_talib
${PYTHON} -m pip install --upgrade -r ${REQUIREMENTS} ${REQUIREMENTS_HYPEROPT} ${REQUIREMENTS_PLOT} ${REQUIREMENTS_FREQAI} ${REQUIREMENTS_FREQAI_RL}
if [ $? -ne 0 ]; then
@@ -168,21 +170,18 @@ function install_macos() {
if [[ $version -ge 9 ]]; then #Checks if python version >= 3.9
install_mac_newer_python_dependencies
fi
install_talib
}
# Install bot Debian_ubuntu
function install_debian() {
sudo apt-get update
sudo apt-get install -y gcc build-essential autoconf libtool pkg-config make wget git curl $(echo lib${PYTHON}-dev ${PYTHON}-venv)
install_talib
}
# Install bot RedHat_CentOS
function install_redhat() {
sudo yum update
sudo yum install -y gcc gcc-c++ make autoconf libtool pkg-config wget git $(echo ${PYTHON}-devel | sed 's/\.//g')
install_talib
}
# Upgrade the bot
@@ -191,26 +190,37 @@ function update() {
updateenv
}
function check_git_changes() {
if [ -z "$(git status --porcelain)" ]; then
echo "No changes in git directory"
return 1
else
echo "Changes in git directory"
return 0
fi
}
# Reset Develop or Stable branch
function reset() {
echo_block "Resetting branch and virtual env"
if [ "1" == $(git branch -vv |grep -cE "\* develop|\* stable") ]
then
if check_git_changes; then
read -p "Keep your local changes? (Otherwise will remove all changes you made!) [Y/n]? "
if [[ $REPLY =~ ^[Nn]$ ]]; then
read -p "Reset git branch? (This will remove all changes you made!) [y/N]? "
if [[ $REPLY =~ ^[Yy]$ ]]; then
git fetch -a
git fetch -a
if [ "1" == $(git branch -vv | grep -c "* develop") ]
then
echo "- Hard resetting of 'develop' branch."
git reset --hard origin/develop
elif [ "1" == $(git branch -vv | grep -c "* stable") ]
then
echo "- Hard resetting of 'stable' branch."
git reset --hard origin/stable
if [ "1" == $(git branch -vv | grep -c "* develop") ]
then
echo "- Hard resetting of 'develop' branch."
git reset --hard origin/develop
elif [ "1" == $(git branch -vv | grep -c "* stable") ]
then
echo "- Hard resetting of 'stable' branch."
git reset --hard origin/stable
fi
fi
fi
else

View File

@@ -2573,7 +2573,7 @@ def import_fails() -> None:
realimport = builtins.__import__
def mockedimport(name, *args, **kwargs):
if name in ["filelock", 'systemd.journal', 'uvloop']:
if name in ["filelock", 'cysystemd.journal', 'uvloop']:
raise ImportError(f"No module named '{name}'")
return realimport(name, *args, **kwargs)

Some files were not shown because too many files have changed in this diff Show More