Compare commits

..

851 Commits

Author SHA1 Message Date
Matthias
54c07e5e62 Merge pull request #2997 from freqtrade/new_release
New release 2020.02
2020-02-29 19:33:12 +01:00
Matthias
a6b48f7366 Version bump 2020.02 2020-02-29 15:16:55 +01:00
Matthias
c6fd6a0fbf Merge branch 'master' into new_release 2020-02-29 15:16:45 +01:00
hroff-1902
297e63de0a Merge pull request #2970 from freqtrade/install_docs
simplify installation documentation
2020-02-26 11:48:51 +03:00
Matthias
8ae0f99a96 Remove duplicate section 2020-02-26 09:05:48 +01:00
Matthias
a29653b510 Wording changes to install docs
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-02-26 08:59:27 +01:00
hroff-1902
c9b6bb1229 Merge pull request #2954 from freqtrade/rate_caching
Improve and fix buy / sell Rate caching
2020-02-26 04:27:39 +03:00
hroff-1902
5a900858d8 Merge branch 'develop' into rate_caching 2020-02-26 04:04:20 +03:00
Matthias
2f349e0504 Improve install documentation by streamlining the process 2020-02-24 20:21:25 +01:00
Matthias
23b47b66ec Update install-script documentation and reorder installation steps 2020-02-24 20:11:25 +01:00
Matthias
6c8b5ea38c Merge pull request #2964 from freqtrade/dependabot/pip/develop/scikit-optimize-0.7.4
Bump scikit-optimize from 0.7.2 to 0.7.4
2020-02-24 10:36:45 +01:00
Matthias
4d040f3123 Merge pull request #2962 from freqtrade/dependabot/pip/develop/requests-2.23.0
Bump requests from 2.22.0 to 2.23.0
2020-02-24 10:36:19 +01:00
Matthias
88121760e4 Merge pull request #2965 from freqtrade/dependabot/pip/develop/ccxt-1.22.95
Bump ccxt from 1.22.61 to 1.22.95
2020-02-24 10:32:12 +01:00
Matthias
ae7a12200c Merge pull request #2963 from freqtrade/dependabot/pip/develop/plotly-4.5.1
Bump plotly from 4.5.0 to 4.5.1
2020-02-24 10:31:40 +01:00
dependabot-preview[bot]
d63aaf3bfd Bump ccxt from 1.22.61 to 1.22.95
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.22.61 to 1.22.95.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.22.61...1.22.95)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-24 08:05:15 +00:00
dependabot-preview[bot]
ff69b511e3 Bump scikit-optimize from 0.7.2 to 0.7.4
Bumps [scikit-optimize](https://github.com/scikit-optimize/scikit-optimize) from 0.7.2 to 0.7.4.
- [Release notes](https://github.com/scikit-optimize/scikit-optimize/releases)
- [Changelog](https://github.com/scikit-optimize/scikit-optimize/blob/master/CHANGELOG.md)
- [Commits](https://github.com/scikit-optimize/scikit-optimize/compare/v0.7.2...v0.7.4)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-24 08:04:44 +00:00
dependabot-preview[bot]
4054dec7a0 Bump plotly from 4.5.0 to 4.5.1
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.5.0 to 4.5.1.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.5.0...v4.5.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-24 08:04:32 +00:00
dependabot-preview[bot]
353f722dc5 Bump requests from 2.22.0 to 2.23.0
Bumps [requests](https://github.com/psf/requests) from 2.22.0 to 2.23.0.
- [Release notes](https://github.com/psf/requests/releases)
- [Changelog](https://github.com/psf/requests/blob/master/HISTORY.md)
- [Commits](https://github.com/psf/requests/compare/v2.22.0...v2.23.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-24 08:04:07 +00:00
Matthias
83959f0e56 Merge pull request #2959 from hroff-1902/throttling
Better throttling
2020-02-24 06:54:52 +01:00
Matthias
c657a1df2b Merge pull request #2960 from yazeed/sort_indicators_full
indicators_full.j2 and sample_strategy.py ordering and added indicators
2020-02-24 06:45:20 +01:00
hroff-1902
e545ef563c Wording adjusted in helpstring 2020-02-23 22:50:58 +03:00
Yazeed Al Oyoun
0eeafcd157 matched commenting on previous sample_strategy.py 2020-02-23 16:56:55 +01:00
Yazeed Al Oyoun
f25d6224dd modified sample_strategy 2020-02-23 16:22:19 +01:00
Yazeed Al Oyoun
e04c2dda2c fixed typo 2020-02-22 23:58:31 +01:00
hroff-1902
d2181bdd94 Adjust tests 2020-02-23 01:55:07 +03:00
Yazeed Al Oyoun
5ac6244465 added keltner channel and uo 2020-02-22 23:50:26 +01:00
Yazeed Al Oyoun
2957756275 final touches plus 2020-02-22 23:39:01 +01:00
Yazeed Al Oyoun
b49b9b515e final touches 2020-02-22 23:37:15 +01:00
Yazeed Al Oyoun
259dc75a30 some order and added weighted BB indicator to list 2020-02-22 23:10:46 +01:00
hroff-1902
ca8e52dc2c Show heartbeat message earlier after changing the state 2020-02-23 00:21:19 +03:00
Matthias
91ee48f3fb Merge pull request #2957 from hroff-1902/fix/2948-2
Fix #2948
2020-02-22 19:37:00 +01:00
hroff-1902
e2e6b940a3 copy=False does not make the changes inline anyway, so not needed 2020-02-22 19:54:19 +03:00
hroff-1902
c651e0ac82 Fix #2948 2020-02-22 19:46:40 +03:00
hroff-1902
430f53ca11 Merge pull request #2955 from freqtrade/fix/2948
Load ohlcv data as float
2020-02-22 17:16:54 +03:00
Matthias
3186add87b Use explicit column list for float parsing 2020-02-22 14:46:54 +01:00
Matthias
7ecc56fa44 Load ohlcv data as float 2020-02-22 13:10:41 +01:00
Matthias
2fe7b683cb Add tests for cached rates 2020-02-22 11:23:13 +01:00
Matthias
77ef3240cd Implement log messages 2020-02-22 11:20:19 +01:00
Matthias
97e6e5e976 Implement caching in the correct place 2020-02-22 11:12:33 +01:00
Matthias
f5b4a6d3d7 Remove fetch_ticker caching 2020-02-22 11:10:05 +01:00
hroff-1902
d9ecf3e4bf Add version and state to heartbeat message 2020-02-21 12:26:32 +03:00
hroff-1902
d2e20d86bb Align heartbeat to throttling logging 2020-02-21 05:31:21 +03:00
hroff-1902
269a669af8 Move heartbeat to worker 2020-02-21 05:07:31 +03:00
hroff-1902
881f602f91 Adjust methods params 2020-02-21 04:17:17 +03:00
hroff-1902
e0800b7c29 Make throttle start time an worker object attribute 2020-02-21 03:52:14 +03:00
hroff-1902
04aa74e5ad Better throttling 2020-02-21 03:37:38 +03:00
hroff-1902
43add0b159 Merge pull request #2947 from freqtrade/fix_failing_dockerbuild
Use correct strategy path for docker testing
2020-02-20 16:53:39 +03:00
Matthias
945ff09e27 Use correct strategy path for docker testing 2020-02-20 14:19:24 +01:00
hroff-1902
78ee36a8c6 Use _throttle() in stopped state instead of sleep() 2020-02-20 15:18:26 +03:00
hroff-1902
bee28a1061 Merge pull request #2944 from freqtrade/move_defaultstrategy
Move defaultstrategy
2020-02-20 08:52:24 +03:00
Matthias
10668bb249 Update tests/strategy/test_strategy.py
Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-02-20 06:22:36 +01:00
hroff-1902
56a06cbd33 Update strings to f-strings 2020-02-20 08:19:22 +03:00
hroff-1902
bca5f804a8 Move divider log message 2020-02-20 08:17:24 +03:00
Matthias
5adbe3c2d3 initial search path is optional ... 2020-02-19 19:50:01 +01:00
Matthias
751e2b2359 Merge pull request #2945 from freqtrade/fix/kraken_stoplosshit
Kraken stoploss bugfix
2020-02-19 19:43:29 +01:00
Matthias
a7342bd910 Fix non-existing strategy loading 2020-02-19 19:42:04 +01:00
hroff-1902
f2f2c281c0 Merge pull request #2719 from xmatthias/data_handler
Introduce Data handler
2020-02-19 21:22:08 +03:00
Matthias
d22384c7fb Full support for kraken stoploss 2020-02-19 19:21:48 +01:00
Matthias
29b369c65e Rename cli argument 2020-02-19 14:53:54 +01:00
hroff-1902
2d2fd968c8 Merge pull request #2941 from freqtrade/github_actions_tests
GitHub actions tests
2020-02-19 14:58:12 +03:00
Matthias
882d0a5933 implement documentation feedback after review 2020-02-19 12:55:08 +01:00
Matthias
09d89fbfb3 Fix last test 2020-02-19 07:15:55 +01:00
Matthias
d91b9d1253 Fix some tests, don't default to freqtrade/strategy for imports 2020-02-18 20:26:20 +01:00
Matthias
1634297685 Move strategies to test subfolder 2020-02-18 20:12:10 +01:00
hroff-1902
16cbd441ce Merge pull request #2931 from freqtrade/status_badge
Add github actions badge
2020-02-18 10:55:34 +03:00
Matthias
e6dd463ca3 Revert versioning 2020-02-17 20:17:36 +01:00
Matthias
1172c95817 Use different versioning scheme 2020-02-17 20:17:08 +01:00
Matthias
0b33b798e4 Add pypi build step 2020-02-17 20:16:24 +01:00
Matthias
4c41da2ea4 Merge pull request #2934 from freqtrade/dependabot/pip/develop/python-telegram-bot-12.4.2
Bump python-telegram-bot from 12.4.1 to 12.4.2
2020-02-17 10:12:28 +01:00
Matthias
9b58b4c54d Merge pull request #2939 from freqtrade/dependabot/pip/develop/scikit-optimize-0.7.2
Bump scikit-optimize from 0.7.1 to 0.7.2
2020-02-17 09:49:45 +01:00
Matthias
a8e0526d87 Merge pull request #2937 from freqtrade/dependabot/pip/develop/wrapt-1.12.0
Bump wrapt from 1.11.2 to 1.12.0
2020-02-17 09:48:58 +01:00
Matthias
90fbf70bcc Merge pull request #2936 from freqtrade/dependabot/pip/develop/coveralls-1.11.1
Bump coveralls from 1.10.0 to 1.11.1
2020-02-17 09:47:47 +01:00
dependabot-preview[bot]
582b59044c Bump python-telegram-bot from 12.4.1 to 12.4.2
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 12.4.1 to 12.4.2.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v12.4.1...v12.4.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-17 08:47:39 +00:00
Matthias
df955b8104 Merge pull request #2935 from freqtrade/dependabot/pip/develop/ccxt-1.22.61
Bump ccxt from 1.22.39 to 1.22.61
2020-02-17 09:46:24 +01:00
Matthias
e7d687ee11 Merge pull request #2938 from freqtrade/dependabot/pip/develop/mkdocs-material-4.6.3
Bump mkdocs-material from 4.6.2 to 4.6.3
2020-02-17 09:45:51 +01:00
dependabot-preview[bot]
0fd3d74fc4 Bump scikit-optimize from 0.7.1 to 0.7.2
Bumps [scikit-optimize](https://github.com/scikit-optimize/scikit-optimize) from 0.7.1 to 0.7.2.
- [Release notes](https://github.com/scikit-optimize/scikit-optimize/releases)
- [Changelog](https://github.com/scikit-optimize/scikit-optimize/blob/master/CHANGELOG.md)
- [Commits](https://github.com/scikit-optimize/scikit-optimize/compare/v0.7.1...v0.7.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-17 08:05:00 +00:00
dependabot-preview[bot]
9435950fc9 Bump mkdocs-material from 4.6.2 to 4.6.3
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 4.6.2 to 4.6.3.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/4.6.2...4.6.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-17 08:04:40 +00:00
dependabot-preview[bot]
500e1c77de Bump wrapt from 1.11.2 to 1.12.0
Bumps [wrapt](https://github.com/GrahamDumpleton/wrapt) from 1.11.2 to 1.12.0.
- [Release notes](https://github.com/GrahamDumpleton/wrapt/releases)
- [Changelog](https://github.com/GrahamDumpleton/wrapt/blob/develop/docs/changes.rst)
- [Commits](https://github.com/GrahamDumpleton/wrapt/compare/1.11.2...1.12.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-17 08:04:21 +00:00
dependabot-preview[bot]
c6a3038f52 Bump coveralls from 1.10.0 to 1.11.1
Bumps [coveralls](https://github.com/coveralls-clients/coveralls-python) from 1.10.0 to 1.11.1.
- [Release notes](https://github.com/coveralls-clients/coveralls-python/releases)
- [Changelog](https://github.com/coveralls-clients/coveralls-python/blob/master/CHANGELOG.md)
- [Commits](https://github.com/coveralls-clients/coveralls-python/compare/1.10.0...1.11.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-17 08:03:57 +00:00
dependabot-preview[bot]
212d20ed08 Bump ccxt from 1.22.39 to 1.22.61
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.22.39 to 1.22.61.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.22.39...1.22.61)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-17 08:03:37 +00:00
Matthias
bec86b1325 Add github actions badge 2020-02-16 15:42:41 +01:00
Matthias
6335d81ceb Merge branch 'develop' into data_handler 2020-02-16 15:12:14 +01:00
hroff-1902
7b9bd70d97 Merge pull request #2930 from freqtrade/ftx_fix_ohlcv
increment limit to adjust to FTX defaults (1500 candles)
2020-02-16 15:53:27 +03:00
Matthias
3787ac7b98 increment limit to adjust to FTX defaults (1500 candles) 2020-02-16 13:20:11 +01:00
hroff-1902
36670fb5d9 Merge pull request #2929 from yazeed/fix_status_table
/status table quick fix
2020-02-15 23:09:50 +03:00
Yazeed Al Oyoun
180939a962 winner, readability, with brackets as fix 2020-02-15 21:01:45 +01:00
Yazeed Al Oyoun
6e71f2f166 my fix 2020-02-15 20:55:12 +01:00
Matthias
44ac2409ff Merge pull request #2923 from hroff-1902/status-strategies
Add printing statuses for enlisted strategies and hyperopts
2020-02-15 19:43:02 +01:00
hroff-1902
6139239b86 Address points stated in comments 2020-02-15 20:43:11 +03:00
hroff-1902
9d09a67dea Merge pull request #2925 from freqtrade/fix_edgedocs
Fix edge documentation rendering
2020-02-15 19:41:59 +03:00
Matthias
87b506972f Fix edge documentation rendering 2020-02-15 13:12:29 +01:00
hroff-1902
c453969235 Merge pull request #2922 from freqtrade/config_userdir
default to loading config.json from userdir if it exists
2020-02-15 08:00:04 +03:00
hroff-1902
fdd362299f Docs adjusted 2020-02-15 07:34:39 +03:00
hroff-1902
42a5d78e60 Wording (duplicate, not duplicated) 2020-02-15 07:19:24 +03:00
hroff-1902
ddea4b9300 Fix test 2020-02-15 06:54:18 +03:00
hroff-1902
e8c0a0bcd3 Make mypy happy 2020-02-15 06:18:00 +03:00
hroff-1902
1cf19133f4 Added missing failing strategy 2020-02-15 05:41:58 +03:00
hroff-1902
29d9b6a46a Add test for enum failed 2020-02-15 04:32:10 +03:00
hroff-1902
93f9ff1b63 Fix existing test 2020-02-15 04:22:21 +03:00
hroff-1902
06b84b4086 Remove redundant code 2020-02-14 23:13:49 +03:00
hroff-1902
bba7a38144 Merge pull request #2906 from freqtrade/fix/jupyterexample
Update data-analysis documentation to properly initialize configuration
2020-02-14 22:36:35 +03:00
hroff-1902
47a91c9d8e Remove green color 2020-02-14 22:32:46 +03:00
hroff-1902
e598c769d4 Add colorization 2020-02-14 22:28:49 +03:00
Matthias
f024cc40d3 Fix windows test failure 2020-02-14 20:21:09 +01:00
Matthias
ecca7164d9 Fix small issue 2020-02-14 20:13:36 +01:00
Matthias
d5a298bbb7 Add sentence from suggestion 2020-02-14 20:12:26 +01:00
Matthias
5efbdd25a7 Properly default to user_data/config.json if it exists 2020-02-14 20:04:05 +01:00
Matthias
ab27d2c720 Merge pull request #2921 from hroff-1902/adjust-buy-notification
Move rpc send to be after db session add/flash
2020-02-14 20:02:56 +01:00
hroff-1902
c92e1d97d6 Attempt to make mypy happy 2020-02-14 21:52:02 +03:00
hroff-1902
1bc26fd07a Add printing statuses for list-hyperopts 2020-02-14 21:46:22 +03:00
Matthias
be4a9b5f4b Lowercase freqtrade 2020-02-14 19:37:20 +01:00
Matthias
9dafc2f3c8 Load config.json from user_data first 2020-02-14 19:33:10 +01:00
hroff-1902
a2d7f8a70d Split tabular printing into sep. helper function 2020-02-14 21:24:30 +03:00
hroff-1902
9cbf8c5f00 Add status for listed strategies 2020-02-14 21:15:36 +03:00
Matthias
3312fd34f3 Merge pull request #2920 from hroff-1902/remove-delete-trades
Get rid of delete_trade method in Freqtradebot
2020-02-14 07:27:52 +01:00
Matthias
ee92e8dbf4 Merge pull request #2919 from hroff-1902/adjust-main
Minor: Adjust message in main.py
2020-02-14 07:27:19 +01:00
Matthias
ec5d2d78dd Merge pull request #2918 from hroff-1902/bittrex-config
Add order_types into Bittrex config subtemplate
2020-02-14 07:26:49 +01:00
hroff-1902
20c21b42d5 Move rpc send to be after db session add/flash 2020-02-14 06:23:03 +03:00
hroff-1902
36ef5c6bdf Get rid of delete_trades method in Freqtradebot 2020-02-14 04:05:17 +03:00
hroff-1902
2dea362eda Merge pull request #2887 from yazeed/rpc_notification_fixes
Wide RPC notifications fixes
2020-02-14 03:51:23 +03:00
hroff-1902
749463e4b7 Adjust message in main.py 2020-02-14 03:05:07 +03:00
hroff-1902
a0a14a1078 freqtrade/templates/subtemplates/exchange_bittrex.j2 2020-02-14 01:08:17 +03:00
hroff-1902
4cdcf00ddc Merge branch 'develop' into rpc_notification_fixes 2020-02-14 00:10:50 +03:00
hroff-1902
0631fc937a Merge pull request #2915 from freqtrade/documentation_test
fix configuration table
2020-02-13 17:27:54 +03:00
Matthias
02148a1df2 Fix datatype styling issues 2020-02-13 15:09:09 +01:00
Matthias
a93bc74eff Update documentation ... 2020-02-13 07:04:37 +01:00
Matthias
ccc9239751 Reduce indentation of help 2020-02-13 07:02:12 +01:00
Matthias
86592c3ba1 Fix /help from telegram 2020-02-13 06:51:52 +01:00
Matthias
81f849811f Initcap Freqtrade 2020-02-13 06:30:59 +01:00
Matthias
3e6209def2 Merge pull request #2914 from freqtrade/hroff-1902-patch-1
Docs: Fix checking of runmode
2020-02-13 06:28:50 +01:00
hroff-1902
634bf2b15c Docs: Fix checking of runmode 2020-02-13 01:44:46 +03:00
Yazeed Al Oyoun
007cc94474 fixed tests to send refresh, since its no longer defaulted 2020-02-12 22:03:56 +01:00
Yazeed Al Oyoun
f09af888b1 modified get_buy/sell_rate refresh to true on notify_sell_cancel and notify_buy_cancel 2020-02-12 21:55:38 +01:00
Yazeed Al Oyoun
2e3b8cdba7 fixed flake8 issues on /help output 2020-02-12 21:51:58 +01:00
Yazeed Al Oyoun
f6db784a85 removed default to refresh argument in get_buy_rate and get_sell_rate 2020-02-12 21:50:33 +01:00
Yazeed Al Oyoun
47874a4527 added logic to differentiate sell orders with double asterisk 2020-02-12 21:45:55 +01:00
Matthias
2efa1c164f Revert data-location section 2020-02-12 21:43:43 +01:00
Matthias
483cba453a Fix last occurence of data_location 2020-02-12 19:58:23 +01:00
Matthias
d6b9397579 Fix typo in datadir key 2020-02-12 06:40:13 +01:00
Matthias
9a22ce69bd Merge pull request #2908 from hroff-1902/tests_load_default_strategy
Do not instantiate directly DefaultStrategy in tests
2020-02-12 06:37:19 +01:00
hroff-1902
4f3376e2a1 Do not instantiate directly DefaultStrategy in tests 2020-02-12 01:39:15 +03:00
hroff-1902
e73dac8d91 Merge pull request #2905 from Fredrik81/hyperopt-more-filters
Adding --min-trades, --max-trades, --max-avg-profit, --max-total-profit for hyperopt-list
2020-02-11 23:46:48 +03:00
Fredrik Rydin
539343b20d Adding 2 more filter options for completeness 2020-02-11 21:29:55 +01:00
Matthias
7be9f0067e Update data-analysis documentation to properly initialize configuration 2020-02-11 20:51:39 +01:00
Matthias
64fb8e28ec Merge pull request #2886 from freqtrade/docker_docs
Docker docs
2020-02-11 19:41:42 +01:00
Matthias
c35fe2c386 Add link to quick-start-guide 2020-02-11 19:29:43 +01:00
Fredrik Rydin
d1c3eabb87 Changed commands to use "check_int_positive" 2020-02-11 18:08:30 +01:00
Yazeed Al Oyoun
899de8b27c modified tests for double partial call 2020-02-11 16:50:18 +01:00
Yazeed Al Oyoun
cde1b2b56c readded rpc status message for partial buys 2020-02-11 16:28:48 +01:00
Yazeed Al Oyoun
5f4c209fca fixed one more occurence of executed buy, and test 2020-02-11 16:14:49 +01:00
Yazeed Al Oyoun
4fedf1e564 default refresh TRUE on get_buy_rate and get_sell_Rate 2020-02-11 16:05:44 +01:00
Fredrik Rydin
5b4d8d69ef Adding --min-trades and --max-trades for hyperopt-list 2020-02-11 16:02:08 +01:00
Yazeed Al Oyoun
fc29564974 Fixed messages and readability 2020-02-11 15:58:40 +01:00
Yazeed Al Oyoun
867b736b84 Fixed to Executing Buys & Sells 2020-02-11 15:50:21 +01:00
Yazeed Al Oyoun
7f4b90c68f fixed actual open_rate in notify_buy_cancel 2020-02-11 15:45:35 +01:00
Yazeed Al Oyoun
f99d1c3829 fixed open_rate instead of open_rate_requested 2020-02-11 15:44:47 +01:00
Matthias
59a576ef3e Merge pull request #2903 from hroff-1902/fix/tests_history-2
Minor: Fix tests_history.py
2020-02-11 07:14:13 +01:00
Matthias
81997cba8a Merge pull request #2902 from hroff-1902/fix/tests_hyperopt_loss
Minor: Fix tests for hyperopt_loss
2020-02-11 07:13:29 +01:00
Matthias
57fcca9696 Merge pull request #2904 from hroff-1902/fix/tests_backtesting_container
Minor: Fix usage of an item from BTContainer in tests
2020-02-11 07:02:28 +01:00
hroff-1902
29f7c5071b Fix usage of an item from BTContainer in tests 2020-02-11 04:17:10 +03:00
hroff-1902
62bcb3d766 Fix tests in test_history.py 2020-02-11 03:43:20 +03:00
hroff-1902
2bcce33f23 Merge pull request #2888 from Fredrik81/hyperopt-filters
Added filter options to "hyperopt-list" in order to easier find epochs.
2020-02-10 23:59:40 +03:00
Fredrik Rydin
f2520c11e7 Used wrong utils.md as base 2020-02-10 21:19:25 +01:00
Fredrik Rydin
c924e4d519 Updated based on feedback:
- Profit commands now use float
- Compatible with --best
- Corrected wrong information in docs
2020-02-10 20:54:31 +01:00
Matthias
d442b31f84 Merge pull request #2894 from freqtrade/hroff-1902-patch-2
Minor: Adjust mypy and flake commands
2020-02-10 19:03:09 +01:00
hroff-1902
df8a27fba6 Merge pull request #2900 from freqtrade/rem_bin
Break the old binary file so users are forced to reinstall
2020-02-10 20:52:13 +03:00
hroff-1902
05128d21a8 Suggest to run flake for scripts 2020-02-10 20:48:49 +03:00
Matthias
faf19eda86 Break the old binary file so users are forced to reinstall
Note:
This should not be relevant anymore - this binary has been deprecated
and is not being used by new installations since July 2019.
2020-02-10 17:31:49 +01:00
hroff-1902
d07c69809d Fix tests for hyperopt_loss 2020-02-10 18:32:41 +03:00
hroff-1902
da03c36875 Merge pull request #2899 from freqtrade/mypy_tests
Fix mypy type errors in tests
2020-02-10 15:43:57 +03:00
hroff-1902
0ac0ca74b5 return back hint for running mypy 2020-02-10 15:41:09 +03:00
Yazeed Al Oyoun
d69ddd2ac3 Apply suggestions from code review
Committed 1 code suggestion in code review.

Co-Authored-By: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-02-10 11:54:12 +01:00
Matthias
1a544be828 Merge pull request #2898 from freqtrade/dependabot/pip/develop/mkdocs-material-4.6.2
Bump mkdocs-material from 4.6.0 to 4.6.2
2020-02-10 11:03:10 +01:00
Matthias
bfccb2e96a Merge pull request #2896 from freqtrade/dependabot/pip/develop/pandas-1.0.1
Bump pandas from 1.0.0 to 1.0.1
2020-02-10 11:02:54 +01:00
Matthias
7bb02d0cc6 Update docker-docs wording 2020-02-10 11:01:33 +01:00
Matthias
f220e0f6ca Merge pull request #2897 from freqtrade/dependabot/pip/develop/python-telegram-bot-12.4.1
Bump python-telegram-bot from 12.3.0 to 12.4.1
2020-02-10 10:40:37 +01:00
Matthias
83644ce5d8 Fix mypy type errors in tests 2020-02-10 10:35:48 +01:00
dependabot-preview[bot]
550f9fc891 Bump python-telegram-bot from 12.3.0 to 12.4.1
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 12.3.0 to 12.4.1.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v12.3.0...v12.4.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-10 08:45:27 +00:00
Matthias
c7167c83cd Merge pull request #2895 from freqtrade/dependabot/pip/develop/ccxt-1.22.39
Bump ccxt from 1.22.30 to 1.22.39
2020-02-10 09:44:08 +01:00
dependabot-preview[bot]
6b4094fd92 Bump mkdocs-material from 4.6.0 to 4.6.2
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 4.6.0 to 4.6.2.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/4.6.0...4.6.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-10 08:02:45 +00:00
dependabot-preview[bot]
88f2ad1eae Bump pandas from 1.0.0 to 1.0.1
Bumps [pandas](https://github.com/pandas-dev/pandas) from 1.0.0 to 1.0.1.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/master/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v1.0.0...v1.0.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-10 08:02:07 +00:00
dependabot-preview[bot]
90ee82ac43 Bump ccxt from 1.22.30 to 1.22.39
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.22.30 to 1.22.39.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.22.30...1.22.39)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-10 08:01:42 +00:00
Matthias
db0475f9c3 Merge pull request #2890 from freqtrade/hroff-1902-patch-1
Add tip on running order types for Bittrex
2020-02-10 08:33:24 +01:00
hroff-1902
4af25ec315 Adjust mypy and flake commands 2020-02-10 05:52:07 +03:00
hroff-1902
0ba8d13de9 Merge pull request #2831 from xmatthias/feat/new_config
introduce new-config subcommand
2020-02-09 22:11:37 +03:00
hroff-1902
f7c74e551f Fix wording 2020-02-09 21:56:59 +03:00
Fredrik81
5bf4c5869b Update hyperopt_commands.py
Missed a debug print
2020-02-09 19:32:09 +01:00
hroff-1902
cc3f65d069 Fix typo 2020-02-09 19:45:04 +03:00
hroff-1902
c83da7cadb Add section about order types into Bittrex Exchange-specific chapter 2020-02-09 19:11:06 +03:00
Matthias
7c91c77fd9 Merge pull request #2891 from freqtrade/hroff-1902-patch-2
Fix SharpeHyperOptLossDaily
2020-02-09 17:06:22 +01:00
hroff-1902
40abdd2608 Suggest changing strategy 2020-02-09 18:54:04 +03:00
hroff-1902
c89a32224c Fix SharpeHyperOptLossDaily 2020-02-09 18:40:19 +03:00
Matthias
d65a06947d Merge branch 'develop' into data_handler 2020-02-09 15:16:43 +01:00
Fredrik Rydin
eb3783dc00 Fixed a blank line issue :-( 2020-02-09 14:30:29 +01:00
Fredrik Rydin
c648ec7c0c Added test cases and fixed a minor bug 2020-02-09 14:18:56 +01:00
hroff-1902
c7ba85c2e6 Add tip on running order types for Bittrex 2020-02-09 14:19:13 +03:00
Matthias
b536d50194 Address PR Review 2020-02-09 11:41:29 +01:00
Matthias
f41de38498 Merge pull request #2884 from freqtrade/fix/stakecurr_validation
fix download-data validation problems
2020-02-09 11:07:39 +01:00
Fredrik Rydin
c96acd6ca0 Fixed to pass PEP8 2020-02-09 00:16:11 +01:00
Yazeed Al Oyoun
2796d3d8a0 added missing tests to increase coverage 2020-02-09 00:11:58 +01:00
Fredrik Rydin
636bd5acb5 Added filter options to "hyperopt-list" in order to easier find epochs.
--profitable
	Select only profitable epochs.
  --min-avg-time INT
	Select epochs on above average time.
  --max-avg-time INT
	Select epochs on under average time.
  --min-avg-profit FLOAT
	Select epochs on above average profit.
  --min-total-profit FLOAT
	Select epochs on above total profit.
2020-02-08 23:21:42 +01:00
Matthias
1a9787ac76 Add validation for data-download relevant settings 2020-02-08 21:53:34 +01:00
Yazeed Al Oyoun
879b513822 enhanced method description 2020-02-08 21:31:36 +01:00
Yazeed Al Oyoun
4fad7a462c fixes in webhook-config docs 2020-02-08 21:19:07 +01:00
Yazeed Al Oyoun
f3b1161640 wide notifications fixes 2020-02-08 21:02:52 +01:00
Matthias
c4031761fe Don't validate exchange for data-download subcommand 2020-02-08 19:29:58 +01:00
Matthias
34f04668c1 Add template for bittrex 2020-02-08 14:02:51 +01:00
Matthias
52f4187129 Allow exchange templates to configure outside-options too 2020-02-08 13:51:55 +01:00
Matthias
f508324fc8 Update docker documentation to be easier to use 2020-02-08 13:38:45 +01:00
Matthias
a1fe3850e2 Improve docker-compose file to be ready to use 2020-02-08 13:34:04 +01:00
Matthias
fff8ced3b0 Merge pull request #2843 from hroff-1902/allow-derived-strategies
Allow derived strategies
2020-02-08 09:15:35 +01:00
Matthias
67e66a6c4a Merge pull request #2882 from hroff-1902/update_advanced_hyperopt_template
Update advanced hyperopt template
2020-02-08 09:07:18 +01:00
Matthias
5bae5a6a35 Merge pull request #2881 from hroff-1902/no_nxt_in_config_example
Minor: Replace NXT with XRP in config.json.example
2020-02-08 09:05:23 +01:00
hroff-1902
61ced5e926 Fix typo 2020-02-08 02:49:06 +03:00
hroff-1902
28184201e4 Align sample_hyperopt_advanced.py to hyperopt_interface.py 2020-02-08 02:47:50 +03:00
hroff-1902
a893f70e49 Replace NXT with XRP in config.json.example 2020-02-08 02:21:39 +03:00
hroff-1902
6990f6af25 Merge pull request #2870 from freqtrade/dry_run_docs
Add considerations for dry-run
2020-02-08 00:09:58 +03:00
hroff-1902
c501fd0a70 Merge pull request #2875 from yazeed/distinguish_draws_from_wins
Add draws column to backtesting tables
2020-02-07 22:55:12 +03:00
Matthias
abf10aec98 Merge branch 'develop' into feat/new_config 2020-02-07 17:02:14 +01:00
Yazeed Al Oyoun
aa2cb937b1 flake8 :) 2020-02-07 03:54:47 +01:00
Yazeed Al Oyoun
ff819386e1 added draws to backtesting tables, reduced len of some labels to help fit this without increasing total width 2020-02-07 03:51:50 +01:00
hroff-1902
f57bd6b616 Keep the docs clean for unexperienced users 2020-02-06 21:53:03 +03:00
hroff-1902
418e7adac1 Highlight syntax in advanced-hyperopt as well 2020-02-06 17:49:10 +03:00
hroff-1902
2034527faa Update docs/strategy-customization.md
Co-Authored-By: Matthias <xmatthias@outlook.com>
2020-02-06 17:45:15 +03:00
hroff-1902
412f5d68de Add description to hyperopt advanced doc chapter 2020-02-06 17:42:26 +03:00
hroff-1902
2846f9454f Add description in the docs 2020-02-06 17:02:11 +03:00
hroff-1902
739acaa475 Wordings improved 2020-02-06 13:54:51 +03:00
Matthias
97e48080e8 Merge pull request #2839 from hroff-1902/list-hyperopts-2
Add list-hyperopts subcommand
2020-02-06 07:06:36 +01:00
Yazeed Al Oyoun
5b00eaa42d Updated Strategy Summary table to match other backtesting tables (#2864) 2020-02-06 06:58:58 +01:00
Yazeed Al Oyoun
9639ffb140 added daily sharpe ratio hyperopt loss method, ty @djacky (#2826)
* more consistent backtesting tables and labels

* added rounding to Tot Profit % on Sell Reasosn table to be consistent with other percentiles on table.

* added daily sharpe ratio hyperopt loss method, ty @djacky

* removed commented code

* removed unused profit_abs

* added proper slippage to each trade

* replaced use of old value total_profit

* Align quotes in same area

* added daily sharpe ratio test and modified hyperopt_loss_sharpe_daily

* fixed some more line alignments

* updated docs to include SharpeHyperOptLossDaily

* Update dockerfile to 3.8.1

* Run tests against 3.8

* added daily sharpe ratio hyperopt loss method, ty @djacky

* removed commented code

* removed unused profit_abs

* added proper slippage to each trade

* replaced use of old value total_profit

* added daily sharpe ratio test and modified hyperopt_loss_sharpe_daily

* updated docs to include SharpeHyperOptLossDaily

* docs fixes

* missed one fix

* fixed standard deviation line

* fixed to bracket notation

* fixed to bracket notation

* fixed syntax error

* better readability, kept np.sqrt(365) which results in  annualized sharpe ratio

* fixed method arguments indentation

* updated commented out debug print line

* renamed after slippage profit_percent so it wont affect _calculate_results_metrics()

* Reworked to fill leading and trailing days

* No need for np; make flake happy

* Fix risk free rate

Co-authored-by: Matthias <xmatthias@outlook.com>
Co-authored-by: hroff-1902 <47309513+hroff-1902@users.noreply.github.com>
2020-02-06 06:49:08 +01:00
Matthias
586cbc750c Add considerations for dry-run 2020-02-06 06:45:11 +01:00
hroff-1902
b5ee4f17cb Merge pull request #2830 from orehunt/spreadfilter
- added spread filter
2020-02-04 23:37:09 +03:00
Matthias
6866f6389d Fix merge-error 2020-02-04 20:41:13 +01:00
hroff-1902
d2cac1d8fd Merge branch 'develop' into spreadfilter 2020-02-04 16:54:46 +03:00
untoreh
aa54fd2251 - added spread filter
- minimum value to volume pairlist
2020-02-04 14:49:59 +01:00
hroff-1902
f5fb129483 Merge pull request #2858 from freqtrade/fix/rolling_max
Fix implementation of rolling_max
2020-02-04 14:05:05 +03:00
Matthias
a707aeb3d0 Fix implementation of rolling_max 2020-02-04 07:00:53 +01:00
Matthias
f8bb6a3e06 Merge pull request #2855 from yazeed/text_mods_in_check_depth_of_market_buy
More consistency in check_depth_of_market_buy()
2020-02-04 06:24:58 +01:00
Yazeed Al Oyoun
91b4c9668c More consistency changes... 2020-02-04 01:57:24 +01:00
hroff-1902
d457d43999 Merge pull request #2833 from hroff-1902/type-hints
Add some type hints
2020-02-03 23:24:26 +03:00
hroff-1902
ffb53a6df5 get rid of typing.cast() 2020-02-03 23:08:35 +03:00
hroff-1902
82590657fb Merge pull request #2848 from freqtrade/dependabot/pip/develop/scikit-optimize-0.7.1
Bump scikit-optimize from 0.5.2 to 0.7.1
2020-02-03 22:53:01 +03:00
Matthias
54303880d3 Merge pull request #2849 from freqtrade/dependabot/pip/develop/pandas-1.0.0
Bump pandas from 0.25.3 to 1.0.0
2020-02-03 20:34:17 +01:00
Matthias
cbabc295c7 Don't convert to datetime - but convert to datetime64 instead 2020-02-03 20:25:43 +01:00
Matthias
b8aaf744e8 Merge pull request #2851 from hroff-1902/improve-logging-3
Add pair to exception messages in exchange module
2020-02-03 16:04:55 +01:00
hroff-1902
64f04845b6 Merge pull request #2850 from freqtrade/try_fix_randoM-test
make sure asyncio_loop is not initialized within ccxt code
2020-02-03 17:45:49 +03:00
hroff-1902
684cb54992 Add pair to exception msg 2020-02-03 17:17:46 +03:00
Matthias
f6c09160ab make sure asyncio_loop is not initialized within ccxt code 2020-02-03 15:17:36 +01:00
Matthias
221950cdc4 Merge pull request #2845 from freqtrade/dependabot/pip/develop/jinja2-2.11.1
Bump jinja2 from 2.10.3 to 2.11.1
2020-02-03 10:07:56 +01:00
Matthias
6e6c0757d6 Merge pull request #2847 from freqtrade/dependabot/pip/develop/ccxt-1.22.30
Bump ccxt from 1.21.91 to 1.22.30
2020-02-03 10:05:46 +01:00
Matthias
2ee99bde29 Merge pull request #2846 from freqtrade/dependabot/pip/develop/pytest-5.3.5
Bump pytest from 5.3.4 to 5.3.5
2020-02-03 09:58:04 +01:00
dependabot-preview[bot]
d5f704009f Bump pandas from 0.25.3 to 1.0.0
Bumps [pandas](https://github.com/pandas-dev/pandas) from 0.25.3 to 1.0.0.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/master/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v0.25.3...v1.0.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-03 08:03:45 +00:00
dependabot-preview[bot]
3938418ad5 Bump scikit-optimize from 0.5.2 to 0.7.1
Bumps [scikit-optimize](https://github.com/scikit-optimize/scikit-optimize) from 0.5.2 to 0.7.1.
- [Release notes](https://github.com/scikit-optimize/scikit-optimize/releases)
- [Changelog](https://github.com/scikit-optimize/scikit-optimize/blob/master/CHANGELOG.md)
- [Commits](https://github.com/scikit-optimize/scikit-optimize/compare/v0.5.2...v0.7.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-03 08:03:21 +00:00
dependabot-preview[bot]
401748e9a7 Bump ccxt from 1.21.91 to 1.22.30
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.91 to 1.22.30.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.91...1.22.30)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-03 08:02:54 +00:00
dependabot-preview[bot]
bc2ae3e88d Bump pytest from 5.3.4 to 5.3.5
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.3.4 to 5.3.5.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.3.4...5.3.5)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-03 08:02:21 +00:00
dependabot-preview[bot]
7b8e665323 Bump jinja2 from 2.10.3 to 2.11.1
Bumps [jinja2](https://github.com/pallets/jinja) from 2.10.3 to 2.11.1.
- [Release notes](https://github.com/pallets/jinja/releases)
- [Changelog](https://github.com/pallets/jinja/blob/master/CHANGES.rst)
- [Commits](https://github.com/pallets/jinja/compare/2.10.3...2.11.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-02-03 08:01:28 +00:00
hroff-1902
df249c7c03 Remove unclear comment 2020-02-03 09:37:50 +03:00
hroff-1902
5c20311768 Merge pull request #2844 from freqtrade/coveralls_twice
Only run coveralls once
2020-02-03 09:18:42 +03:00
Matthias
d0506a6435 Use correct matrix variable 2020-02-03 07:01:07 +01:00
Matthias
c8960ab628 Only run coveralls once 2020-02-03 06:50:07 +01:00
hroff-1902
537596001e Allow derived strategies 2020-02-03 06:20:01 +03:00
Matthias
d8c053573a Merge pull request #2840 from freqtrade/fix/testerrror
Fix failing stoploss CI test
2020-02-02 20:49:42 +01:00
Matthias
2b69e7830d Fix failing CI test 2020-02-02 20:08:50 +01:00
Matthias
e3cb5d26c0 Merge pull request #2835 from yazeed/reduce_noise_if_use_order_book_true
reduced noise without verbose mode if use_order_book is true
2020-02-02 19:42:50 +01:00
hroff-1902
84156879f6 Fix NO_CONF_REQUIRED for list-hyperopts 2020-02-02 20:11:42 +03:00
hroff-1902
d12e03e50d Fix test inconsistency in test_freqtradebot.py 2020-02-02 20:01:25 +03:00
hroff-1902
cd0534efcc Add test 2020-02-02 19:41:22 +03:00
hroff-1902
505648fb66 Adjust docs 2020-02-02 19:41:22 +03:00
hroff-1902
857eb5ff69 Add list-hyperopts command 2020-02-02 19:41:22 +03:00
hroff-1902
3fe39a3e1b Rename constant 2020-02-02 19:41:22 +03:00
hroff-1902
a5e670b402 Add USERPATH_NOTEBOOKS 2020-02-02 19:41:22 +03:00
hroff-1902
e8c1abc509 Merge pull request #2799 from freqtrade/fix_stoploss_recreated
Fix stoploss recreated
2020-02-02 16:59:45 +03:00
hroff-1902
6594679e52 Merge pull request #2779 from freqtrade/stoploss_market
Stoploss on exchange for Kraken
2020-02-02 14:48:45 +03:00
Matthias
c1897fbc48 Merge pull request #2834 from yazeed/consistent_main_sharpe_hyperopt_loss
better readability on sharpe ratio loss method
2020-02-02 11:12:56 +01:00
Yazeed Al Oyoun
aeabe1800b modified two lines from logger.info to logger.debug cause they're too spammy 2020-02-02 10:49:00 +01:00
Matthias
d64751687b Fix link and lowercase variable 2020-02-02 10:47:44 +01:00
Yazeed Al Oyoun
3499f1b85c better readability and more consistent with daily sharpe loss method 2020-02-02 08:47:33 +01:00
hroff-1902
f3d500085c Add some type hints 2020-02-02 07:00:40 +03:00
Matthias
aa8731d0fc Merge pull request #2832 from freqtrade/python_3.8
Python 3.8
2020-02-01 19:39:45 +01:00
Matthias
cbd2b265bb Fix small error 2020-02-01 15:16:44 +01:00
Matthias
321bc336ea Run tests against 3.8 2020-02-01 15:14:55 +01:00
Matthias
4459679c64 Update dockerfile to 3.8.1 2020-02-01 15:14:44 +01:00
Matthias
628b06927c Support python3.8 virtualenvs and remove config generation via SED 2020-02-01 14:59:14 +01:00
Matthias
12317b1c53 Add some rudimentary tests for questions 2020-02-01 14:46:43 +01:00
Matthias
d1a3a2d000 Add tests for build_config 2020-02-01 14:22:40 +01:00
Matthias
cfa6a3e3d3 Don't overwrite files 2020-02-01 14:12:21 +01:00
Matthias
c224c66978 Small edits to install.md 2020-02-01 14:06:31 +01:00
Matthias
929bbe3058 Link to docker installation from index.md 2020-02-01 14:01:19 +01:00
Matthias
8796ecb2a9 Ad example for new-config with answered questions 2020-02-01 13:56:57 +01:00
Matthias
54512a66ef Update help-strings for list-utils 2020-02-01 13:52:25 +01:00
Matthias
c40a4d77f8 Use exchange_mapping to determine correct exchange-template 2020-02-01 13:46:58 +01:00
Matthias
d69ef4380b Add basic documentation for new-config option 2020-02-01 13:44:04 +01:00
Matthias
8371003c05 Merge pull request #2827 from freqtrade/release/2020-01
new Release 2020.01
2020-02-01 12:54:32 +01:00
Matthias
19d4e1435c Merge pull request #2828 from yazeed/line_alignment_fixes
fixed some more line alignments
2020-02-01 11:19:28 +01:00
Matthias
4a80c47fd1 Merge pull request #2825 from yazeed/better_backtesting_tables
more consistent backtesting and sell reasons tables
2020-02-01 11:18:50 +01:00
Yazeed Al Oyoun
d038bcedb0 fixed some more line alignments 2020-01-31 22:37:05 +01:00
Matthias
c396ad4daa Align quotes in same area 2020-01-31 20:41:51 +01:00
Matthias
cff8498b42 Version bump 2020.01 2020-01-31 20:17:53 +01:00
Matthias
fdf6121b6e Merge branch 'master' into release/2020-01 2020-01-31 20:17:41 +01:00
Yazeed Al Oyoun
907a61152c added rounding to Tot Profit % on Sell Reasosn table to be consistent with other percentiles on table. 2020-01-31 04:53:37 +01:00
Yazeed Al Oyoun
e2b3907df5 more consistent backtesting tables and labels 2020-01-31 04:39:18 +01:00
Matthias
4be3f053ca Exclude trading against BNB bases on binance 2020-01-30 21:42:48 +01:00
Matthias
83baa6ee2e Add test stub 2020-01-29 22:47:15 +01:00
Matthias
cebf99b5d8 Implement validation 2020-01-29 22:46:47 +01:00
Matthias
acbf13e648 Fail gracefully if user interrupted question session 2020-01-29 21:47:05 +01:00
Matthias
2f0775fa1b Extract build-config tests to new file 2020-01-29 21:31:09 +01:00
Matthias
940bfbee96 Move start_config out of build_commands file 2020-01-29 21:28:01 +01:00
Matthias
e250c56829 Add Questionaire workflow 2020-01-29 21:21:38 +01:00
Matthias
49c9258a08 enhance test 2020-01-29 20:43:10 +01:00
Matthias
dd83cb1b95 Extract selection generation to a seperate method 2020-01-29 20:27:38 +01:00
Matthias
2396f35586 Merge pull request #2819 from hroff-1902/worker-delete-state
Remove state attribute from Worker class
2020-01-29 15:57:35 +01:00
hroff-1902
68771a7861 Remove state attr from Worker 2020-01-29 17:08:36 +03:00
hroff-1902
e1356fb80e Merge pull request #2800 from yazeed/enhanced_check_depth_of_market_logging
better logging on check_depth_of_market_buy()
2020-01-29 10:56:14 +03:00
Matthias
c80d8f432a Add exchange templates 2020-01-29 07:13:38 +01:00
Matthias
122c916356 Add first version of config_deploy 2020-01-29 07:03:22 +01:00
Matthias
9f29128205 Fix small json formatting issue 2020-01-29 07:01:17 +01:00
Matthias
b384ca8fd2 Create new-config command 2020-01-29 06:47:01 +01:00
Yazeed Al Oyoun
a0b92fe0b1 removed typo 2020-01-28 19:29:47 +01:00
Yazeed Al Oyoun
328a9ffafd fixed typo in false statement 2020-01-28 19:27:49 +01:00
Matthias
d40054b9d2 Merge pull request #2815 from hroff-1902/docs-gitclone
Minor: Advise to use https method for git clone instead of ssh
2020-01-28 06:25:08 +01:00
hroff-1902
4c0e586354 Advise to use https method for git clone i.o ssh 2020-01-27 22:39:04 +03:00
Matthias
3541f7bfce Merge pull request #2808 from freqtrade/dependabot/pip/develop/plotly-4.5.0
Bump plotly from 4.4.1 to 4.5.0
2020-01-27 19:45:01 +01:00
Matthias
3a2443b5fa Merge pull request #2811 from freqtrade/dependabot/pip/develop/sqlalchemy-1.3.13
Bump sqlalchemy from 1.3.12 to 1.3.13
2020-01-27 09:47:15 +01:00
Matthias
e488ce0d07 Merge pull request #2809 from freqtrade/dependabot/pip/develop/urllib3-1.25.8
Bump urllib3 from 1.25.7 to 1.25.8
2020-01-27 09:46:11 +01:00
Matthias
521e497ba3 Merge pull request #2812 from freqtrade/dependabot/pip/develop/pytest-5.3.4
Bump pytest from 5.3.3 to 5.3.4
2020-01-27 09:38:37 +01:00
dependabot-preview[bot]
c9ee678a52 Bump sqlalchemy from 1.3.12 to 1.3.13
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.3.12 to 1.3.13.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 08:36:41 +00:00
Matthias
078e25e383 Merge pull request #2810 from freqtrade/dependabot/pip/develop/ccxt-1.21.91
Bump ccxt from 1.21.76 to 1.21.91
2020-01-27 09:35:35 +01:00
dependabot-preview[bot]
a3b0f75289 Bump pytest from 5.3.3 to 5.3.4
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.3.3 to 5.3.4.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.3.3...5.3.4)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 07:44:27 +00:00
dependabot-preview[bot]
66939bdcf6 Bump ccxt from 1.21.76 to 1.21.91
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.76 to 1.21.91.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.76...1.21.91)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 07:43:41 +00:00
dependabot-preview[bot]
184a6005a6 Bump urllib3 from 1.25.7 to 1.25.8
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.25.7 to 1.25.8.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/master/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.25.7...1.25.8)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 07:43:11 +00:00
dependabot-preview[bot]
161c06fd4e Bump plotly from 4.4.1 to 4.5.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.4.1 to 4.5.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.4.1...v4.5.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 07:42:52 +00:00
Matthias
5d7317ef77 Merge pull request #2807 from hroff-1902/refactor-freqtrade-2
Add notify_status() to FreqtradeBot
2020-01-27 06:44:20 +01:00
Matthias
aae14dd9fe Merge pull request #2806 from hroff-1902/minor-freqtrade-5
Minor cosmetics in start_trading
2020-01-27 06:37:47 +01:00
hroff-1902
30e3e434ab Add notify_status() to FreqtradeBot 2020-01-27 03:34:53 +03:00
hroff-1902
33645e45fd Minor cosmetics in start_trading 2020-01-27 02:49:25 +03:00
Matthias
1ef148317d Merge branch 'develop' into stoploss_market 2020-01-26 20:33:41 +01:00
Matthias
1b9af9d2d8 Merge branch 'develop' into data_handler 2020-01-26 20:31:13 +01:00
hroff-1902
27d46ed06f Merge pull request #2804 from freqtrade/utils_commands
Utils commands
2020-01-26 21:40:04 +03:00
Matthias
02563019fc move setup_utils_config to configuration module 2020-01-26 14:15:53 +01:00
Matthias
8c9119b471 Add docustring to commands module 2020-01-26 13:46:01 +01:00
Matthias
2d02c3f2a4 Split out pairlist_commands 2020-01-26 13:46:01 +01:00
Matthias
a3e9d04383 Adjust imports to new place for arguments 2020-01-26 13:46:01 +01:00
Matthias
7f851ad8d9 Move arguments and cli_options to commands module 2020-01-26 13:46:01 +01:00
Matthias
a1c684f67c Simplify noqa setup for module imports 2020-01-26 13:46:01 +01:00
Matthias
f347e5934a Small adjustments for moved commands 2020-01-26 13:46:01 +01:00
Matthias
e033df6a2f Move optimize_commands to commands module 2020-01-26 13:46:01 +01:00
Matthias
b254bdfea3 Move plot_utils to plot_commands 2020-01-26 13:46:01 +01:00
Matthias
70a0346b0a Move data-stuff to data-commands 2020-01-26 13:46:01 +01:00
Matthias
7e23304187 Adjust tests to new paths 2020-01-26 13:46:01 +01:00
Matthias
926bf07df1 Seperate a few commands into specific files 2020-01-26 13:46:01 +01:00
Matthias
6e85280467 Adjust imports 2020-01-26 13:46:01 +01:00
Matthias
80ed1c3e14 Move utils to commands 2020-01-26 13:46:01 +01:00
hroff-1902
1ae3fb4d2f Merge pull request #2803 from freqtrade/edge_no__init__
Move edge-module out of __init__.py
2020-01-26 15:21:21 +03:00
Matthias
3f2542fcbc Move edge-module out of __init__.py 2020-01-26 10:44:42 +01:00
hroff-1902
f6278da23f Merge pull request #2802 from freqtrade/try_fixrandomfailure
Fix missed mock
2020-01-25 16:05:22 +03:00
Matthias
a3ac05cc16 Fix missed mock 2020-01-25 13:38:13 +01:00
Matthias
a97bb10877 Merge pull request #2801 from freqtrade/backtest_arguments_2
Backtest arguments instead of dictionary
2020-01-25 13:11:23 +01:00
Matthias
bd4dd8403b Fix type-errors with stake_amount 2020-01-25 12:49:37 +01:00
hroff-1902
52f0ed5310 Adjust tests 2020-01-25 12:49:37 +01:00
hroff-1902
f4c7edf551 No args for backtest(), use arguments 2020-01-25 12:49:37 +01:00
Yazeed Al Oyoun
f8db7f1709 added ask price, bid price, immediate ask quantity, and immediate bid quantity to check_depth_of_market_buy. also added a line that mentions if delta condition was satisfied or not. 2020-01-25 04:17:41 +01:00
Matthias
72c273aaed Add test for closed trade case 2020-01-23 21:07:21 +01:00
Matthias
70b9bd9c0e Verify if trade is closed before acting on Stoploss_on_exchange 2020-01-23 20:36:48 +01:00
Matthias
ea5ac1efb5 Don't handle stoploss if there is an open regular order 2020-01-23 20:24:23 +01:00
Matthias
a83de241e4 Check for closed stoploss-orders first 2020-01-23 19:40:31 +01:00
Matthias
f5a44e4fc4 open_order_id should be None when handling stoploss orders 2020-01-23 19:38:35 +01:00
Matthias
1d141cd406 Merge branch 'develop' into stoploss_market 2020-01-23 19:35:05 +01:00
hroff-1902
82797e768f Merge pull request #2796 from freqtrade/update_wallets_after_foresell
update wallets after forcesell
2020-01-23 00:10:47 +03:00
hroff-1902
9176064047 Merge pull request #2795 from freqtrade/tests_buy_rate
Add parametrized tests for get_buy_rate
2020-01-23 00:05:40 +03:00
Matthias
bc4c469797 Merge branch 'develop' into stoploss_market 2020-01-22 20:51:52 +01:00
Matthias
aad10ceee3 Add threading lock object for /forcesell
Protects against stoploss_on_exchange order recreation
in case of /forcesell (it's a timing issue, so may or may not happen).
2020-01-22 20:50:09 +01:00
Matthias
58ceda4b90 update wallets after forcesell 2020-01-22 19:54:55 +01:00
Matthias
f36bc80ad1 Add parametrized tests for get_buy_rate 2020-01-22 19:43:02 +01:00
hroff-1902
2b4d821d30 Merge pull request #2794 from freqtrade/rename_get_target_bid
rename get_target_bid
2020-01-22 17:19:04 +03:00
Matthias
8a940eb0c1 Align price finding function name on buy side with get_sell_rate 2020-01-22 14:46:28 +01:00
Matthias
9c2f21b07e Merge pull request #2788 from drdux/develop
added missing word in hyperopt loss example
2020-01-22 12:47:08 +01:00
hroff-1902
055f3fd1fd Merge pull request #2790 from freqtrade/backtest_optimize
Fix typo in sell-reason table generation
2020-01-22 12:29:20 +03:00
hroff-1902
40843566d0 Merge pull request #2791 from freqtrade/windows_ci_fix
upgrade pip in windows environment
2020-01-22 12:16:04 +03:00
Matthias
e13045b599 upgrade pip in windows environment 2020-01-22 06:17:13 +01:00
Matthias
7d2d0235a0 Fix typo in sell-reason table generation 2020-01-22 06:08:34 +01:00
Daniel Goller
bff0a09537 line was too long 2020-01-21 16:14:19 +00:00
Daniel Goller
c1c2717bc9 added missing word in hyperopt loss example 2020-01-21 15:49:24 +00:00
Matthias
fc2970f41b Merge branch 'develop' into data_handler 2020-01-21 06:58:48 +01:00
hroff-1902
66415d48d4 Merge pull request #2787 from freqtrade/dry_run_optional
remove default value calls for dry_run
2020-01-20 23:08:17 +03:00
hroff-1902
d54b1dade3 Merge pull request #2786 from freqtrade/fix/stoploss_on_exchange_dryrun
Fix/stoploss on exchange dryrun
2020-01-20 22:50:38 +03:00
Matthias
1bf475fa1a Remove .get calls for dry_run - it's a mandatory property 2020-01-20 20:24:40 +01:00
Matthias
099bbc5c7f Fix bug when stoploss_on_exchange in combination with dry-run
does not sell orders
2020-01-20 20:14:40 +01:00
Matthias
6e3336cb30 Adapt test to verify behaviour of stoploss_on_exchange in dry-run 2020-01-20 20:10:06 +01:00
Matthias
eb6c7f8595 Merge pull request #2781 from freqtrade/dependabot/pip/develop/ccxt-1.21.76
Bump ccxt from 1.21.56 to 1.21.76
2020-01-20 14:44:11 +01:00
Matthias
10a706851a Merge pull request #2782 from freqtrade/dependabot/pip/develop/pytest-5.3.3
Bump pytest from 5.3.2 to 5.3.3
2020-01-20 11:40:57 +01:00
dependabot-preview[bot]
8d4515935a Bump pytest from 5.3.2 to 5.3.3
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.3.2 to 5.3.3.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.3.2...5.3.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-20 07:49:18 +00:00
dependabot-preview[bot]
9474cb1792 Bump ccxt from 1.21.56 to 1.21.76
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.56 to 1.21.76.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.56...1.21.76)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-20 07:48:46 +00:00
Matthias
10d9db72a8 Adjust tests slightly 2020-01-19 20:06:04 +01:00
Matthias
cf9331919f move exchange-specific order-parsing to exchange class
Related to stoploss_on_exchange in combination with trailing stoploss.

Binance contains stopPrice in the info, while kraken returns the same
value as "price".
2020-01-19 19:54:30 +01:00
Matthias
7a22aaa111 UPdate documentation to reflect that stoploss-on-exchange is also
available for kraken
2020-01-19 14:40:09 +01:00
Matthias
f1629c907a Implement stoploss for kraken 2020-01-19 14:40:09 +01:00
Matthias
e6f1912443 Use named arguments for stoploss create_order call 2020-01-19 14:40:09 +01:00
Matthias
16b34e11ca Complete rename of stoploss_limit to stoploss 2020-01-19 14:40:09 +01:00
Matthias
256fc2e78c Rename stoploss_limit to stoploss 2020-01-19 13:30:56 +01:00
Matthias
da0af489a2 Adjust tests to pass in order_types instead of rate 2020-01-19 13:25:41 +01:00
Matthias
8d2e0bfd62 Move rate-calcuation for stoploss-limit order to exchange 2020-01-19 13:13:09 +01:00
hroff-1902
2f82122fc4 Merge pull request #2763 from freqtrade/fix/precision_rounding
Fix/precision rounding
2020-01-17 01:25:30 +03:00
hroff-1902
889929f782 Merge pull request #2772 from freqtrade/safe_sell_amount_update_wallet
Safe sell amount update wallet
2020-01-16 00:15:34 +03:00
Matthias
fa1e9dd70d Adjust tests to allow updating within safe_sell_amount 2020-01-15 21:53:04 +01:00
Matthias
29a5e4fba1 Update wallets before getting amount 2020-01-15 21:52:54 +01:00
hroff-1902
a20f502159 Merge pull request #2771 from freqtrade/fix/2770
Fix bad bug in safe_sell_amount
2020-01-15 23:33:04 +03:00
Matthias
8bcfe4a6aa Up log level of safe_sell_amount message 2020-01-15 21:01:36 +01:00
hroff-1902
854bb0056b Merge pull request #2583 from gaugau3000/doc_feature_section
Doc feature section
2020-01-15 22:55:39 +03:00
Matthias
90ed4c665b Cover equal case via test 2020-01-15 19:59:08 +01:00
Matthias
d1bf388b0e Wallet amount must be compared with >= 2020-01-15 19:56:14 +01:00
Matthias
6feb68b18d Change feature sorting to tell more of a story 2020-01-15 19:51:33 +01:00
Matthias
09621b3ef1 Merge pull request #2769 from tejeshreddy/update-comments
Update comments on backtesting
2020-01-15 15:44:46 +01:00
Tejesh
f73f0b1653 Update comments on backtesting 2020-01-15 19:29:00 +05:30
hroff-1902
f7f56f5eda Merge pull request #2768 from freqtrade/rpc/refresh_balance
refresh wallets on /balance call
2020-01-15 16:34:09 +03:00
Matthias
c8806a16a1 Allow wallet update from /balance 2020-01-15 06:43:41 +01:00
Matthias
4013701bdb allow wallet update to be skipped if the value is fresh enough.
Value is NOT configurable, having this wrong can result in bans on the
exchange.
2020-01-15 06:42:53 +01:00
Matthias
4c823f12e3 Sort imports 2020-01-14 20:25:58 +01:00
Matthias
1e58cd70ad Adapt tests to round price up 2020-01-14 20:16:47 +01:00
Matthias
bea4ad8eff Revert price_to_precision to rounding up 2020-01-14 20:16:20 +01:00
Matthias
d7957bd791 add advanced tests for price_to_precision 2020-01-14 16:04:39 +01:00
Matthias
425ec53b28 Combine amount_to_precision tests into one 2020-01-14 16:01:35 +01:00
Matthias
797dc8a4da Add more detailed tests for amount_to_precision 2020-01-14 15:54:53 +01:00
Matthias
d12a2a5888 Merge pull request #2752 from freqtrade/plotting/indicator_strategy
Allow enhanced plot-dataframe configuration
2020-01-13 19:53:15 +01:00
Matthias
845e27542a Merge pull request #2765 from freqtrade/dependabot/pip/develop/ccxt-1.21.56
Bump ccxt from 1.21.32 to 1.21.56
2020-01-13 11:56:07 +01:00
dependabot-preview[bot]
c67b253099 Bump ccxt from 1.21.32 to 1.21.56
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.32 to 1.21.56.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.32...1.21.56)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-13 10:38:34 +00:00
Matthias
154fff7d02 Merge pull request #2764 from freqtrade/dependabot/pip/develop/numpy-1.18.1
Bump numpy from 1.18.0 to 1.18.1
2020-01-13 11:37:31 +01:00
Matthias
82fd6e6fb3 Merge pull request #2766 from freqtrade/dependabot/pip/develop/python-telegram-bot-12.3.0
Bump python-telegram-bot from 12.2.0 to 12.3.0
2020-01-13 11:37:10 +01:00
dependabot-preview[bot]
b3938a86c3 Bump python-telegram-bot from 12.2.0 to 12.3.0
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 12.2.0 to 12.3.0.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v12.2.0...v12.3.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-13 07:56:20 +00:00
dependabot-preview[bot]
2f8ed7ed19 Bump numpy from 1.18.0 to 1.18.1
Bumps [numpy](https://github.com/numpy/numpy) from 1.18.0 to 1.18.1.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/master/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.18.0...v1.18.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-13 07:55:35 +00:00
hroff-1902
af36635769 Minor changes in the docs 2020-01-13 06:41:16 +03:00
hroff-1902
495728f502 Refine docs 2020-01-13 06:41:16 +03:00
Matthias
5dccd01fb7 Merge pull request #2760 from freqtrade/remove_hardcoded_exchange_stuff
Remove hardcoded exchange parameters
2020-01-12 19:47:44 +01:00
Matthias
5fcab1eee8 Align method names to internal ccxt names
These methods are reimplemented from ccxt so we can test their behaviour.
2020-01-12 14:55:05 +01:00
Matthias
b60d7ad42f Use ccxt.decimal_to_precision instead of our own calculation 2020-01-12 14:41:09 +01:00
Matthias
fa1f9bcdbd expose precisionMode from exchange class 2020-01-12 14:37:45 +01:00
Matthias
53abfdbcbf Use sorted on set instead of explicit list conversion 2020-01-12 12:48:29 +01:00
Matthias
3519cebf66 Add test for failing stake_validation 2020-01-11 13:14:19 +01:00
Matthias
a7246ba1ec No need to "fix" stake_currency enum anymore 2020-01-11 12:51:42 +01:00
Matthias
60b47b6eec Add tests for get_quote_currencies 2020-01-11 12:01:34 +01:00
Matthias
ca2880537d Modify tests to skip stake_currency validations 2020-01-11 11:54:11 +01:00
Matthias
13274964a9 Implement validation for valid stake currency 2020-01-11 11:54:00 +01:00
Matthias
235a10ab86 Don't suppport <1m timeframes 2020-01-11 11:36:28 +01:00
Matthias
5faebad863 Don't hardcode TimeFrames - they can differ by exchange. 2020-01-11 11:16:05 +01:00
Matthias
90a9052377 Merge pull request #2734 from freqtrade/relative_stake
Relative stake maximum tradable amount
2020-01-11 08:18:35 +01:00
hroff-1902
d3de398395 Docs adjusted 2020-01-10 23:43:09 +03:00
hroff-1902
83b88e7916 Remove Required marks for new settings 2020-01-10 23:14:17 +03:00
hroff-1902
3faa2d0eb9 Refine description for last_stake_amount_min_ratio 2020-01-10 22:59:02 +03:00
Matthias
fab19ae3a7 Implement last_stake_amount_min_ratio 2020-01-10 06:36:28 +01:00
Matthias
e94dfdeff2 UPdate documentation to remove inexisting setting 2020-01-09 20:13:14 +01:00
Matthias
9713dc8d94 Ensure wallets.update is called before buy
closes #2756
2020-01-09 20:09:21 +01:00
Matthias
b748ed3435 UPdate documentaiton wording 2020-01-09 19:59:13 +01:00
hroff-1902
7c7f7b9ece Merge pull request #2755 from freqtrade/backtest_mean
Add average profit to sell_reason stats
2020-01-09 20:35:35 +03:00
Matthias
785cd2a640 Rename test module 2020-01-09 06:53:51 +01:00
Matthias
c475729c13 Extract edge reporting to optimize_reports 2020-01-09 06:52:34 +01:00
Matthias
989ab646a9 Add profit % to sell_reason table 2020-01-09 06:46:39 +01:00
Matthias
7461b5dc02 Mention custom strategy in features 2020-01-09 06:37:18 +01:00
Matthias
135487b2c9 SPlit control and Analyse feature into 2 seperate points 2020-01-09 06:35:05 +01:00
Matthias
b25f28d1ad Merge pull request #2730 from freqtrade/extract_bt_reporting
Extract backtest reporting
2020-01-09 06:09:05 +01:00
hroff-1902
cee8f3349e rearrange features -- move Run to the top 2020-01-09 04:16:57 +03:00
hroff-1902
9559cb988e reworked 2020-01-09 04:12:43 +03:00
Matthias
db34cb1b75 Do some adjustments to the wording of the index.md section 2020-01-08 19:41:34 +01:00
Matthias
c9b0b4c7a4 Add plot_config to optional plot 2020-01-08 19:35:00 +01:00
Matthias
c3fd894a6c Regenerate plots with new settings 2020-01-07 07:16:31 +01:00
Matthias
9f2d397e1f Merge pull request #2746 from freqtrade/dependabot/pip/develop/arrow-0.15.5
Bump arrow from 0.15.4 to 0.15.5
2020-01-06 13:07:13 +01:00
Matthias
7719d8fbea Merge pull request #2748 from freqtrade/dependabot/pip/develop/coveralls-1.10.0
Bump coveralls from 1.9.2 to 1.10.0
2020-01-06 13:01:20 +01:00
Matthias
3883d18b8a Add bollinger note 2020-01-06 12:59:17 +01:00
Matthias
2b3f2e5fa8 Add first version of documentation 2020-01-06 12:55:12 +01:00
Matthias
5ae554bdff Merge pull request #2747 from freqtrade/dependabot/pip/develop/pytest-mock-2.0.0
Bump pytest-mock from 1.13.0 to 2.0.0
2020-01-06 12:50:04 +01:00
dependabot-preview[bot]
6ac7dcf5e9 Bump arrow from 0.15.4 to 0.15.5
Bumps [arrow](https://github.com/crsmithdev/arrow) from 0.15.4 to 0.15.5.
- [Release notes](https://github.com/crsmithdev/arrow/releases)
- [Changelog](https://github.com/crsmithdev/arrow/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/crsmithdev/arrow/compare/0.15.4...0.15.5)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 11:45:22 +00:00
dependabot-preview[bot]
6da97fafa8 Bump coveralls from 1.9.2 to 1.10.0
Bumps [coveralls](https://github.com/coveralls-clients/coveralls-python) from 1.9.2 to 1.10.0.
- [Release notes](https://github.com/coveralls-clients/coveralls-python/releases)
- [Changelog](https://github.com/coveralls-clients/coveralls-python/blob/master/CHANGELOG.md)
- [Commits](https://github.com/coveralls-clients/coveralls-python/compare/1.9.2...1.10.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 11:45:12 +00:00
Matthias
6d4fe94285 Merge pull request #2751 from freqtrade/dependabot/pip/develop/ccxt-1.21.32
Bump ccxt from 1.21.23 to 1.21.32
2020-01-06 12:44:13 +01:00
Matthias
b27f3b8f2c Merge pull request #2749 from freqtrade/dependabot/pip/develop/flake8-tidy-imports-4.0.0
Bump flake8-tidy-imports from 3.1.0 to 4.0.0
2020-01-06 12:44:02 +01:00
Matthias
ed29232478 Merge pull request #2750 from freqtrade/dependabot/pip/develop/scikit-learn-0.22.1
Bump scikit-learn from 0.22 to 0.22.1
2020-01-06 12:43:43 +01:00
dependabot-preview[bot]
3c0d184097 Bump ccxt from 1.21.23 to 1.21.32
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.23 to 1.21.32.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.23...1.21.32)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 07:43:06 +00:00
dependabot-preview[bot]
d846114d3c Bump scikit-learn from 0.22 to 0.22.1
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 0.22 to 0.22.1.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/0.22...0.22.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 07:42:44 +00:00
dependabot-preview[bot]
aabeece4c0 Bump flake8-tidy-imports from 3.1.0 to 4.0.0
Bumps [flake8-tidy-imports](https://github.com/adamchainz/flake8-tidy-imports) from 3.1.0 to 4.0.0.
- [Release notes](https://github.com/adamchainz/flake8-tidy-imports/releases)
- [Changelog](https://github.com/adamchainz/flake8-tidy-imports/blob/master/HISTORY.rst)
- [Commits](https://github.com/adamchainz/flake8-tidy-imports/compare/3.1.0...4.0.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 07:42:19 +00:00
dependabot-preview[bot]
b614964ba9 Bump pytest-mock from 1.13.0 to 2.0.0
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 1.13.0 to 2.0.0.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v1.13.0...v2.0.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 07:41:39 +00:00
Matthias
888ea58df2 Add tests for new behaviour 2020-01-05 19:51:12 +01:00
Matthias
d0ccfa1925 Explicitly given indicators should override plot_config 2020-01-05 19:50:21 +01:00
Matthias
41945138ac Converting pairs from filename to pair corrected 2020-01-05 13:35:36 +01:00
Matthias
ca054799d0 Add tests for amend_last_stake_amount 2020-01-05 13:25:21 +01:00
Matthias
b37f34ff5b Implement amend_last_stake_amount 2020-01-05 13:25:11 +01:00
Matthias
a75420f75f Merge branch 'develop' into relative_stake 2020-01-05 12:55:55 +01:00
Matthias
7daa5bc338 Don't return None from unlimited_stake - 0 handles this just as well 2020-01-05 12:50:44 +01:00
Matthias
4eaaec9d1a Implement pair_to_filename to datahandler
includes tests - taken from #2744 and modified to adapt to new structure
2020-01-05 10:36:08 +01:00
hroff-1902
bc6a10353b Introduce pair_to_filename() 2020-01-05 10:22:07 +01:00
Matthias
f82c4346b6 data conversion, not data conversation
* we're not talking to the data yet ...
2020-01-05 09:55:02 +01:00
Matthias
53499e01de Clearly differentiate trade buys sells (positive and negative)
* Swap trade buys to cyan circles
* Show sell-reason description on buy too
* Green positive sells - red negative / 0 sells
2020-01-04 20:27:27 +01:00
Matthias
bdda620397 add plot_config to startegy interface properly 2020-01-04 12:56:46 +01:00
Matthias
2409261cb7 Merge branch 'develop' into data_handler 2020-01-04 11:36:27 +01:00
Matthias
b5a806dec7 Fix typo and add tests for create_plotconfig 2020-01-04 11:30:21 +01:00
Matthias
4628024de6 Adapt tests to new add_indicator methodology 2020-01-04 11:18:51 +01:00
Matthias
f04873b0b0 Add plot_config to interface 2020-01-04 11:14:00 +01:00
Matthias
5853b9904c make Plot_config the default approach 2020-01-04 11:13:45 +01:00
Matthias
5d5074ac9c Implement first working version of plot_config 2020-01-04 10:13:42 +01:00
Matthias
84ef588163 support dicts as indicators 2020-01-04 10:13:42 +01:00
Matthias
d1cda3991c Merge pull request #2742 from freqtrade/hroff-1902-patch-1
Minor: Refine fee example in the docs
2020-01-04 09:46:57 +01:00
hroff-1902
24aa596e3c Minor: Refine fee example in the docs
Taken from https://github.com/freqtrade/freqtrade/issues/2738#issuecomment-570687230. slightly reworded.
2020-01-04 01:08:37 +03:00
hroff-1902
3798f94d4c Merge pull request #2732 from freqtrade/config_validation_split
Config validation split
2020-01-03 23:41:44 +03:00
hroff-1902
75dcc369c0 Merge pull request #2740 from freqtrade/doc/backtest_typo
Update Backtesting fee documentation
2020-01-03 22:40:02 +03:00
Matthias
e1f89e3ad3 Reword Note in backtesting fee docs 2020-01-03 20:11:58 +01:00
Matthias
7e7c82cf4a Small adjustments to relative_stake PR 2020-01-03 11:34:17 +01:00
Matthias
71dd038664 add tradable_balance_ratio to to all config samples 2020-01-03 11:23:06 +01:00
Matthias
55041878ae Update Backtesting fee documentation 2020-01-03 11:20:08 +01:00
Matthias
0dd274917f Update documentation regarding configuration of stake_amount 2020-01-03 11:16:59 +01:00
Matthias
f3beaa3374 Deprecate capital_available_percentage 2020-01-03 10:58:31 +01:00
Matthias
6d01653bfe Adapt test to test more cases with reduced tradable_balance 2020-01-03 10:41:34 +01:00
Matthias
455838648d Apply get_available_balance logic to regular trades, too 2020-01-03 10:41:10 +01:00
Matthias
3c7981160c Extract get_available_stake_amount 2020-01-03 10:14:23 +01:00
Matthias
4ac1ac7ef5 Warn about tradable balance being applied to the current amount of the
balance
2020-01-03 09:56:06 +01:00
hroff-1902
776fc56265 Merge pull request #2735 from freqtrade/doc/macos_install
Add note about MacOS installation
2020-01-03 10:28:14 +03:00
Matthias
a8d56b2850 IMplement check for unlimited settings
verifying that either max_open_trades or stake_amount is set for
operations without edge
2020-01-03 07:07:59 +01:00
Matthias
11059e532b Fix missed default minimum in documentation 2020-01-03 06:39:47 +01:00
Matthias
da1fea6582 Minor correction to wording of MacOS Specific install doc 2020-01-03 06:37:43 +01:00
hroff-1902
3315f994b6 Merge pull request #2733 from hroff-1902/minor-freqtrade-4
Cleanup buy/sell notification in freqtradebot
2020-01-02 22:46:06 +03:00
Matthias
560aea876e Remove fiat_currency temporary variable 2020-01-02 20:20:29 +01:00
hroff-1902
b24d359a27 Merge pull request #2737 from freqtrade/plotting_percent
show percent in sell hover message.
2020-01-02 22:04:34 +03:00
Matthias
90744ff5ab show percent instead of ratio (!) 2020-01-02 19:36:31 +01:00
Matthias
b48bf035f6 Add note about MacOS installation 2020-01-02 14:54:07 +01:00
Matthias
c13c11cfa1 Type does not need to be a list 2020-01-02 14:41:28 +01:00
Matthias
6e615998c0 Fix documentation typo 2020-01-02 13:52:35 +01:00
Matthias
94afb7cb1d Improve integration test with a few additional tests 2020-01-02 13:45:03 +01:00
Matthias
bfef3cf497 Add additional test case for lower balance ratios 2020-01-02 13:38:08 +01:00
Matthias
cba156dfff Add offset calculation for relative stake maximum limit 2020-01-02 13:20:57 +01:00
Matthias
64db1f6736 Prepare tests to valiate reduced full amount. 2020-01-02 13:16:18 +01:00
hroff-1902
a47a25ca88 Refine passing msg params 2020-01-02 14:38:25 +03:00
hroff-1902
88efa4065b Align the name of a variable to be same for buy and sell parts 2020-01-02 13:56:16 +03:00
hroff-1902
f15e5e9d57 Add _notify_buy() 2020-01-02 13:51:25 +03:00
hroff-1902
2ccdb67e4d Merge pull request #2731 from freqtrade/btanalysis_align_columns
Btanalysis align columns
2020-01-02 13:03:51 +03:00
Matthias
1b8943ac54 Add documentation for tradable_balance_ratio 2020-01-02 10:59:41 +01:00
Matthias
9382b38c41 Fix mypy error 2020-01-02 10:56:00 +01:00
Matthias
22fcf7b4dc Allow empty stake currency in certain cases 2020-01-02 10:47:37 +01:00
Matthias
20fc3b7978 validate config for utils too 2020-01-02 10:41:10 +01:00
Matthias
9325880fe5 Split config-validation requires 2020-01-02 10:39:32 +01:00
Matthias
cac0e37b06 Merge pull request #2729 from hroff-1902/minor-freqtrade-3
Cosmetics in freqtradebot
2020-01-02 10:06:42 +01:00
Matthias
2c8e8d8ef6 Align columns for btanalysis loading 2020-01-02 09:51:47 +01:00
Matthias
6fbdd6bee9 Remove unused directory from user_data 2020-01-02 09:51:24 +01:00
hroff-1902
e89fa44680 Arrange common section for update trade state methods 2020-01-02 11:50:54 +03:00
Matthias
a9fbad0741 Improve docstrings 2020-01-02 09:37:54 +01:00
Matthias
8cc48cf4b0 Fix tests where mocks fail now 2020-01-02 09:31:53 +01:00
Matthias
10ee23622a Extract tests for backtest_reports to their own test module 2020-01-02 09:31:53 +01:00
Matthias
904e1647e1 Extract generate_text_table_strategy to seperate module 2020-01-02 09:31:53 +01:00
Matthias
caec345c0b Extract generate_text_table_sell_reason from backtesting class 2020-01-02 09:31:53 +01:00
Matthias
18a53f4467 Extract generate_text_table from backtesting class 2020-01-02 09:31:47 +01:00
Matthias
6dfde99cbe Merge pull request #2728 from hroff-1902/minor-setup-msg
Minor: Fix message in setup.sh
2020-01-02 06:59:44 +01:00
hroff-1902
21418e2988 Minor: fix comment 2020-01-02 03:16:18 +03:00
hroff-1902
4475110df8 Cosmetics in freqtradebot 2020-01-02 03:07:24 +03:00
hroff-1902
0ea44b0143 Fix message in setup.sh 2020-01-02 02:36:59 +03:00
Matthias
3327ebf2b1 Merge pull request #2720 from hroff-1902/refactor-create-trades
Refactor create trades
2019-12-31 15:34:12 +01:00
Matthias
26a2395aeb Include Pair name in exception log message 2019-12-31 07:11:09 +01:00
Matthias
9d518b9d29 Add comment and don't hardcode 4 in test 2019-12-31 07:05:21 +01:00
Matthias
6ebb9017c7 Improve test enter_positions 2019-12-31 07:03:57 +01:00
Matthias
a88464de3a Improve some test code 2019-12-31 07:01:58 +01:00
hroff-1902
fd7af587da Rename process_maybe_execute_buys() --> enter_positions() 2019-12-30 22:50:56 +03:00
hroff-1902
84918ad424 Rename process_maybe_execute_sells() --> exit_positions() 2019-12-30 22:08:36 +03:00
Matthias
699c0d6bc3 Merge branch 'develop' into data_handler 2019-12-30 19:40:43 +01:00
Matthias
2537b8cb0c Merge pull request #2725 from freqtrade/minor_fix
[Minor] Edge-cli should use exchangeresolver
2019-12-30 19:27:40 +01:00
hroff-1902
78883663a0 Merge pull request #2726 from freqtrade/exceptions_seperate_file
Refactor Exceptions to their own file
2019-12-30 21:21:14 +03:00
hroff-1902
b00406a7eb Make process_maybe_execute_*() returning integers 2019-12-30 21:09:35 +03:00
hroff-1902
4d56e3b36e Address some comments made in the review 2019-12-30 20:54:32 +03:00
Matthias
8e9a3e8fc8 Capture FtBaseException at the outermost level 2019-12-30 15:11:07 +01:00
Matthias
1ffda29fd2 Adjust improts to new exception location 2019-12-30 15:02:17 +01:00
Matthias
024aa3ab6b Move exceptions to seperate module 2019-12-30 14:57:26 +01:00
Matthias
20abf67779 Add Debug "code" for randomly failing test 2019-12-30 14:29:36 +01:00
Matthias
fb3a53b8af Use ExchangeResolver for edge_cli too 2019-12-30 14:28:34 +01:00
Matthias
4c9295fe2d Rename Bid-strategy helpervariable to something shorter
avoids unnecessary wrapping...
2019-12-30 14:00:34 +01:00
hroff-1902
6a7163d3a9 Merge pull request #2724 from freqtrade/improve_strattemplate
[minor] Add trailing_only_offset to template and sample
2019-12-30 15:32:24 +03:00
Matthias
de23f3928d Add trailing_only_offset to template and sample 2019-12-30 09:58:20 +01:00
Matthias
8975e38b1d Merge pull request #2723 from freqtrade/dependabot/pip/develop/ccxt-1.21.23
Bump ccxt from 1.21.12 to 1.21.23
2019-12-30 09:32:03 +01:00
dependabot-preview[bot]
20a132651f Bump ccxt from 1.21.12 to 1.21.23
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.12 to 1.21.23.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.12...1.21.23)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-30 07:34:49 +00:00
hroff-1902
88ba7e467d Merge pull request #2722 from freqtrade/rpc/misinfo
[minor]Fix misinformation in /status table
2019-12-29 22:41:36 +03:00
Matthias
df7ceb4ccb Fix misinformation in /status table 2019-12-29 19:53:02 +01:00
Matthias
47bb8ad0d4 Merge pull request #2721 from freqtrade/jupyter_docs
Document usage of jupyter with venv kernel
2019-12-29 19:49:19 +01:00
Matthias
304d15e236 Small corrections 2019-12-29 19:35:42 +01:00
Matthias
d1c45cf3f8 Update analysis documentation to include kernel installation 2019-12-29 13:07:51 +01:00
hroff-1902
04f28ed9bc Refactor try/except: handle DependencyException for each pair separately 2019-12-29 05:03:10 +03:00
hroff-1902
ce84f74528 Adjust tests 2019-12-29 05:00:22 +03:00
hroff-1902
762604300f Refactor create_trades() 2019-12-29 04:37:44 +03:00
hroff-1902
433fd2a7c3 Merge pull request #2652 from freqtrade/safe_sell_amount
Safe sell amount
2019-12-29 00:09:21 +03:00
Matthias
814cc20c6b Remove potential circular import 2019-12-28 19:58:41 +01:00
Matthias
f4a532ef6d Pass format to load_data 2019-12-28 14:57:39 +01:00
Matthias
6b5983339d Require dataformat entries in configuration 2019-12-28 14:47:30 +01:00
Matthias
ae1b28aab7 Remove get_datahandlerclass from package exposes 2019-12-28 14:32:11 +01:00
hroff-1902
09b77d9f14 Merge pull request #2718 from hroff-1902/minor-freqtrade-2
Minor: code cleanup in freqtradebot
2019-12-28 14:55:42 +03:00
hroff-1902
5c39ebd0a0 Adjust logging 2019-12-28 13:59:40 +03:00
Matthias
e2a00c03d6 Document convert options 2019-12-28 11:24:37 +01:00
Matthias
66d18575a7 Implement abstract interface 2019-12-28 11:10:31 +01:00
Matthias
9e4fc00a0f Add test for convert_ohlcv 2019-12-28 11:03:06 +01:00
Matthias
70f3ff0461 Add test for convert_trades_Format 2019-12-28 11:03:06 +01:00
Matthias
e7054adc49 Add tests for start_convert_data 2019-12-28 11:03:06 +01:00
Matthias
28787a001c Move convert functions to convert module 2019-12-28 11:02:34 +01:00
Matthias
525550e4c7 Fix typo in parameter transition 2019-12-28 11:01:42 +01:00
Matthias
6860491189 Rename datahandler module to history module
Also move previous history.py into this module - so everything is
bundled
2019-12-28 11:01:42 +01:00
Matthias
b37b5c3d90 Remove Explicit datadir conversation 2019-12-28 11:01:42 +01:00
Matthias
9c5b94adf5 Pass data_format to methods 2019-12-28 11:01:42 +01:00
Matthias
65f539e9d8 More tests for datahandler 2019-12-28 11:01:42 +01:00
Matthias
d65c1eea7a Add some tests for datahandler 2019-12-28 11:01:42 +01:00
Matthias
8a030e7fc0 Use exists instead of is_file 2019-12-28 11:01:42 +01:00
Matthias
a3144cb2f0 remove trim_tickerlist 2019-12-28 11:01:42 +01:00
Matthias
baa942ff98 Don't use function to resolve pairname for test 2019-12-28 11:01:42 +01:00
Matthias
32c2ce146e Remove last usage of load_tickerlist 2019-12-28 11:01:42 +01:00
Matthias
4b277afc52 Remove test for load_tickerdata 2019-12-28 11:01:42 +01:00
Matthias
5479c67178 Clean up some codes which use list-based tests 2019-12-28 11:01:41 +01:00
Matthias
80dbba1280 Remove unnecessary mocks 2019-12-28 11:01:41 +01:00
Matthias
aa39f2160b Use load_data instead of a sequence of calls
in tests which don't test this
2019-12-28 11:01:41 +01:00
Matthias
a2567bea64 Remove unnecessary mock 2019-12-28 11:01:41 +01:00
Matthias
d1b52809ac Cleanup history 2019-12-28 11:01:41 +01:00
Matthias
d06777b8ce Remove old "load_cached_data" method 2019-12-28 11:01:41 +01:00
Matthias
7a6476c9ba Update tests 2019-12-28 11:01:41 +01:00
Matthias
e4f185f357 Remove 'line' from load_cached_data tests
Users are unable to use line anyway, it's only there for tests
2019-12-28 11:01:41 +01:00
Matthias
df085a6f15 Fix small bug and test 2019-12-28 11:01:41 +01:00
Matthias
c648d973c1 Implement new "load_data_for_updating" method based on dataframes 2019-12-28 11:01:41 +01:00
Matthias
ec8fb5f308 Make no-data warning optional 2019-12-28 11:01:41 +01:00
Matthias
b83487a70d Extract default dataframe columns to constant 2019-12-28 11:01:41 +01:00
Matthias
dbe8f727cb Fix typehint 2019-12-28 11:01:41 +01:00
Matthias
91c70a0e9c Change to use ohlcv_purge 2019-12-28 11:01:41 +01:00
Matthias
37c5b68987 Move dataframe validation to abstract class 2019-12-28 11:01:41 +01:00
Matthias
e861f05b75 Move dataframe trim to within jsondatahandler 2019-12-28 11:01:41 +01:00
Matthias
552c93abf0 Improve some docstrings 2019-12-28 11:01:41 +01:00
Matthias
b7c1d55491 Modify tests to point to datahandlers 2019-12-28 11:01:41 +01:00
Matthias
9876d126ca Use handler for trades 2019-12-28 11:01:41 +01:00
Matthias
9547d47ae2 Initialize datahandlers 2019-12-28 11:01:41 +01:00
Matthias
5fca17d7e1 Allow initializing handler-class just once 2019-12-28 11:01:41 +01:00
Matthias
416517b0c9 Move trim_dataframe from history to converter 2019-12-28 11:01:41 +01:00
Matthias
9d8ea2f13b Replace calls to load_tickerdata_file with DataHandler calls 2019-12-28 11:01:41 +01:00
Matthias
88fa7fc24c Simplify validate dataframe method 2019-12-28 11:01:41 +01:00
Matthias
53ee636fa0 Check if file exists before loading 2019-12-28 11:01:41 +01:00
Matthias
873f5dbe6b Revrite validate_pairdata to work with pandas 2019-12-28 11:01:41 +01:00
Matthias
db520a09ee Trim dataframe, not tickerlist 2019-12-28 11:01:41 +01:00
Matthias
866908d2ca Load and save using pandas internal function 2019-12-28 11:01:41 +01:00
Matthias
377d59abe7 Be selective how to load ohclv data for conversation 2019-12-28 11:01:41 +01:00
Matthias
d9e7d64f33 Split parse_ticker_dataframe some logic to clean_ohlcv_dataframe. 2019-12-28 11:01:41 +01:00
Matthias
1b90ec58b9 Use changed pair-handling for providers 2019-12-28 11:01:41 +01:00
Matthias
d923bab828 Remove abstract interface for now 2019-12-28 11:01:41 +01:00
Matthias
48728e2d66 Change DataProvider interface to accept pair per method 2019-12-28 11:01:41 +01:00
Matthias
e529a4c261 Fix typehint for get_datahandlerclass 2019-12-28 11:01:41 +01:00
Matthias
eff5cc0568 Add default to internals 2019-12-28 11:01:41 +01:00
Matthias
c6d6dbfdb1 Implement jsondatahandler file store 2019-12-28 11:01:41 +01:00
Matthias
8f214aec89 Fix "dumping" message to work correctly for .gz files 2019-12-28 11:01:41 +01:00
Matthias
abc6b9459a Add ohlcv_store call to convert_ohlcv 2019-12-28 11:01:41 +01:00
Matthias
d804372d74 Enhance ohlcv_convert method 2019-12-28 11:01:41 +01:00
Matthias
018e270336 Allow --pairs for convert arguments 2019-12-28 11:01:41 +01:00
Matthias
2a728ee68f fix bug in find-files 2019-12-28 11:01:41 +01:00
Matthias
3d4f62081e Allow timeframes for convert-data 2019-12-28 11:01:41 +01:00
Matthias
ef0fcb0e0f Make data-finding safe 2019-12-28 11:01:41 +01:00
Matthias
f8b8b9ac63 Convert to Path temporarily 2019-12-28 11:01:41 +01:00
Matthias
2a6b542b09 Add second subcommand to allow conversation of ohlcv and trades data
seprately
2019-12-28 11:01:41 +01:00
Matthias
c3064dfd2b Enhance validation constants 2019-12-28 11:00:45 +01:00
Matthias
cd4466a626 Add convert_* methods 2019-12-28 11:00:45 +01:00
Matthias
e5a61667dd Implement first version of jsondatahandler 2019-12-28 11:00:22 +01:00
Matthias
2496aa8e3f Add convert-data template subcommands 2019-12-28 10:59:30 +01:00
hroff-1902
004993583b Merge pull request #2712 from freqtrade/strategylist
add list-strategies subcommand
2019-12-28 12:32:06 +03:00
Matthias
443fd8f7dd Merge branch 'develop' into safe_sell_amount 2019-12-28 09:42:52 +01:00
Matthias
b2fb28453f Fix tests after changing output 2019-12-28 06:39:25 +01:00
Matthias
fc98cf0037 Address PR feedback - change output to show Filename only 2019-12-28 06:25:45 +01:00
hroff-1902
6db75bc244 Merge pull request #2706 from freqtrade/data_dir
Convert datadir within config to Path
2019-12-28 05:14:48 +03:00
hroff-1902
d6ca562b03 Make mypy happy and handle hypothetical case when stake_amount == 0 2019-12-28 04:05:03 +03:00
hroff-1902
3dbd83e35a Introduce get_free_open_trades() method 2019-12-28 03:46:42 +03:00
hroff-1902
8eeabd2372 Move warning to create_trades() 2019-12-28 03:22:50 +03:00
hroff-1902
ed9cb4219d Make mypy happy 2019-12-28 02:58:23 +03:00
hroff-1902
ef92fd775c Align behavior: check for available in all cases: edge, unlimited and fixed 2019-12-28 02:53:41 +03:00
hroff-1902
abaeab89aa Make _calculate_unlimited_stake_amount() a separate method 2019-12-28 02:36:32 +03:00
hroff-1902
243bcb2368 Make _check_available_stake_amount() a separate method 2019-12-28 02:25:43 +03:00
hroff-1902
86f2693040 cosmetics 2019-12-28 01:54:12 +03:00
hroff-1902
b6d1c5b17a _get_trade_stake_amount() is not private 2019-12-28 01:44:51 +03:00
hroff-1902
039dfc302c No need to convert pair name 2019-12-28 01:34:31 +03:00
hroff-1902
56fd714de2 Merge pull request #2717 from freqtrade/markets_info_nodict
Check if markets.info is a dict before using it
2019-12-27 19:47:56 +03:00
Matthias
e51ac2c973 Remove unavailable pair ... 2019-12-27 16:22:41 +01:00
Matthias
cadde3ab6d Check if markets.info is a dict before using it 2019-12-27 16:15:44 +01:00
hroff-1902
9987e64e8c Merge pull request #2711 from freqtrade/doc/formatting
Align Edge documentation to configuration page
2019-12-26 00:36:40 +03:00
Matthias
98647b490c Remove wrong "once per hour" listings 2019-12-25 19:27:08 +01:00
hroff-1902
32118cc1cb Merge pull request #2714 from freqtrade/sell_reason_counts
backtesting - Sell reason counts
2019-12-25 13:35:11 +03:00
Matthias
63f41cf1c6 Update documentation with new result 2019-12-25 09:44:23 +01:00
Matthias
e5aed098b5 Enhance backtest results with sell reason profit / loss table 2019-12-25 09:39:29 +01:00
hroff-1902
5e6e625694 Merge pull request #2710 from freqtrade/rpc_balance_output
/balance should not convert to BTC
2019-12-24 23:59:05 +03:00
hroff-1902
a95454d338 Merge pull request #2709 from freqtrade/dry_wallet_fix
Fix bug in dry-run wallet
2019-12-24 23:55:22 +03:00
Matthias
ad75048678 Fix testing with path in windows 2019-12-24 15:53:40 +01:00
Matthias
402c761a23 Change loglevel of Path output to debug 2019-12-24 15:44:04 +01:00
Matthias
66f9ece061 Add documentation for strategy-list 2019-12-24 15:35:53 +01:00
Matthias
27b8617077 Add tests 2019-12-24 15:35:38 +01:00
Matthias
2ab989e274 Cleanup some code and add option 2019-12-24 15:28:35 +01:00
Matthias
5a11ca86bb Move instanciation out of search_object 2019-12-24 14:01:28 +01:00
Matthias
25e6d6a7bf Combine load_object methods into one 2019-12-24 13:54:46 +01:00
Matthias
eb1040ddb7 Convert resolvers to classmethods 2019-12-24 13:34:37 +01:00
Matthias
a68445692b Add first steps for list-strategies 2019-12-24 12:44:41 +01:00
Matthias
48935d2932 Align edge documentation to configuration page 2019-12-24 07:25:18 +01:00
Matthias
83ed0b38c1 Wordwrap before keep it secret 2019-12-24 07:13:44 +01:00
Matthias
90670e7401 Merge pull request #2686 from freqtrade/doc/pricing_reasons
Document buy / sell order pricings
2019-12-24 07:05:35 +01:00
Matthias
a105e5664a Align /balance output to show everything in stake currency
the conversation to BTC does not make sense
2019-12-24 06:58:30 +01:00
Matthias
b8442d536a Update integration test to also test dry-run-wallets 2019-12-24 06:47:25 +01:00
Matthias
6688a2c112 Merge branch 'develop' into doc/pricing_reasons 2019-12-24 06:33:51 +01:00
Matthias
33cfeaf9b0 Remove i.e. where it doesn't fit 2019-12-24 06:31:05 +01:00
Matthias
f487dac047 FIx bug in dry-run wallets causing balances to stay there after trades
are sold
2019-12-24 06:27:11 +01:00
hroff-1902
690eb2a52b configuration.md reviewed 2019-12-24 07:19:35 +03:00
hroff-1902
20b52fcef9 Merge pull request #2705 from freqtrade/refactor_resolvers
Refactor resolvers to static resolvers
2019-12-24 00:35:52 +03:00
Matthias
0ac5e5035c Remove unused import 2019-12-23 20:43:31 +01:00
Matthias
c6b9c8eca0 Forgot to save 2019-12-23 19:32:31 +01:00
Matthias
ecbb77c17f Add forgotten option 2019-12-23 15:13:55 +01:00
Matthias
bb8acc61db Convert datadir within config to Path
(it's used as Path all the time!)
2019-12-23 15:11:29 +01:00
Matthias
90cabd7c21 Wrap line 2019-12-23 10:46:35 +01:00
Matthias
c6d2233978 Convert StrategyLoader to static loader 2019-12-23 10:23:48 +01:00
Matthias
6d5aca4f32 Convert hyperoptloss resolver to static loader 2019-12-23 10:09:08 +01:00
Matthias
248ef5a0ea Convert HyperoptResolver to static loader 2019-12-23 10:06:19 +01:00
Matthias
560acb7cea Convert ExchangeResolver to static loader class 2019-12-23 10:03:18 +01:00
Matthias
5fefa9e97c Convert PairlistResolver to static loader 2019-12-23 09:56:12 +01:00
Matthias
1c5f8070e5 Refactor build_paths to staticmethod 2019-12-23 09:53:55 +01:00
Matthias
506907ddc9 Merge pull request #2704 from freqtrade/dependabot/pip/develop/scipy-1.4.1
Bump scipy from 1.3.3 to 1.4.1
2019-12-23 09:48:35 +01:00
Matthias
84f0f451a0 Merge pull request #2703 from freqtrade/dependabot/pip/develop/sqlalchemy-1.3.12
Bump sqlalchemy from 1.3.11 to 1.3.12
2019-12-23 09:47:02 +01:00
Matthias
fa466a54cd Merge pull request #2701 from freqtrade/dependabot/pip/develop/numpy-1.18.0
Bump numpy from 1.17.4 to 1.18.0
2019-12-23 09:40:15 +01:00
Matthias
3c668c2f8e Merge pull request #2699 from freqtrade/dependabot/docker/python-3.7.6-slim-stretch
Bump python from 3.7.5-slim-stretch to 3.7.6-slim-stretch
2019-12-23 09:39:22 +01:00
dependabot-preview[bot]
779278ed50 Bump sqlalchemy from 1.3.11 to 1.3.12
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.3.11 to 1.3.12.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 08:28:05 +00:00
Matthias
96f70118ca Merge pull request #2702 from freqtrade/dependabot/pip/develop/mypy-0.761
Bump mypy from 0.750 to 0.761
2019-12-23 09:26:50 +01:00
Matthias
4e62b62add Merge pull request #2700 from freqtrade/dependabot/pip/develop/ccxt-1.21.12
Bump ccxt from 1.20.84 to 1.21.12
2019-12-23 09:26:35 +01:00
dependabot-preview[bot]
9cfbe98a23 Bump scipy from 1.3.3 to 1.4.1
Bumps [scipy](https://github.com/scipy/scipy) from 1.3.3 to 1.4.1.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.3.3...v1.4.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 07:39:25 +00:00
dependabot-preview[bot]
31a7e9feed Bump mypy from 0.750 to 0.761
Bumps [mypy](https://github.com/python/mypy) from 0.750 to 0.761.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.750...v0.761)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 07:38:10 +00:00
dependabot-preview[bot]
20ad8a379d Bump numpy from 1.17.4 to 1.18.0
Bumps [numpy](https://github.com/numpy/numpy) from 1.17.4 to 1.18.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/master/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.17.4...v1.18.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 07:38:05 +00:00
dependabot-preview[bot]
8f17b81329 Bump ccxt from 1.20.84 to 1.21.12
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.20.84 to 1.21.12.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.20.84...1.21.12)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 07:37:04 +00:00
dependabot-preview[bot]
76a93fabc7 Bump python from 3.7.5-slim-stretch to 3.7.6-slim-stretch
Bumps python from 3.7.5-slim-stretch to 3.7.6-slim-stretch.

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 06:26:13 +00:00
hroff-1902
98eed4f2ed Merge pull request #2695 from freqtrade/custom_pairlock
Improve pairlocking mechanism to allow usage from within strategy
2019-12-22 15:03:24 +03:00
Matthias
2195ae59d6 Use different time offsets to avoid confusion 2019-12-22 12:49:01 +01:00
hroff-1902
4f88857442 Merge pull request #2694 from freqtrade/unfilled_strategy
Add unfilledtimeout to strategy overrides
2019-12-22 14:34:25 +03:00
hroff-1902
01d53c0160 Merge pull request #2697 from freqtrade/dry_run_db
persist Dry run db as default
2019-12-22 13:46:32 +03:00
hroff-1902
d98cd6f135 Merge pull request #2693 from freqtrade/doc/pypi
document how to do releases to pypi
2019-12-22 13:42:44 +03:00
Matthias
dc567f99d6 Update documentation to new handling of dry-mode database 2019-12-22 10:16:56 +01:00
Matthias
ffd7034c00 Persist dry-run trade per default 2019-12-22 10:16:16 +01:00
Matthias
43c25c8a32 add documentation for is_pair_locked 2019-12-22 09:59:25 +01:00
Matthias
a71deeda94 Document lock-pair implementation 2019-12-22 09:55:40 +01:00
Matthias
89b4f45fe3 Remove section about strategy template - use new-strategy intead 2019-12-22 09:47:37 +01:00
Matthias
9835312033 Improve pair_lock handling 2019-12-22 09:46:00 +01:00
Matthias
1ff0d0f1fa Add unfilledtimeout to strategy overrides 2019-12-22 09:35:06 +01:00
Matthias
1a73159200 Modify classifiers 2019-12-22 09:25:13 +01:00
Matthias
c417877eb8 sort pytest dependencies 2019-12-22 09:25:13 +01:00
Matthias
9ec4368c6f Add release documentation 2019-12-22 09:25:13 +01:00
Matthias
3f44d51355 Merge pull request #2691 from hroff-1902/cli-no-underscores
Minor: Please no underscores in cli options
2019-12-22 08:43:31 +01:00
hroff-1902
95bd9e8e0b No underscores in cli options 2019-12-22 00:17:51 +03:00
hroff-1902
bc92503c92 Merge pull request #2689 from freqtrade/edge_small_modifications
[minor] Edge small cleanup
2019-12-20 14:50:13 +03:00
hroff-1902
5ba106d96b Merge pull request #2687 from xmatthias/try_covsxxx
Try to get comment from forked repos
2019-12-20 14:26:22 +03:00
Matthias
fc5764f9df Edge small cleanup 2019-12-19 19:55:21 +01:00
Matthias
342f3f450b try with coveralls token in yml ... 2019-12-18 20:38:21 +01:00
Matthias
0c6b5e01fb Try with github-token 2019-12-18 20:30:42 +01:00
Matthias
6507a26cc1 Fix some tests after merge 2019-12-18 20:16:53 +01:00
Matthias
e72c6a0d94 use only first part of the currency to get wallet-amount (!!) 2019-12-18 20:02:15 +01:00
Matthias
834a0ed620 Merge branch 'develop' into safe_sell_amount 2019-12-18 19:45:31 +01:00
Matthias
1af962899d Fix note-box syntax error 2019-12-18 19:43:37 +01:00
Matthias
11e787c884 Finish depth_of_market documentation piece 2019-12-18 19:41:51 +01:00
Matthias
1c19856d26 add section about depth_of_market 2019-12-18 16:49:56 +01:00
Matthias
d73ba71ec6 Improve formatting of orderbook doc 2019-12-18 16:41:54 +01:00
Matthias
dc07037edf Add documentation for price finding 2019-12-18 16:38:57 +01:00
Matthias
21622ac313 Rename get_ticker to fetch_ticker 2019-12-18 16:34:30 +01:00
Matthias
ce190a7485 Merge pull request #2683 from hroff-1902/minor-data-history-4
Minor improvements in data.history
2019-12-18 06:26:06 +01:00
hroff-1902
cf4c3642ce Minor improvements in data.history 2019-12-18 01:06:03 +03:00
hroff-1902
021fa1ca1a Merge pull request #2678 from hroff-1902/dataprovider-history-split-refresh
Dataprovider history: split refresh part
2019-12-18 00:30:47 +03:00
hroff-1902
3a542bce62 Merge pull request #2674 from freqtrade/bt_trade_open_price
Pre-calculate open_trade_price
2019-12-17 21:51:13 +03:00
Matthias
c5e6a34f25 Remove unnecessary parenteses 2019-12-17 19:30:04 +01:00
hroff-1902
1537389617 Remove startup_candles argument in refresh_data 2019-12-17 18:23:31 +03:00
hroff-1902
b07d29b1af Merge pull request #2676 from freqtrade/investigate_random_test_fail
Fix random test failure.
2019-12-17 14:23:30 +03:00
hroff-1902
b2796f99b6 Remove redundant refresh_pair_history 2019-12-17 14:06:21 +03:00
Matthias
bbb05b5286 Remove fixed random order 2019-12-17 11:51:50 +01:00
hroff-1902
60f89c8c01 Split refresh from load_data/load_pair_history 2019-12-17 13:43:42 +03:00
Matthias
8513a5e2d6 Fix failures in test_main 2019-12-17 11:35:39 +01:00
hroff-1902
69f8738d00 Merge pull request #2675 from freqtrade/align_test_history
Align usage of history import in test
2019-12-17 13:13:40 +03:00
hroff-1902
c32507252e Merge pull request #2671 from freqtrade/doc/incompletecandle
Add documentation about ohlcv_partial_candle
2019-12-17 13:10:36 +03:00
Matthias
2e2f084f66 Try to clear caplog ... 2019-12-17 11:07:59 +01:00
Matthias
e1c0c6af7d fix random-seed to failing one 2019-12-17 10:51:49 +01:00
Matthias
86de88ed48 Align usage of history import in test 2019-12-17 09:36:26 +01:00
Matthias
1042f9847a Merge pull request #2672 from hroff-1902/minor-data-history-2
Minor: improvements in data/history.py
2019-12-17 09:22:56 +01:00
Matthias
a2964afd42 Rename profit_percent to profit_ratio to be consistent 2019-12-17 08:53:30 +01:00
Matthias
539b5627fd Fix typo 2019-12-17 08:31:44 +01:00
Matthias
cbd10309f5 Add mid-state test 2019-12-17 07:13:08 +01:00
Matthias
362a40db6f Update docstring 2019-12-17 07:09:56 +01:00
Matthias
861a7834fc Call calc_open_price() whenever necessary 2019-12-17 07:08:36 +01:00
Matthias
307ade6251 Cache open_trade_price 2019-12-17 07:02:02 +01:00
Matthias
0b5354f13d Add required arguments to Trade method 2019-12-17 06:58:10 +01:00
Matthias
707c5668a5 Fix typo 2019-12-17 06:11:44 +01:00
hroff-1902
0277cd82ea Make mypy happy 2019-12-16 23:25:57 +03:00
Matthias
9cea5cd442 Add documentation about ohlcv_partial_candle 2019-12-16 20:38:36 +01:00
hroff-1902
a6fc743d85 Align code in _download_*_history() 2019-12-16 22:12:26 +03:00
hroff-1902
fa968996ed Remove useless check 2019-12-16 22:01:26 +03:00
hroff-1902
4cd45b6535 Rename download_*_history as non-public 2019-12-16 21:57:03 +03:00
hroff-1902
2af9ffa7f2 Align refresh_backtest_ to each other 2019-12-16 21:43:33 +03:00
hroff-1902
39197458f4 Merge pull request #2661 from freqtrade/wallet_dry
Introduce Dry-Run Wallet
2019-12-16 14:00:11 +03:00
Matthias
35bbe12065 Merge pull request #2668 from freqtrade/dependabot/pip/develop/ccxt-1.20.84
Bump ccxt from 1.20.46 to 1.20.84
2019-12-16 11:08:45 +01:00
Matthias
9add86144c Merge pull request #2667 from freqtrade/dependabot/pip/develop/mkdocs-material-4.6.0
Bump mkdocs-material from 4.5.1 to 4.6.0
2019-12-16 10:50:47 +01:00
Matthias
03c8d65d07 Merge pull request #2666 from freqtrade/dependabot/pip/develop/plotly-4.4.1
Bump plotly from 4.3.0 to 4.4.1
2019-12-16 10:47:01 +01:00
dependabot-preview[bot]
75e6acd6ed Bump ccxt from 1.20.46 to 1.20.84
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.20.46 to 1.20.84.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.20.46...1.20.84)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 09:46:17 +00:00
Matthias
95b4189d69 Merge pull request #2669 from freqtrade/dependabot/pip/develop/cachetools-4.0.0
Bump cachetools from 3.1.1 to 4.0.0
2019-12-16 10:45:02 +01:00
Matthias
22dd91fc21 Merge pull request #2665 from freqtrade/dependabot/pip/develop/joblib-0.14.1
Bump joblib from 0.14.0 to 0.14.1
2019-12-16 10:44:00 +01:00
Matthias
700370ac5c Merge pull request #2664 from freqtrade/dependabot/pip/develop/pytest-5.3.2
Bump pytest from 5.3.1 to 5.3.2
2019-12-16 10:43:35 +01:00
dependabot-preview[bot]
05de60a7fe Bump cachetools from 3.1.1 to 4.0.0
Bumps [cachetools](https://github.com/tkem/cachetools) from 3.1.1 to 4.0.0.
- [Release notes](https://github.com/tkem/cachetools/releases)
- [Changelog](https://github.com/tkem/cachetools/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/tkem/cachetools/compare/v3.1.1...v4.0.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:31:38 +00:00
dependabot-preview[bot]
cc41cdbf22 Bump mkdocs-material from 4.5.1 to 4.6.0
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 4.5.1 to 4.6.0.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/4.5.1...4.6.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:30:46 +00:00
dependabot-preview[bot]
c05af1b63c Bump plotly from 4.3.0 to 4.4.1
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.3.0 to 4.4.1.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.3.0...v4.4.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:30:27 +00:00
dependabot-preview[bot]
33db37a915 Bump joblib from 0.14.0 to 0.14.1
Bumps [joblib](https://github.com/joblib/joblib) from 0.14.0 to 0.14.1.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/0.14.0...0.14.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:30:04 +00:00
dependabot-preview[bot]
e398c37526 Bump pytest from 5.3.1 to 5.3.2
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.3.1 to 5.3.2.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.3.1...5.3.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:29:42 +00:00
Matthias
655672c957 Enhance documentation Note 2019-12-16 06:22:54 +01:00
hroff-1902
2282f4bd37 Merge pull request #2660 from freqtrade/release_doc-
[minor][doc] Add release section about collapsible section
2019-12-15 20:27:27 +03:00
Matthias
ce845ab092 Improve docstring for dry-run wallet method 2019-12-15 11:03:40 +01:00
Matthias
b5b6458f12 Add note about unlimited stake amount 2019-12-15 10:57:27 +01:00
Matthias
56e13c8919 Enhance documentation for dry-run wallet 2019-12-15 10:55:15 +01:00
Matthias
23d467eb0d Show simulation note also in restserver 2019-12-15 10:41:57 +01:00
Matthias
c741b67c3c Adjust tests for dry_run wallet simulation 2019-12-15 10:39:52 +01:00
Matthias
5a5741878c Improve dry-run calculations 2019-12-15 10:26:56 +01:00
Matthias
4463d58470 Add release section about collapsible section 2019-12-15 09:49:56 +01:00
Matthias
f0bbc75038 Combine dry_run wallet into original Wallets class 2019-12-15 09:48:35 +01:00
Matthias
fda8f7e305 Introuce WalletDry - supporting dry-run wallets 2019-12-15 09:38:18 +01:00
Matthias
52b212db64 Fix tests after changing dry_run_wallet amount 2019-12-15 09:38:06 +01:00
Matthias
931d24b5a8 Have dry_run_wallet default to 1000 2019-12-15 09:26:17 +01:00
Matthias
18dfa56752 Merge pull request #2659 from hroff-1902/fix_mypy
[critical]: Fix mypy errors in develop
2019-12-15 09:20:36 +01:00
hroff-1902
26ab108890 Fix mypy errors in develop 2019-12-15 01:10:09 +03:00
hroff-1902
1cc174c007 Merge pull request #2624 from freqtrade/backtest_refactor
handle and document ROI=-1
2019-12-14 23:11:36 +03:00
hroff-1902
e26f563f4b Merge pull request #2655 from freqtrade/avoid_keyerror_backtest
Use first pair of pairlist to get fee
2019-12-14 23:10:40 +03:00
hroff-1902
ebd0a1722d Merge pull request #2657 from freqtrade/rpc_fixtypo
[minor] Fix typo causing a trailing "tic" in /show_config output
2019-12-14 22:43:37 +03:00
Matthias
f81c49ce6d Fix typo causing a trailing "tic" in /show_config output 2019-12-14 19:53:20 +01:00
Matthias
2f7181e236 Merge pull request #2648 from hroff-1902/hyperopt-random-state
Seed hyperopt random_state if not passed
2019-12-14 15:54:59 +01:00
Matthias
2275a1539e Remove default symbol from get_fee() 2019-12-14 13:22:42 +01:00
hroff-1902
f2266ea9f4 Use shorter range for seeded random-state 2019-12-14 15:17:45 +03:00
hroff-1902
82ff878e38 Fix typo in the docs 2019-12-14 15:15:20 +03:00
hroff-1902
7200bc3fba Merge pull request #2654 from freqtrade/rpc/show_config
improve show config when using trailing stop
2019-12-14 15:11:12 +03:00
Matthias
a48c0ad868 Use first pair of pairlist to get fee
Use this instead of hardcoded ETH/BTC - so backtesting works with
exchanges without ETH/BTC pair
2019-12-14 12:55:02 +01:00
Matthias
e4cc5c479f Test new show_config branch 2019-12-13 20:27:39 +01:00
Matthias
014c18ead2 Improve output from show_config when trailing_stop is active 2019-12-13 20:27:06 +01:00
hroff-1902
3bd873f3c6 Add notes on random-state to the docs 2019-12-13 13:59:18 +03:00
hroff-1902
6c4f424887 Merge pull request #2651 from freqtrade/dry_amount
Round amount to precision also for dry-runs
2019-12-13 13:13:20 +03:00
Matthias
04257d8ecc Add tests for safe_sell_amount 2019-12-13 07:06:54 +01:00
Matthias
b69f5afaaf Round amount to precision also for dry-runs 2019-12-13 06:59:10 +01:00
Matthias
5db883906a Try to verify available amount on the exchange 2019-12-13 06:52:33 +01:00
Matthias
703924d6c4 Merge pull request #2643 from freqtrade/mins
Remove min (plural) from codebase
2019-12-12 14:27:39 +01:00
Matthias
330b8cf8a1 space before unit ... 2019-12-12 14:08:44 +01:00
hroff-1902
6e778ad710 Seed hyperopt random_state if not passed 2019-12-12 03:12:28 +03:00
Matthias
f44e3dc319 Merge pull request #2642 from hroff-1902/fix-hyperopt-trailing
Fix generation of hyperopt trailing params
2019-12-11 19:53:42 +01:00
Matthias
d8b2d39f2f Merge pull request #2628 from freqtrade/rpc/sell_duration
Telegram / sell duration
2019-12-11 07:15:00 +01:00
Matthias
7c7ca1cb90 Remove min (plural) from codebase 2019-12-11 07:12:37 +01:00
Matthias
1058e5fb72 No plural for min 2019-12-11 06:48:40 +01:00
Matthias
b2a9b87be3 Merge pull request #2632 from freqtrade/dependabot/pip/develop/scikit-learn-0.22
Bump scikit-learn from 0.21.3 to 0.22
2019-12-10 16:20:39 +01:00
Matthias
3f9f29ba4e Fix Flake8 import error 2019-12-10 16:10:51 +01:00
Matthias
390db9503f Show humanized and minutes version of duration 2019-12-10 15:12:36 +01:00
hroff-1902
3448f86263 Suppress scikit-learn FutureWarnings from skopt imports 2019-12-10 15:46:29 +03:00
hroff-1902
3252654ed3 Test adjusted 2019-12-10 14:06:17 +03:00
hroff-1902
641e3fdf7a Fix generation of hyperopt trailing params 2019-12-10 03:32:43 +03:00
Matthias
de33ec4250 use sell_row.open also when the active ROI value just changed 2019-12-09 16:52:12 +01:00
dependabot-preview[bot]
25447329a0 Bump scikit-learn from 0.21.3 to 0.22
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 0.21.3 to 0.22.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/0.21.3...0.22)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-09 07:25:44 +00:00
Matthias
dc9fed4a5f Adjust documentation 2019-12-08 14:10:26 +01:00
Matthias
88a24da272 Adapt tests to sending open / close date 2019-12-08 14:10:04 +01:00
Matthias
e4655c9b07 include trade-duration with sell-notification 2019-12-08 14:07:46 +01:00
Matthias
45d12dbc83 Avoid a few calculations during backtesting 2019-12-07 15:28:56 +01:00
Matthias
189835b963 Add documentation for ROI-1 case 2019-12-07 15:26:10 +01:00
Matthias
3163cbdf8a Apply special case for negative ROI 2019-12-07 15:18:12 +01:00
Matthias
1e6f9f9fe2 Add testcase for negative ROI sell using open 2019-12-07 15:18:09 +01:00
Matthias
3091869115 refactor get_close_rate out of get_sell_trade-entry 2019-12-07 14:30:14 +01:00
gaugau3000
58d70b2079 doc explicit optimization feature 2019-11-29 09:35:13 +01:00
gaugau3000
0e9e6b3443 refactor feature details doc 2019-11-28 21:22:40 +01:00
gaugau3000
9199fd5964 change doc into 2019-11-28 21:21:43 +01:00
171 changed files with 9664 additions and 4929 deletions

View File

@@ -7,6 +7,8 @@ on:
- develop
- github_actions_tests
tags:
release:
types: [published]
pull_request:
schedule:
- cron: '0 5 * * 4'
@@ -18,7 +20,7 @@ jobs:
strategy:
matrix:
os: [ ubuntu-18.04, macos-latest ]
python-version: [3.7]
python-version: [3.7, 3.8]
steps:
- uses: actions/checkout@v1
@@ -64,19 +66,17 @@ jobs:
pip install -e .
- name: Tests
env:
COVERALLS_REPO_TOKEN: ${{ secrets.COVERALLS_REPO_TOKEN }}
COVERALLS_SERVICE_NAME: travis-ci
TRAVIS: "true"
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc
- name: Coveralls
if: (startsWith(matrix.os, 'ubuntu') && matrix.python-version == '3.8')
env:
# Coveralls token. Not used as secret due to github not providing secrets to forked repositories
COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu
run: |
# Allow failure for coveralls
# Fake travis environment to get coveralls working correctly
export TRAVIS_PULL_REQUEST="https://github.com/${GITHUB_REPOSITORY}/pull/$(cat $GITHUB_EVENT_PATH | jq -r .number)"
export TRAVIS_BRANCH=${GITHUB_REF#"ref/heads"}
export CI_BRANCH=${GITHUB_REF#"ref/heads"}
echo "${TRAVIS_BRANCH}"
coveralls || true
coveralls -v || true
- name: Backtesting
run: |
@@ -193,15 +193,40 @@ jobs:
deploy:
needs: [ build, build_windows, docs_check ]
runs-on: ubuntu-18.04
if: (github.event_name == 'push' || github.event_name == 'schedule') && github.repository == 'freqtrade/freqtrade'
if: (github.event_name == 'push' || github.event_name == 'schedule' || github.event_name == 'release') && github.repository == 'freqtrade/freqtrade'
steps:
- uses: actions/checkout@v1
- name: Set up Python
uses: actions/setup-python@v1
with:
python-version: 3.8
- name: Extract branch name
shell: bash
run: echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})"
id: extract_branch
- name: Build distribution
run: |
pip install -U setuptools wheel
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@master
if: (steps.extract_branch.outputs.branch == 'master' || github.event_name == 'release')
with:
user: __token__
password: ${{ secrets.pypi_test_password }}
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@master
if: (steps.extract_branch.outputs.branch == 'master' || github.event_name == 'release')
with:
user: __token__
password: ${{ secrets.pypi_password }}
- name: Build and test and push docker image
env:
IMAGE_NAME: freqtradeorg/freqtrade

View File

@@ -48,7 +48,7 @@ pytest tests/test_<file_name>.py::test_<method_name>
#### Run Flake8
```bash
flake8 freqtrade
flake8 freqtrade tests scripts
```
We receive a lot of code that fails the `flake8` checks.
@@ -109,11 +109,11 @@ Exceptions:
Contributors may be given commit privileges. Preference will be given to those with:
1. Past contributions to FreqTrade and other related open-source projects. Contributions to FreqTrade include both code (both accepted and pending) and friendly participation in the issue tracker and Pull request reviews. Quantity and quality are considered.
1. Past contributions to Freqtrade and other related open-source projects. Contributions to Freqtrade include both code (both accepted and pending) and friendly participation in the issue tracker and Pull request reviews. Quantity and quality are considered.
1. A coding style that the other core committers find simple, minimal, and clean.
1. Access to resources for cross-platform development and testing.
1. Time to devote to the project regularly.
Being a Committer does not grant write permission on `develop` or `master` for security reasons (Users trust FreqTrade with their Exchange API keys).
Being a Committer does not grant write permission on `develop` or `master` for security reasons (Users trust Freqtrade with their Exchange API keys).
After being Committer for some time, a Committer may be named Core Committer and given full repository access.

View File

@@ -1,4 +1,4 @@
FROM python:3.7.5-slim-stretch
FROM python:3.8.1-slim-buster
RUN apt-get update \
&& apt-get -y install curl build-essential libssl-dev \

View File

@@ -1,6 +1,6 @@
# Freqtrade
[![Build Status](https://travis-ci.org/freqtrade/freqtrade.svg?branch=develop)](https://travis-ci.org/freqtrade/freqtrade)
[![Freqtrade CI](https://github.com/freqtrade/freqtrade/workflows/Freqtrade%20CI/badge.svg)](https://github.com/freqtrade/freqtrade/actions/)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Documentation](https://readthedocs.org/projects/freqtrade/badge/)](https://www.freqtrade.io)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)

View File

@@ -1,11 +1,11 @@
#!/usr/bin/env python3
import sys
import warnings
import logging
from freqtrade.main import main
logger = logging.getLogger(__name__)
warnings.warn(
"Deprecated - To continue to run the bot like this, please run `pip install -e .` again.",
DeprecationWarning)
main(sys.argv[1:])
logger.error("DEPRECATED installation detected, please run `pip install -e .` again.")
sys.exit(2)

View File

@@ -2,6 +2,7 @@
# Downloaded from https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
# Invoke-WebRequest -Uri "https://download.lfd.uci.edu/pythonlibs/xxxxxxx/TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl" -OutFile "TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl"
python -m pip install --upgrade pip
pip install build_helpers\TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl
pip install -r requirements-dev.txt

View File

@@ -23,7 +23,7 @@ if [ $? -ne 0 ]; then
fi
# Run backtest
docker run --rm -v $(pwd)/config.json.example:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy DefaultStrategy
docker run --rm -v $(pwd)/config.json.example:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy-path /tests/strategy/strats/ --strategy DefaultStrategy
if [ $? -ne 0 ]; then
echo "failed running backtest"

View File

@@ -2,8 +2,9 @@
"max_open_trades": 3,
"stake_currency": "BTC",
"stake_amount": 0.05,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD",
"ticker_interval" : "5m",
"ticker_interval": "5m",
"dry_run": false,
"trailing_stop": false,
"unfilledtimeout": {
@@ -43,7 +44,7 @@
"DASH/BTC",
"ZEC/BTC",
"XLM/BTC",
"NXT/BTC",
"XRP/BTC",
"TRX/BTC",
"ADA/BTC",
"XMR/BTC"
@@ -59,7 +60,6 @@
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"capital_available_percentage": 0.5,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,

View File

@@ -2,8 +2,9 @@
"max_open_trades": 3,
"stake_currency": "BTC",
"stake_amount": 0.05,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD",
"ticker_interval" : "5m",
"ticker_interval": "5m",
"dry_run": true,
"trailing_stop": false,
"unfilledtimeout": {
@@ -64,7 +65,6 @@
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"capital_available_percentage": 0.5,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,

View File

@@ -2,8 +2,11 @@
"max_open_trades": 3,
"stake_currency": "BTC",
"stake_amount": 0.05,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD",
"amount_reserve_percent" : 0.05,
"amount_reserve_percent": 0.05,
"amend_last_stake_amount": false,
"last_stake_amount_min_ratio": 0.5,
"dry_run": false,
"ticker_interval": "5m",
"trailing_stop": false,
@@ -59,8 +62,8 @@
"refresh_period": 1800
},
{"method": "PrecisionFilter"},
{"method": "PriceFilter", "low_price_ratio": 0.01
}
{"method": "PriceFilter", "low_price_ratio": 0.01},
{"method": "SpreadFilter", "max_spread_ratio": 0.005}
],
"exchange": {
"name": "bittrex",
@@ -96,7 +99,6 @@
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"capital_available_percentage": 0.5,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,
@@ -127,5 +129,7 @@
"heartbeat_interval": 60
},
"strategy": "DefaultStrategy",
"strategy_path": "user_data/strategies/"
"strategy_path": "user_data/strategies/",
"dataformat_ohlcv": "json",
"dataformat_trades": "jsongz"
}

View File

@@ -2,8 +2,9 @@
"max_open_trades": 5,
"stake_currency": "EUR",
"stake_amount": 10,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "EUR",
"ticker_interval" : "5m",
"ticker_interval": "5m",
"dry_run": true,
"trailing_stop": false,
"unfilledtimeout": {
@@ -70,7 +71,6 @@
"enabled": false,
"process_throttle_secs": 3600,
"calculate_since_number_of_days": 7,
"capital_available_percentage": 0.5,
"allowed_risk": 0.01,
"stoploss_range_min": -0.01,
"stoploss_range_max": -0.1,

View File

@@ -3,6 +3,18 @@ version: '3'
services:
freqtrade:
image: freqtradeorg/freqtrade:master
# Build step - only needed when additional dependencies are needed
# build:
# context: .
# dockerfile: "./Dockerfile.technical"
restart: unless-stopped
container_name: freqtrade
volumes:
- "./user_data:/freqtrade/user_data"
- "./config.json:/freqtrade/config.json"
# Default command used when running `docker compose up`
command: >
trade
--logfile /freqtrade/user_data/freqtrade.log
--db-url sqlite:////freqtrade/user_data/tradesv3.sqlite
--config /freqtrade/user_data/config.json
--strategy SampleStrategy

View File

@@ -4,6 +4,34 @@ This page explains some advanced Hyperopt topics that may require higher
coding skills and Python knowledge than creation of an ordinal hyperoptimization
class.
## Derived hyperopt classes
Custom hyperop classes can be derived in the same way [it can be done for strategies](strategy-customization.md#derived-strategies).
Applying to hyperoptimization, as an example, you may override how dimensions are defined in your optimization hyperspace:
```python
class MyAwesomeHyperOpt(IHyperOpt):
...
# Uses default stoploss dimension
class MyAwesomeHyperOpt2(MyAwesomeHyperOpt):
@staticmethod
def stoploss_space() -> List[Dimension]:
# Override boundaries for stoploss
return [
Real(-0.33, -0.01, name='stoploss'),
]
```
and then quickly switch between hyperopt classes, running optimization process with hyperopt class you need in each particular case:
```
$ freqtrade hyperopt --hyperopt MyAwesomeHyperOpt ...
or
$ freqtrade hyperopt --hyperopt MyAwesomeHyperOpt2 ...
```
## Creating and using a custom loss function
To use a custom loss function class, make sure that the function `hyperopt_loss_function` is defined in your custom hyperopt loss class.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 173 KiB

After

Width:  |  Height:  |  Size: 211 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

View File

@@ -78,13 +78,17 @@ Please also read about the [strategy startup period](strategy-customization.md#s
#### Supplying custom fee value
Sometimes your account has certain fee rebates (fee reductions starting with a certain account size or monthly volume), which are not visible to ccxt.
To account for this in backtesting, you can use `--fee 0.001` to supply this value to backtesting.
This fee must be a percentage, and will be applied twice (once for trade entry, and once for trade exit).
To account for this in backtesting, you can use the `--fee` command line option to supply this value to backtesting.
This fee must be a ratio, and will be applied twice (once for trade entry, and once for trade exit).
For example, if the buying and selling commission fee is 0.1% (i.e., 0.001 written as ratio), then you would run backtesting as the following:
```bash
freqtrade backtesting --fee 0.001
```
!!! Note
Only supply this option (or the corresponding configuration parameter) if you want to experiment with different fee values. By default, Backtesting fetches the default fee from the exchange pair/market info.
#### Running backtest with smaller testset by using timerange
@@ -115,45 +119,46 @@ A backtesting result will look like that:
```
========================================================= BACKTESTING REPORT ========================================================
| pair | buy count | avg profit % | cum profit % | tot profit BTC | tot profit % | avg duration | profit | loss |
|:---------|------------:|---------------:|---------------:|-----------------:|---------------:|:---------------|---------:|-------:|
| ADA/BTC | 35 | -0.11 | -3.88 | -0.00019428 | -1.94 | 4:35:00 | 14 | 21 |
| ARK/BTC | 11 | -0.41 | -4.52 | -0.00022647 | -2.26 | 2:03:00 | 3 | 8 |
| BTS/BTC | 32 | 0.31 | 9.78 | 0.00048938 | 4.89 | 5:05:00 | 18 | 14 |
| DASH/BTC | 13 | -0.08 | -1.07 | -0.00005343 | -0.53 | 4:39:00 | 6 | 7 |
| ENG/BTC | 18 | 1.36 | 24.54 | 0.00122807 | 12.27 | 2:50:00 | 8 | 10 |
| EOS/BTC | 36 | 0.08 | 3.06 | 0.00015304 | 1.53 | 3:34:00 | 16 | 20 |
| ETC/BTC | 26 | 0.37 | 9.51 | 0.00047576 | 4.75 | 6:14:00 | 11 | 15 |
| ETH/BTC | 33 | 0.30 | 9.96 | 0.00049856 | 4.98 | 7:31:00 | 16 | 17 |
| IOTA/BTC | 32 | 0.03 | 1.09 | 0.00005444 | 0.54 | 3:12:00 | 14 | 18 |
| LSK/BTC | 15 | 1.75 | 26.26 | 0.00131413 | 13.13 | 2:58:00 | 6 | 9 |
| LTC/BTC | 32 | -0.04 | -1.38 | -0.00006886 | -0.69 | 4:49:00 | 11 | 21 |
| NANO/BTC | 17 | 1.26 | 21.39 | 0.00107058 | 10.70 | 1:55:00 | 10 | 7 |
| NEO/BTC | 23 | 0.82 | 18.97 | 0.00094936 | 9.48 | 2:59:00 | 10 | 13 |
| REQ/BTC | 9 | 1.17 | 10.54 | 0.00052734 | 5.27 | 3:47:00 | 4 | 5 |
| XLM/BTC | 16 | 1.22 | 19.54 | 0.00097800 | 9.77 | 3:15:00 | 7 | 9 |
| XMR/BTC | 23 | -0.18 | -4.13 | -0.00020696 | -2.07 | 5:30:00 | 12 | 11 |
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 | 23 |
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 | 15 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 243 |
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|--------:|
| ADA/BTC | 35 | -0.11 | -3.88 | -0.00019428 | -1.94 | 4:35:00 | 14 | 0 | 21 |
| ARK/BTC | 11 | -0.41 | -4.52 | -0.00022647 | -2.26 | 2:03:00 | 3 | 0 | 8 |
| BTS/BTC | 32 | 0.31 | 9.78 | 0.00048938 | 4.89 | 5:05:00 | 18 | 0 | 14 |
| DASH/BTC | 13 | -0.08 | -1.07 | -0.00005343 | -0.53 | 4:39:00 | 6 | 0 | 7 |
| ENG/BTC | 18 | 1.36 | 24.54 | 0.00122807 | 12.27 | 2:50:00 | 8 | 0 | 10 |
| EOS/BTC | 36 | 0.08 | 3.06 | 0.00015304 | 1.53 | 3:34:00 | 16 | 0 | 20 |
| ETC/BTC | 26 | 0.37 | 9.51 | 0.00047576 | 4.75 | 6:14:00 | 11 | 0 | 15 |
| ETH/BTC | 33 | 0.30 | 9.96 | 0.00049856 | 4.98 | 7:31:00 | 16 | 0 | 17 |
| IOTA/BTC | 32 | 0.03 | 1.09 | 0.00005444 | 0.54 | 3:12:00 | 14 | 0 | 18 |
| LSK/BTC | 15 | 1.75 | 26.26 | 0.00131413 | 13.13 | 2:58:00 | 6 | 0 | 9 |
| LTC/BTC | 32 | -0.04 | -1.38 | -0.00006886 | -0.69 | 4:49:00 | 11 | 0 | 21 |
| NANO/BTC | 17 | 1.26 | 21.39 | 0.00107058 | 10.70 | 1:55:00 | 10 | 0 | 7 |
| NEO/BTC | 23 | 0.82 | 18.97 | 0.00094936 | 9.48 | 2:59:00 | 10 | 0 | 13 |
| REQ/BTC | 9 | 1.17 | 10.54 | 0.00052734 | 5.27 | 3:47:00 | 4 | 0 | 5 |
| XLM/BTC | 16 | 1.22 | 19.54 | 0.00097800 | 9.77 | 3:15:00 | 7 | 0 | 9 |
| XMR/BTC | 23 | -0.18 | -4.13 | -0.00020696 | -2.07 | 5:30:00 | 12 | 0 | 11 |
| XRP/BTC | 35 | 0.66 | 22.96 | 0.00114897 | 11.48 | 3:49:00 | 12 | 0 | 23 |
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 | 0 | 15 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 |
========================================================= SELL REASON STATS =========================================================
| Sell Reason | Count |
|:-------------------|--------:|
| trailing_stop_loss | 205 |
| stop_loss | 166 |
| sell_signal | 56 |
| force_sell | 2 |
| Sell Reason | Sells | Wins | Draws | Losses |
|:-------------------|--------:|------:|-------:|--------:|
| trailing_stop_loss | 205 | 150 | 0 | 55 |
| stop_loss | 166 | 0 | 0 | 166 |
| sell_signal | 56 | 36 | 0 | 20 |
| force_sell | 2 | 0 | 0 | 2 |
====================================================== LEFT OPEN TRADES REPORT ======================================================
| pair | buy count | avg profit % | cum profit % | tot profit BTC | tot profit % | avg duration | profit | loss |
|:---------|------------:|---------------:|---------------:|-----------------:|---------------:|:---------------|---------:|-------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 | 0 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 | 0 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 | 0 |
| Pair | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|:---------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|--------:|
| ADA/BTC | 1 | 0.89 | 0.89 | 0.00004434 | 0.44 | 6:00:00 | 1 | 0 | 0 |
| LTC/BTC | 1 | 0.68 | 0.68 | 0.00003421 | 0.34 | 2:00:00 | 1 | 0 | 0 |
| TOTAL | 2 | 0.78 | 1.57 | 0.00007855 | 0.78 | 4:00:00 | 2 | 0 | 0 |
```
The 1st table contains all trades the bot made, including "left open trades".
The 2nd table contains a recap of sell reasons.
This table can tell you which area needs some additional work (i.e. all `sell_signal` trades are losses, so we should disable the sell-signal or work on improving that).
The 3rd table contains all trades the bot had to `forcesell` at the end of the backtest period to present a full picture.
This is necessary to simulate realistic behaviour, since the backtest period has to end at some point, while realistically, you could leave the bot running forever.
@@ -194,7 +199,10 @@ Since backtesting lacks some detailed information about what happens within a ca
- Buys happen at open-price
- Sell signal sells happen at open-price of the following candle
- Low happens before high for stoploss, protecting capital first.
- ROI sells are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the sell will be at 2%)
- ROI
- sells are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the sell will be at 2%)
- sells are never "below the candle", so a ROI of 2% may result in a sell at 2.4% if low was at 2.4% profit
- Forcesells caused by `<N>=-1` ROI entries use low as sell value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss sells happen exactly at stoploss price, even if low was lower
- Trailing stoploss
- High happens first - adjusting stoploss
@@ -229,11 +237,11 @@ There will be an additional table comparing win/losses of the different strategi
Detailed output for all strategies one after the other will be available, so make sure to scroll up to see the details per strategy.
```
=========================================================== Strategy Summary ===========================================================
| Strategy | buy count | avg profit % | cum profit % | tot profit BTC | tot profit % | avg duration | profit | loss |
|:------------|------------:|---------------:|---------------:|-----------------:|---------------:|:---------------|---------:|-------:|
| Strategy1 | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 243 |
| Strategy2 | 1487 | -0.13 | -197.58 | -0.00988917 | -98.79 | 4:43:00 | 662 | 825 |
=========================================================== STRATEGY SUMMARY ===========================================================
| Strategy | Buys | Avg Profit % | Cum Profit % | Tot Profit BTC | Tot Profit % | Avg Duration | Wins | Draws | Losses |
|:------------|-------:|---------------:|---------------:|-----------------:|---------------:|:---------------|------:|-------:|-------:|
| Strategy1 | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 0 | 243 |
| Strategy2 | 1487 | -0.13 | -197.58 | -0.00988917 | -98.79 | 4:43:00 | 662 | 0 | 825 |
```
## Next step

View File

@@ -45,19 +45,23 @@ optional arguments:
-h, --help show this help message and exit
--db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite://` for Dry Run).
Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for
Dry Run).
--sd-notify Notify systemd service manager.
--dry-run Enforce dry-run for trading (removes Exchange secrets
and simulates trades).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified.
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
@@ -68,6 +72,8 @@ Strategy arguments:
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
.
```
### How to specify which configuration file be used?
@@ -192,8 +198,8 @@ Backtesting also uses the config specified via `-c/--config`.
usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [-s NAME]
[--strategy-path PATH] [-i TICKER_INTERVAL]
[--timerange TIMERANGE] [--max_open_trades INT]
[--stake_amount STAKE_AMOUNT] [--fee FLOAT]
[--timerange TIMERANGE] [--max-open-trades INT]
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
[--eps] [--dmmp]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export EXPORT] [--export-filename PATH]
@@ -205,10 +211,12 @@ optional arguments:
`1d`).
--timerange TIMERANGE
Specify what timerange of data to use.
--max_open_trades INT
Specify max_open_trades to use.
--stake_amount STAKE_AMOUNT
Specify stake_amount.
--max-open-trades INT
Override the value of the `max_open_trades`
configuration setting.
--stake-amount STAKE_AMOUNT
Override the value of the `stake_amount` configuration
setting.
--fee FLOAT Specify fee ratio. Will be applied twice (on trade
entry and exit).
--eps, --enable-position-stacking
@@ -236,12 +244,15 @@ optional arguments:
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified.
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
@@ -270,11 +281,11 @@ to find optimal parameter values for your stategy.
usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--userdir PATH] [-s NAME] [--strategy-path PATH]
[-i TICKER_INTERVAL] [--timerange TIMERANGE]
[--max_open_trades INT]
[--stake_amount STAKE_AMOUNT] [--fee FLOAT]
[--max-open-trades INT]
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
[--hyperopt NAME] [--hyperopt-path PATH] [--eps]
[-e INT]
[--spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]]
[--spaces {all,buy,sell,roi,stoploss,trailing,default} [{all,buy,sell,roi,stoploss,trailing,default} ...]]
[--dmmp] [--print-all] [--no-color] [--print-json]
[-j JOBS] [--random-state INT] [--min-trades INT]
[--continue] [--hyperopt-loss NAME]
@@ -286,10 +297,12 @@ optional arguments:
`1d`).
--timerange TIMERANGE
Specify what timerange of data to use.
--max_open_trades INT
Specify max_open_trades to use.
--stake_amount STAKE_AMOUNT
Specify stake_amount.
--max-open-trades INT
Override the value of the `max_open_trades`
configuration setting.
--stake-amount STAKE_AMOUNT
Override the value of the `stake_amount` configuration
setting.
--fee FLOAT Specify fee ratio. Will be applied twice (on trade
entry and exit).
--hyperopt NAME Specify hyperopt class name which will be used by the
@@ -300,9 +313,9 @@ optional arguments:
Allow buying the same pair multiple times (position
stacking).
-e INT, --epochs INT Specify number of epochs (default: 100).
--spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]
--spaces {all,buy,sell,roi,stoploss,trailing,default} [{all,buy,sell,roi,stoploss,trailing,default} ...]
Specify which parameters to hyperopt. Space-separated
list. Default: `all`.
list.
--dmmp, --disable-max-market-positions
Disable applying `max_open_trades` during backtest
(same as setting `max_open_trades` to a very high
@@ -329,17 +342,21 @@ optional arguments:
generate completely different results, since the
target for optimization is different. Built-in
Hyperopt-loss-functions are: DefaultHyperOptLoss,
OnlyProfitHyperOptLoss, SharpeHyperOptLoss (default:
OnlyProfitHyperOptLoss, SharpeHyperOptLoss,
SharpeHyperOptLossDaily.(default:
`DefaultHyperOptLoss`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified.
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
@@ -350,6 +367,7 @@ Strategy arguments:
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
```
## Edge commands
@@ -360,7 +378,7 @@ To know your trade expectancy and winrate against historical data, you can use E
usage: freqtrade edge [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--userdir PATH] [-s NAME] [--strategy-path PATH]
[-i TICKER_INTERVAL] [--timerange TIMERANGE]
[--max_open_trades INT] [--stake_amount STAKE_AMOUNT]
[--max-open-trades INT] [--stake-amount STAKE_AMOUNT]
[--fee FLOAT] [--stoplosses STOPLOSS_RANGE]
optional arguments:
@@ -370,10 +388,12 @@ optional arguments:
`1d`).
--timerange TIMERANGE
Specify what timerange of data to use.
--max_open_trades INT
Specify max_open_trades to use.
--stake_amount STAKE_AMOUNT
Specify stake_amount.
--max-open-trades INT
Override the value of the `max_open_trades`
configuration setting.
--stake-amount STAKE_AMOUNT
Override the value of the `stake_amount` configuration
setting.
--fee FLOAT Specify fee ratio. Will be applied twice (on trade
entry and exit).
--stoplosses STOPLOSS_RANGE
@@ -384,12 +404,15 @@ optional arguments:
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified.
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
Specify configuration file (default:
`userdir/config.json` or `config.json` whichever
exists). Multiple --config options may be used. Can be
set to `-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
@@ -400,6 +423,7 @@ Strategy arguments:
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
```
To understand edge and how to read the results, please read the [edge documentation](edge.md).

View File

@@ -38,74 +38,81 @@ The prevelance for all Options is as follows:
Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways.
| Command | Description |
|----------|-------------|
| `max_open_trades` | **Required.** Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades).<br> ***Datatype:*** *Positive integer or -1.*
| `stake_currency` | **Required.** Crypto-currency used for trading. [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *String*
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#understand-stake_amount). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Positive float or `"unlimited"`.*
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> ***Datatype:*** *Positive Float as ratio.*
| `ticker_interval` | The ticker interval to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *String*
| `fiat_display_currency` | Fiat currency used to show your profits. [More information below](#what-values-can-be-used-for-fiat_display_currency). <br> ***Datatype:*** *String*
| `dry_run` | **Required.** Define if the bot must be in Dry Run or production mode. <br>*Defaults to `true`.* <br> ***Datatype:*** *Boolean*
| `dry_run_wallet` | Overrides the default amount of 999.9 stake currency units in the wallet used by the bot running in the Dry Run mode if you need it for any reason. <br> ***Datatype:*** *Float*
| `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `minimal_roi` | **Required.** Set the threshold in percent the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Dict*
| `stoploss` | **Required.** Value of the stoploss in percent used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Float (as ratio)*
| `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Boolean*
| `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Float*
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> ***Datatype:*** *Float*
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled. <br> ***Datatype:*** *Integer*
| `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled. <br> ***Datatype:*** *Integer*
| `bid_strategy.ask_last_balance` | **Required.** Set the bidding price. More information [below](#understand-ask_last_balance).
| `bid_strategy.use_order_book` | Enable buying using the rates in Order Book Bids. <br> ***Datatype:*** *Boolean*
| `bid_strategy.order_book_top` | Bot will use the top N rate in Order Book Bids. I.e. a value of 2 will allow the bot to pick the 2nd bid rate in Order Book Bids. *Defaults to `1`.* <br> ***Datatype:*** *Positive Integer*
| `bid_strategy. check_depth_of_market.enabled` | Do not buy if the difference of buy orders and sell orders is met in Order Book. <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `bid_strategy. check_depth_of_market.bids_to_ask_delta` | The % difference of buy orders and sell orders found in Order Book. A value lesser than 1 means sell orders is greater, while value greater than 1 means buy orders is higher. *Defaults to `0`.* <br> ***Datatype:*** *Float (as ratio)*
| `ask_strategy.use_order_book` | Enable selling of open trades using Order Book Asks. <br> ***Datatype:*** *Boolean*
| `ask_strategy.order_book_min` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> ***Datatype:*** *Positive Integer*
| `ask_strategy.order_book_max` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> ***Datatype:*** *Positive Integer*
| `ask_strategy.use_sell_signal` | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> ***Datatype:*** *Boolean*
| `ask_strategy.sell_profit_only` | Wait until the bot makes a positive profit before taking a sell decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `ask_strategy.ignore_roi_if_buy_signal` | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `order_types` | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> ***Datatype:*** *Dict*
| `order_time_in_force` | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Dict*
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> ***Datatype:*** *String*
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> ***Datatype:*** *Boolean*
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode. **Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `exchange.secret` | API secret to use for the exchange. Only required when you are in production mode. **Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `exchange.password` | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests. **Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `exchange.pair_whitelist` | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Not used by VolumePairList (see [below](#dynamic-pairlists)). <br> ***Datatype:*** *List*
| `exchange.pair_blacklist` | List of pairs the bot must absolutely avoid for trading and backtesting (see [below](#dynamic-pairlists)). <br> ***Datatype:*** *List*
| `exchange.ccxt_config` | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> ***Datatype:*** *Dict*
| `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> ***Datatype:*** *Dict*
| `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> ***Datatype:*** *Positive Integer*
| Parameter | Description |
|------------|-------------|
| `max_open_trades` | **Required.** Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades). [More information below](#configuring-amount-per-trade).<br> **Datatype:** Positive integer or -1.
| `stake_currency` | **Required.** Crypto-currency used for trading. [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Positive float or `"unlimited"`.
| `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> **Datatype:** Positive float between `0.1` and `1.0`.
| `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> **Datatype:** Float (as ratio)
| `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> **Datatype:** Positive Float as ratio.
| `ticker_interval` | The ticker interval to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** String
| `fiat_display_currency` | Fiat currency used to show your profits. [More information below](#what-values-can-be-used-for-fiat_display_currency). <br> **Datatype:** String
| `dry_run` | **Required.** Define if the bot must be in Dry Run or production mode. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `dry_run_wallet` | Define the starting amount in stake currency for the simulated wallet used by the bot running in the Dry Run mode.<br>*Defaults to `1000`.* <br> **Datatype:** Float
| `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `minimal_roi` | **Required.** Set the threshold in percent the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `stoploss` | **Required.** Value of the stoploss in percent used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float (as ratio)
| `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Boolean
| `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Float
| `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> **Datatype:** Float
| `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Integer
| `bid_strategy.ask_last_balance` | **Required.** Set the bidding price. More information [below](#buy-price-without-orderbook).
| `bid_strategy.use_order_book` | Enable buying using the rates in [Order Book Bids](#buy-price-with-orderbook-enabled). <br> **Datatype:** Boolean
| `bid_strategy.order_book_top` | Bot will use the top N rate in Order Book Bids to buy. I.e. a value of 2 will allow the bot to pick the 2nd bid rate in [Order Book Bids](#buy-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `bid_strategy. check_depth_of_market.enabled` | Do not buy if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `bid_strategy. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> **Datatype:** Float (as ratio)
| `ask_strategy.use_order_book` | Enable selling of open trades using [Order Book Asks](#sell-price-with-orderbook-enabled). <br> **Datatype:** Boolean
| `ask_strategy.order_book_min` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `ask_strategy.order_book_max` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> **Datatype:** Positive Integer
| `ask_strategy.use_sell_signal` | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `ask_strategy.sell_profit_only` | Wait until the bot makes a positive profit before taking a sell decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `ask_strategy.ignore_roi_if_buy_signal` | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `order_types` | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> **Datatype:** Dict
| `order_time_in_force` | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> **Datatype:** Dict
| `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> **Datatype:** String
| `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> **Datatype:** Boolean
| `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.secret` | API secret to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.password` | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests.<br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `exchange.pair_whitelist` | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Not used by VolumePairList (see [below](#dynamic-pairlists)). <br> **Datatype:** List
| `exchange.pair_blacklist` | List of pairs the bot must absolutely avoid for trading and backtesting (see [below](#dynamic-pairlists)). <br> **Datatype:** List
| `exchange.ccxt_config` | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> **Datatype:** Dict
| `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> **Datatype:** Positive Integer
| `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation.
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> ***Datatype:*** *Boolean*
| `pairlists` | Define one or more pairlists to be used. [More information below](#dynamic-pairlists). <br>*Defaults to `StaticPairList`.* <br> ***Datatype:*** *List of Dicts*
| `telegram.enabled` | Enable the usage of Telegram. <br> ***Datatype:*** *Boolean*
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. **Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. **Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `webhook.enabled` | Enable usage of Webhook notifications <br> ***Datatype:*** *Boolean*
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> ***Datatype:*** *String*
| `webhook.webhookbuy` | Payload to send on buy. Only required if `webhook.enabled` is `true`. See the [webhook documentationV](webhook-config.md) for more details. <br> ***Datatype:*** *String*
| `webhook.webhooksell` | Payload to send on sell. Only required if `webhook.enabled` is `true`. See the [webhook documentationV](webhook-config.md) for more details. <br> ***Datatype:*** *String*
| `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentationV](webhook-config.md) for more details. <br> ***Datatype:*** *String*
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> ***Datatype:*** *Boolean*
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> ***Datatype:*** *IPv4*
| `api_server.listen_port` | Bind Port. See the [API Server documentation](rest-api.md) for more details. <br> ***Datatype:*** *Integer between 1024 and 65535*
| `api_server.username` | Username for API server. See the [API Server documentation](rest-api.md) for more details. **Keep it in secret, do not disclose publicly.**<br> ***Datatype:*** *String*
| `api_server.password` | Password for API server. See the [API Server documentation](rest-api.md) for more details. **Keep it in secret, do not disclose publicly.**<br> ***Datatype:*** *String*
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite://` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> ***Datatype:*** *String, SQLAlchemy connect string*
| `initial_state` | Defines the initial application state. More information below. <br>*Defaults to `stopped`.* <br> ***Datatype:*** *Enum, either `stopped` or `running`*
| `forcebuy_enable` | Enables the RPC Commands to force a buy. More information below. <br> ***Datatype:*** *Boolean*
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> ***Datatype:*** *ClassName*
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> ***Datatype:*** *String*
| `internals.process_throttle_secs` | Set the process throttle. Value in second. <br>*Defaults to `5` seconds.* <br> ***Datatype:*** *Positive Integer*
| `internals.heartbeat_interval` | Print heartbeat message every N seconds. Set to 0 to disable heartbeat messages. <br>*Defaults to `60` seconds.* <br> ***Datatype:*** *Positive Integer or 0*
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> ***Datatype:*** *Boolean*
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> ***Datatype:*** *String*
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> ***Datatype:*** *String*
| `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> **Datatype:** Boolean
| `pairlists` | Define one or more pairlists to be used. [More information below](#dynamic-pairlists). <br>*Defaults to `StaticPairList`.* <br> **Datatype:** List of Dicts
| `telegram.enabled` | Enable the usage of Telegram. <br> **Datatype:** Boolean
| `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> **Datatype:** String
| `webhook.enabled` | Enable usage of Webhook notifications <br> **Datatype:** Boolean
| `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookbuy` | Payload to send on buy. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookbuycancel` | Payload to send on buy order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhooksell` | Payload to send on sell. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhooksellcancel` | Payload to send on sell order cancel. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> **Datatype:** String
| `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** Boolean
| `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> **Datatype:** IPv4
| `api_server.listen_port` | Bind Port. See the [API Server documentation](rest-api.md) for more details. <br>**Datatype:** Integer between 1024 and 65535
| `api_server.username` | Username for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
| `api_server.password` | Password for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> **Datatype:** String
| `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> **Datatype:** String, SQLAlchemy connect string
| `initial_state` | Defines the initial application state. More information below. <br>*Defaults to `stopped`.* <br> **Datatype:** Enum, either `stopped` or `running`
| `forcebuy_enable` | Enables the RPC Commands to force a buy. More information below. <br> **Datatype:** Boolean
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> **Datatype:** ClassName
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> **Datatype:** String
| `internals.process_throttle_secs` | Set the process throttle. Value in second. <br>*Defaults to `5` seconds.* <br> **Datatype:** Positive Intege
| `internals.heartbeat_interval` | Print heartbeat message every N seconds. Set to 0 to disable heartbeat messages. <br>*Defaults to `60` seconds.* <br> **Datatype:** Positive Integer or 0
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> **Datatype:** Boolean
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> **Datatype:** String
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> **Datatype:** String
| `dataformat_ohlcv` | Data format to use to store OHLCV historic data. <br> *Defaults to `json`*. <br> **Datatype:** String
| `dataformat_trades` | Data format to use to store trades historic data. <br> *Defaults to `jsongz`*. <br> **Datatype:** String
### Parameters in the strategy
@@ -124,24 +131,63 @@ Values set in the configuration file always overwrite values set in the strategy
* `order_time_in_force`
* `stake_currency`
* `stake_amount`
* `unfilledtimeout`
* `use_sell_signal` (ask_strategy)
* `sell_profit_only` (ask_strategy)
* `ignore_roi_if_buy_signal` (ask_strategy)
### Understand stake_amount
### Configuring amount per trade
The `stake_amount` configuration parameter is an amount of crypto-currency your bot will use for each trade.
There are several methods to configure how much of the stake currency the bot will use to enter a trade. All methods respect the [available balance configuration](#available-balance) as explained below.
The minimal configuration value is 0.0001. Please check your exchange's trading minimums to avoid problems.
#### Available balance
By default, the bot assumes that the `complete amount - 1%` is at it's disposal, and when using [dynamic stake amount](#dynamic-stake-amount), it will split the complete balance into `max_open_trades` buckets per trade.
Freqtrade will reserve 1% for eventual fees when entering a trade and will therefore not touch that by default.
You can configure the "untouched" amount by using the `tradable_balance_ratio` setting.
For example, if you have 10 ETH available in your wallet on the exchange and `tradable_balance_ratio=0.5` (which is 50%), then the bot will use a maximum amount of 5 ETH for trading and considers this as available balance. The rest of the wallet is untouched by the trades.
!!! Warning
The `tradable_balance_ratio` setting applies to the current balance (free balance + tied up in trades). Therefore, assuming the starting balance of 1000, a configuration with `tradable_balance_ratio=0.99` will not guarantee that 10 currency units will always remain available on the exchange. For example, the free amount may reduce to 5 units if the total balance is reduced to 500 (either by a losing streak, or by withdrawing balance).
#### Amend last stake amount
Assuming we have the tradable balance of 1000 USDT, `stake_amount=400`, and `max_open_trades=3`.
The bot would open 2 trades, and will be unable to fill the last trading slot, since the requested 400 USDT are no longer available, since 800 USDT are already tied in other trades.
To overcome this, the option `amend_last_stake_amount` can be set to `True`, which will enable the bot to reduce stake_amount to the available balance in order to fill the last trade slot.
In the example above this would mean:
- Trade1: 400 USDT
- Trade2: 400 USDT
- Trade3: 200 USDT
!!! Note
This option only applies with [Static stake amount](#static-stake-amount) - since [Dynamic stake amount](#dynamic-stake-amount) divides the balances evenly.
!!! Note
The minimum last stake amount can be configured using `amend_last_stake_amount` - which defaults to 0.5 (50%). This means that the minimum stake amount that's ever used is `stake_amount * 0.5`. This avoids very low stake amounts, that are close to the minimum tradable amount for the pair and can be refused by the exchange.
#### Static stake amount
The `stake_amount` configuration statically configures the amount of stake-currency your bot will use for each trade.
The minimal configuration value is 0.0001, however, please check your exchange's trading minimums for the stake currency you're using to avoid problems.
This setting works in combination with `max_open_trades`. The maximum capital engaged in trades is `stake_amount * max_open_trades`.
For example, the bot will at most use (0.05 BTC x 3) = 0.15 BTC, assuming a configuration of `max_open_trades=3` and `stake_amount=0.05`.
To allow the bot to trade all the available `stake_currency` in your account set
!!! Note
This setting respects the [available balance configuration](#available-balance).
```json
"stake_amount" : "unlimited",
```
#### Dynamic stake amount
Alternatively, you can use a dynamic stake amount, which will use the available balance on the exchange, and divide that equally by the amount of allowed trades (`max_open_trades`).
To configure this, set `stake_amount="unlimited"`. We also recommend to set `tradable_balance_ratio=0.99` (99%) - to keep a minimum balance for eventual fees.
In this case a trade amount is calculated as:
@@ -149,6 +195,19 @@ In this case a trade amount is calculated as:
currency_balance / (max_open_trades - current_open_trades)
```
To allow the bot to trade all the available `stake_currency` in your account (minus `tradable_balance_ratio`) set
```json
"stake_amount" : "unlimited",
"tradable_balance_ratio": 0.99,
```
!!! Note
This configuration will allow increasing / decreasing stakes depending on the performance of the bot (lower stake if bot is loosing, higher stakes if the bot has a winning record, since higher balances are available).
!!! Note "When using Dry-Run Mode"
When using `"stake_amount" : "unlimited",` in combination with Dry-Run, the balance will be simulated starting with a stake of `dry_run_wallet` which will evolve over time. It is therefore important to set `dry_run_wallet` to a sensible value (like 0.05 or 0.01 for BTC and 1000 or 100 for USDT, for example), otherwise it may simulate trades with 100 BTC (or more) or 0.05 USDT (or less) at once - which may not correspond to your real available balance or is less than the exchange minimal limit for the order amount for the stake currency.
### Understand minimal_roi
The `minimal_roi` configuration parameter is a JSON object where the key is a duration
@@ -169,6 +228,9 @@ This parameter can be set in either Strategy or Configuration file. If you use i
`minimal_roi` value from the strategy file.
If it is not set in either Strategy or Configuration, a default of 1000% `{"0": 10}` is used, and minimal roi is disabled unless your trade generates 1000% profit.
!!! Note "Special case to forcesell after a specific time"
A special case presents using `"<N>": -1` as ROI. This forces the bot to sell a trade after N Minutes, no matter if it's positive or negative, so represents a time-limited force-sell.
### Understand stoploss
Go to the [stoploss documentation](stoploss.md) for more details.
@@ -201,13 +263,6 @@ before asking the strategy if we should buy or a sell an asset. After each wait
every opened trade wether or not we should sell, and for all the remaining pairs (either the dynamic list of pairs or
the static list of pairs) if we should buy.
### Understand ask_last_balance
The `ask_last_balance` configuration parameter sets the bidding price. Value `0.0` will use `ask` price, `1.0` will
use the `last` price and values between those interpolate between ask and last
price. Using `ask` price will guarantee quick success in bid, but bot will also
end up paying more then would probably have been necessary.
### Understand order_types
The `order_types` configuration parameter maps actions (`buy`, `sell`, `stoploss`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds.
@@ -227,7 +282,7 @@ If this is configured, the following 4 values (`buy`, `sell`, `stoploss` and
The below is the default which is used if this is not configured in either strategy or configuration file.
Since `stoploss_on_exchange` uses limit orders, the exchange needs 2 prices, the stoploss_price and the Limit price.
`stoploss` defines the stop-price - and limit should be slightly below this. This defaults to 0.99 / 1%.
`stoploss` defines the stop-price - and limit should be slightly below this. This defaults to 0.99 / 1% (configurable via `stoploss_on_exchange_limit_ratio`).
Calculation example: we bought the asset at 100$.
Stop-price is 95$, then limit would be `95 * 0.99 = 94.05$` - so the stoploss will happen between 95$ and 94.05$.
@@ -387,6 +442,54 @@ The valid values are:
"BTC", "ETH", "XRP", "LTC", "BCH", "USDT"
```
## Prices used for orders
Prices for regular orders can be controlled via the parameter structures `bid_strategy` for buying and `ask_strategy` for selling.
Prices are always retrieved right before an order is placed, either by querying the exchange tickers or by using the orderbook data.
!!! Note
Orderbook data used by Freqtrade are the data retrieved from exchange by the ccxt's function `fetch_order_book()`, i.e. are usually data from the L2-aggregated orderbook, while the ticker data are the structures returned by the ccxt's `fetch_ticker()`/`fetch_tickers()` functions. Refer to the ccxt library [documentation](https://github.com/ccxt/ccxt/wiki/Manual#market-data) for more details.
### Buy price
#### Check depth of market
When check depth of market is enabled (`bid_strategy.check_depth_of_market.enabled=True`), the buy signals are filtered based on the orderbook depth (sum of all amounts) for each orderbook side.
Orderbook `bid` (buy) side depth is then divided by the orderbook `ask` (sell) side depth and the resulting delta is compared to the value of the `bid_strategy.check_depth_of_market.bids_to_ask_delta` parameter. The buy order is only executed if the orderbook delta is greater than or equal to the configured delta value.
!!! Note
A delta value below 1 means that `ask` (sell) orderbook side depth is greater than the depth of the `bid` (buy) orderbook side, while a value greater than 1 means opposite (depth of the buy side is higher than the depth of the sell side).
#### Buy price with Orderbook enabled
When buying with the orderbook enabled (`bid_strategy.use_order_book=True`), Freqtrade fetches the `bid_strategy.order_book_top` entries from the orderbook and then uses the entry specified as `bid_strategy.order_book_top` on the `bid` (buy) side of the orderbook. 1 specifies the topmost entry in the orderbook, while 2 would use the 2nd entry in the orderbook, and so on.
#### Buy price without Orderbook enabled
When not using orderbook (`bid_strategy.use_order_book=False`), Freqtrade uses the best `ask` (sell) price from the ticker if it's below the `last` traded price from the ticker. Otherwise (when the `ask` price is not below the `last` price), it calculates a rate between `ask` and `last` price.
The `bid_strategy.ask_last_balance` configuration parameter controls this. A value of `0.0` will use `ask` price, while `1.0` will use the `last` price and values between those interpolate between ask and last price.
Using `ask` price often guarantees quicker success in the bid, but the bot can also end up paying more than what would have been necessary.
### Sell price
#### Sell price with Orderbook enabled
When selling with the orderbook enabled (`ask_strategy.use_order_book=True`), Freqtrade fetches the `ask_strategy.order_book_max` entries in the orderbook. Then each of the orderbook steps between `ask_strategy.order_book_min` and `ask_strategy.order_book_max` on the `ask` orderbook side are validated for a profitable sell-possibility based on the strategy configuration and the sell order is placed at the first profitable spot.
The idea here is to place the sell order early, to be ahead in the queue.
A fixed slot (mirroring `bid_strategy.order_book_top`) can be defined by setting `ask_strategy.order_book_min` and `ask_strategy.order_book_max` to the same number.
!!! Warning "Orderbook and stoploss_on_exchange"
Using `ask_strategy.order_book_max` higher than 1 may increase the risk, since an eventual [stoploss on exchange](#understand-order_types) will be needed to be cancelled as soon as the order is placed.
#### Sell price without Orderbook enabled
When not using orderbook (`ask_strategy.use_order_book=False`), the `bid` price from the ticker will be used as the sell price.
## Pairlists
Pairlists define the list of pairs that the bot should trade.
@@ -404,6 +507,7 @@ Inactive markets and blacklisted pairs are always removed from the resulting `pa
* [`VolumePairList`](#volume-pair-list)
* [`PrecisionFilter`](#precision-filter)
* [`PriceFilter`](#price-pair-filter)
* [`SpreadFilter`](#spread-filter)
!!! Tip "Testing pairlists"
Pairlist configurations can be quite tricky to get right. Best use the [`test-pairlist`](utils.md#test-pairlist) subcommand to test your configuration quickly.
@@ -452,6 +556,11 @@ Min price precision is 8 decimals. If price is 0.00000011 - one step would be 0.
These pairs are dangerous since it may be impossible to place the desired stoploss - and often result in high losses.
#### Spread Filter
Removes pairs that have a difference between asks and bids above the specified ratio (default `0.005`).
Example:
If `DOGE/BTC` maximum bid is 0.00000026 and minimum ask is 0.00000027 the ratio is calculated as: `1 - bid/ask ~= 0.037` which is `> 0.005`
### Full Pairlist example
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting by `quoteVolume` and applies both [`PrecisionFilter`](#precision-filter) and [`PriceFilter`](#price-pair-filter), filtering all assets where 1 priceunit is > 1%.
@@ -498,8 +607,18 @@ creating trades on the exchange.
}
```
Once you will be happy with your bot performance running in the Dry-run mode,
you can switch it to production mode.
Once you will be happy with your bot performance running in the Dry-run mode, you can switch it to production mode.
!!! Note
A simulated wallet is available during dry-run mode, and will assume a starting capital of `dry_run_wallet` (defaults to 1000).
### Considerations for dry-run
* API-keys may or may not be provided. Only Read-Only operations (i.e. operations that do not alter account state) on the exchange are performed in the dry-run mode.
* Wallets (`/balance`) are simulated.
* Orders are simulated, and will not be posted to the exchange.
* In combination with `stoploss_on_exchange`, the stop_loss price is assumed to be filled.
* Open orders (not trades, which are stored in the database) are reset on bot restart.
## Switch to production mode
@@ -507,6 +626,11 @@ In production mode, the bot will engage your money. Be careful, since a wrong
strategy can lose all your money. Be aware of what you are doing when
you run it in production mode.
### Setup your exchange account
You will need to create API Keys (usually you get `key` and `secret`, some exchanges require an additional `password`) from the Exchange website and you'll need to insert this into the appropriate fields in the configuration or when asked by the `freqtrade new-config` command.
API Keys are usually only required for live trading (trading for real money, bot running in "production mode", executing real orders on the exchange) and are not required for the bot running in dry-run (trade simulation) mode. When you setup the bot in dry-run mode, you may fill these fields with empty values.
### To switch your bot in production mode
**Edit your `config.json` file.**
@@ -528,9 +652,6 @@ you run it in production mode.
}
```
!!! Note
If you have an exchange API key yet, [see our tutorial](/pre-requisite).
You should also make sure to read the [Exchanges](exchanges.md) section of the documentation to be aware of potential configuration details specific to your exchange.
### Using proxy with Freqtrade
@@ -555,7 +676,7 @@ freqtrade
## Embedding Strategies
FreqTrade provides you with with an easy way to embed the strategy into your configuration file.
Freqtrade provides you with with an easy way to embed the strategy into your configuration file.
This is done by utilizing BASE64 encoding and providing this string at the strategy configuration field,
in your chosen config file.

View File

@@ -8,6 +8,27 @@ You can analyze the results of backtests and trading history easily using Jupyte
* Don't forget to start a Jupyter notebook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)*
* Copy the example notebook before use so your changes don't get clobbered with the next freqtrade update.
### Using virtual environment with system-wide Jupyter installation
Sometimes it can be desired to use a system-wide installation of Jupyter notebook, and use a jupyter kernel from the virtual environment.
This prevents you from installing the full jupyter suite multiple times per system, and provides an easy way to switch between tasks (freqtrade / other analytics tasks).
For this to work, first activate your virtual environment and run the following commands:
``` bash
# Activate virtual environment
source .env/bin/activate
pip install ipykernel
ipython kernel install --user --name=freqtrade
# Restart jupyter (lab / notebook)
# select kernel "freqtrade" in the notebook
```
!!! Note
This section is provided for completeness, the Freqtrade Team won't provide full support for problems with this setup and will recommend to install Jupyter in the virtual environment directly, as that is the easiest way to get jupyter notebooks up and running. For help with this setup please refer to the [Project Jupyter](https://jupyter.org/) [documentation](https://jupyter.org/documentation) or [help channels](https://jupyter.org/community).
## Fine print
Some tasks don't work especially well in notebooks. For example, anything using asynchronous execution is a problem for Jupyter. Also, freqtrade's primary entry point is the shell cli, so using pure python in a notebook bypasses arguments that provide required objects and parameters to helper functions. You may need to set those values or create expected objects manually.

View File

@@ -12,6 +12,152 @@ Otherwise `--exchange` becomes mandatory.
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, use `--days xx` with a number slightly higher than the missing number of days. Freqtrade will keep the available data and only download the missing data.
Be carefull though: If the number is too small (which would result in a few missing days), the whole dataset will be removed and only xx days will be downloaded.
### Usage
```
usage: freqtrade download-data [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [-p PAIRS [PAIRS ...]]
[--pairs-file FILE] [--days INT] [--dl-trades] [--exchange EXCHANGE]
[-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]]
[--erase] [--data-format-ohlcv {json,jsongz}] [--data-format-trades {json,jsongz}]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-separated.
--pairs-file FILE File containing a list of pairs to download.
--days INT Download data for given number of days.
--dl-trades Download trades instead of OHLCV data. The bot will resample trades to the desired timeframe as specified as
--timeframes/-t.
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no config is provided.
-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...], --timeframes {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]
Specify which tickers to download. Space-separated list. Default: `1m 5m`.
--erase Clean all existing data for the selected exchange/pairs/timeframes.
--data-format-ohlcv {json,jsongz}
Storage format for downloaded ohlcv data. (default: `json`).
--data-format-trades {json,jsongz}
Storage format for downloaded trades data. (default: `jsongz`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to `-`
to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
### Data format
Freqtrade currently supports 2 dataformats, `json` (plain "text" json files) and `jsongz` (a gzipped version of json files).
By default, OHLCV data is stored as `json` data, while trades data is stored as `jsongz` data.
This can be changed via the `--data-format-ohlcv` and `--data-format-trades` parameters respectivly.
If the default dataformat has been changed during download, then the keys `dataformat_ohlcv` and `dataformat_trades` in the configuration file need to be adjusted to the selected dataformat as well.
!!! Note
You can convert between data-formats using the [convert-data](#subcommand-convert-data) and [convert-trade-data](#subcommand-convert-trade-data) methods.
#### Subcommand convert data
```
usage: freqtrade convert-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[-p PAIRS [PAIRS ...]] --format-from
{json,jsongz} --format-to {json,jsongz}
[--erase]
[-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-
separated.
--format-from {json,jsongz}
Source format for data conversion.
--format-to {json,jsongz}
Destination format for data conversion.
--erase Clean all existing data for the selected
exchange/pairs/timeframes.
-t {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...], --timeframes {1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} [{1m,3m,5m,15m,30m,1h,2h,4h,6h,8h,12h,1d,3d,1w} ...]
Specify which tickers to download. Space-separated
list. Default: `1m 5m`.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
##### Example converting data
The following command will convert all ohlcv (candle) data available in `~/.freqtrade/data/binance` from json to jsongz, saving diskspace in the process.
It'll also remove original json data files (`--erase` parameter).
``` bash
freqtrade convert-data --format-from json --format-to jsongz --data-dir ~/.freqtrade/data/binance -t 5m 15m --erase
```
#### Subcommand convert-trade data
```
usage: freqtrade convert-trade-data [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[-p PAIRS [PAIRS ...]] --format-from
{json,jsongz} --format-to {json,jsongz}
[--erase]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-
separated.
--format-from {json,jsongz}
Source format for data conversion.
--format-to {json,jsongz}
Destination format for data conversion.
--erase Clean all existing data for the selected
exchange/pairs/timeframes.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
##### Example converting trades
The following command will convert all available trade-data in `~/.freqtrade/data/kraken` from jsongz to json.
It'll also remove original jsongz data files (`--erase` parameter).
``` bash
freqtrade convert-trade-data --format-from jsongz --format-to json --data-dir ~/.freqtrade/data/kraken --erase
```
### Pairs file
In alternative to the whitelist from `config.json`, a `pairs.json` file can be used.

View File

@@ -1,6 +1,6 @@
# Development Help
This page is intended for developers of FreqTrade, people who want to contribute to the FreqTrade codebase or documentation, or people who want to understand the source code of the application they're running.
This page is intended for developers of Freqtrade, people who want to contribute to the Freqtrade codebase or documentation, or people who want to understand the source code of the application they're running.
All contributions, bug reports, bug fixes, documentation improvements, enhancements and ideas are welcome. We [track issues](https://github.com/freqtrade/freqtrade/issues) on [GitHub](https://github.com) and also have a dev channel in [slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LTU1MTgxMjkzNmYxNWE1MDEzYzQ3YmU4N2MwZjUyNjJjODRkMDVkNjg4YTAyZGYzYzlhOTZiMTE4ZjQ4YzM0OGE) where you can ask questions.
@@ -153,7 +153,7 @@ In VolumePairList, this implements different methods of sorting, does early vali
## Implement a new Exchange (WIP)
!!! Note
This section is a Work in Progress and is not a complete guide on how to test a new exchange with FreqTrade.
This section is a Work in Progress and is not a complete guide on how to test a new exchange with Freqtrade.
Most exchanges supported by CCXT should work out of the box.
@@ -183,17 +183,19 @@ raw = ct.fetch_ohlcv(pair, timeframe=timeframe)
# convert to dataframe
df1 = parse_ticker_dataframe(raw, timeframe, pair=pair, drop_incomplete=False)
print(df1["date"].tail(1))
print(df1.tail(1))
print(datetime.utcnow())
```
``` output
19 2019-06-08 00:00:00+00:00
date open high low close volume
499 2019-06-08 00:00:00+00:00 0.000007 0.000007 0.000007 0.000007 26264344.0
2019-06-09 12:30:27.873327
```
The output will show the last entry from the Exchange as well as the current UTC date.
If the day shows the same day, then the last candle can be assumed as incomplete and should be dropped (leave the setting `"ohlcv_partial_candle"` from the exchange-class untouched / True). Otherwise, set `"ohlcv_partial_candle"` to `False` to not drop Candles (shown in the example above).
Another way is to run this command multiple times in a row and observe if the volume is changing (while the date remains the same).
## Updating example notebooks
@@ -246,6 +248,17 @@ Determine if crucial bugfixes have been made between this commit and the current
git log --oneline --no-decorate --no-merges master..new_release
```
To keep the release-log short, best wrap the full git changelog into a collapsible details secction.
```markdown
<details>
<summary>Expand full changelog</summary>
... Full git changelog
</details>
```
### Create github release / tag
Once the PR against master is merged (best right after merging):
@@ -253,4 +266,29 @@ Once the PR against master is merged (best right after merging):
* Use the button "Draft a new release" in the Github UI (subsection releases).
* Use the version-number specified as tag.
* Use "master" as reference (this step comes after the above PR is merged).
* Use the above changelog as release comment (as codeblock).
* Use the above changelog as release comment (as codeblock)
### After-release
* Update version in develop by postfixing that with `-dev` (`2019.6 -> 2019.6-dev`).
* Create a PR against develop to update that branch.
## Releases
### pypi
To create a pypi release, please run the following commands:
Additional requirement: `wheel`, `twine` (for uploading), account on pypi with proper permissions.
``` bash
python setup.py sdist bdist_wheel
# For pypi test (to check if some change to the installation did work)
twine upload --repository-url https://test.pypi.org/legacy/ dist/*
# For production:
twine upload dist/*
```
Please don't push non-releases to the productive / real pypi instance.

View File

@@ -1,4 +1,4 @@
# Using FreqTrade with Docker
# Using Freqtrade with Docker
## Install Docker
@@ -8,13 +8,141 @@ Start by downloading and installing Docker CE for your platform:
* [Windows](https://docs.docker.com/docker-for-windows/install/)
* [Linux](https://docs.docker.com/install/)
Optionally, [docker-compose](https://docs.docker.com/compose/install/) should be installed and available to follow the [docker quick start guide](#docker-quick-start).
Once you have Docker installed, simply prepare the config file (e.g. `config.json`) and run the image for `freqtrade` as explained below.
## Download the official FreqTrade docker image
## Freqtrade with docker-compose
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/develop/docker-compose.yml) ready for usage.
!!! Note
The following section assumes that docker and docker-compose is installed and available to the logged in user.
!!! Note
All below comands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
### Docker quick start
Create a new directory and place the [docker-compose file](https://github.com/freqtrade/freqtrade/blob/develop/docker-compose.yml) in this directory.
``` bash
mkdir ft_userdata
cd ft_userdata/
# Download the docker-compose file from the repository
curl https://raw.githubusercontent.com/freqtrade/freqtrade/develop/docker-compose.yml -o docker-compose.yml
# Pull the freqtrade image
docker-compose pull
# Create user directory structure
docker-compose run --rm freqtrade create-userdir --userdir user_data
# Create configuration - Requires answering interactive questions
docker-compose run --rm freqtrade new-config --config user_data/config.json
```
The above snippet creates a new directory called "ft_userdata", downloads the latest compose file and pulls the freqtrade image.
The last 2 steps in the snippet create the directory with user-data, as well as (interactively) the default configuration based on your selections.
!!! Note
You can edit the configuration at any time, which is available as `user_data/config.json` (within the directory `ft_userdata`) when using the above configuration.
#### Adding your strategy
The configuration is now available as `user_data/config.json`.
You should now copy your strategy to `user_data/strategies/` - and add the Strategy class name to the `docker-compose.yml` file, replacing `SampleStrategy`. If you wish to run the bot with the SampleStrategy, just leave it as it is.
!!! Warning
The `SampleStrategy` is there for your reference and give you ideas for your own strategy.
Please always backtest the strategy and use dry-run for some time before risking real money!
Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above).
``` bash
docker-compose up -d
```
#### Docker-compose logs
Logs will be written to `user_data/freqtrade.log`.
Alternatively, you can check the latest logs using `docker-compose logs -f`.
#### Database
The database will be in the user_data directory as well, and will be called `user_data/tradesv3.sqlite`.
#### Updating freqtrade with docker-compose
To update freqtrade when using docker-compose is as simple as running the following 2 commands:
``` bash
# Download the latest image
docker-compose pull
# Restart the image
docker-compose up -d
```
This will first pull the latest image, and will then restart the container with the just pulled version.
!!! Note
You should always check the changelog for breaking changes / manual interventions required and make sure the bot starts correctly after the update.
#### Going from here
Advanced users may edit the docker-compose file further to include all possible options or arguments.
All possible freqtrade arguments will be available by running `docker-compose run --rm freqtrade <command> <optional arguments>`.
!!! Note "`docker-compose run --rm`"
Including `--rm` will clean up the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
##### Example: Download data with docker-compose
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
``` bash
docker-compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
```
Head over to the [Data Downloading Documentation](data-download.md) for more details on downloading data.
##### Example: Backtest with docker-compose
Run backtesting in docker-containers for SampleStrategy and specified timerange of historical data, on 5m timeframe:
``` bash
docker-compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
```
Head over to the [Backtesting Documentation](backtesting.md) to learn more.
#### Additional dependencies with docker-compose
If your strategy requires dependencies not included in the default image (like [technical](https://github.com/freqtrade/technical)) - it will be necessary to build the image on your host.
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [Dockerfile.technical](https://github.com/freqtrade/freqtrade/blob/develop/Dockerfile.technical) for an example).
You'll then also need to modify the `docker-compose.yml` file and uncomment the build step, as well as rename the image to avoid naming collisions.
``` yaml
image: freqtrade_custom
build:
context: .
dockerfile: "./Dockerfile.<yourextension>"
```
You can then run `docker-compose build` to build the docker image, and run it using the commands described above.
## Freqtrade with docker without docker-compose
!!! Warning
The below documentation is provided for completeness and assumes that you are somewhat familiar with running docker containers. If you're just starting out with docker, we recommend to follow the [Freqtrade with docker-compose](#freqtrade-with-docker-compose) instructions.
### Download the official Freqtrade docker image
Pull the image from docker hub.
Branches / tags available can be checked out on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/tags/).
Branches / tags available can be checked out on [Dockerhub tags page](https://hub.docker.com/r/freqtradeorg/freqtrade/tags/).
```bash
docker pull freqtradeorg/freqtrade:develop
@@ -164,8 +292,7 @@ docker run -d \
```
!!! Note
db-url defaults to `sqlite:///tradesv3.sqlite` but it defaults to `sqlite://` if `dry_run=True` is being used.
To override this behaviour use a custom db-url value: i.e.: `--db-url sqlite:///tradesv3.dryrun.sqlite`
When using docker, it's best to specify `--db-url` explicitly to ensure that the database URL and the mounted database file match.
!!! Note
All available bot command line parameters can be added to the end of the `docker run` command.

View File

@@ -1,4 +1,4 @@
# Edge positioning
# Edge positioning
This page explains how to use Edge Positioning module in your bot in order to enter into a trade only if the trade has a reasonable win rate and risk reward ratio, and consequently adjust your position size and stoploss.
@@ -9,6 +9,7 @@ This page explains how to use Edge Positioning module in your bot in order to en
Edge does not consider anything else than buy/sell/stoploss signals. So trailing stoploss, ROI, and everything else are ignored in its calculation.
## Introduction
Trading is all about probability. No one can claim that he has a strategy working all the time. You have to assume that sometimes you lose.
But it doesn't mean there is no rule, it only means rules should work "most of the time". Let's play a game: we toss a coin, heads: I give you 10$, tails: you give me 10$. Is it an interesting game? No, it's quite boring, isn't it?
@@ -22,43 +23,61 @@ Let's complicate it more: you win 80% of the time but only 2$, I win 20% of the
The question is: How do you calculate that? How do you know if you wanna play?
The answer comes to two factors:
- Win Rate
- Risk Reward Ratio
### Win Rate
Win Rate (*W*) is is the mean over some amount of trades (*N*) what is the percentage of winning trades to total number of trades (note that we don't consider how much you gained but only if you won or not).
W = (Number of winning trades) / (Total number of trades) = (Number of winning trades) / N
```
W = (Number of winning trades) / (Total number of trades) = (Number of winning trades) / N
```
Complementary Loss Rate (*L*) is defined as
L = (Number of losing trades) / (Total number of trades) = (Number of losing trades) / N
```
L = (Number of losing trades) / (Total number of trades) = (Number of losing trades) / N
```
or, which is the same, as
L = 1 W
```
L = 1 W
```
### Risk Reward Ratio
Risk Reward Ratio (*R*) is a formula used to measure the expected gains of a given investment against the risk of loss. It is basically what you potentially win divided by what you potentially lose:
R = Profit / Loss
```
R = Profit / Loss
```
Over time, on many trades, you can calculate your risk reward by dividing your average profit on winning trades by your average loss on losing trades:
Average profit = (Sum of profits) / (Number of winning trades)
```
Average profit = (Sum of profits) / (Number of winning trades)
Average loss = (Sum of losses) / (Number of losing trades)
Average loss = (Sum of losses) / (Number of losing trades)
R = (Average profit) / (Average loss)
R = (Average profit) / (Average loss)
```
### Expectancy
At this point we can combine *W* and *R* to create an expectancy ratio. This is a simple process of multiplying the risk reward ratio by the percentage of winning trades and subtracting the percentage of losing trades, which is calculated as follows:
Expectancy Ratio = (Risk Reward Ratio X Win Rate) Loss Rate = (R X W) L
```
Expectancy Ratio = (Risk Reward Ratio X Win Rate) Loss Rate = (R X W) L
```
So lets say your Win rate is 28% and your Risk Reward Ratio is 5:
Expectancy = (5 X 0.28) 0.72 = 0.68
```
Expectancy = (5 X 0.28) 0.72 = 0.68
```
Superficially, this means that on average you expect this strategys trades to return .68 times the size of your loses. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
@@ -69,6 +88,7 @@ You can also use this value to evaluate the effectiveness of modifications to th
**NOTICE:** It's important to keep in mind that Edge is testing your expectancy using historical data, there's no guarantee that you will have a similar edge in the future. It's still vital to do this testing in order to build confidence in your methodology, but be wary of "curve-fitting" your approach to the historical data as things are unlikely to play out the exact same way for future trades.
## How does it work?
If enabled in config, Edge will go through historical data with a range of stoplosses in order to find buy and sell/stoploss signals. It then calculates win rate and expectancy over *N* trades for each stoploss. Here is an example:
| Pair | Stoploss | Win Rate | Risk Reward Ratio | Expectancy |
@@ -83,6 +103,7 @@ The goal here is to find the best stoploss for the strategy in order to have the
Edge module then forces stoploss value it evaluated to your strategy dynamically.
### Position size
Edge also dictates the stake amount for each trade to the bot according to the following factors:
- Allowed capital at risk
@@ -90,13 +111,17 @@ Edge also dictates the stake amount for each trade to the bot according to the f
Allowed capital at risk is calculated as follows:
Allowed capital at risk = (Capital available_percentage) X (Allowed risk per trade)
```
Allowed capital at risk = (Capital available_percentage) X (Allowed risk per trade)
```
Stoploss is calculated as described above against historical data.
Your position size then will be:
Position size = (Allowed capital at risk) / Stoploss
```
Position size = (Allowed capital at risk) / Stoploss
```
Example:
@@ -115,100 +140,30 @@ Available capital doesnt change before a position is sold. Lets assume tha
So the Bot receives another buy signal for trade 4 with a stoploss at 2% then your position size would be **0.055 / 0.02 = 2.75 ETH**.
## Configurations
Edge module has following configuration options:
#### enabled
If true, then Edge will run periodically.
(defaults to false)
#### process_throttle_secs
How often should Edge run in seconds?
(defaults to 3600 so one hour)
#### calculate_since_number_of_days
Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy
Note that it downloads historical data so increasing this number would lead to slowing down the bot.
(defaults to 7)
#### capital_available_percentage
This is the percentage of the total capital on exchange in stake currency.
As an example if you have 10 ETH available in your wallet on the exchange and this value is 0.5 (which is 50%), then the bot will use a maximum amount of 5 ETH for trading and considers it as available capital.
(defaults to 0.5)
#### allowed_risk
Percentage of allowed risk per trade.
(defaults to 0.01 so 1%)
#### stoploss_range_min
Minimum stoploss.
(defaults to -0.01)
#### stoploss_range_max
Maximum stoploss.
(defaults to -0.10)
#### stoploss_range_step
As an example if this is set to -0.01 then Edge will test the strategy for \[-0.01, -0,02, -0,03 ..., -0.09, -0.10\] ranges.
Note than having a smaller step means having a bigger range which could lead to slow calculation.
If you set this parameter to -0.001, you then slow down the Edge calculation by a factor of 10.
(defaults to -0.01)
#### minimum_winrate
It filters out pairs which don't have at least minimum_winrate.
This comes handy if you want to be conservative and don't comprise win rate in favour of risk reward ratio.
(defaults to 0.60)
#### minimum_expectancy
It filters out pairs which have the expectancy lower than this number.
Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return.
(defaults to 0.20)
#### min_trade_number
When calculating *W*, *R* and *E* (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable.
Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something.
(defaults to 10, it is highly recommended not to decrease this number)
#### max_trade_duration_minute
Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.
**NOTICE:** While configuring this value, you should take into consideration your ticker interval. As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).
(defaults to 1 day, i.e. to 60 * 24 = 1440 minutes)
#### remove_pumps
Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.
(defaults to false)
| Parameter | Description |
|------------|-------------|
| `enabled` | If true, then Edge will run periodically. <br>*Defaults to `false`.* <br> **Datatype:** Boolean
| `process_throttle_secs` | How often should Edge run in seconds. <br>*Defaults to `3600` (once per hour).* <br> **Datatype:** Integer
| `calculate_since_number_of_days` | Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy. <br> **Note** that it downloads historical data so increasing this number would lead to slowing down the bot. <br>*Defaults to `7`.* <br> **Datatype:** Integer
| `capital_available_percentage` | **DEPRECATED - [replaced with `tradable_balance_ratio`](configuration.md#Available balance)** This is the percentage of the total capital on exchange in stake currency. <br>As an example if you have 10 ETH available in your wallet on the exchange and this value is 0.5 (which is 50%), then the bot will use a maximum amount of 5 ETH for trading and considers it as available capital. <br>*Defaults to `0.5`.* <br> **Datatype:** Float
| `allowed_risk` | Ratio of allowed risk per trade. <br>*Defaults to `0.01` (1%)).* <br> **Datatype:** Float
| `stoploss_range_min` | Minimum stoploss. <br>*Defaults to `-0.01`.* <br> **Datatype:** Float
| `stoploss_range_max` | Maximum stoploss. <br>*Defaults to `-0.10`.* <br> **Datatype:** Float
| `stoploss_range_step` | As an example if this is set to -0.01 then Edge will test the strategy for `[-0.01, -0,02, -0,03 ..., -0.09, -0.10]` ranges. <br> **Note** than having a smaller step means having a bigger range which could lead to slow calculation. <br> If you set this parameter to -0.001, you then slow down the Edge calculation by a factor of 10. <br>*Defaults to `-0.001`.* <br> **Datatype:** Float
| `minimum_winrate` | It filters out pairs which don't have at least minimum_winrate. <br>This comes handy if you want to be conservative and don't comprise win rate in favour of risk reward ratio. <br>*Defaults to `0.60`.* <br> **Datatype:** Float
| `minimum_expectancy` | It filters out pairs which have the expectancy lower than this number. <br>Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return. <br>*Defaults to `0.20`.* <br> **Datatype:** Float
| `min_trade_number` | When calculating *W*, *R* and *E* (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable. <br>Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something. <br>*Defaults to `10` (it is highly recommended not to decrease this number).* <br> **Datatype:** Integer
| `max_trade_duration_minute` | Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br>**NOTICE:** While configuring this value, you should take into consideration your ticker interval. As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).<br>*Defaults to `1440` (one day).* <br> **Datatype:** Integer
| `remove_pumps` | Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.<br>*Defaults to `false`.* <br> **Datatype:** Boolean
## Running Edge independently
You can run Edge independently in order to see in details the result. Here is an example:
```bash
``` bash
freqtrade edge
```

View File

@@ -5,7 +5,7 @@ This page combines common gotchas and informations which are exchange-specific a
## Binance
!!! Tip "Stoploss on Exchange"
Binance is currently the only exchange supporting `stoploss_on_exchange`. It provides great advantages, so we recommend to benefit from it.
Binance supports `stoploss_on_exchange` and uses stop-loss-limit orders. It provides great advantages, so we recommend to benefit from it.
### Blacklists
@@ -22,6 +22,9 @@ Binance has been split into 3, and users must use the correct ccxt exchange ID f
## Kraken
!!! Tip "Stoploss on Exchange"
Kraken supports `stoploss_on_exchange` and uses stop-loss-market orders. It provides great advantages, so we recommend to benefit from it, however since the resulting order is a stoploss-market order, sell-rates are not guaranteed, which makes this feature less secure than on other exchanges. This limitation is based on kraken's policy [source](https://blog.kraken.com/post/1234/announcement-delisting-pairs-and-temporary-suspension-of-advanced-order-types/) and [source2](https://blog.kraken.com/post/1494/kraken-enables-advanced-orders-and-adds-10-currency-pairs/) - which has stoploss-limit orders disabled.
### Historic Kraken data
The Kraken API does only provide 720 historic candles, which is sufficient for Freqtrade dry-run and live trade modes, but is a problem for backtesting.
@@ -29,6 +32,10 @@ To download data for the Kraken exchange, using `--dl-trades` is mandatory, othe
## Bittrex
### Order types
Bittrex does not support market orders. If you have a message at the bot startup about this, you should change order type values set in your configuration and/or in the strategy from `"market"` to `"limit"`. See some more details on this [here in the FAQ](faq.md#im-getting-the-exchange-bittrex-does-not-support-market-orders-message-and-cannot-run-my-strategy).
### Restricted markets
Bittrex split its exchange into US and International versions.
@@ -61,3 +68,24 @@ print(res)
```shell
$ pip3 install web3
```
### Send incomplete candles to the strategy
Most exchanges return incomplete candles via their ohlcv / klines interface.
By default, Freqtrade assumes that incomplete candles are returned and removes the last candle assuming it's an incomplete candle.
Whether your exchange returns incomplete candles or not can be checked using [the helper script](developer.md#Incomplete-candles) from the Contributor documentation.
If the exchange does return incomplete candles and you would like to have incomplete candles in your strategy, you can set the following parameter in the configuration file.
``` json
{
"exchange": {
"_ft_has_params": {"ohlcv_partial_candle": false}
}
}
```
!!! Warning "Danger of repainting"
Changing this parameter makes the strategy responsible to avoid repainting and handle this accordingly. Doing this is therefore not recommended, and should only be performed by experienced users who are fully aware of the impact this setting has.

View File

@@ -45,12 +45,28 @@ the tutorial [here|Testing-new-strategies-with-Hyperopt](bot-usage.md#hyperopt-c
You can use the `/forcesell all` command from Telegram.
### I get the message "RESTRICTED_MARKET"
### I'm getting the "RESTRICTED_MARKET" message in the log
Currently known to happen for US Bittrex users.
Read [the Bittrex section about restricted markets](exchanges.md#restricted-markets) for more information.
### I'm getting the "Exchange Bittrex does not support market orders." message and cannot run my strategy
As the message says, Bittrex does not support market orders and you have one of the [order types](configuration.md/#understand-order_types) set to "market". Probably your strategy was written with other exchanges in mind and sets "market" orders for "stoploss" orders, which is correct and preferable for most of the exchanges supporting market orders (but not for Bittrex).
To fix it for Bittrex, redefine order types in the strategy to use "limit" instead of "market":
```
order_types = {
...
'stoploss': 'limit',
...
}
```
Same fix should be done in the configuration file, if order types are defined in your custom config rather than in the strategy.
### How do I search the bot logs for something?
By default, the bot writes its log into stderr stream. This is implemented this way so that you can easily separate the bot's diagnostics messages from Backtesting, Edge and Hyperopt results, output from other various Freqtrade utility subcommands, as well as from the output of your custom `print()`'s you may have inserted into your strategy. So if you need to search the log messages with the grep utility, you need to redirect stderr to stdout and disregard stdout.

View File

@@ -6,8 +6,12 @@ algorithms included in the `scikit-optimize` package to accomplish this. The
search will burn all your CPU cores, make your laptop sound like a fighter jet
and still take a long time.
In general, the search for best parameters starts with a few random combinations and then uses Bayesian search with a
ML regressor algorithm (currently ExtraTreesRegressor) to quickly find a combination of parameters in the search hyperspace
that minimizes the value of the [loss function](#loss-functions).
Hyperopt requires historic data to be available, just as backtesting does.
To learn how to get data for the pairs and exchange you're interrested in, head over to the [Data Downloading](data-download.md) section of the documentation.
To learn how to get data for the pairs and exchange you're interested in, head over to the [Data Downloading](data-download.md) section of the documentation.
!!! Bug
Hyperopt can crash when used with only 1 CPU Core as found out in [Issue #1133](https://github.com/freqtrade/freqtrade/issues/1133)
@@ -53,7 +57,7 @@ Rarely you may also need to override:
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything (i.e. without creation of a "complete" Hyperopt class with dimensions, parameters, triggers and guards, as described in this document) from the default hyperopt template by relying on your strategy to do most of the calculations.
``` python
```python
# Have a working strategy at hand.
freqtrade new-hyperopt --hyperopt EmptyHyperopt
@@ -71,8 +75,8 @@ Copy the file `user_data/hyperopts/sample_hyperopt.py` into `user_data/hyperopts
There are two places you need to change in your hyperopt file to add a new buy hyperopt for testing:
- Inside `indicator_space()` - the parameters hyperopt shall be optimizing.
- Inside `populate_buy_trend()` - applying the parameters.
* Inside `indicator_space()` - the parameters hyperopt shall be optimizing.
* Inside `populate_buy_trend()` - applying the parameters.
There you have two different types of indicators: 1. `guards` and 2. `triggers`.
@@ -137,7 +141,7 @@ one we call `trigger` and use it to decide which buy trigger we want to use.
So let's write the buy strategy using these values:
``` python
```python
def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
conditions = []
# GUARDS AND TRENDS
@@ -170,10 +174,6 @@ with different value combinations. It will then use the given historical data an
buys based on the buy signals generated with the above function and based on the results
it will end with telling you which paramter combination produced the best profits.
The search for best parameters starts with a few random combinations and then uses a
regressor algorithm (currently ExtraTreesRegressor) to quickly find a parameter combination
that minimizes the value of the [loss function](#loss-functions).
The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators.
When you want to test an indicator that isn't used by the bot currently, remember to
add it to the `populate_indicators()` method in your custom hyperopt file.
@@ -182,7 +182,7 @@ add it to the `populate_indicators()` method in your custom hyperopt file.
Each hyperparameter tuning requires a target. This is usually defined as a loss function (sometimes also called objective function), which should decrease for more desirable results, and increase for bad results.
By default, FreqTrade uses a loss function, which has been with freqtrade since the beginning and optimizes mostly for short trade duration and avoiding losses.
By default, Freqtrade uses a loss function, which has been with freqtrade since the beginning and optimizes mostly for short trade duration and avoiding losses.
A different loss function can be specified by using the `--hyperopt-loss <Class-name>` argument.
This class should be in its own file within the `user_data/hyperopts/` directory.
@@ -192,6 +192,7 @@ Currently, the following loss functions are builtin:
* `DefaultHyperOptLoss` (default legacy Freqtrade hyperoptimization loss function)
* `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration)
* `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns)
* `SharpeHyperOptLossDaily` (optimizes Sharpe Ratio calculated on daily trade returns)
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
@@ -206,7 +207,7 @@ We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
freqtrade hyperopt --config config.json --hyperopt <hyperoptname> -e 5000 --spaces all
```
Use `<hyperoptname>` as the name of the custom hyperopt used.
Use `<hyperoptname>` as the name of the custom hyperopt used.
The `-e` option will set how many evaluations hyperopt will do. We recommend
running at least several thousand evaluations.
@@ -284,6 +285,16 @@ number).
You can also enable position stacking in the configuration file by explicitly setting
`"position_stacking"=true`.
### Reproducible results
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with a leading asterisk sign at the Hyperopt output.
The initial state for generation of these random values (random state) is controlled by the value of the `--random-state` command line option. You can set it to some arbitrary value of your choice to obtain reproducible results.
If you have not set this value explicitly in the command line options, Hyperopt seeds the random state with some random value for you. The random state value for each Hyperopt run is shown in the log, so you can copy and paste it into the `--random-state` command line option to repeat the set of the initial random epochs used.
If you have not changed anything in the command line options, configuration, timerange, Strategy and Hyperopt classes, historical data and the Loss Function -- you should obtain same hyperoptimization results with same random state value used.
## Understand the Hyperopt Result
Once Hyperopt is completed you can use the result to create a new strategy.
@@ -313,7 +324,7 @@ method, what those values match to.
So for example you had `rsi-value: 29.0` so we would look at `rsi`-block, that translates to the following code block:
``` python
```python
(dataframe['rsi'] < 29.0)
```
@@ -362,18 +373,19 @@ In order to use this best ROI table found by Hyperopt in backtesting and for liv
118: 0
}
```
As stated in the comment, you can also use it as the value of the `minimal_roi` setting in the configuration file.
#### Default ROI Search Space
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the ticker_interval used. By default the values vary in the following ranges (for some of the most used ticker intervals, values are rounded to 5 digits after the decimal point):
| # step | 1m | | 5m | | 1h | | 1d | |
|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0.01161...0.11992 | 0 | 0.03...0.31 | 0 | 0.06883...0.71124 | 0 | 0.12178...1.25835 |
| 2 | 2...8 | 0.00774...0.04255 | 10...40 | 0.02...0.11 | 120...480 | 0.04589...0.25238 | 2880...11520 | 0.08118...0.44651 |
| 3 | 4...20 | 0.00387...0.01547 | 20...100 | 0.01...0.04 | 240...1200 | 0.02294...0.09177 | 5760...28800 | 0.04059...0.16237 |
| 4 | 6...44 | 0.0 | 30...220 | 0.0 | 360...2640 | 0.0 | 8640...63360 | 0.0 |
| # step | 1m | | 5m | | 1h | | 1d | |
| ------ | ------ | ----------------- | -------- | ----------- | ---------- | ----------------- | ------------ | ----------------- |
| 1 | 0 | 0.01161...0.11992 | 0 | 0.03...0.31 | 0 | 0.06883...0.71124 | 0 | 0.12178...1.25835 |
| 2 | 2...8 | 0.00774...0.04255 | 10...40 | 0.02...0.11 | 120...480 | 0.04589...0.25238 | 2880...11520 | 0.08118...0.44651 |
| 3 | 4...20 | 0.00387...0.01547 | 20...100 | 0.01...0.04 | 240...1200 | 0.02294...0.09177 | 5760...28800 | 0.04059...0.16237 |
| 4 | 6...44 | 0.0 | 30...220 | 0.0 | 360...2640 | 0.0 | 8640...63360 | 0.0 |
These ranges should be sufficient in most cases. The minutes in the steps (ROI dict keys) are scaled linearly depending on the ticker interval used. The ROI values in the steps (ROI dict values) are scaled logarithmically depending on the ticker interval used.
@@ -406,6 +418,7 @@ In order to use this best stoploss value found by Hyperopt in backtesting and fo
# This attribute will be overridden if the config file contains "stoploss"
stoploss = -0.27996
```
As stated in the comment, you can also use it as the value of the `stoploss` setting in the configuration file.
#### Default Stoploss Search Space
@@ -442,6 +455,7 @@ In order to use these best trailing stop parameters found by Hyperopt in backtes
trailing_stop_positive_offset = 0.06038
trailing_only_offset_is_reached = True
```
As stated in the comment, you can also use it as the values of the corresponding settings in the configuration file.
#### Default Trailing Stop Search Space

View File

@@ -1,5 +1,5 @@
# Freqtrade
[![Build Status](https://travis-ci.org/freqtrade/freqtrade.svg?branch=develop)](https://travis-ci.org/freqtrade/freqtrade)
[![Freqtrade CI](https://github.com/freqtrade/freqtrade/workflows/Freqtrade%20CI/badge.svg)](https://github.com/freqtrade/freqtrade/actions/)
[![Coverage Status](https://coveralls.io/repos/github/freqtrade/freqtrade/badge.svg?branch=develop&service=github)](https://coveralls.io/github/freqtrade/freqtrade?branch=develop)
[![Maintainability](https://api.codeclimate.com/v1/badges/5737e6d668200b7518ff/maintainability)](https://codeclimate.com/github/freqtrade/freqtrade/maintainability)
@@ -11,8 +11,10 @@
<a class="github-button" href="https://github.com/freqtrade/freqtrade/archive/master.zip" data-icon="octicon-cloud-download" data-size="large" aria-label="Download freqtrade/freqtrade on GitHub">Download</a>
<!-- Place this tag where you want the button to render. -->
<a class="github-button" href="https://github.com/freqtrade" data-size="large" aria-label="Follow @freqtrade on GitHub">Follow @freqtrade</a>
## Introduction
Freqtrade is a cryptocurrency trading bot written in Python.
Freqtrade is a crypto-currency algorithmic trading software developed in python (3.6+) and supported on Windows, macOS and Linux.
!!! Danger "DISCLAIMER"
This software is for educational purposes only. Do not risk money which you are afraid to lose. USE THE SOFTWARE AT YOUR OWN RISK. THE AUTHORS AND ALL AFFILIATES ASSUME NO RESPONSIBILITY FOR YOUR TRADING RESULTS.
@@ -23,18 +25,15 @@ Freqtrade is a cryptocurrency trading bot written in Python.
## Features
- Based on Python 3.6+: For botting on any operating system — Windows, macOS and Linux.
- Persistence: Persistence is achieved through sqlite database.
- Dry-run mode: Run the bot without playing money.
- Backtesting: Run a simulation of your buy/sell strategy with historical data.
- Strategy Optimization by machine learning: Use machine learning to optimize your buy/sell strategy parameters with real exchange data.
- Edge position sizing: Calculate your win rate, risk reward ratio, the best stoploss and adjust your position size before taking a position for each specific market.
- Whitelist crypto-currencies: Select which crypto-currency you want to trade or use dynamic whitelists based on market (pair) trade volume.
- Blacklist crypto-currencies: Select which crypto-currency you want to avoid.
- Manageable via Telegram or REST APi: Manage the bot with Telegram or via the builtin REST API.
- Display profit/loss in fiat: Display your profit/loss in any of 33 fiat currencies supported.
- Daily summary of profit/loss: Receive the daily summary of your profit/loss.
- Performance status report: Receive the performance status of your current trades.
- Develop your Strategy: Write your strategy in python, using [pandas](https://pandas.pydata.org/). Example strategies to inspire you are available in the [strategy repository](https://github.com/freqtrade/freqtrade-strategies).
- Download market data: Download historical data of the exchange and the markets your may want to trade with.
- Backtest: Test your strategy on downloaded historical data.
- Optimize: Find the best parameters for your strategy using hyperoptimization which employs machining learning methods. You can optimize buy, sell, take profit (ROI), stop-loss and trailing stop-loss parameters for your strategy.
- Select markets: Create your static list or use an automatic one based on top traded volumes and/or prices (not available during backtesting). You can also explicitly blacklist markets you don't want to trade.
- Run: Test your strategy with simulated money (Dry-Run mode) or deploy it with real money (Live-Trade mode).
- Run using Edge (optional module): The concept is to find the best historical [trade expectancy](edge.md#expectancy) by markets based on variation of the stop-loss and then allow/reject markets to trade. The sizing of the trade is based on a risk of a percentage of your capital.
- Control/Monitor: Use Telegram or a REST API (start/stop the bot, show profit/loss, daily summary, current open trades results, etc.).
- Analyse: Further analysis can be performed on either Backtesting data or Freqtrade trading history (SQL database), including automated standard plots, and methods to load the data into [interactive environments](data-analysis.md).
## Requirements
@@ -52,20 +51,23 @@ To run this bot we recommend you a cloud instance with a minimum of:
### Software requirements
- Docker (Recommended)
Alternatively
- Python 3.6.x
- pip (pip3)
- git
- TA-Lib
- virtualenv (Recommended)
- Docker (Recommended)
## Support
Help / Slack
For any questions not covered by the documentation or for further information about the bot, we encourage you to join our Slack channel.
### Help / Slack
For any questions not covered by the documentation or for further information about the bot, we encourage you to join our passionate Slack community.
Click [here](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LTU1MTgxMjkzNmYxNWE1MDEzYzQ3YmU4N2MwZjUyNjJjODRkMDVkNjg4YTAyZGYzYzlhOTZiMTE4ZjQ4YzM0OGE) to join Slack channel.
Click [here](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LTU1MTgxMjkzNmYxNWE1MDEzYzQ3YmU4N2MwZjUyNjJjODRkMDVkNjg4YTAyZGYzYzlhOTZiMTE4ZjQ4YzM0OGE) to join the Freqtrade Slack channel.
## Ready to try?
Begin by reading our installation guide [here](installation).
Begin by reading our installation guide [for docker](docker.md), or for [installation without docker](installation.md).

View File

@@ -2,6 +2,8 @@
This page explains how to prepare your environment for running the bot.
Please consider using the prebuilt [docker images](docker.md) to get started quickly while trying out freqtrade evaluating how it operates.
## Prerequisite
### Requirements
@@ -14,15 +16,7 @@ Click each one for install guide:
* [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended)
* [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html) (install instructions below)
### API keys
Before running your bot in production you will need to setup few
external API. In production mode, the bot will require valid Exchange API
credentials. We also recommend a [Telegram bot](telegram-usage.md#setup-your-telegram-bot) (optional but recommended).
### Setup your exchange account
You will need to create API Keys (Usually you get `key` and `secret`) from the Exchange website and insert this into the appropriate fields in the configuration or when asked by the installation script.
We also recommend a [Telegram bot](telegram-usage.md#setup-your-telegram-bot), which is optional but recommended.
## Quick start
@@ -31,7 +25,7 @@ Freqtrade provides the Linux/MacOS Easy Installation script to install all depen
!!! Note
Windows installation is explained [here](#windows).
The easiest way to install and run Freqtrade is to clone the bot GitHub repository and then run the Easy Installation script, if it's available for your platform.
The easiest way to install and run Freqtrade is to clone the bot Github repository and then run the Easy Installation script, if it's available for your platform.
!!! Note "Version considerations"
When cloning the repository the default working branch has the name `develop`. This branch contains all last features (can be considered as relatively stable, thanks to automated tests). The `master` branch contains the code of the last release (done usually once per month on an approximately one week old snapshot of the `develop` branch to prevent packaging bugs, so potentially it's more stable).
@@ -42,11 +36,12 @@ The easiest way to install and run Freqtrade is to clone the bot GitHub reposito
This can be achieved with the following commands:
```bash
git clone git@github.com:freqtrade/freqtrade.git
git clone https://github.com/freqtrade/freqtrade.git
cd freqtrade
git checkout master # Optional, see (1)
./setup.sh --install
```
(1) This command switches the cloned repository to the use of the `master` branch. It's not needed if you wish to stay on the `develop` branch. You may later switch between branches at any time with the `git checkout master`/`git checkout develop` commands.
## Easy Installation Script (Linux/MacOS)
@@ -64,11 +59,11 @@ usage:
** --install **
With this option, the script will install everything you need to run the bot:
With this option, the script will install the bot and most dependencies:
You will need to have git and python3.6+ installed beforehand for this to work.
* Mandatory software as: `ta-lib`
* Setup your virtualenv
* Configure your `config.json` file
* Setup your virtualenv under `.env/`
This option is a combination of installation tasks, `--reset` and `--config`.
@@ -82,7 +77,7 @@ This option will hard reset your branch (only if you are on either `master` or `
** --config **
Use this option to configure the `config.json` configuration file. The script will interactively ask you questions to setup your bot and create your `config.json`.
DEPRECATED - use `freqtrade new-config -c config.json` instead.
------
@@ -129,6 +124,17 @@ bash setup.sh -i
#### 1. Install TA-Lib
Use the provided ta-lib installation script
```bash
sudo ./build_helpers/install_ta-lib.sh
```
!!! Note
This will use the ta-lib tar.gz included in this repository.
##### TA-Lib manual installation
Official webpage: https://mrjbq7.github.io/ta-lib/install.html
```bash
@@ -184,7 +190,8 @@ python3 -m pip install -e .
# Initialize the user_directory
freqtrade create-userdir --userdir user_data/
cp config.json.example config.json
# Create a new configuration file
freqtrade new-config --config config.json
```
> *To edit the config please refer to [Bot Configuration](configuration.md).*
@@ -270,3 +277,18 @@ The easiest way is to download install Microsoft Visual Studio Community [here](
Now you have an environment ready, the next step is
[Bot Configuration](configuration.md).
## Troubleshooting
### MacOS installation error
Newer versions of MacOS may have installation failed with errors like `error: command 'g++' failed with exit status 1`.
This error will require explicit installation of the SDK Headers, which are not installed by default in this version of MacOS.
For MacOS 10.14, this can be accomplished with the below command.
``` bash
open /Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_for_macOS_10.14.pkg
```
If this file is inexistant, then you're probably on a different version of MacOS, so you may need to consult the internet for specific resolution details.

View File

@@ -23,58 +23,43 @@ The `freqtrade plot-dataframe` subcommand shows an interactive graph with three
Possible arguments:
```
usage: freqtrade plot-dataframe [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [-s NAME]
[--strategy-path PATH] [-p PAIRS [PAIRS ...]]
[--indicators1 INDICATORS1 [INDICATORS1 ...]]
[--indicators2 INDICATORS2 [INDICATORS2 ...]]
[--plot-limit INT] [--db-url PATH]
[--trade-source {DB,file}] [--export EXPORT]
[--export-filename PATH]
[--timerange TIMERANGE] [-i TICKER_INTERVAL]
usage: freqtrade plot-dataframe [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [-s NAME]
[--strategy-path PATH] [-p PAIRS [PAIRS ...]] [--indicators1 INDICATORS1 [INDICATORS1 ...]]
[--indicators2 INDICATORS2 [INDICATORS2 ...]] [--plot-limit INT] [--db-url PATH]
[--trade-source {DB,file}] [--export EXPORT] [--export-filename PATH] [--timerange TIMERANGE]
[-i TICKER_INTERVAL]
optional arguments:
-h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space-
separated.
Show profits for only these pairs. Pairs are space-separated.
--indicators1 INDICATORS1 [INDICATORS1 ...]
Set indicators from your strategy you want in the
first row of the graph. Space-separated list. Example:
Set indicators from your strategy you want in the first row of the graph. Space-separated list. Example:
`ema3 ema5`. Default: `['sma', 'ema3', 'ema5']`.
--indicators2 INDICATORS2 [INDICATORS2 ...]
Set indicators from your strategy you want in the
third row of the graph. Space-separated list. Example:
Set indicators from your strategy you want in the third row of the graph. Space-separated list. Example:
`fastd fastk`. Default: `['macd', 'macdsignal']`.
--plot-limit INT Specify tick limit for plotting. Notice: too high
values cause huge files. Default: 750.
--db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite://` for Dry Run).
--plot-limit INT Specify tick limit for plotting. Notice: too high values cause huge files. Default: 750.
--db-url PATH Override trades database URL, this is useful in custom deployments (default: `sqlite:///tradesv3.sqlite`
for Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for Dry Run).
--trade-source {DB,file}
Specify the source for trades (Can be DB or file
(backtest file)) Default: file
--export EXPORT Export backtest results, argument are: trades.
Example: `--export=trades`
Specify the source for trades (Can be DB or file (backtest file)) Default: file
--export EXPORT Export backtest results, argument are: trades. Example: `--export=trades`
--export-filename PATH
Save backtest results to the file with this filename
(default: `user_data/backtest_results/backtest-
result.json`). Requires `--export` to be set as well.
Example: `--export-filename=user_data/backtest_results
/backtest_today.json`
Save backtest results to the file with this filename. Requires `--export` to be set as well. Example:
`--export-filename=user_data/backtest_results/backtest_today.json`
--timerange TIMERANGE
Specify what timerange of data to use.
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
`1d`).
Specify ticker interval (`1m`, `5m`, `30m`, `1h`, `1d`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified.
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
@@ -83,8 +68,7 @@ Common arguments:
Strategy arguments:
-s NAME, --strategy NAME
Specify strategy class name (default:
`DefaultStrategy`).
Specify strategy class name which will be used by the bot.
--strategy-path PATH Specify additional strategy lookup path.
```
@@ -136,16 +120,77 @@ To plot trades from a backtesting result, use `--export-filename <filename>`
freqtrade plot-dataframe --strategy AwesomeStrategy --export-filename user_data/backtest_results/backtest-result.json -p BTC/ETH
```
### Plot dataframe basics
![plot-dataframe2](assets/plot-dataframe2.png)
The `plot-dataframe` subcommand requires backtesting data, a strategy and either a backtesting-results file or a database, containing trades corresponding to the strategy.
The resulting plot will have the following elements:
* Green triangles: Buy signals from the strategy. (Note: not every buy signal generates a trade, compare to cyan circles.)
* Red triangles: Sell signals from the strategy. (Also, not every sell signal terminates a trade, compare to red and green squares.)
* Cyan circles: Trade entry points.
* Red squares: Trade exit points for trades with loss or 0% profit.
* Green squares: Trade exit points for profitable trades.
* Indicators with values corresponding to the candle scale (e.g. SMA/EMA), as specified with `--indicators1`.
* Volume (bar chart at the bottom of the main chart).
* Indicators with values in different scales (e.g. MACD, RSI) below the volume bars, as specified with `--indicators2`.
!!! Note "Bollinger Bands"
Bollinger bands are automatically added to the plot if the columns `bb_lowerband` and `bb_upperband` exist, and are painted as a light blue area spanning from the lower band to the upper band.
#### Advanced plot configuration
An advanced plot configuration can be specified in the strategy in the `plot_config` parameter.
Additional features when using plot_config include:
* Specify colors per indicator
* Specify additional subplots
The sample plot configuration below specifies fixed colors for the indicators. Otherwise consecutive plots may produce different colorschemes each time, making comparisons difficult.
It also allows multiple subplots to display both MACD and RSI at the same time.
Sample configuration with inline comments explaining the process:
``` python
plot_config = {
'main_plot': {
# Configuration for main plot indicators.
# Specifies `ema10` to be red, and `ema50` to be a shade of gray
'ema10': {'color': 'red'},
'ema50': {'color': '#CCCCCC'},
# By omitting color, a random color is selected.
'sar': {},
},
'subplots': {
# Create subplot MACD
"MACD": {
'macd': {'color': 'blue'},
'macdsignal': {'color': 'orange'},
},
# Additional subplot RSI
"RSI": {
'rsi': {'color': 'red'},
}
}
}
```
!!! Note
The above configuration assumes that `ema10`, `ema50`, `macd`, `macdsignal` and `rsi` are columns in the DataFrame created by the strategy.
## Plot profit
![plot-profit](assets/plot-profit.png)
The `freqtrade plot-profit` subcommand shows an interactive graph with three plots:
The `plot-profit` subcommand shows an interactive graph with three plots:
1) Average closing price for all pairs
2) The summarized profit made by backtesting.
Note that this is not the real-world profit, but more of an estimate.
3) Profit for each individual pair
* Average closing price for all pairs.
* The summarized profit made by backtesting.
Note that this is not the real-world profit, but more of an estimate.
* Profit for each individual pair.
The first graph is good to get a grip of how the overall market progresses.
@@ -173,14 +218,14 @@ optional arguments:
--export EXPORT Export backtest results, argument are: trades.
Example: `--export=trades`
--export-filename PATH
Save backtest results to the file with this filename
(default: `user_data/backtest_results/backtest-
result.json`). Requires `--export` to be set as well.
Example: `--export-filename=user_data/backtest_results
/backtest_today.json`
Save backtest results to the file with this filename.
Requires `--export` to be set as well. Example:
`--export-filename=user_data/backtest_results/backtest
_today.json`
--db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite://` for Dry Run).
Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for
Dry Run).
--trade-source {DB,file}
Specify the source for trades (Can be DB or file
(backtest file)) Default: file
@@ -190,7 +235,9 @@ optional arguments:
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified.
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).

View File

@@ -1,2 +1,2 @@
mkdocs-material==4.5.1
mkdocs-material==4.6.3
mdx_truly_sane_lists==1.2

View File

@@ -74,7 +74,7 @@ docker run -d \
## Consuming the API
You can consume the API by using the script `scripts/rest_client.py`.
The client script only requires the `requests` module, so FreqTrade does not need to be installed on the system.
The client script only requires the `requests` module, so Freqtrade does not need to be installed on the system.
``` bash
python3 scripts/rest_client.py <command> [optional parameters]

View File

@@ -27,7 +27,7 @@ So this parameter will tell the bot how often it should update the stoploss orde
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
!!! Note
Stoploss on exchange is only supported for Binance as of now.
Stoploss on exchange is only supported for Binance (stop-loss-limit) and Kraken (stop-loss-market) as of now.
## Static Stop Loss

View File

@@ -346,7 +346,7 @@ if self.dp:
``` python
if self.dp:
if self.dp.runmode in ('live', 'dry_run'):
if self.dp.runmode.value in ('live', 'dry_run'):
ob = self.dp.orderbook(metadata['pair'], 1)
dataframe['best_bid'] = ob['bids'][0][0]
dataframe['best_ask'] = ob['asks'][0][0]
@@ -422,7 +422,7 @@ from freqtrade.persistence import Trade
The following example queries for the current pair and trades from today, however other filters can easily be added.
``` python
if self.config['runmode'] in ('live', 'dry_run'):
if self.config['runmode'].value in ('live', 'dry_run'):
trades = Trade.get_trades([Trade.pair == metadata['pair'],
Trade.open_date > datetime.utcnow() - timedelta(days=1),
Trade.is_open == False,
@@ -434,7 +434,7 @@ if self.config['runmode'] in ('live', 'dry_run'):
Get amount of stake_currency currently invested in Trades:
``` python
if self.config['runmode'] in ('live', 'dry_run'):
if self.config['runmode'].value in ('live', 'dry_run'):
total_stakes = Trade.total_open_trades_stakes()
```
@@ -442,7 +442,7 @@ Retrieve performance per pair.
Returns a List of dicts per pair.
``` python
if self.config['runmode'] in ('live', 'dry_run'):
if self.config['runmode'].value in ('live', 'dry_run'):
performance = Trade.get_overall_performance()
```
@@ -455,6 +455,51 @@ Sample return value: ETH/BTC had 5 trades, with a total profit of 1.5% (ratio of
!!! Warning
Trade history is not available during backtesting or hyperopt.
### Prevent trades from happening for a specific pair
Freqtrade locks pairs automatically for the current candle (until that candle is over) when a pair is sold, preventing an immediate re-buy of that pair.
Locked pairs will show the message `Pair <pair> is currently locked.`.
#### Locking pairs from within the strategy
Sometimes it may be desired to lock a pair after certain events happen (e.g. multiple losing trades in a row).
Freqtrade has an easy method to do this from within the strategy, by calling `self.lock_pair(pair, until)`.
`until` must be a datetime object in the future, after which trading will be reenabled for that pair.
Locks can also be lifted manually, by calling `self.unlock_pair(pair)`.
To verify if a pair is currently locked, use `self.is_pair_locked(pair)`.
!!! Note
Locked pairs are not persisted, so a restart of the bot, or calling `/reload_conf` will reset locked pairs.
!!! Warning
Locking pairs is not functioning during backtesting.
##### Pair locking example
``` python
from freqtrade.persistence import Trade
from datetime import timedelta, datetime, timezone
# Put the above lines a the top of the strategy file, next to all the other imports
# --------
# Within populate indicators (or populate_buy):
if self.config['runmode'].value in ('live', 'dry_run'):
# fetch closed trades for the last 2 days
trades = Trade.get_trades([Trade.pair == metadata['pair'],
Trade.open_date > datetime.utcnow() - timedelta(days=2),
Trade.is_open == False,
]).all()
# Analyze the conditions you'd like to lock the pair .... will probably be different for every strategy
sumprofit = sum(trade.close_profit for trade in trades)
if sumprofit < 0:
# Lock pair for 12 hours
self.lock_pair(metadata['pair'], until=datetime.now(timezone.utc) + timedelta(hours=12))
```
### Print created dataframe
To inspect the created dataframe, you can issue a print-statement in either `populate_buy_trend()` or `populate_sell_trend()`.
@@ -479,11 +524,6 @@ def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
Printing more than a few rows is also possible (simply use `print(dataframe)` instead of `print(dataframe.tail())`), however not recommended, as that will be very verbose (~500 lines per pair every 5 seconds).
### Where can i find a strategy template?
The strategy template is located in the file
[user_data/strategies/sample_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_strategy.py).
### Specify custom strategy location
If you want to use a strategy from a different directory you can pass `--strategy-path`
@@ -492,6 +532,27 @@ If you want to use a strategy from a different directory you can pass `--strateg
freqtrade trade --strategy AwesomeStrategy --strategy-path /some/directory
```
### Derived strategies
The strategies can be derived from other strategies. This avoids duplication of your custom strategy code. You can use this technique to override small parts of your main strategy, leaving the rest untouched:
``` python
class MyAwesomeStrategy(IStrategy):
...
stoploss = 0.13
trailing_stop = False
# All other attributes and methods are here as they
# should be in any custom strategy...
...
class MyAwesomeStrategy2(MyAwesomeStrategy):
# Override something
stoploss = 0.08
trailing_stop = True
```
Both attributes and methods may be overriden, altering behavior of the original strategy in a way you need.
### Common mistakes when developing strategies
Backtesting analyzes the whole time-range at once for performance reasons. Because of this, strategy authors need to make sure that strategies do not look-ahead into the future.

View File

@@ -1,24 +1,28 @@
# Strategy analysis example
Debugging a strategy can be time-consuming. FreqTrade offers helper functions to visualize raw data.
Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.
The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.
## Setup
```python
from pathlib import Path
from freqtrade.configuration import Configuration
# Customize these according to your needs.
# Initialize empty configuration object
config = Configuration.from_files([])
# Optionally, use existing configuration file
# config = Configuration.from_files(["config.json"])
# Define some constants
timeframe = "5m"
config["ticker_interval"] = "5m"
# Name of the strategy class
strategy_name = 'SampleStrategy'
# Path to user data
user_data_dir = Path('user_data')
# Location of the strategy
strategy_location = user_data_dir / 'strategies'
config["strategy"] = "SampleStrategy"
# Location of the data
data_location = Path(user_data_dir, 'data', 'binance')
data_location = Path(config['user_data_dir'], 'data', 'binance')
# Pair to analyze - Only use one pair here
pair = "BTC_USDT"
```
@@ -29,7 +33,7 @@ pair = "BTC_USDT"
from freqtrade.data.history import load_pair_history
candles = load_pair_history(datadir=data_location,
timeframe=timeframe,
timeframe=config["ticker_interval"],
pair=pair)
# Confirm success
@@ -44,9 +48,7 @@ candles.head()
```python
# Load strategy using values set above
from freqtrade.resolvers import StrategyResolver
strategy = StrategyResolver({'strategy': strategy_name,
'user_data_dir': user_data_dir,
'strategy_path': strategy_location}).strategy
strategy = StrategyResolver.load_strategy(config)
# Generate buy/sell signals using strategy
df = strategy.analyze_ticker(candles, {'pair': pair})
@@ -86,7 +88,7 @@ Analyze a trades dataframe (also used below for plotting)
from freqtrade.data.btanalysis import load_backtest_data
# Load backtest results
trades = load_backtest_data(user_data_dir / "backtest_results/backtest-result.json")
trades = load_backtest_data(config["user_data_dir"] / "backtest_results/backtest-result.json")
# Show value-counts per pair
trades.groupby("pair")["sell_reason"].value_counts()

View File

@@ -55,7 +55,7 @@ official commands. You can ask at any moment for help with `/help`.
| `/reload_conf` | | Reloads the configuration file
| `/show_config` | | Shows part of the current configuration with relevant settings to operation
| `/status` | | Lists all open trades
| `/status table` | | List all open trades in a table format
| `/status table` | | List all open trades in a table format. Pending buy orders are marked with an asterisk (*) Pending sell orders are marked with a double asterisk (**)
| `/count` | | Displays number of trades used and available
| `/profit` | | Display a summary of your profit/loss from close trades and some stats about your performance
| `/forcesell <trade_id>` | | Instantly sells the given trade (Ignoring `minimum_roi`).

View File

@@ -36,6 +36,38 @@ optional arguments:
└── sample_strategy.py
```
## Create new config
Creates a new configuration file, asking some questions which are important selections for a configuration.
```
usage: freqtrade new-config [-h] [-c PATH]
optional arguments:
-h, --help show this help message and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to `-`
to read config from stdin.
```
!!! Warning
Only vital questions are asked. Freqtrade offers a lot more configuration possibilities, which are listed in the [Configuration documentation](configuration.md#configuration-parameters)
### Create config examples
```
$ freqtrade new-config --config config_binance.json
? Do you want to enable Dry-run (simulated trades)? Yes
? Please insert your stake currency: BTC
? Please insert your stake amount: 0.05
? Please insert max_open_trades (Integer or 'unlimited'): 5
? Please insert your ticker interval: 15m
? Please insert your display Currency (for reporting): USD
? Select exchange binance
? Do you want to enable Telegram? No
```
## Create new strategy
Creates a new strategy from a template similar to SampleStrategy.
@@ -108,6 +140,97 @@ With custom user directory
freqtrade new-hyperopt --userdir ~/.freqtrade/ --hyperopt AwesomeHyperopt
```
## List Strategies and List Hyperopts
Use the `list-strategies` subcommand to see all strategies in one particular directory and the `list-hyperopts` subcommand to list custom Hyperopts.
These subcommands are useful for finding problems in your environment with loading strategies or hyperopt classes: modules with strategies or hyperopt classes that contain errors and failed to load are printed in red (LOAD FAILED), while strategies or hyperopt classes with duplicate names are printed in yellow (DUPLICATE NAME).
```
usage: freqtrade list-strategies [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[--strategy-path PATH] [-1] [--no-color]
optional arguments:
-h, --help show this help message and exit
--strategy-path PATH Specify additional strategy lookup path.
-1, --one-column Print output in one column.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
```
usage: freqtrade list-hyperopts [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH]
[--hyperopt-path PATH] [-1] [--no-color]
optional arguments:
-h, --help show this help message and exit
--hyperopt-path PATH Specify additional lookup path for Hyperopt and
Hyperopt Loss functions.
-1, --one-column Print output in one column.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
!!! Warning
Using these commands will try to load all python files from a directory. This can be a security risk if untrusted files reside in this directory, since all module-level code is executed.
Example: Search default strategies and hyperopts directories (within the default userdir).
``` bash
freqtrade list-strategies
freqtrade list-hyperopts
```
Example: Search strategies and hyperopts directory within the userdir.
``` bash
freqtrade list-strategies --userdir ~/.freqtrade/
freqtrade list-hyperopts --userdir ~/.freqtrade/
```
Example: Search dedicated strategy path.
``` bash
freqtrade list-strategies --strategy-path ~/.freqtrade/strategies/
```
Example: Search dedicated hyperopt path.
``` bash
freqtrade list-hyperopt --hyperopt-path ~/.freqtrade/hyperopts/
```
## List Exchanges
Use the `list-exchanges` subcommand to see the exchanges available for the bot.
@@ -138,20 +261,31 @@ All exchanges supported by the ccxt library: _1btcxe, acx, adara, allcoin, anxpr
Use the `list-timeframes` subcommand to see the list of ticker intervals (timeframes) available for the exchange.
```
usage: freqtrade list-timeframes [-h] [--exchange EXCHANGE] [-1]
usage: freqtrade list-timeframes [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [--exchange EXCHANGE] [-1]
optional arguments:
-h, --help show this help message and exit
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no
config is provided.
-1, --one-column Print output in one column.
-h, --help show this help message and exit
--exchange EXCHANGE Exchange name (default: `bittrex`). Only valid if no config is provided.
-1, --one-column Print output in one column.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to `-`
to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
* Example: see the timeframes for the 'binance' exchange, set in the configuration file:
```
$ freqtrade -c config_binance.json list-timeframes
$ freqtrade list-timeframes -c config_binance.json
...
Timeframes available for the exchange `binance`: 1m, 3m, 5m, 15m, 30m, 1h, 2h, 4h, 6h, 8h, 12h, 1d, 3d, 1w, 1M
```
@@ -175,14 +309,16 @@ You can print info about any pair/market with these subcommands - and you can fi
These subcommands have same usage and same set of available options:
```
usage: freqtrade list-markets [-h] [--exchange EXCHANGE] [--print-list]
[--print-json] [-1] [--print-csv]
usage: freqtrade list-markets [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [--exchange EXCHANGE]
[--print-list] [--print-json] [-1] [--print-csv]
[--base BASE_CURRENCY [BASE_CURRENCY ...]]
[--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]]
[-a]
usage: freqtrade list-pairs [-h] [--exchange EXCHANGE] [--print-list]
[--print-json] [-1] [--print-csv]
usage: freqtrade list-pairs [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [--exchange EXCHANGE]
[--print-list] [--print-json] [-1] [--print-csv]
[--base BASE_CURRENCY [BASE_CURRENCY ...]]
[--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]] [-a]
@@ -201,6 +337,22 @@ optional arguments:
Specify quote currency(-ies). Space-separated list.
-a, --all Print all pairs or market symbols. By default only
active ones are shown.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
By default, only active pairs/markets are shown. Active pairs/markets are those that can currently be traded
@@ -222,7 +374,7 @@ $ freqtrade list-pairs --quote USD --print-json
human-readable list with summary:
```
$ freqtrade -c config_binance.json list-pairs --all --base BTC ETH --quote USDT USD --print-list
$ freqtrade list-pairs -c config_binance.json --all --base BTC ETH --quote USDT USD --print-list
```
* Print all markets on exchange "Kraken", in the tabular format:
@@ -270,17 +422,49 @@ You can list the hyperoptimization epochs the Hyperopt module evaluated previous
```
usage: freqtrade hyperopt-list [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [--best]
[--profitable] [--no-color] [--print-json]
[--no-details]
[--profitable] [--min-trades INT]
[--max-trades INT] [--min-avg-time FLOAT]
[--max-avg-time FLOAT] [--min-avg-profit FLOAT]
[--max-avg-profit FLOAT]
[--min-total-profit FLOAT]
[--max-total-profit FLOAT] [--no-color]
[--print-json] [--no-details]
optional arguments:
-h, --help show this help message and exit
--best Select only best epochs.
--profitable Select only profitable epochs.
--min-trades INT Select epochs with more than INT trades.
--max-trades INT Select epochs with less than INT trades.
--min-avg-time FLOAT Select epochs on above average time.
--max-avg-time FLOAT Select epochs on under average time.
--min-avg-profit FLOAT
Select epochs on above average profit.
--max-avg-profit FLOAT
Select epochs on below average profit.
--min-total-profit FLOAT
Select epochs on above total profit.
--max-total-profit FLOAT
Select epochs on below total profit.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
--print-json Print best result detailization in JSON format.
--no-details Do not print best epoch details.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
### Examples

View File

@@ -15,11 +15,21 @@ Sample configuration (tested using IFTTT).
"value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}"
},
"webhookbuycancel": {
"value1": "Cancelling Open Buy Order for {pair}",
"value2": "limit {limit:8f}",
"value3": "{stake_amount:8f} {stake_currency}"
},
"webhooksell": {
"value1": "Selling {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency}"
},
"webhooksellcancel": {
"value1": "Cancelling Open Sell Order for {pair}",
"value2": "limit {limit:8f}",
"value3": "profit: {profit_amount:8f} {stake_currency}"
},
"webhookstatus": {
"value1": "Status: {status}",
"value2": "",
@@ -40,10 +50,29 @@ Possible parameters are:
* `exchange`
* `pair`
* `limit`
* `amount`
* `open_date`
* `stake_amount`
* `stake_currency`
* `fiat_currency`
* `order_type`
* `current_rate`
### Webhookbuycancel
The fields in `webhook.webhookbuycancel` are filled when the bot cancels a buy order. Parameters are filled using string.format.
Possible parameters are:
* `exchange`
* `pair`
* `limit`
* `amount`
* `open_date`
* `stake_amount`
* `stake_currency`
* `fiat_currency`
* `order_type`
* `current_rate`
### Webhooksell
@@ -63,6 +92,29 @@ Possible parameters are:
* `fiat_currency`
* `sell_reason`
* `order_type`
* `open_date`
* `close_date`
### Webhooksellcancel
The fields in `webhook.webhooksellcancel` are filled when the bot cancels a sell order. Parameters are filled using string.format.
Possible parameters are:
* `exchange`
* `pair`
* `gain`
* `limit`
* `amount`
* `open_rate`
* `current_rate`
* `profit_amount`
* `profit_percent`
* `stake_currency`
* `fiat_currency`
* `sell_reason`
* `order_type`
* `open_date`
* `close_date`
### Webhookstatus

View File

@@ -1,44 +1,27 @@
""" FreqTrade bot """
__version__ = '2019.11'
""" Freqtrade bot """
__version__ = '2020.02'
if __version__ == 'develop':
try:
import subprocess
__version__ = 'develop-' + subprocess.check_output(
['git', 'log', '--format="%h"', '-n 1'],
stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
# from datetime import datetime
# last_release = subprocess.check_output(
# ['git', 'tag']
# ).decode('utf-8').split()[-1].split(".")
# # Releases are in the format "2020.1" - we increment the latest version for dev.
# prefix = f"{last_release[0]}.{int(last_release[1]) + 1}"
# dev_version = int(datetime.now().timestamp() // 1000)
# __version__ = f"{prefix}.dev{dev_version}"
# subprocess.check_output(
# ['git', 'log', '--format="%h"', '-n 1'],
# stderr=subprocess.DEVNULL).decode("utf-8").rstrip().strip('"')
except Exception:
# git not available, ignore
pass
class DependencyException(Exception):
"""
Indicates that an assumed dependency is not met.
This could happen when there is currently not enough money on the account.
"""
class OperationalException(Exception):
"""
Requires manual intervention and will usually stop the bot.
This happens when an exchange returns an unexpected error during runtime
or given configuration is invalid.
"""
class InvalidOrderException(Exception):
"""
This is returned when the order is not valid. Example:
If stoploss on exchange order is hit, then trying to cancel the order
should return this exception.
"""
class TemporaryError(Exception):
"""
Temporary network or exchange related error.
This could happen when an exchange is congested, unavailable, or the user
has networking problems. Usually resolves itself after a time.
"""

View File

@@ -0,0 +1,28 @@
# flake8: noqa: F401
"""
Commands module.
Contains all start-commands, subcommands and CLI Interface creation.
Note: Be careful with file-scoped imports in these subfiles.
as they are parsed on startup, nothing containing optional modules should be loaded.
"""
from freqtrade.commands.arguments import Arguments
from freqtrade.commands.build_config_commands import start_new_config
from freqtrade.commands.data_commands import (start_convert_data,
start_download_data)
from freqtrade.commands.deploy_commands import (start_create_userdir,
start_new_hyperopt,
start_new_strategy)
from freqtrade.commands.hyperopt_commands import (start_hyperopt_list,
start_hyperopt_show)
from freqtrade.commands.list_commands import (start_list_exchanges,
start_list_hyperopts,
start_list_markets,
start_list_strategies,
start_list_timeframes)
from freqtrade.commands.optimize_commands import (start_backtesting,
start_edge, start_hyperopt)
from freqtrade.commands.pairlist_commands import start_test_pairlist
from freqtrade.commands.plot_commands import (start_plot_dataframe,
start_plot_profit)
from freqtrade.commands.trade_commands import start_trading

View File

@@ -6,8 +6,8 @@ from functools import partial
from pathlib import Path
from typing import Any, Dict, List, Optional
from freqtrade import constants
from freqtrade.configuration.cli_options import AVAILABLE_CLI_OPTIONS
from freqtrade.commands.cli_options import AVAILABLE_CLI_OPTIONS
from freqtrade.constants import DEFAULT_CONFIG
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
@@ -30,6 +30,10 @@ ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column", "print_colorized"]
ARGS_LIST_HYPEROPTS = ["hyperopt_path", "print_one_column", "print_colorized"]
ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"]
ARGS_LIST_TIMEFRAMES = ["exchange", "print_one_column"]
@@ -41,12 +45,17 @@ ARGS_TEST_PAIRLIST = ["config", "quote_currencies", "print_one_column", "list_pa
ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]
ARGS_BUILD_CONFIG = ["config"]
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
ARGS_CONVERT_DATA = ["pairs", "format_from", "format_to", "erase"]
ARGS_CONVERT_DATA_OHLCV = ARGS_CONVERT_DATA + ["timeframes"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
"timeframes", "erase"]
"timeframes", "erase", "dataformat_ohlcv", "dataformat_trades"]
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"db_url", "trade_source", "export", "exportfilename",
@@ -55,14 +64,20 @@ ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "ticker_interval"]
ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable", "print_colorized",
"print_json", "hyperopt_list_no_details"]
ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable",
"hyperopt_list_min_trades", "hyperopt_list_max_trades",
"hyperopt_list_min_avg_time", "hyperopt_list_max_avg_time",
"hyperopt_list_min_avg_profit", "hyperopt_list_max_avg_profit",
"hyperopt_list_min_total_profit", "hyperopt_list_max_total_profit",
"print_colorized", "print_json", "hyperopt_list_no_details"]
ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index",
"print_json", "hyperopt_show_no_header"]
NO_CONF_REQURIED = ["download-data", "list-timeframes", "list-markets", "list-pairs",
"hyperopt-list", "hyperopt-show", "plot-dataframe", "plot-profit"]
NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list-timeframes",
"list-markets", "list-pairs", "list-strategies",
"list-hyperopts", "hyperopt-list", "hyperopt-show",
"plot-dataframe", "plot-profit"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
@@ -96,10 +111,23 @@ class Arguments:
# Workaround issue in argparse with action='append' and default value
# (see https://bugs.python.org/issue16399)
# Allow no-config for certain commands (like downloading / plotting)
if ('config' in parsed_arg and parsed_arg.config is None and
((Path.cwd() / constants.DEFAULT_CONFIG).is_file() or
not ('command' in parsed_arg and parsed_arg.command in NO_CONF_REQURIED))):
parsed_arg.config = [constants.DEFAULT_CONFIG]
if ('config' in parsed_arg and parsed_arg.config is None):
conf_required = ('command' in parsed_arg and parsed_arg.command in NO_CONF_REQURIED)
if 'user_data_dir' in parsed_arg and parsed_arg.user_data_dir is not None:
user_dir = parsed_arg.user_data_dir
else:
# Default case
user_dir = 'user_data'
# Try loading from "user_data/config.json"
cfgfile = Path(user_dir) / DEFAULT_CONFIG
if cfgfile.is_file():
parsed_arg.config = [str(cfgfile)]
else:
# Else use "config.json".
cfgfile = Path.cwd() / DEFAULT_CONFIG
if cfgfile.is_file() or not conf_required:
parsed_arg.config = [DEFAULT_CONFIG]
return parsed_arg
@@ -127,13 +155,16 @@ class Arguments:
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
self._build_args(optionlist=['version'], parser=self.parser)
from freqtrade.optimize import start_backtesting, start_hyperopt, start_edge
from freqtrade.utils import (start_create_userdir, start_download_data,
start_hyperopt_list, start_hyperopt_show,
start_list_exchanges, start_list_markets,
start_new_hyperopt, start_new_strategy,
start_list_timeframes, start_test_pairlist, start_trading)
from freqtrade.plot.plot_utils import start_plot_dataframe, start_plot_profit
from freqtrade.commands import (start_create_userdir, start_convert_data,
start_download_data,
start_hyperopt_list, start_hyperopt_show,
start_list_exchanges, start_list_hyperopts,
start_list_markets, start_list_strategies,
start_list_timeframes, start_new_config,
start_new_hyperopt, start_new_strategy,
start_plot_dataframe, start_plot_profit,
start_backtesting, start_hyperopt, start_edge,
start_test_pairlist, start_trading)
subparsers = self.parser.add_subparsers(dest='command',
# Use custom message when no subhandler is added
@@ -173,6 +204,12 @@ class Arguments:
create_userdir_cmd.set_defaults(func=start_create_userdir)
self._build_args(optionlist=ARGS_CREATE_USERDIR, parser=create_userdir_cmd)
# add new-config subcommand
build_config_cmd = subparsers.add_parser('new-config',
help="Create new config")
build_config_cmd.set_defaults(func=start_new_config)
self._build_args(optionlist=ARGS_BUILD_CONFIG, parser=build_config_cmd)
# add new-strategy subcommand
build_strategy_cmd = subparsers.add_parser('new-strategy',
help="Create new strategy")
@@ -185,6 +222,24 @@ class Arguments:
build_hyperopt_cmd.set_defaults(func=start_new_hyperopt)
self._build_args(optionlist=ARGS_BUILD_HYPEROPT, parser=build_hyperopt_cmd)
# Add list-strategies subcommand
list_strategies_cmd = subparsers.add_parser(
'list-strategies',
help='Print available strategies.',
parents=[_common_parser],
)
list_strategies_cmd.set_defaults(func=start_list_strategies)
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
# Add list-hyperopts subcommand
list_hyperopts_cmd = subparsers.add_parser(
'list-hyperopts',
help='Print available hyperopt classes.',
parents=[_common_parser],
)
list_hyperopts_cmd.set_defaults(func=start_list_hyperopts)
self._build_args(optionlist=ARGS_LIST_HYPEROPTS, parser=list_hyperopts_cmd)
# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',
@@ -238,6 +293,24 @@ class Arguments:
download_data_cmd.set_defaults(func=start_download_data)
self._build_args(optionlist=ARGS_DOWNLOAD_DATA, parser=download_data_cmd)
# Add convert-data subcommand
convert_data_cmd = subparsers.add_parser(
'convert-data',
help='Convert OHLCV data from one format to another.',
parents=[_common_parser],
)
convert_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=True))
self._build_args(optionlist=ARGS_CONVERT_DATA_OHLCV, parser=convert_data_cmd)
# Add convert-trade-data subcommand
convert_trade_data_cmd = subparsers.add_parser(
'convert-trade-data',
help='Convert trade-data from one format to another.',
parents=[_common_parser],
)
convert_trade_data_cmd.set_defaults(func=partial(start_convert_data, ohlcv=False))
self._build_args(optionlist=ARGS_CONVERT_DATA, parser=convert_trade_data_cmd)
# Add Plotting subcommand
plot_dataframe_cmd = subparsers.add_parser(
'plot-dataframe',

View File

@@ -0,0 +1,193 @@
import logging
from pathlib import Path
from typing import Any, Dict
from questionary import Separator, prompt
from freqtrade.constants import UNLIMITED_STAKE_AMOUNT
from freqtrade.exchange import available_exchanges, MAP_EXCHANGE_CHILDCLASS
from freqtrade.misc import render_template
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
def validate_is_int(val):
try:
_ = int(val)
return True
except Exception:
return False
def validate_is_float(val):
try:
_ = float(val)
return True
except Exception:
return False
def ask_user_overwrite(config_path: Path) -> bool:
questions = [
{
"type": "confirm",
"name": "overwrite",
"message": f"File {config_path} already exists. Overwrite?",
"default": False,
},
]
answers = prompt(questions)
return answers['overwrite']
def ask_user_config() -> Dict[str, Any]:
"""
Ask user a few questions to build the configuration.
Interactive questions built using https://github.com/tmbo/questionary
:returns: Dict with keys to put into template
"""
questions = [
{
"type": "confirm",
"name": "dry_run",
"message": "Do you want to enable Dry-run (simulated trades)?",
"default": True,
},
{
"type": "text",
"name": "stake_currency",
"message": "Please insert your stake currency:",
"default": 'BTC',
},
{
"type": "text",
"name": "stake_amount",
"message": "Please insert your stake amount:",
"default": "0.01",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_float(val),
},
{
"type": "text",
"name": "max_open_trades",
"message": f"Please insert max_open_trades (Integer or '{UNLIMITED_STAKE_AMOUNT}'):",
"default": "3",
"validate": lambda val: val == UNLIMITED_STAKE_AMOUNT or validate_is_int(val)
},
{
"type": "text",
"name": "ticker_interval",
"message": "Please insert your ticker interval:",
"default": "5m",
},
{
"type": "text",
"name": "fiat_display_currency",
"message": "Please insert your display Currency (for reporting):",
"default": 'USD',
},
{
"type": "select",
"name": "exchange_name",
"message": "Select exchange",
"choices": [
"binance",
"binanceje",
"binanceus",
"bittrex",
"kraken",
Separator(),
"other",
],
},
{
"type": "autocomplete",
"name": "exchange_name",
"message": "Type your exchange name (Must be supported by ccxt)",
"choices": available_exchanges(),
"when": lambda x: x["exchange_name"] == 'other'
},
{
"type": "password",
"name": "exchange_key",
"message": "Insert Exchange Key",
"when": lambda x: not x['dry_run']
},
{
"type": "password",
"name": "exchange_secret",
"message": "Insert Exchange Secret",
"when": lambda x: not x['dry_run']
},
{
"type": "confirm",
"name": "telegram",
"message": "Do you want to enable Telegram?",
"default": False,
},
{
"type": "password",
"name": "telegram_token",
"message": "Insert Telegram token",
"when": lambda x: x['telegram']
},
{
"type": "text",
"name": "telegram_chat_id",
"message": "Insert Telegram chat id",
"when": lambda x: x['telegram']
},
]
answers = prompt(questions)
if not answers:
# Interrupted questionary sessions return an empty dict.
raise OperationalException("User interrupted interactive questions.")
return answers
def deploy_new_config(config_path: Path, selections: Dict[str, Any]) -> None:
"""
Applies selections to the template and writes the result to config_path
:param config_path: Path object for new config file. Should not exist yet
:param selecions: Dict containing selections taken by the user.
"""
from jinja2.exceptions import TemplateNotFound
try:
exchange_template = MAP_EXCHANGE_CHILDCLASS.get(
selections['exchange_name'], selections['exchange_name'])
selections['exchange'] = render_template(
templatefile=f"subtemplates/exchange_{exchange_template}.j2",
arguments=selections
)
except TemplateNotFound:
selections['exchange'] = render_template(
templatefile=f"subtemplates/exchange_generic.j2",
arguments=selections
)
config_text = render_template(templatefile='base_config.json.j2',
arguments=selections)
logger.info(f"Writing config to `{config_path}`.")
config_path.write_text(config_text)
def start_new_config(args: Dict[str, Any]) -> None:
"""
Create a new strategy from a template
Asking the user questions to fill out the templateaccordingly.
"""
config_path = Path(args['config'][0])
if config_path.exists():
overwrite = ask_user_overwrite(config_path)
if overwrite:
config_path.unlink()
else:
raise OperationalException(
f"Configuration file `{config_path}` already exists. "
"Please delete it or use a different configuration file name.")
selections = ask_user_config()
deploy_new_config(config_path, selections)

View File

@@ -1,7 +1,7 @@
"""
Definition of cli arguments used in arguments.py
"""
import argparse
from argparse import ArgumentTypeError
from freqtrade import __version__, constants
@@ -12,7 +12,7 @@ def check_int_positive(value: str) -> int:
if uint <= 0:
raise ValueError
except ValueError:
raise argparse.ArgumentTypeError(
raise ArgumentTypeError(
f"{value} is invalid for this parameter, should be a positive integer value"
)
return uint
@@ -24,7 +24,7 @@ def check_int_nonzero(value: str) -> int:
if uint == 0:
raise ValueError
except ValueError:
raise argparse.ArgumentTypeError(
raise ArgumentTypeError(
f"{value} is invalid for this parameter, should be a non-zero integer value"
)
return uint
@@ -59,7 +59,8 @@ AVAILABLE_CLI_OPTIONS = {
),
"config": Arg(
'-c', '--config',
help=f'Specify configuration file (default: `{constants.DEFAULT_CONFIG}`). '
help=f'Specify configuration file (default: `userdir/{constants.DEFAULT_CONFIG}` '
f'or `config.json` whichever exists). '
f'Multiple --config options may be used. '
f'Can be set to `-` to read config from stdin.',
action='append',
@@ -118,14 +119,14 @@ AVAILABLE_CLI_OPTIONS = {
help='Specify what timerange of data to use.',
),
"max_open_trades": Arg(
'--max_open_trades',
help='Specify max_open_trades to use.',
'--max-open-trades',
help='Override the value of the `max_open_trades` configuration setting.',
type=int,
metavar='INT',
),
"stake_amount": Arg(
'--stake_amount',
help='Specify stake_amount.',
'--stake-amount',
help='Override the value of the `stake_amount` configuration setting.',
type=float,
),
# Backtesting
@@ -256,7 +257,7 @@ AVAILABLE_CLI_OPTIONS = {
help='Specify the class name of the hyperopt loss function class (IHyperOptLoss). '
'Different functions can generate completely different results, '
'since the target for optimization is different. Built-in Hyperopt-loss-functions are: '
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss.'
'DefaultHyperOptLoss, OnlyProfitHyperOptLoss, SharpeHyperOptLoss, SharpeHyperOptLossDaily.'
'(default: `%(default)s`).',
metavar='NAME',
default=constants.DEFAULT_HYPEROPT_LOSS,
@@ -332,6 +333,30 @@ AVAILABLE_CLI_OPTIONS = {
'desired timeframe as specified as --timeframes/-t.',
action='store_true',
),
"format_from": Arg(
'--format-from',
help='Source format for data conversion.',
choices=constants.AVAILABLE_DATAHANDLERS,
required=True,
),
"format_to": Arg(
'--format-to',
help='Destination format for data conversion.',
choices=constants.AVAILABLE_DATAHANDLERS,
required=True,
),
"dataformat_ohlcv": Arg(
'--data-format-ohlcv',
help='Storage format for downloaded ohlcv data. (default: `%(default)s`).',
choices=constants.AVAILABLE_DATAHANDLERS,
default='json'
),
"dataformat_trades": Arg(
'--data-format-trades',
help='Storage format for downloaded trades data. (default: `%(default)s`).',
choices=constants.AVAILABLE_DATAHANDLERS,
default='jsongz'
),
"exchange": Arg(
'--exchange',
help=f'Exchange name (default: `{constants.DEFAULT_EXCHANGE}`). '
@@ -363,15 +388,13 @@ AVAILABLE_CLI_OPTIONS = {
"indicators1": Arg(
'--indicators1',
help='Set indicators from your strategy you want in the first row of the graph. '
'Space-separated list. Example: `ema3 ema5`. Default: `%(default)s`.',
default=['sma', 'ema3', 'ema5'],
"Space-separated list. Example: `ema3 ema5`. Default: `['sma', 'ema3', 'ema5']`.",
nargs='+',
),
"indicators2": Arg(
'--indicators2',
help='Set indicators from your strategy you want in the third row of the graph. '
'Space-separated list. Example: `fastd fastk`. Default: `%(default)s`.',
default=['macd', 'macdsignal'],
"Space-separated list. Example: `fastd fastk`. Default: `['macd', 'macdsignal']`.",
nargs='+',
),
"plot_limit": Arg(
@@ -400,6 +423,54 @@ AVAILABLE_CLI_OPTIONS = {
help='Select only best epochs.',
action='store_true',
),
"hyperopt_list_min_trades": Arg(
'--min-trades',
help='Select epochs with more than INT trades.',
type=check_int_positive,
metavar='INT',
),
"hyperopt_list_max_trades": Arg(
'--max-trades',
help='Select epochs with less than INT trades.',
type=check_int_positive,
metavar='INT',
),
"hyperopt_list_min_avg_time": Arg(
'--min-avg-time',
help='Select epochs on above average time.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_avg_time": Arg(
'--max-avg-time',
help='Select epochs on under average time.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_min_avg_profit": Arg(
'--min-avg-profit',
help='Select epochs on above average profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_avg_profit": Arg(
'--max-avg-profit',
help='Select epochs on below average profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_min_total_profit": Arg(
'--min-total-profit',
help='Select epochs on above total profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_max_total_profit": Arg(
'--max-total-profit',
help='Select epochs on below total profit.',
type=float,
metavar='FLOAT',
),
"hyperopt_list_no_details": Arg(
'--no-details',
help='Do not print best epoch details.',

View File

@@ -0,0 +1,90 @@
import logging
import sys
from typing import Any, Dict, List
import arrow
from freqtrade.configuration import TimeRange, setup_utils_configuration
from freqtrade.data.converter import (convert_ohlcv_format,
convert_trades_format)
from freqtrade.data.history import (convert_trades_to_ohlcv,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data)
from freqtrade.exceptions import OperationalException
from freqtrade.resolvers import ExchangeResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def start_download_data(args: Dict[str, Any]) -> None:
"""
Download data (former download_backtest_data.py script)
"""
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
timerange = TimeRange()
if 'days' in config:
time_since = arrow.utcnow().shift(days=-config['days']).strftime("%Y%m%d")
timerange = TimeRange.parse_timerange(f'{time_since}-')
if 'pairs' not in config:
raise OperationalException(
"Downloading data requires a list of pairs. "
"Please check the documentation on how to configure this.")
logger.info(f'About to download pairs: {config["pairs"]}, '
f'intervals: {config["timeframes"]} to {config["datadir"]}')
pairs_not_available: List[str] = []
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
# Manual validations of relevant settings
exchange.validate_pairs(config['pairs'])
for timeframe in config['timeframes']:
exchange.validate_timeframes(timeframe)
try:
if config.get('download_trades'):
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=config["pairs"], datadir=config['datadir'],
timerange=timerange, erase=bool(config.get("erase")),
data_format=config['dataformat_trades'])
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
data_format_ohlcv=config['dataformat_ohlcv'],
data_format_trades=config['dataformat_trades'],
)
else:
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange, erase=bool(config.get("erase")),
data_format=config['dataformat_ohlcv'])
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
finally:
if pairs_not_available:
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}.")
def start_convert_data(args: Dict[str, Any], ohlcv: bool = True) -> None:
"""
Convert data from one format to another
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if ohlcv:
convert_ohlcv_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'])
else:
convert_trades_format(config,
convert_from=args['format_from'], convert_to=args['format_to'],
erase=args['erase'])

View File

@@ -0,0 +1,112 @@
import logging
import sys
from pathlib import Path
from typing import Any, Dict
from freqtrade.configuration import setup_utils_configuration
from freqtrade.configuration.directory_operations import (copy_sample_files,
create_userdata_dir)
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException
from freqtrade.misc import render_template
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def start_create_userdir(args: Dict[str, Any]) -> None:
"""
Create "user_data" directory to contain user data strategies, hyperopt, ...)
:param args: Cli args from Arguments()
:return: None
"""
if "user_data_dir" in args and args["user_data_dir"]:
userdir = create_userdata_dir(args["user_data_dir"], create_dir=True)
copy_sample_files(userdir, overwrite=args["reset"])
else:
logger.warning("`create-userdir` requires --userdir to be set.")
sys.exit(1)
def deploy_new_strategy(strategy_name: str, strategy_path: Path, subtemplate: str) -> None:
"""
Deploy new strategy from template to strategy_path
"""
indicators = render_template(templatefile=f"subtemplates/indicators_{subtemplate}.j2",)
buy_trend = render_template(templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",)
sell_trend = render_template(templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",)
plot_config = render_template(templatefile=f"subtemplates/plot_config_{subtemplate}.j2",)
strategy_text = render_template(templatefile='base_strategy.py.j2',
arguments={"strategy": strategy_name,
"indicators": indicators,
"buy_trend": buy_trend,
"sell_trend": sell_trend,
"plot_config": plot_config,
})
logger.info(f"Writing strategy to `{strategy_path}`.")
strategy_path.write_text(strategy_text)
def start_new_strategy(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "strategy" in args and args["strategy"]:
if args["strategy"] == "DefaultStrategy":
raise OperationalException("DefaultStrategy is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_STRATEGIES / (args["strategy"] + ".py")
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Strategy Name.")
deploy_new_strategy(args['strategy'], new_path, args['template'])
else:
raise OperationalException("`new-strategy` requires --strategy to be set.")
def deploy_new_hyperopt(hyperopt_name: str, hyperopt_path: Path, subtemplate: str) -> None:
"""
Deploys a new hyperopt template to hyperopt_path
"""
buy_guards = render_template(
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",)
sell_guards = render_template(
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",)
buy_space = render_template(
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",)
sell_space = render_template(
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",)
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
arguments={"hyperopt": hyperopt_name,
"buy_guards": buy_guards,
"sell_guards": sell_guards,
"buy_space": buy_space,
"sell_space": sell_space,
})
logger.info(f"Writing hyperopt to `{hyperopt_path}`.")
hyperopt_path.write_text(strategy_text)
def start_new_hyperopt(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "hyperopt" in args and args["hyperopt"]:
if args["hyperopt"] == "DefaultHyperopt":
raise OperationalException("DefaultHyperopt is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args["hyperopt"] + ".py")
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Strategy Name.")
deploy_new_hyperopt(args['hyperopt'], new_path, args['template'])
else:
raise OperationalException("`new-hyperopt` requires --hyperopt to be set.")

View File

@@ -0,0 +1,184 @@
import logging
from operator import itemgetter
from typing import Any, Dict, List
from colorama import init as colorama_init
from freqtrade.configuration import setup_utils_configuration
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def start_hyperopt_list(args: Dict[str, Any]) -> None:
"""
List hyperopt epochs previously evaluated
"""
from freqtrade.optimize.hyperopt import Hyperopt
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
print_colorized = config.get('print_colorized', False)
print_json = config.get('print_json', False)
no_details = config.get('hyperopt_list_no_details', False)
no_header = False
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
}
trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
# Previous evaluations
trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials)
trials = _hyperopt_filter_trials(trials, filteroptions)
# TODO: fetch the interval for epochs to print from the cli option
epoch_start, epoch_stop = 0, None
if print_colorized:
colorama_init(autoreset=True)
try:
# Human-friendly indexes used here (starting from 1)
for val in trials[epoch_start:epoch_stop]:
Hyperopt.print_results_explanation(val, total_epochs,
not filteroptions['only_best'], print_colorized)
except KeyboardInterrupt:
print('User interrupted..')
if trials and not no_details:
sorted_trials = sorted(trials, key=itemgetter('loss'))
results = sorted_trials[0]
Hyperopt.print_epoch_details(results, total_epochs, print_json, no_header)
def start_hyperopt_show(args: Dict[str, Any]) -> None:
"""
Show details of a hyperopt epoch previously evaluated
"""
from freqtrade.optimize.hyperopt import Hyperopt
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
filteroptions = {
'only_best': config.get('hyperopt_list_best', False),
'only_profitable': config.get('hyperopt_list_profitable', False),
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
}
no_header = config.get('hyperopt_show_no_header', False)
trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
# Previous evaluations
trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials)
trials = _hyperopt_filter_trials(trials, filteroptions)
trials_epochs = len(trials)
n = config.get('hyperopt_show_index', -1)
if n > trials_epochs:
raise OperationalException(
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
if n < -trials_epochs:
raise OperationalException(
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
# Translate epoch index from human-readable format to pythonic
if n > 0:
n -= 1
print_json = config.get('print_json', False)
if trials:
val = trials[n]
Hyperopt.print_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")
def _hyperopt_filter_trials(trials: List, filteroptions: dict) -> List:
"""
Filter our items from the list of hyperopt results
"""
if filteroptions['only_best']:
trials = [x for x in trials if x['is_best']]
if filteroptions['only_profitable']:
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
if filteroptions['filter_min_trades'] > 0:
trials = [
x for x in trials
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
]
if filteroptions['filter_max_trades'] > 0:
trials = [
x for x in trials
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
]
if filteroptions['filter_min_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
]
if filteroptions['filter_max_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
]
if filteroptions['filter_min_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
> filteroptions['filter_min_avg_profit']
]
if filteroptions['filter_max_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
< filteroptions['filter_max_avg_profit']
]
if filteroptions['filter_min_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
]
if filteroptions['filter_max_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
]
logger.info(f"{len(trials)} " +
("best " if filteroptions['only_best'] else "") +
("profitable " if filteroptions['only_profitable'] else "") +
"epochs found.")
return trials

View File

@@ -0,0 +1,199 @@
import csv
import logging
import sys
from collections import OrderedDict
from pathlib import Path
from typing import Any, Dict, List
from colorama import init as colorama_init
from colorama import Fore, Style
import rapidjson
from tabulate import tabulate
from freqtrade.configuration import setup_utils_configuration
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGIES
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (available_exchanges, ccxt_exchanges,
market_is_active, symbol_is_pair)
from freqtrade.misc import plural
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def start_list_exchanges(args: Dict[str, Any]) -> None:
"""
Print available exchanges
:param args: Cli args from Arguments()
:return: None
"""
exchanges = ccxt_exchanges() if args['list_exchanges_all'] else available_exchanges()
if args['print_one_column']:
print('\n'.join(exchanges))
else:
if args['list_exchanges_all']:
print(f"All exchanges supported by the ccxt library: {', '.join(exchanges)}")
else:
print(f"Exchanges available for Freqtrade: {', '.join(exchanges)}")
def _print_objs_tabular(objs: List, print_colorized: bool) -> None:
if print_colorized:
colorama_init(autoreset=True)
red = Fore.RED
yellow = Fore.YELLOW
reset = Style.RESET_ALL
else:
red = ''
yellow = ''
reset = ''
names = [s['name'] for s in objs]
objss_to_print = [{
'name': s['name'] if s['name'] else "--",
'location': s['location'].name,
'status': (red + "LOAD FAILED" + reset if s['class'] is None
else "OK" if names.count(s['name']) == 1
else yellow + "DUPLICATE NAME" + reset)
} for s in objs]
print(tabulate(objss_to_print, headers='keys', tablefmt='pipe'))
def start_list_strategies(args: Dict[str, Any]) -> None:
"""
Print files with Strategy custom classes available in the directory
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGIES))
strategy_objs = StrategyResolver.search_all_objects(directory, not args['print_one_column'])
# Sort alphabetically
strategy_objs = sorted(strategy_objs, key=lambda x: x['name'])
if args['print_one_column']:
print('\n'.join([s['name'] for s in strategy_objs]))
else:
_print_objs_tabular(strategy_objs, config.get('print_colorized', False))
def start_list_hyperopts(args: Dict[str, Any]) -> None:
"""
Print files with HyperOpt custom classes available in the directory
"""
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
directory = Path(config.get('hyperopt_path', config['user_data_dir'] / USERPATH_HYPEROPTS))
hyperopt_objs = HyperOptResolver.search_all_objects(directory, not args['print_one_column'])
# Sort alphabetically
hyperopt_objs = sorted(hyperopt_objs, key=lambda x: x['name'])
if args['print_one_column']:
print('\n'.join([s['name'] for s in hyperopt_objs]))
else:
_print_objs_tabular(hyperopt_objs, config.get('print_colorized', False))
def start_list_timeframes(args: Dict[str, Any]) -> None:
"""
Print ticker intervals (timeframes) available on Exchange
"""
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
# Do not use ticker_interval set in the config
config['ticker_interval'] = None
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
if args['print_one_column']:
print('\n'.join(exchange.timeframes))
else:
print(f"Timeframes available for the exchange `{exchange.name}`: "
f"{', '.join(exchange.timeframes)}")
def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
"""
Print pairs/markets on the exchange
:param args: Cli args from Arguments()
:param pairs_only: if True print only pairs, otherwise print all instruments (markets)
:return: None
"""
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
# By default only active pairs/markets are to be shown
active_only = not args.get('list_pairs_all', False)
base_currencies = args.get('base_currencies', [])
quote_currencies = args.get('quote_currencies', [])
try:
pairs = exchange.get_markets(base_currencies=base_currencies,
quote_currencies=quote_currencies,
pairs_only=pairs_only,
active_only=active_only)
# Sort the pairs/markets by symbol
pairs = OrderedDict(sorted(pairs.items()))
except Exception as e:
raise OperationalException(f"Cannot get markets. Reason: {e}") from e
else:
summary_str = ((f"Exchange {exchange.name} has {len(pairs)} ") +
("active " if active_only else "") +
(plural(len(pairs), "pair" if pairs_only else "market")) +
(f" with {', '.join(base_currencies)} as base "
f"{plural(len(base_currencies), 'currency', 'currencies')}"
if base_currencies else "") +
(" and" if base_currencies and quote_currencies else "") +
(f" with {', '.join(quote_currencies)} as quote "
f"{plural(len(quote_currencies), 'currency', 'currencies')}"
if quote_currencies else ""))
headers = ["Id", "Symbol", "Base", "Quote", "Active",
*(['Is pair'] if not pairs_only else [])]
tabular_data = []
for _, v in pairs.items():
tabular_data.append({'Id': v['id'], 'Symbol': v['symbol'],
'Base': v['base'], 'Quote': v['quote'],
'Active': market_is_active(v),
**({'Is pair': symbol_is_pair(v['symbol'])}
if not pairs_only else {})})
if (args.get('print_one_column', False) or
args.get('list_pairs_print_json', False) or
args.get('print_csv', False)):
# Print summary string in the log in case of machine-readable
# regular formats.
logger.info(f"{summary_str}.")
else:
# Print empty string separating leading logs and output in case of
# human-readable formats.
print()
if len(pairs):
if args.get('print_list', False):
# print data as a list, with human-readable summary
print(f"{summary_str}: {', '.join(pairs.keys())}.")
elif args.get('print_one_column', False):
print('\n'.join(pairs.keys()))
elif args.get('list_pairs_print_json', False):
print(rapidjson.dumps(list(pairs.keys()), default=str))
elif args.get('print_csv', False):
writer = csv.DictWriter(sys.stdout, fieldnames=headers)
writer.writeheader()
writer.writerows(tabular_data)
else:
# print data as a table, with the human-readable summary
print(f"{summary_str}:")
print(tabulate(tabular_data, headers='keys', tablefmt='pipe'))
elif not (args.get('print_one_column', False) or
args.get('list_pairs_print_json', False) or
args.get('print_csv', False)):
print(f"{summary_str}.")

View File

@@ -0,0 +1,102 @@
import logging
from typing import Any, Dict
from freqtrade import constants
from freqtrade.configuration import setup_utils_configuration
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def setup_optimize_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
"""
Prepare the configuration for the Hyperopt module
:param args: Cli args from Arguments()
:return: Configuration
"""
config = setup_utils_configuration(args, method)
if method == RunMode.BACKTEST:
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
raise DependencyException('stake amount could not be "%s" for backtesting' %
constants.UNLIMITED_STAKE_AMOUNT)
return config
def start_backtesting(args: Dict[str, Any]) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading backtesting module when it's not used
from freqtrade.optimize.backtesting import Backtesting
# Initialize configuration
config = setup_optimize_configuration(args, RunMode.BACKTEST)
logger.info('Starting freqtrade in Backtesting mode')
# Initialize backtesting object
backtesting = Backtesting(config)
backtesting.start()
def start_hyperopt(args: Dict[str, Any]) -> None:
"""
Start hyperopt script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading hyperopt module when it's not used
try:
from filelock import FileLock, Timeout
from freqtrade.optimize.hyperopt import Hyperopt
except ImportError as e:
raise OperationalException(
f"{e}. Please ensure that the hyperopt dependencies are installed.") from e
# Initialize configuration
config = setup_optimize_configuration(args, RunMode.HYPEROPT)
logger.info('Starting freqtrade in Hyperopt mode')
lock = FileLock(Hyperopt.get_lock_filename(config))
try:
with lock.acquire(timeout=1):
# Remove noisy log messages
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
logging.getLogger('filelock').setLevel(logging.WARNING)
# Initialize backtesting object
hyperopt = Hyperopt(config)
hyperopt.start()
except Timeout:
logger.info("Another running instance of freqtrade Hyperopt detected.")
logger.info("Simultaneous execution of multiple Hyperopt commands is not supported. "
"Hyperopt module is resource hungry. Please run your Hyperopt sequentially "
"or on separate machines.")
logger.info("Quitting now.")
# TODO: return False here in order to help freqtrade to exit
# with non-zero exit code...
# Same in Edge and Backtesting start() functions.
def start_edge(args: Dict[str, Any]) -> None:
"""
Start Edge script
:param args: Cli args from Arguments()
:return: None
"""
from freqtrade.optimize.edge_cli import EdgeCli
# Initialize configuration
config = setup_optimize_configuration(args, RunMode.EDGE)
logger.info('Starting freqtrade in Edge mode')
# Initialize Edge object
edge_cli = EdgeCli(config)
edge_cli.start()

View File

@@ -0,0 +1,42 @@
import logging
from typing import Any, Dict
import rapidjson
from freqtrade.configuration import setup_utils_configuration
from freqtrade.resolvers import ExchangeResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def start_test_pairlist(args: Dict[str, Any]) -> None:
"""
Test Pairlist configuration
"""
from freqtrade.pairlist.pairlistmanager import PairListManager
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
quote_currencies = args.get('quote_currencies')
if not quote_currencies:
quote_currencies = [config.get('stake_currency')]
results = {}
for curr in quote_currencies:
config['stake_currency'] = curr
# Do not use ticker_interval set in the config
pairlists = PairListManager(exchange, config)
pairlists.refresh_pairlist()
results[curr] = pairlists.whitelist
for curr, pairlist in results.items():
if not args.get('print_one_column', False):
print(f"Pairs for {curr}: ")
if args.get('print_one_column', False):
print('\n'.join(pairlist))
elif args.get('list_pairs_print_json', False):
print(rapidjson.dumps(list(pairlist), default=str))
else:
print(pairlist)

View File

@@ -1,11 +1,11 @@
from typing import Any, Dict
from freqtrade import OperationalException
from freqtrade.configuration import setup_utils_configuration
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
from freqtrade.utils import setup_utils_configuration
def validate_plot_args(args: Dict[str, Any]):
def validate_plot_args(args: Dict[str, Any]) -> None:
if not args.get('datadir') and not args.get('config'):
raise OperationalException(
"You need to specify either `--datadir` or `--config` "

View File

@@ -0,0 +1,27 @@
import logging
from typing import Any, Dict
logger = logging.getLogger(__name__)
def start_trading(args: Dict[str, Any]) -> int:
"""
Main entry point for trading mode
"""
# Import here to avoid loading worker module when it's not used
from freqtrade.worker import Worker
# Create and run worker
worker = None
try:
worker = Worker(args)
worker.run()
except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...')
finally:
if worker:
logger.info("worker found ... calling exit")
worker.exit()
return 0

View File

@@ -1,5 +1,7 @@
from freqtrade.configuration.arguments import Arguments # noqa: F401
from freqtrade.configuration.check_exchange import check_exchange, remove_credentials # noqa: F401
from freqtrade.configuration.timerange import TimeRange # noqa: F401
from freqtrade.configuration.configuration import Configuration # noqa: F401
from freqtrade.configuration.config_validation import validate_config_consistency # noqa: F401
# flake8: noqa: F401
from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.configuration.check_exchange import check_exchange, remove_credentials
from freqtrade.configuration.timerange import TimeRange
from freqtrade.configuration.configuration import Configuration
from freqtrade.configuration.config_validation import validate_config_consistency

View File

@@ -1,16 +1,16 @@
import logging
from typing import Any, Dict
from freqtrade import OperationalException
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (available_exchanges, get_exchange_bad_reason,
is_exchange_known_ccxt, is_exchange_bad,
is_exchange_bad, is_exchange_known_ccxt,
is_exchange_officially_supported)
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def remove_credentials(config: Dict[str, Any]):
def remove_credentials(config: Dict[str, Any]) -> None:
"""
Removes exchange keys from the configuration and specifies dry-run
Used for backtesting / hyperopt / edge and utils.

View File

@@ -0,0 +1,25 @@
import logging
from typing import Any, Dict
from .config_validation import validate_config_consistency
from .configuration import Configuration
from .check_exchange import remove_credentials
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def setup_utils_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
"""
Prepare the configuration for utils subcommands
:param args: Cli args from Arguments()
:return: Configuration
"""
configuration = Configuration(args, method)
config = configuration.get_config()
# Ensure we do not use Exchange credentials
remove_credentials(config)
validate_config_consistency(config)
return config

View File

@@ -1,10 +1,12 @@
import logging
from copy import deepcopy
from typing import Any, Dict
from jsonschema import Draft4Validator, validators
from jsonschema.exceptions import ValidationError, best_match
from freqtrade import constants, OperationalException
from freqtrade import constants
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
@@ -41,15 +43,20 @@ def validate_config_schema(conf: Dict[str, Any]) -> Dict[str, Any]:
:param conf: Config in JSON format
:return: Returns the config if valid, otherwise throw an exception
"""
conf_schema = deepcopy(constants.CONF_SCHEMA)
if conf.get('runmode', RunMode.OTHER) in (RunMode.DRY_RUN, RunMode.LIVE):
conf_schema['required'] = constants.SCHEMA_TRADE_REQUIRED
else:
conf_schema['required'] = constants.SCHEMA_MINIMAL_REQUIRED
try:
FreqtradeValidator(constants.CONF_SCHEMA).validate(conf)
FreqtradeValidator(conf_schema).validate(conf)
return conf
except ValidationError as e:
logger.critical(
f"Invalid configuration. See config.json.example. Reason: {e}"
)
raise ValidationError(
best_match(Draft4Validator(constants.CONF_SCHEMA).iter_errors(conf)).message
best_match(Draft4Validator(conf_schema).iter_errors(conf)).message
)
@@ -66,12 +73,24 @@ def validate_config_consistency(conf: Dict[str, Any]) -> None:
_validate_trailing_stoploss(conf)
_validate_edge(conf)
_validate_whitelist(conf)
_validate_unlimited_amount(conf)
# validate configuration before returning
logger.info('Validating configuration ...')
validate_config_schema(conf)
def _validate_unlimited_amount(conf: Dict[str, Any]) -> None:
"""
If edge is disabled, either max_open_trades or stake_amount need to be set.
:raise: OperationalException if config validation failed
"""
if (not conf.get('edge', {}).get('enabled')
and conf.get('max_open_trades') == float('inf')
and conf.get('stake_amount') == constants.UNLIMITED_STAKE_AMOUNT):
raise OperationalException("`max_open_trades` and `stake_amount` cannot both be unlimited.")
def _validate_trailing_stoploss(conf: Dict[str, Any]) -> None:
if conf.get('stoploss') == 0.0:

View File

@@ -7,15 +7,16 @@ from copy import deepcopy
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional
from freqtrade import OperationalException, constants
from freqtrade import constants
from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings
from freqtrade.configuration.directory_operations import (create_datadir,
create_userdata_dir)
from freqtrade.configuration.load_config import load_config_file
from freqtrade.exceptions import OperationalException
from freqtrade.loggers import setup_logging
from freqtrade.misc import deep_merge_dicts, json_load
from freqtrade.state import RunMode, TRADING_MODES, NON_UTIL_MODES
from freqtrade.state import NON_UTIL_MODES, TRADING_MODES, RunMode
logger = logging.getLogger(__name__)
@@ -223,13 +224,13 @@ class Configuration:
logger.info('max_open_trades set to unlimited ...')
elif 'max_open_trades' in self.args and self.args["max_open_trades"]:
config.update({'max_open_trades': self.args["max_open_trades"]})
logger.info('Parameter --max_open_trades detected, '
logger.info('Parameter --max-open-trades detected, '
'overriding max_open_trades to: %s ...', config.get('max_open_trades'))
elif config['runmode'] in NON_UTIL_MODES:
logger.info('Using max_open_trades: %s ...', config.get('max_open_trades'))
self._args_to_config(config, argname='stake_amount',
logstring='Parameter --stake_amount detected, '
logstring='Parameter --stake-amount detected, '
'overriding stake_amount to: {} ...')
self._args_to_config(config, argname='fee',
@@ -309,6 +310,30 @@ class Configuration:
self._args_to_config(config, argname='hyperopt_list_profitable',
logstring='Parameter --profitable detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_trades',
logstring='Parameter --min-trades detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_trades',
logstring='Parameter --max-trades detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_avg_time',
logstring='Parameter --min-avg-time detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_avg_time',
logstring='Parameter --max-avg-time detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_avg_profit',
logstring='Parameter --min-avg-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_avg_profit',
logstring='Parameter --max-avg-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_min_total_profit',
logstring='Parameter --min-total-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_max_total_profit',
logstring='Parameter --max-total-profit detected: {}')
self._args_to_config(config, argname='hyperopt_list_no_details',
logstring='Parameter --no-details detected: {}')
@@ -339,9 +364,16 @@ class Configuration:
self._args_to_config(config, argname='days',
logstring='Detected --days: {}')
self._args_to_config(config, argname='download_trades',
logstring='Detected --dl-trades: {}')
self._args_to_config(config, argname='dataformat_ohlcv',
logstring='Using "{}" to store OHLCV data.')
self._args_to_config(config, argname='dataformat_trades',
logstring='Using "{}" to store trades data.')
def _process_runmode(self, config: Dict[str, Any]) -> None:
if not self.runmode:
@@ -403,7 +435,7 @@ class Configuration:
config['pairs'] = config.get('exchange', {}).get('pair_whitelist')
else:
# Fall back to /dl_path/pairs.json
pairs_file = Path(config['datadir']) / "pairs.json"
pairs_file = config['datadir'] / "pairs.json"
if pairs_file.exists():
with pairs_file.open('r') as f:
config['pairs'] = json_load(f)

View File

@@ -5,7 +5,7 @@ Functions to handle deprecated settings
import logging
from typing import Any, Dict
from freqtrade import OperationalException
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
@@ -13,7 +13,7 @@ logger = logging.getLogger(__name__)
def check_conflicting_settings(config: Dict[str, Any],
section1: str, name1: str,
section2: str, name2: str):
section2: str, name2: str) -> None:
section1_config = config.get(section1, {})
section2_config = config.get(section2, {})
if name1 in section1_config and name2 in section2_config:
@@ -28,7 +28,7 @@ def check_conflicting_settings(config: Dict[str, Any],
def process_deprecated_setting(config: Dict[str, Any],
section1: str, name1: str,
section2: str, name2: str):
section2: str, name2: str) -> None:
section2_config = config.get(section2, {})
if name2 in section2_config:
@@ -80,3 +80,13 @@ def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
f"Using precision_filter setting is deprecated and has been replaced by"
"PrecisionFilter. Please refer to the docs on configuration details")
config['pairlists'].append({'method': 'PrecisionFilter'})
if (config.get('edge', {}).get('enabled', False)
and 'capital_available_percentage' in config.get('edge', {})):
logger.warning(
"DEPRECATED: "
"Using 'edge.capital_available_percentage' has been deprecated in favor of "
"'tradable_balance_ratio'. Please migrate your configuration to "
"'tradable_balance_ratio' and remove 'capital_available_percentage' "
"from the edge configuration."
)

View File

@@ -3,13 +3,13 @@ import shutil
from pathlib import Path
from typing import Any, Dict, Optional
from freqtrade import OperationalException
from freqtrade.exceptions import OperationalException
from freqtrade.constants import USER_DATA_FILES
logger = logging.getLogger(__name__)
def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> str:
def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> Path:
folder = Path(datadir) if datadir else Path(f"{config['user_data_dir']}/data")
if not datadir:
@@ -20,10 +20,10 @@ def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> str
if not folder.is_dir():
folder.mkdir(parents=True)
logger.info(f'Created data directory: {datadir}')
return str(folder)
return folder
def create_userdata_dir(directory: str, create_dir=False) -> Path:
def create_userdata_dir(directory: str, create_dir: bool = False) -> Path:
"""
Create userdata directory structure.
if create_dir is True, then the parent-directory will be created if it does not exist.

View File

@@ -6,7 +6,7 @@ import logging
import sys
from typing import Any, Dict
from freqtrade import OperationalException
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)

View File

@@ -7,6 +7,7 @@ from typing import Optional
import arrow
logger = logging.getLogger(__name__)
@@ -30,7 +31,7 @@ class TimeRange:
return (self.starttype == other.starttype and self.stoptype == other.stoptype
and self.startts == other.startts and self.stopts == other.stopts)
def subtract_start(self, seconds) -> None:
def subtract_start(self, seconds: int) -> None:
"""
Subtracts <seconds> from startts if startts is set.
:param seconds: Seconds to subtract from starttime
@@ -59,7 +60,7 @@ class TimeRange:
self.starttype = 'date'
@staticmethod
def parse_timerange(text: Optional[str]):
def parse_timerange(text: Optional[str]) -> 'TimeRange':
"""
Parse the value of the argument --timerange to determine what is the range desired
:param text: value from --timerange

View File

@@ -10,35 +10,33 @@ HYPEROPT_EPOCH = 100 # epochs
RETRY_TIMEOUT = 30 # sec
DEFAULT_HYPEROPT_LOSS = 'DefaultHyperOptLoss'
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
DEFAULT_DB_DRYRUN_URL = 'sqlite://'
DEFAULT_DB_DRYRUN_URL = 'sqlite:///tradesv3.dryrun.sqlite'
UNLIMITED_STAKE_AMOUNT = 'unlimited'
DEFAULT_AMOUNT_RESERVE_PERCENT = 0.05
REQUIRED_ORDERTIF = ['buy', 'sell']
REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'PrecisionFilter', 'PriceFilter']
DRY_RUN_WALLET = 999.9
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'PrecisionFilter', 'PriceFilter', 'SpreadFilter']
AVAILABLE_DATAHANDLERS = ['json', 'jsongz']
DRY_RUN_WALLET = 1000
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
DEFAULT_DATAFRAME_COLUMNS = ['date', 'open', 'high', 'low', 'close', 'volume']
USERPATH_HYPEROPTS = 'hyperopts'
USERPATH_STRATEGY = 'strategies'
USERPATH_STRATEGIES = 'strategies'
USERPATH_NOTEBOOKS = 'notebooks'
# Soure files with destination directories within user-directory
USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGY,
'sample_strategy.py': USERPATH_STRATEGIES,
'sample_hyperopt_advanced.py': USERPATH_HYPEROPTS,
'sample_hyperopt_loss.py': USERPATH_HYPEROPTS,
'sample_hyperopt.py': USERPATH_HYPEROPTS,
'strategy_analysis_example.ipynb': 'notebooks',
'strategy_analysis_example.ipynb': USERPATH_NOTEBOOKS,
}
TIMEFRAMES = [
'1m', '3m', '5m', '15m', '30m',
'1h', '2h', '4h', '6h', '8h', '12h',
'1d', '3d', '1w',
]
SUPPORTED_FIAT = [
"AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK",
"EUR", "GBP", "HKD", "HUF", "IDR", "ILS", "INR", "JPY",
@@ -66,16 +64,26 @@ CONF_SCHEMA = {
'type': 'object',
'properties': {
'max_open_trades': {'type': ['integer', 'number'], 'minimum': -1},
'ticker_interval': {'type': 'string', 'enum': TIMEFRAMES},
'stake_currency': {'type': 'string', 'enum': ['BTC', 'XBT', 'ETH', 'USDT', 'EUR', 'USD']},
'ticker_interval': {'type': 'string'},
'stake_currency': {'type': 'string'},
'stake_amount': {
'type': ['number', 'string'],
'minimum': 0.0001,
'pattern': UNLIMITED_STAKE_AMOUNT
},
'tradable_balance_ratio': {
'type': 'number',
'minimum': 0.1,
'maximum': 1,
'default': 0.99
},
'amend_last_stake_amount': {'type': 'boolean', 'default': False},
'last_stake_amount_min_ratio': {
'type': 'number', 'minimum': 0.0, 'maximum': 1.0, 'default': 0.5
},
'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT},
'dry_run': {'type': 'boolean'},
'dry_run_wallet': {'type': 'number'},
'dry_run_wallet': {'type': 'number', 'default': DRY_RUN_WALLET},
'process_only_new_candles': {'type': 'boolean'},
'minimal_roi': {
'type': 'object',
@@ -185,7 +193,9 @@ CONF_SCHEMA = {
'properties': {
'enabled': {'type': 'boolean'},
'webhookbuy': {'type': 'object'},
'webhookbuycancel': {'type': 'object'},
'webhooksell': {'type': 'object'},
'webhooksellcancel': {'type': 'object'},
'webhookstatus': {'type': 'object'},
},
},
@@ -209,11 +219,22 @@ CONF_SCHEMA = {
'forcebuy_enable': {'type': 'boolean'},
'internals': {
'type': 'object',
'default': {},
'properties': {
'process_throttle_secs': {'type': 'integer'},
'interval': {'type': 'integer'},
'sd_notify': {'type': 'boolean'},
}
},
'dataformat_ohlcv': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'json'
},
'dataformat_trades': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'jsongz'
}
},
'definitions': {
@@ -266,18 +287,32 @@ CONF_SCHEMA = {
'max_trade_duration_minute': {'type': 'integer'},
'remove_pumps': {'type': 'boolean'}
},
'required': ['process_throttle_secs', 'allowed_risk', 'capital_available_percentage']
'required': ['process_throttle_secs', 'allowed_risk']
}
},
'required': [
'exchange',
'max_open_trades',
'stake_currency',
'stake_amount',
'dry_run',
'bid_strategy',
'unfilledtimeout',
'stoploss',
'minimal_roi',
]
}
SCHEMA_TRADE_REQUIRED = [
'exchange',
'max_open_trades',
'stake_currency',
'stake_amount',
'tradable_balance_ratio',
'last_stake_amount_min_ratio',
'dry_run',
'dry_run_wallet',
'bid_strategy',
'unfilledtimeout',
'stoploss',
'minimal_roi',
'internals',
'dataformat_ohlcv',
'dataformat_trades',
]
SCHEMA_MINIMAL_REQUIRED = [
'exchange',
'dry_run',
'dataformat_ohlcv',
'dataformat_trades',
]

View File

@@ -3,7 +3,7 @@ Helpers when analyzing backtest data
"""
import logging
from pathlib import Path
from typing import Dict
from typing import Dict, Union
import numpy as np
import pandas as pd
@@ -20,7 +20,7 @@ BT_DATA_COLUMNS = ["pair", "profitperc", "open_time", "close_time", "index", "du
"open_rate", "close_rate", "open_at_end", "sell_reason"]
def load_backtest_data(filename) -> pd.DataFrame:
def load_backtest_data(filename: Union[Path, str]) -> pd.DataFrame:
"""
Load backtest data file.
:param filename: pathlib.Path object, or string pointing to the file.
@@ -47,7 +47,7 @@ def load_backtest_data(filename) -> pd.DataFrame:
utc=True,
infer_datetime_format=True
)
df['profitabs'] = df['close_rate'] - df['open_rate']
df['profit'] = df['close_rate'] - df['open_rate']
df = df.sort_values("open_time").reset_index(drop=True)
return df
@@ -108,7 +108,7 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
trades = pd.DataFrame([(t.pair,
t.open_date.replace(tzinfo=timezone.utc),
t.close_date.replace(tzinfo=timezone.utc) if t.close_date else None,
t.calc_profit(), t.calc_profit_percent(),
t.calc_profit(), t.calc_profit_ratio(),
t.open_rate, t.close_rate, t.amount,
(round((t.close_date.timestamp() - t.open_date.timestamp()) / 60, 2)
if t.close_date else None),
@@ -151,7 +151,8 @@ def extract_trades_of_period(dataframe: pd.DataFrame, trades: pd.DataFrame) -> p
return trades
def combine_tickers_with_mean(tickers: Dict[str, pd.DataFrame], column: str = "close"):
def combine_tickers_with_mean(tickers: Dict[str, pd.DataFrame],
column: str = "close") -> pd.DataFrame:
"""
Combine multiple dataframes "column"
:param tickers: Dict of Dataframes, dict key should be pair.

View File

@@ -2,10 +2,13 @@
Functions to convert data from one format to another
"""
import logging
from datetime import datetime, timezone
from typing import Any, Dict
import pandas as pd
from pandas import DataFrame, to_datetime
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
logger = logging.getLogger(__name__)
@@ -24,7 +27,7 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
:return: DataFrame
"""
logger.debug("Parsing tickerlist to dataframe")
cols = ['date', 'open', 'high', 'low', 'close', 'volume']
cols = DEFAULT_DATAFRAME_COLUMNS
frame = DataFrame(ticker, columns=cols)
frame['date'] = to_datetime(frame['date'],
@@ -37,9 +40,29 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
# and fail with exception...
frame = frame.astype(dtype={'open': 'float', 'high': 'float', 'low': 'float', 'close': 'float',
'volume': 'float'})
return clean_ohlcv_dataframe(frame, timeframe, pair,
fill_missing=fill_missing,
drop_incomplete=drop_incomplete)
def clean_ohlcv_dataframe(data: DataFrame, timeframe: str, pair: str, *,
fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame:
"""
Clense a ohlcv dataframe by
* Grouping it by date (removes duplicate tics)
* dropping last candles if requested
* Filling up missing data (if requested)
:param data: DataFrame containing ohlcv data.
:param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details)
:param drop_incomplete: Drop the last candle of the dataframe, assuming it's incomplete
:return: DataFrame
"""
# group by index and aggregate results to eliminate duplicate ticks
frame = frame.groupby(by='date', as_index=False, sort=True).agg({
data = data.groupby(by='date', as_index=False, sort=True).agg({
'open': 'first',
'high': 'max',
'low': 'min',
@@ -48,13 +71,13 @@ def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
})
# eliminate partial candle
if drop_incomplete:
frame.drop(frame.tail(1).index, inplace=True)
data.drop(data.tail(1).index, inplace=True)
logger.debug('Dropping last candle')
if fill_missing:
return ohlcv_fill_up_missing_data(frame, timeframe, pair)
return ohlcv_fill_up_missing_data(data, timeframe, pair)
else:
return frame
return data
def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
@@ -92,8 +115,26 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str)
return df
def trim_dataframe(df: DataFrame, timerange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
"""
TODO: This should get a dedicated test
Gets order book list, returns dataframe with below format per suggested by creslin
-------------------------------------------------------------------
b_sum b_size bids asks a_size a_sum
@@ -116,12 +157,13 @@ def order_book_to_dataframe(bids: list, asks: list) -> DataFrame:
return frame
def trades_to_ohlcv(trades: list, timeframe: str) -> list:
def trades_to_ohlcv(trades: list, timeframe: str) -> DataFrame:
"""
Converts trades list to ohlcv list
TODO: This should get a dedicated test
:param trades: List of trades, as returned by ccxt.fetch_trades.
:param timeframe: Ticker timeframe to resample data to
:return: ohlcv timeframe as list (as returned by ccxt.fetch_ohlcv)
:return: ohlcv Dataframe.
"""
from freqtrade.exchange import timeframe_to_minutes
ticker_minutes = timeframe_to_minutes(timeframe)
@@ -131,8 +173,68 @@ def trades_to_ohlcv(trades: list, timeframe: str) -> list:
df_new = df['price'].resample(f'{ticker_minutes}min').ohlc()
df_new['volume'] = df['amount'].resample(f'{ticker_minutes}min').sum()
df_new['date'] = df_new.index.astype("int64") // 10 ** 6
df_new['date'] = df_new.index
# Drop 0 volume rows
df_new = df_new.dropna()
columns = ["date", "open", "high", "low", "close", "volume"]
return list(zip(*[df_new[x].values.tolist() for x in columns]))
return df_new[DEFAULT_DATAFRAME_COLUMNS]
def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert trades from one format to another format.
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
if 'pairs' not in config:
config['pairs'] = src.trades_get_pairs(config['datadir'])
logger.info(f"Converting trades for {config['pairs']}")
for pair in config['pairs']:
data = src.trades_load(pair=pair)
logger.info(f"Converting {len(data)} trades for {pair}")
trg.trades_store(pair, data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source Trade data for {pair}.")
src.trades_purge(pair=pair)
def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: str, erase: bool):
"""
Convert ohlcv from one format to another format.
:param config: Config dictionary
:param convert_from: Source format
:param convert_to: Target format
:param erase: Erase souce data (does not apply if source and target format are identical)
"""
from freqtrade.data.history.idatahandler import get_datahandler
src = get_datahandler(config['datadir'], convert_from)
trg = get_datahandler(config['datadir'], convert_to)
timeframes = config.get('timeframes', [config.get('ticker_interval')])
logger.info(f"Converting OHLCV for timeframe {timeframes}")
if 'pairs' not in config:
config['pairs'] = []
# Check timeframes or fall back to ticker_interval.
for timeframe in timeframes:
config['pairs'].extend(src.ohlcv_get_pairs(config['datadir'],
timeframe))
logger.info(f"Converting OHLCV for {config['pairs']}")
for timeframe in timeframes:
for pair in config['pairs']:
data = src.ohlcv_load(pair=pair, timeframe=timeframe,
timerange=None,
fill_missing=False,
drop_incomplete=False,
startup_candles=0)
logger.info(f"Converting {len(data)} candles for {pair}")
trg.ohlcv_store(pair=pair, timeframe=timeframe, data=data)
if erase and convert_from != convert_to:
logger.info(f"Deleting source data for {pair} / {timeframe}")
src.ohlcv_purge(pair=pair, timeframe=timeframe)

View File

@@ -5,7 +5,6 @@ including Klines, tickers, historic data
Common Interface for bot and strategy to access data.
"""
import logging
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame
@@ -65,7 +64,7 @@ class DataProvider:
"""
return load_pair_history(pair=pair,
timeframe=timeframe or self._config['ticker_interval'],
datadir=Path(self._config['datadir'])
datadir=self._config['datadir']
)
def get_pair_dataframe(self, pair: str, timeframe: str = None) -> DataFrame:

View File

@@ -1,484 +0,0 @@
"""
Handle historic data (ohlcv).
Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
import logging
import operator
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple
import arrow
from pandas import DataFrame
from freqtrade import OperationalException, misc
from freqtrade.configuration import TimeRange
from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv
from freqtrade.exchange import Exchange, timeframe_to_minutes, timeframe_to_seconds
logger = logging.getLogger(__name__)
def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
"""
Trim tickerlist based on given timerange
"""
if not tickerlist:
return tickerlist
start_index = 0
stop_index = len(tickerlist)
if timerange.starttype == 'date':
while (start_index < len(tickerlist) and
tickerlist[start_index][0] < timerange.startts * 1000):
start_index += 1
if timerange.stoptype == 'date':
while (stop_index > 0 and
tickerlist[stop_index-1][0] > timerange.stopts * 1000):
stop_index -= 1
if start_index > stop_index:
raise ValueError(f'The timerange [{timerange.startts},{timerange.stopts}] is incorrect')
return tickerlist[start_index:stop_index]
def trim_dataframe(df: DataFrame, timerange: TimeRange, df_date_col: str = 'date') -> DataFrame:
"""
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def load_tickerdata_file(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None) -> Optional[list]:
"""
Load a pair from file, either .json.gz or .json
:return: tickerlist or None if unsuccessful
"""
filename = pair_data_filename(datadir, pair, timeframe)
pairdata = misc.file_load_json(filename)
if not pairdata:
return []
if timerange:
pairdata = trim_tickerlist(pairdata, timerange)
return pairdata
def store_tickerdata_file(datadir: Path, pair: str,
timeframe: str, data: list, is_zip: bool = False):
"""
Stores tickerdata to file
"""
filename = pair_data_filename(datadir, pair, timeframe)
misc.file_dump_json(filename, data, is_zip=is_zip)
def load_trades_file(datadir: Path, pair: str,
timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:return: tradelist or empty list if unsuccesful
"""
filename = pair_trades_filename(datadir, pair)
tradesdata = misc.file_load_json(filename)
if not tradesdata:
return []
return tradesdata
def store_trades_file(datadir: Path, pair: str,
data: list, is_zip: bool = True):
"""
Stores tickerdata to file
"""
filename = pair_trades_filename(datadir, pair)
misc.file_dump_json(filename, data, is_zip=is_zip)
def _validate_pairdata(pair, pairdata, timerange: TimeRange):
if timerange.starttype == 'date' and pairdata[0][0] > timerange.startts * 1000:
logger.warning('Missing data at start for pair %s, data starts at %s',
pair, arrow.get(pairdata[0][0] // 1000).strftime('%Y-%m-%d %H:%M:%S'))
if timerange.stoptype == 'date' and pairdata[-1][0] < timerange.stopts * 1000:
logger.warning('Missing data at end for pair %s, data ends at %s',
pair, arrow.get(pairdata[-1][0] // 1000).strftime('%Y-%m-%d %H:%M:%S'))
def load_pair_history(pair: str,
timeframe: str,
datadir: Path,
timerange: Optional[TimeRange] = None,
refresh_pairs: bool = False,
exchange: Optional[Exchange] = None,
fill_up_missing: bool = True,
drop_incomplete: bool = True,
startup_candles: int = 0,
) -> DataFrame:
"""
Loads cached ticker history for the given pair.
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param datadir: Path to the data storage location.
:param timerange: Limit data to be loaded to this timerange
:param refresh_pairs: Refresh pairs from exchange.
(Note: Requires exchange to be passed as well.)
:param exchange: Exchange object (needed when using "refresh_pairs")
:param fill_up_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
:return: DataFrame with ohlcv data, or empty DataFrame
"""
timerange_startup = deepcopy(timerange)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
# The user forced the refresh of pairs
if refresh_pairs:
download_pair_history(datadir=datadir,
exchange=exchange,
pair=pair,
timeframe=timeframe,
timerange=timerange)
pairdata = load_tickerdata_file(datadir, pair, timeframe, timerange=timerange_startup)
if pairdata:
if timerange_startup:
_validate_pairdata(pair, pairdata, timerange_startup)
return parse_ticker_dataframe(pairdata, timeframe, pair=pair,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete)
else:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
)
return DataFrame()
def load_data(datadir: Path,
timeframe: str,
pairs: List[str],
refresh_pairs: bool = False,
exchange: Optional[Exchange] = None,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
startup_candles: int = 0,
fail_without_data: bool = False
) -> Dict[str, DataFrame]:
"""
Loads ticker history data for a list of pairs
:param datadir: Path to the data storage location.
:param timeframe: Ticker Timeframe (e.g. "5m")
:param pairs: List of pairs to load
:param refresh_pairs: Refresh pairs from exchange.
(Note: Requires exchange to be passed as well.)
:param exchange: Exchange object (needed when using "refresh_pairs")
:param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles
:param startup_candles: Additional candles to load at the start of the period
:param fail_without_data: Raise OperationalException if no data is found.
:return: dict(<pair>:<Dataframe>)
TODO: refresh_pairs is still used by edge to keep the data uptodate.
This should be replaced in the future. Instead, writing the current candles to disk
from dataprovider should be implemented, as this would avoid loading ohlcv data twice.
exchange and refresh_pairs are then not needed here nor in load_pair_history.
"""
result: Dict[str, DataFrame] = {}
if startup_candles > 0 and timerange:
logger.info(f'Using indicator startup period: {startup_candles} ...')
for pair in pairs:
hist = load_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
refresh_pairs=refresh_pairs,
exchange=exchange,
fill_up_missing=fill_up_missing,
startup_candles=startup_candles)
if not hist.empty:
result[pair] = hist
if fail_without_data and not result:
raise OperationalException("No data found. Terminating.")
return result
def pair_data_filename(datadir: Path, pair: str, timeframe: str) -> Path:
pair_s = pair.replace("/", "_")
filename = datadir.joinpath(f'{pair_s}-{timeframe}.json')
return filename
def pair_trades_filename(datadir: Path, pair: str) -> Path:
pair_s = pair.replace("/", "_")
filename = datadir.joinpath(f'{pair_s}-trades.json.gz')
return filename
def _load_cached_data_for_updating(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange]) -> Tuple[List[Any],
Optional[int]]:
"""
Load cached data to download more data.
If timerange is passed in, checks whether data from an before the stored data will be
downloaded.
If that's the case then what's available should be completely overwritten.
Only used by download_pair_history().
"""
since_ms = None
# user sets timerange, so find the start time
if timerange:
if timerange.starttype == 'date':
since_ms = timerange.startts * 1000
elif timerange.stoptype == 'line':
num_minutes = timerange.stopts * timeframe_to_minutes(timeframe)
since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000
# read the cached file
# Intentionally don't pass timerange in - since we need to load the full dataset.
data = load_tickerdata_file(datadir, pair, timeframe)
# remove the last item, could be incomplete candle
if data:
data.pop()
else:
data = []
if data:
if since_ms and since_ms < data[0][0]:
# Earlier data than existing data requested, redownload all
data = []
else:
# a part of the data was already downloaded, so download unexist data only
since_ms = data[-1][0] + 1
return (data, since_ms)
def download_pair_history(datadir: Path,
exchange: Optional[Exchange],
pair: str,
timeframe: str = '5m',
timerange: Optional[TimeRange] = None) -> bool:
"""
Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct data that
exists in a cache. If timerange starts earlier than the data in the cache,
the full data will be redownloaded
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
:param pair: pair to download
:param timeframe: Ticker Timeframe (e.g 5m)
:param timerange: range of time to download
:return: bool with success state
"""
if not exchange:
raise OperationalException(
"Exchange needs to be initialized when downloading pair history data"
)
try:
logger.info(
f'Download history data for pair: "{pair}", timeframe: {timeframe} '
f'and store in {datadir}.'
)
data, since_ms = _load_cached_data_for_updating(datadir, pair, timeframe, timerange)
logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None')
logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None')
# Default since_ms to 30 days if nothing is given
new_data = exchange.get_historic_ohlcv(pair=pair, timeframe=timeframe,
since_ms=since_ms if since_ms
else
int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000)
data.extend(new_data)
logger.debug("New Start: %s", misc.format_ms_time(data[0][0]))
logger.debug("New End: %s", misc.format_ms_time(data[-1][0]))
store_tickerdata_file(datadir, pair, timeframe, data=data)
return True
except Exception as e:
logger.error(
f'Failed to download history data for pair: "{pair}", timeframe: {timeframe}. '
f'Error: {e}'
)
return False
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
dl_path: Path, timerange: Optional[TimeRange] = None,
erase=False) -> List[str]:
"""
Refresh stored ohlcv data for backtesting and hyperopt operations.
Used by freqtrade download-data
:return: Pairs not available
"""
pairs_not_available = []
for pair in pairs:
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
for timeframe in timeframes:
dl_file = pair_data_filename(dl_path, pair, timeframe)
if erase and dl_file.exists():
logger.info(
f'Deleting existing data for pair {pair}, interval {timeframe}.')
dl_file.unlink()
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
download_pair_history(datadir=dl_path, exchange=exchange,
pair=pair, timeframe=str(timeframe),
timerange=timerange)
return pairs_not_available
def download_trades_history(datadir: Path,
exchange: Exchange,
pair: str,
timerange: Optional[TimeRange] = None) -> bool:
"""
Download trade history from the exchange.
Appends to previously downloaded trades data.
"""
try:
since = timerange.startts * 1000 if timerange and timerange.starttype == 'date' else None
trades = load_trades_file(datadir, pair)
from_id = trades[-1]['id'] if trades else None
logger.debug("Current Start: %s", trades[0]['datetime'] if trades else 'None')
logger.debug("Current End: %s", trades[-1]['datetime'] if trades else 'None')
new_trades = exchange.get_historic_trades(pair=pair,
since=since if since else
int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000,
# until=xxx,
from_id=from_id,
)
trades.extend(new_trades[1])
store_trades_file(datadir, pair, trades)
logger.debug("New Start: %s", trades[0]['datetime'])
logger.debug("New End: %s", trades[-1]['datetime'])
logger.info(f"New Amount of trades: {len(trades)}")
return True
except Exception as e:
logger.error(
f'Failed to download historic trades for pair: "{pair}". '
f'Error: {e}'
)
return False
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
timerange: TimeRange, erase=False) -> List[str]:
"""
Refresh stored trades data.
Used by freqtrade download-data
:return: Pairs not available
"""
pairs_not_available = []
for pair in pairs:
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
dl_file = pair_trades_filename(datadir, pair)
if erase and dl_file.exists():
logger.info(
f'Deleting existing data for pair {pair}.')
dl_file.unlink()
logger.info(f'Downloading trades for pair {pair}.')
download_trades_history(datadir=datadir, exchange=exchange,
pair=pair,
timerange=timerange)
return pairs_not_available
def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
datadir: Path, timerange: TimeRange, erase=False) -> None:
"""
Convert stored trades data to ohlcv data
"""
for pair in pairs:
trades = load_trades_file(datadir, pair)
for timeframe in timeframes:
ohlcv_file = pair_data_filename(datadir, pair, timeframe)
if erase and ohlcv_file.exists():
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
ohlcv_file.unlink()
ohlcv = trades_to_ohlcv(trades, timeframe)
# Store ohlcv
store_tickerdata_file(datadir, pair, timeframe, data=ohlcv)
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
"""
Get the maximum timeframe for the given backtest data
:param data: dictionary with preprocessed backtesting data
:return: tuple containing min_date, max_date
"""
timeframe = [
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
for frame in data.values()
]
return min(timeframe, key=operator.itemgetter(0))[0], \
max(timeframe, key=operator.itemgetter(1))[1]
def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
max_date: datetime, timeframe_mins: int) -> bool:
"""
Validates preprocessed backtesting data for missing values and shows warnings about it that.
:param data: preprocessed backtesting data (as DataFrame)
:param pair: pair used for log output.
:param min_date: start-date of the data
:param max_date: end-date of the data
:param timeframe_mins: ticker Timeframe in minutes
"""
# total difference in minutes / timeframe-minutes
expected_frames = int((max_date - min_date).total_seconds() // 60 // timeframe_mins)
found_missing = False
dflen = len(data)
if dflen < expected_frames:
found_missing = True
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
pair, expected_frames, dflen, expected_frames - dflen)
return found_missing

View File

@@ -0,0 +1,14 @@
"""
Handle historic data (ohlcv).
Includes:
* load data for a pair (or a list of pairs) from disk
* download data from exchange and store to disk
"""
from .history_utils import (convert_trades_to_ohlcv, # noqa: F401
get_timerange, load_data, load_pair_history,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data, refresh_data,
validate_backtest_data)
from .idatahandler import get_datahandler # noqa: F401

View File

@@ -0,0 +1,375 @@
import logging
import operator
from datetime import datetime, timezone
from pathlib import Path
from typing import Dict, List, Optional, Tuple
import arrow
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv
from freqtrade.data.history.idatahandler import IDataHandler, get_datahandler
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
def load_pair_history(pair: str,
timeframe: str,
datadir: Path, *,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
drop_incomplete: bool = True,
startup_candles: int = 0,
data_format: str = None,
data_handler: IDataHandler = None,
) -> DataFrame:
"""
Load cached ticker history for the given pair.
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param datadir: Path to the data storage location.
:param data_format: Format of the data. Ignored if data_handler is set.
:param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
:param data_handler: Initialized data-handler to use.
Will be initialized from data_format if not set
:return: DataFrame with ohlcv data, or empty DataFrame
"""
data_handler = get_datahandler(datadir, data_format, data_handler)
return data_handler.ohlcv_load(pair=pair,
timeframe=timeframe,
timerange=timerange,
fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete,
startup_candles=startup_candles,
)
def load_data(datadir: Path,
timeframe: str,
pairs: List[str], *,
timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True,
startup_candles: int = 0,
fail_without_data: bool = False,
data_format: str = 'json',
) -> Dict[str, DataFrame]:
"""
Load ticker history data for a list of pairs.
:param datadir: Path to the data storage location.
:param timeframe: Ticker Timeframe (e.g. "5m")
:param pairs: List of pairs to load
:param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles
:param startup_candles: Additional candles to load at the start of the period
:param fail_without_data: Raise OperationalException if no data is found.
:param data_format: Data format which should be used. Defaults to json
:return: dict(<pair>:<Dataframe>)
"""
result: Dict[str, DataFrame] = {}
if startup_candles > 0 and timerange:
logger.info(f'Using indicator startup period: {startup_candles} ...')
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
hist = load_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
fill_up_missing=fill_up_missing,
startup_candles=startup_candles,
data_handler=data_handler
)
if not hist.empty:
result[pair] = hist
if fail_without_data and not result:
raise OperationalException("No data found. Terminating.")
return result
def refresh_data(datadir: Path,
timeframe: str,
pairs: List[str],
exchange: Exchange,
data_format: str = None,
timerange: Optional[TimeRange] = None,
) -> None:
"""
Refresh ticker history data for a list of pairs.
:param datadir: Path to the data storage location.
:param timeframe: Ticker Timeframe (e.g. "5m")
:param pairs: List of pairs to load
:param exchange: Exchange object
:param timerange: Limit data to be loaded to this timerange
"""
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
_download_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
exchange=exchange, data_handler=data_handler)
def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optional[TimeRange],
data_handler: IDataHandler) -> Tuple[DataFrame, Optional[int]]:
"""
Load cached data to download more data.
If timerange is passed in, checks whether data from an before the stored data will be
downloaded.
If that's the case then what's available should be completely overwritten.
Otherwise downloads always start at the end of the available data to avoid data gaps.
Note: Only used by download_pair_history().
"""
start = None
if timerange:
if timerange.starttype == 'date':
# TODO: convert to date for conversion
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
# Intentionally don't pass timerange in - since we need to load the full dataset.
data = data_handler.ohlcv_load(pair, timeframe=timeframe,
timerange=None, fill_missing=False,
drop_incomplete=True, warn_no_data=False)
if not data.empty:
if start and start < data.iloc[0]['date']:
# Earlier data than existing data requested, redownload all
data = DataFrame(columns=DEFAULT_DATAFRAME_COLUMNS)
else:
start = data.iloc[-1]['date']
start_ms = int(start.timestamp() * 1000) if start else None
return data, start_ms
def _download_pair_history(datadir: Path,
exchange: Exchange,
pair: str, *,
timeframe: str = '5m',
timerange: Optional[TimeRange] = None,
data_handler: IDataHandler = None) -> bool:
"""
Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct data that
exists in a cache. If timerange starts earlier than the data in the cache,
the full data will be redownloaded
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
:param pair: pair to download
:param timeframe: Ticker Timeframe (e.g 5m)
:param timerange: range of time to download
:return: bool with success state
"""
data_handler = get_datahandler(datadir, data_handler=data_handler)
try:
logger.info(
f'Download history data for pair: "{pair}", timeframe: {timeframe} '
f'and store in {datadir}.'
)
# data, since_ms = _load_cached_data_for_updating_old(datadir, pair, timeframe, timerange)
data, since_ms = _load_cached_data_for_updating(pair, timeframe, timerange,
data_handler=data_handler)
logger.debug("Current Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
logger.debug("Current End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
# Default since_ms to 30 days if nothing is given
new_data = exchange.get_historic_ohlcv(pair=pair,
timeframe=timeframe,
since_ms=since_ms if since_ms else
int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000
)
# TODO: Maybe move parsing to exchange class (?)
new_dataframe = parse_ticker_dataframe(new_data, timeframe, pair,
fill_missing=False, drop_incomplete=True)
if data.empty:
data = new_dataframe
else:
data = data.append(new_dataframe)
logger.debug("New Start: %s",
f"{data.iloc[0]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
logger.debug("New End: %s",
f"{data.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}" if not data.empty else 'None')
data_handler.ohlcv_store(pair, timeframe, data=data)
return True
except Exception as e:
logger.error(
f'Failed to download history data for pair: "{pair}", timeframe: {timeframe}. '
f'Error: {e}'
)
return False
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
datadir: Path, timerange: Optional[TimeRange] = None,
erase: bool = False, data_format: str = None) -> List[str]:
"""
Refresh stored ohlcv data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
:return: List of pairs that are not available.
"""
pairs_not_available = []
data_handler = get_datahandler(datadir, data_format)
for pair in pairs:
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
for timeframe in timeframes:
if erase:
if data_handler.ohlcv_purge(pair, timeframe):
logger.info(
f'Deleting existing data for pair {pair}, interval {timeframe}.')
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
_download_pair_history(datadir=datadir, exchange=exchange,
pair=pair, timeframe=str(timeframe),
timerange=timerange, data_handler=data_handler)
return pairs_not_available
def _download_trades_history(exchange: Exchange,
pair: str, *,
timerange: Optional[TimeRange] = None,
data_handler: IDataHandler
) -> bool:
"""
Download trade history from the exchange.
Appends to previously downloaded trades data.
"""
try:
since = timerange.startts * 1000 if timerange and timerange.starttype == 'date' else None
trades = data_handler.trades_load(pair)
from_id = trades[-1]['id'] if trades else None
logger.debug("Current Start: %s", trades[0]['datetime'] if trades else 'None')
logger.debug("Current End: %s", trades[-1]['datetime'] if trades else 'None')
# Default since_ms to 30 days if nothing is given
new_trades = exchange.get_historic_trades(pair=pair,
since=since if since else
int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000,
from_id=from_id,
)
trades.extend(new_trades[1])
data_handler.trades_store(pair, data=trades)
logger.debug("New Start: %s", trades[0]['datetime'])
logger.debug("New End: %s", trades[-1]['datetime'])
logger.info(f"New Amount of trades: {len(trades)}")
return True
except Exception as e:
logger.error(
f'Failed to download historic trades for pair: "{pair}". '
f'Error: {e}'
)
return False
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
timerange: TimeRange, erase: bool = False,
data_format: str = 'jsongz') -> List[str]:
"""
Refresh stored trades data for backtesting and hyperopt operations.
Used by freqtrade download-data subcommand.
:return: List of pairs that are not available.
"""
pairs_not_available = []
data_handler = get_datahandler(datadir, data_format=data_format)
for pair in pairs:
if pair not in exchange.markets:
pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...")
continue
if erase:
if data_handler.trades_purge(pair):
logger.info(f'Deleting existing data for pair {pair}.')
logger.info(f'Downloading trades for pair {pair}.')
_download_trades_history(exchange=exchange,
pair=pair,
timerange=timerange,
data_handler=data_handler)
return pairs_not_available
def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
datadir: Path, timerange: TimeRange, erase: bool = False,
data_format_ohlcv: str = 'json',
data_format_trades: str = 'jsongz') -> None:
"""
Convert stored trades data to ohlcv data
"""
data_handler_trades = get_datahandler(datadir, data_format=data_format_trades)
data_handler_ohlcv = get_datahandler(datadir, data_format=data_format_ohlcv)
for pair in pairs:
trades = data_handler_trades.trades_load(pair)
for timeframe in timeframes:
if erase:
if data_handler_ohlcv.ohlcv_purge(pair, timeframe):
logger.info(f'Deleting existing data for pair {pair}, interval {timeframe}.')
ohlcv = trades_to_ohlcv(trades, timeframe)
# Store ohlcv
data_handler_ohlcv.ohlcv_store(pair, timeframe, data=ohlcv)
def get_timerange(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
"""
Get the maximum common timerange for the given backtest data.
:param data: dictionary with preprocessed backtesting data
:return: tuple containing min_date, max_date
"""
timeranges = [
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
for frame in data.values()
]
return (min(timeranges, key=operator.itemgetter(0))[0],
max(timeranges, key=operator.itemgetter(1))[1])
def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
max_date: datetime, timeframe_min: int) -> bool:
"""
Validates preprocessed backtesting data for missing values and shows warnings about it that.
:param data: preprocessed backtesting data (as DataFrame)
:param pair: pair used for log output.
:param min_date: start-date of the data
:param max_date: end-date of the data
:param timeframe_min: ticker Timeframe in minutes
"""
# total difference in minutes / timeframe-minutes
expected_frames = int((max_date - min_date).total_seconds() // 60 // timeframe_min)
found_missing = False
dflen = len(data)
if dflen < expected_frames:
found_missing = True
logger.warning("%s has missing frames: expected %s, got %s, that's %s missing values",
pair, expected_frames, dflen, expected_frames - dflen)
return found_missing

View File

@@ -0,0 +1,220 @@
"""
Abstract datahandler interface.
It's subclasses handle and storing data from disk.
"""
import logging
from abc import ABC, abstractclassmethod, abstractmethod
from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path
from typing import Dict, List, Optional, Type
from pandas import DataFrame
from freqtrade.configuration import TimeRange
from freqtrade.data.converter import clean_ohlcv_dataframe, trim_dataframe
from freqtrade.exchange import timeframe_to_seconds
logger = logging.getLogger(__name__)
class IDataHandler(ABC):
def __init__(self, datadir: Path) -> None:
self._datadir = datadir
@abstractclassmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:return: List of Pairs
"""
@abstractmethod
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Store data in json format "values".
format looks as follows:
[[<date>,<open>,<high>,<low>,<close>]]
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:return: None
"""
@abstractmethod
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:return: DataFrame with ohlcv data, or empty DataFrame
"""
@abstractmethod
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
@abstractmethod
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
"""
@abstractclassmethod
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this
:param datadir: Directory to search for ohlcv files
:return: List of Pairs
"""
@abstractmethod
def trades_store(self, pair: str, data: List[Dict]) -> None:
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
@abstractmethod
def trades_append(self, pair: str, data: List[Dict]):
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
@abstractmethod
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
@abstractmethod
def trades_purge(self, pair: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:return: True when deleted, false if file did not exist.
"""
def ohlcv_load(self, pair, timeframe: str,
timerange: Optional[TimeRange] = None,
fill_missing: bool = True,
drop_incomplete: bool = True,
startup_candles: int = 0,
warn_no_data: bool = True
) -> DataFrame:
"""
Load cached ticker history for the given pair.
:param pair: Pair to load data for
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange
:param fill_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete.
:param startup_candles: Additional candles to load at the start of the period
:param warn_no_data: Log a warning message when no data is found
:return: DataFrame with ohlcv data, or empty DataFrame
"""
# Fix startup period
timerange_startup = deepcopy(timerange)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
pairdf = self._ohlcv_load(pair, timeframe,
timerange=timerange_startup)
if pairdf.empty:
if warn_no_data:
logger.warning(
f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data'
)
return pairdf
else:
enddate = pairdf.iloc[-1]['date']
if timerange_startup:
self._validate_pairdata(pair, pairdf, timerange_startup)
pairdf = trim_dataframe(pairdf, timerange_startup)
# incomplete candles should only be dropped if we didn't trim the end beforehand.
return clean_ohlcv_dataframe(pairdf, timeframe,
pair=pair,
fill_missing=fill_missing,
drop_incomplete=(drop_incomplete and
enddate == pairdf.iloc[-1]['date']))
def _validate_pairdata(self, pair, pairdata: DataFrame, timerange: TimeRange):
"""
Validates pairdata for missing data at start end end and logs warnings.
:param pairdata: Dataframe to validate
:param timerange: Timerange specified for start and end dates
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
if pairdata.iloc[0]['date'] > start:
logger.warning(f"Missing data at start for pair {pair}, "
f"data starts at {pairdata.iloc[0]['date']:%Y-%m-%d %H:%M:%S}")
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
if pairdata.iloc[-1]['date'] < stop:
logger.warning(f"Missing data at end for pair {pair}, "
f"data ends at {pairdata.iloc[-1]['date']:%Y-%m-%d %H:%M:%S}")
def get_datahandlerclass(datatype: str) -> Type[IDataHandler]:
"""
Get datahandler class.
Could be done using Resolvers, but since this may be called often and resolvers
are rather expensive, doing this directly should improve performance.
:param datatype: datatype to use.
:return: Datahandler class
"""
if datatype == 'json':
from .jsondatahandler import JsonDataHandler
return JsonDataHandler
elif datatype == 'jsongz':
from .jsondatahandler import JsonGzDataHandler
return JsonGzDataHandler
else:
raise ValueError(f"No datahandler for datatype {datatype} available.")
def get_datahandler(datadir: Path, data_format: str = None,
data_handler: IDataHandler = None) -> IDataHandler:
"""
:param datadir: Folder to save data
:data_format: dataformat to use
:data_handler: returns this datahandler if it exists or initializes a new one
"""
if not data_handler:
HandlerClass = get_datahandlerclass(data_format or 'json')
data_handler = HandlerClass(datadir)
return data_handler

View File

@@ -0,0 +1,179 @@
import re
from pathlib import Path
from typing import Dict, List, Optional
import numpy as np
from pandas import DataFrame, read_json, to_datetime
from freqtrade import misc
from freqtrade.configuration import TimeRange
from freqtrade.constants import DEFAULT_DATAFRAME_COLUMNS
from .idatahandler import IDataHandler
class JsonDataHandler(IDataHandler):
_use_zip = False
_columns = DEFAULT_DATAFRAME_COLUMNS
@classmethod
def ohlcv_get_pairs(cls, datadir: Path, timeframe: str) -> List[str]:
"""
Returns a list of all pairs with ohlcv data available in this datadir
for the specified timeframe
:param datadir: Directory to search for ohlcv files
:param timeframe: Timeframe to search pairs for
:return: List of Pairs
"""
_tmp = [re.search(r'^(\S+)(?=\-' + timeframe + '.json)', p.name)
for p in datadir.glob(f"*{timeframe}.{cls._get_file_extension()}")]
# Check if regex found something and only return these results
return [match[0].replace('_', '/') for match in _tmp if match]
def ohlcv_store(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Store data in json format "values".
format looks as follows:
[[<date>,<open>,<high>,<low>,<close>]]
:param pair: Pair - used to generate filename
:timeframe: Timeframe - used to generate filename
:data: Dataframe containing OHLCV data
:return: None
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
_data = data.copy()
# Convert date to int
_data['date'] = _data['date'].astype(np.int64) // 1000 // 1000
# Reset index, select only appropriate columns and save as json
_data.reset_index(drop=True).loc[:, self._columns].to_json(
filename, orient="values",
compression='gzip' if self._use_zip else None)
def _ohlcv_load(self, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None,
) -> DataFrame:
"""
Internal method used to load data for one pair from disk.
Implements the loading and conversion to a Pandas dataframe.
Timerange trimming and dataframe validation happens outside of this method.
:param pair: Pair to load data
:param timeframe: Ticker timeframe (e.g. "5m")
:param timerange: Limit data to be loaded to this timerange.
Optionally implemented by subclasses to avoid loading
all data where possible.
:return: DataFrame with ohlcv data, or empty DataFrame
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
if not filename.exists():
return DataFrame(columns=self._columns)
pairdata = read_json(filename, orient='values')
pairdata.columns = self._columns
pairdata = pairdata.astype(dtype={'open': 'float', 'high': 'float',
'low': 'float', 'close': 'float', 'volume': 'float'})
pairdata['date'] = to_datetime(pairdata['date'],
unit='ms',
utc=True,
infer_datetime_format=True)
return pairdata
def ohlcv_purge(self, pair: str, timeframe: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:param timeframe: Ticker timeframe (e.g. "5m")
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_data_filename(self._datadir, pair, timeframe)
if filename.exists():
filename.unlink()
return True
return False
def ohlcv_append(self, pair: str, timeframe: str, data: DataFrame) -> None:
"""
Append data to existing data structures
:param pair: Pair
:param timeframe: Timeframe this ohlcv data is for
:param data: Data to append.
"""
raise NotImplementedError()
@classmethod
def trades_get_pairs(cls, datadir: Path) -> List[str]:
"""
Returns a list of all pairs for which trade data is available in this
:param datadir: Directory to search for ohlcv files
:return: List of Pairs
"""
_tmp = [re.search(r'^(\S+)(?=\-trades.json)', p.name)
for p in datadir.glob(f"*trades.{cls._get_file_extension()}")]
# Check if regex found something and only return these results to avoid exceptions.
return [match[0].replace('_', '/') for match in _tmp if match]
def trades_store(self, pair: str, data: List[Dict]) -> None:
"""
Store trades data (list of Dicts) to file
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
filename = self._pair_trades_filename(self._datadir, pair)
misc.file_dump_json(filename, data, is_zip=self._use_zip)
def trades_append(self, pair: str, data: List[Dict]):
"""
Append data to existing files
:param pair: Pair - used for filename
:param data: List of Dicts containing trade data
"""
raise NotImplementedError()
def trades_load(self, pair: str, timerange: Optional[TimeRange] = None) -> List[Dict]:
"""
Load a pair from file, either .json.gz or .json
# TODO: respect timerange ...
:param pair: Load trades for this pair
:param timerange: Timerange to load trades for - currently not implemented
:return: List of trades
"""
filename = self._pair_trades_filename(self._datadir, pair)
tradesdata = misc.file_load_json(filename)
if not tradesdata:
return []
return tradesdata
def trades_purge(self, pair: str) -> bool:
"""
Remove data for this pair
:param pair: Delete data for this pair.
:return: True when deleted, false if file did not exist.
"""
filename = self._pair_trades_filename(self._datadir, pair)
if filename.exists():
filename.unlink()
return True
return False
@classmethod
def _pair_data_filename(cls, datadir: Path, pair: str, timeframe: str) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-{timeframe}.{cls._get_file_extension()}')
return filename
@classmethod
def _get_file_extension(cls):
return "json.gz" if cls._use_zip else "json"
@classmethod
def _pair_trades_filename(cls, datadir: Path, pair: str) -> Path:
pair_s = misc.pair_to_filename(pair)
filename = datadir.joinpath(f'{pair_s}-trades.{cls._get_file_extension()}')
return filename
class JsonGzDataHandler(JsonDataHandler):
_use_zip = True

View File

@@ -1,456 +1 @@
# pragma pylint: disable=W0603
""" Edge positioning package """
import logging
from pathlib import Path
from typing import Any, Dict, NamedTuple
import arrow
import numpy as np
import utils_find_1st as utf1st
from pandas import DataFrame
from freqtrade import constants, OperationalException
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.strategy.interface import SellType
logger = logging.getLogger(__name__)
class PairInfo(NamedTuple):
stoploss: float
winrate: float
risk_reward_ratio: float
required_risk_reward: float
expectancy: float
nb_trades: int
avg_trade_duration: float
class Edge:
"""
Calculates Win Rate, Risk Reward Ratio, Expectancy
against historical data for a give set of markets and a strategy
it then adjusts stoploss and position size accordingly
and force it into the strategy
Author: https://github.com/mishaker
"""
config: Dict = {}
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
self.config = config
self.exchange = exchange
self.strategy = strategy
self.edge_config = self.config.get('edge', {})
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
self._final_pairs: list = []
# checking max_open_trades. it should be -1 as with Edge
# the number of trades is determined by position size
if self.config['max_open_trades'] != float('inf'):
logger.critical('max_open_trades should be -1 in config !')
if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT:
raise OperationalException('Edge works only with unlimited stake amount')
self._capital_percentage: float = self.edge_config.get('capital_available_percentage')
self._allowed_risk: float = self.edge_config.get('allowed_risk')
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
self._last_updated: int = 0 # Timestamp of pairs last updated time
self._refresh_pairs = True
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
# calculating stoploss range
self._stoploss_range = np.arange(
self._stoploss_range_min,
self._stoploss_range_max,
self._stoploss_range_step
)
self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift(
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
if config.get('fee'):
self.fee = config['fee']
else:
self.fee = self.exchange.get_fee()
def calculate(self) -> bool:
pairs = self.config['exchange']['pair_whitelist']
heartbeat = self.edge_config.get('process_throttle_secs')
if (self._last_updated > 0) and (
self._last_updated + heartbeat > arrow.utcnow().timestamp):
return False
data: Dict[str, Any] = {}
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using local backtesting data (using whitelist in given config) ...')
data = history.load_data(
datadir=Path(self.config['datadir']),
pairs=pairs,
timeframe=self.strategy.ticker_interval,
refresh_pairs=self._refresh_pairs,
exchange=self.exchange,
timerange=self._timerange,
startup_candles=self.strategy.startup_candle_count,
)
if not data:
# Reinitializing cached pairs
self._cached_pairs = {}
logger.critical("No data found. Edge is stopped ...")
return False
preprocessed = self.strategy.tickerdata_to_dataframe(data)
# Print timeframe
min_date, max_date = history.get_timeframe(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days) ...',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
trades: list = []
for pair, pair_data in preprocessed.items():
# Sorting dataframe by date and reset index
pair_data = pair_data.sort_values(by=['date'])
pair_data = pair_data.reset_index(drop=True)
ticker_data = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
# If no trade found then exit
if len(trades) == 0:
logger.info("No trades found.")
return False
# Fill missing, calculable columns, profit, duration , abs etc.
trades_df = self._fill_calculable_fields(DataFrame(trades))
self._cached_pairs = self._process_expectancy(trades_df)
self._last_updated = arrow.utcnow().timestamp
return True
def stake_amount(self, pair: str, free_capital: float,
total_capital: float, capital_in_trade: float) -> float:
stoploss = self.stoploss(pair)
available_capital = (total_capital + capital_in_trade) * self._capital_percentage
allowed_capital_at_risk = available_capital * self._allowed_risk
max_position_size = abs(allowed_capital_at_risk / stoploss)
position_size = min(max_position_size, free_capital)
if pair in self._cached_pairs:
logger.info(
'winrate: %s, expectancy: %s, position size: %s, pair: %s,'
' capital in trade: %s, free capital: %s, total capital: %s,'
' stoploss: %s, available capital: %s.',
self._cached_pairs[pair].winrate,
self._cached_pairs[pair].expectancy,
position_size, pair,
capital_in_trade, free_capital, total_capital,
stoploss, available_capital
)
return round(position_size, 15)
def stoploss(self, pair: str) -> float:
if pair in self._cached_pairs:
return self._cached_pairs[pair].stoploss
else:
logger.warning('tried to access stoploss of a non-existing pair, '
'strategy stoploss is returned instead.')
return self.strategy.stoploss
def adjust(self, pairs) -> list:
"""
Filters out and sorts "pairs" according to Edge calculated pairs
"""
final = []
for pair, info in self._cached_pairs.items():
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
pair in pairs:
final.append(pair)
if self._final_pairs != final:
self._final_pairs = final
if self._final_pairs:
logger.info(
'Minimum expectancy and minimum winrate are met only for %s,'
' so other pairs are filtered out.',
self._final_pairs
)
else:
logger.info(
'Edge removed all pairs as no pair with minimum expectancy '
'and minimum winrate was found !'
)
return self._final_pairs
def accepted_pairs(self) -> list:
"""
return a list of accepted pairs along with their winrate, expectancy and stoploss
"""
final = []
for pair, info in self._cached_pairs.items():
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)):
final.append({
'Pair': pair,
'Winrate': info.winrate,
'Expectancy': info.expectancy,
'Stoploss': info.stoploss,
})
return final
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
"""
The result frame contains a number of columns that are calculable
from other columns. These are left blank till all rows are added,
to be populated in single vector calls.
Columns to be populated are:
- Profit
- trade duration
- profit abs
:param result Dataframe
:return: result Dataframe
"""
# stake and fees
# stake = 0.015
# 0.05% is 0.0005
# fee = 0.001
# we set stake amount to an arbitrary amount.
# as it doesn't change the calculation.
# all returned values are relative. they are percentages.
stake = 0.015
fee = self.fee
open_fee = fee / 2
close_fee = fee / 2
result['trade_duration'] = result['close_time'] - result['open_time']
result['trade_duration'] = result['trade_duration'].map(
lambda x: int(x.total_seconds() / 60))
# Spends, Takes, Profit, Absolute Profit
# Buy Price
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
result['buy_fee'] = stake * open_fee
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
# Sell price
result['sell_sum'] = result['buy_vol'] * result['close_rate']
result['sell_fee'] = result['sell_sum'] * close_fee
result['sell_take'] = result['sell_sum'] - result['sell_fee']
# profit_percent
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
# Absolute profit
result['profit_abs'] = result['sell_take'] - result['buy_spend']
return result
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
"""
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
The calulation will be done per pair and per strategy.
"""
# Removing pairs having less than min_trades_number
min_trades_number = self.edge_config.get('min_trade_number', 10)
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
###################################
# Removing outliers (Only Pumps) from the dataset
# The method to detect outliers is to calculate standard deviation
# Then every value more than (standard deviation + 2*average) is out (pump)
#
# Removing Pumps
if self.edge_config.get('remove_pumps', False):
results = results.groupby(['pair', 'stoploss']).apply(
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
##########################################################################
# Removing trades having a duration more than X minutes (set in config)
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
results = results[results.trade_duration < max_trade_duration]
#######################################################################
if results.empty:
return {}
groupby_aggregator = {
'profit_abs': [
('nb_trades', 'count'), # number of all trades
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
],
'trade_duration': [('avg_trade_duration', 'mean')]
}
# Group by (pair and stoploss) by applying above aggregator
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
groupby_aggregator).reset_index(col_level=1)
# Dropping level 0 as we don't need it
df.columns = df.columns.droplevel(0)
# Calculating number of losing trades, average win and average loss
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
df['average_win'] = df['profit_sum'] / df['nb_win_trades']
df['average_loss'] = df['loss_sum'] / df['nb_loss_trades']
# Win rate = number of profitable trades / number of trades
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
# risk_reward_ratio = average win / average loss
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
# required_risk_reward = (1 / winrate) - 1
df['required_risk_reward'] = (1 / df['winrate']) - 1
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
# sort by expectancy and stoploss
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
final = {}
for x in df.itertuples():
final[x.pair] = PairInfo(
x.stoploss,
x.winrate,
x.risk_reward_ratio,
x.required_risk_reward,
x.expectancy,
x.nb_trades,
x.avg_trade_duration
)
# Returning a list of pairs in order of "expectancy"
return final
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
buy_column = ticker_data['buy'].values
sell_column = ticker_data['sell'].values
date_column = ticker_data['date'].values
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
result: list = []
for stoploss in stoploss_range:
result += self._detect_next_stop_or_sell_point(
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
)
return result
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
ohlc_columns, stoploss, pair):
"""
Iterate through ohlc_columns in order to find the next trade
Next trade opens from the first buy signal noticed to
The sell or stoploss signal after it.
It then cuts OHLC, buy_column, sell_column and date_column.
Cut from (the exit trade index) + 1.
Author: https://github.com/mishaker
"""
result: list = []
start_point = 0
while True:
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
# Return empty if we don't find trade entry (i.e. buy==1) or
# we find a buy but at the end of array
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
break
else:
# When a buy signal is seen,
# trade opens in reality on the next candle
open_trade_index += 1
stop_price_percentage = stoploss + 1
open_price = ohlc_columns[open_trade_index, 0]
stop_price = (open_price * stop_price_percentage)
# Searching for the index where stoploss is hit
stop_index = utf1st.find_1st(
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
# If we don't find it then we assume stop_index will be far in future (infinite number)
if stop_index == -1:
stop_index = float('inf')
# Searching for the index where sell is hit
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
# If we don't find it then we assume sell_index will be far in future (infinite number)
if sell_index == -1:
sell_index = float('inf')
# Check if we don't find any stop or sell point (in that case trade remains open)
# It is not interesting for Edge to consider it so we simply ignore the trade
# And stop iterating there is no more entry
if stop_index == sell_index == float('inf'):
break
if stop_index <= sell_index:
exit_index = open_trade_index + stop_index
exit_type = SellType.STOP_LOSS
exit_price = stop_price
elif stop_index > sell_index:
# If exit is SELL then we exit at the next candle
exit_index = open_trade_index + sell_index + 1
# Check if we have the next candle
if len(ohlc_columns) - 1 < exit_index:
break
exit_type = SellType.SELL_SIGNAL
exit_price = ohlc_columns[exit_index, 0]
trade = {'pair': pair,
'stoploss': stoploss,
'profit_percent': '',
'profit_abs': '',
'open_time': date_column[open_trade_index],
'close_time': date_column[exit_index],
'open_index': start_point + open_trade_index,
'close_index': start_point + exit_index,
'trade_duration': '',
'open_rate': round(open_price, 15),
'close_rate': round(exit_price, 15),
'exit_type': exit_type
}
result.append(trade)
# Giving a view of exit_index till the end of array
buy_column = buy_column[exit_index:]
sell_column = sell_column[exit_index:]
date_column = date_column[exit_index:]
ohlc_columns = ohlc_columns[exit_index:]
start_point += exit_index
return result
from .edge_positioning import Edge, PairInfo # noqa: F401

View File

@@ -0,0 +1,465 @@
# pragma pylint: disable=W0603
""" Edge positioning package """
import logging
from typing import Any, Dict, List, NamedTuple
import arrow
import numpy as np
import utils_find_1st as utf1st
from pandas import DataFrame
from freqtrade import constants
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.exceptions import OperationalException
from freqtrade.strategy.interface import SellType
logger = logging.getLogger(__name__)
class PairInfo(NamedTuple):
stoploss: float
winrate: float
risk_reward_ratio: float
required_risk_reward: float
expectancy: float
nb_trades: int
avg_trade_duration: float
class Edge:
"""
Calculates Win Rate, Risk Reward Ratio, Expectancy
against historical data for a give set of markets and a strategy
it then adjusts stoploss and position size accordingly
and force it into the strategy
Author: https://github.com/mishaker
"""
config: Dict = {}
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
self.config = config
self.exchange = exchange
self.strategy = strategy
self.edge_config = self.config.get('edge', {})
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
self._final_pairs: list = []
# checking max_open_trades. it should be -1 as with Edge
# the number of trades is determined by position size
if self.config['max_open_trades'] != float('inf'):
logger.critical('max_open_trades should be -1 in config !')
if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT:
raise OperationalException('Edge works only with unlimited stake amount')
# Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future.
self._capital_percentage: float = self.edge_config.get(
'capital_available_percentage', self.config['tradable_balance_ratio'])
self._allowed_risk: float = self.edge_config.get('allowed_risk')
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
self._last_updated: int = 0 # Timestamp of pairs last updated time
self._refresh_pairs = True
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
# calculating stoploss range
self._stoploss_range = np.arange(
self._stoploss_range_min,
self._stoploss_range_max,
self._stoploss_range_step
)
self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift(
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
if config.get('fee'):
self.fee = config['fee']
else:
self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0])
def calculate(self) -> bool:
pairs = self.config['exchange']['pair_whitelist']
heartbeat = self.edge_config.get('process_throttle_secs')
if (self._last_updated > 0) and (
self._last_updated + heartbeat > arrow.utcnow().timestamp):
return False
data: Dict[str, Any] = {}
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using local backtesting data (using whitelist in given config) ...')
if self._refresh_pairs:
history.refresh_data(
datadir=self.config['datadir'],
pairs=pairs,
exchange=self.exchange,
timeframe=self.strategy.ticker_interval,
timerange=self._timerange,
)
data = history.load_data(
datadir=self.config['datadir'],
pairs=pairs,
timeframe=self.strategy.ticker_interval,
timerange=self._timerange,
startup_candles=self.strategy.startup_candle_count,
data_format=self.config.get('dataformat_ohlcv', 'json'),
)
if not data:
# Reinitializing cached pairs
self._cached_pairs = {}
logger.critical("No data found. Edge is stopped ...")
return False
preprocessed = self.strategy.tickerdata_to_dataframe(data)
# Print timeframe
min_date, max_date = history.get_timerange(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days) ...',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
trades: list = []
for pair, pair_data in preprocessed.items():
# Sorting dataframe by date and reset index
pair_data = pair_data.sort_values(by=['date'])
pair_data = pair_data.reset_index(drop=True)
ticker_data = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
# If no trade found then exit
if len(trades) == 0:
logger.info("No trades found.")
return False
# Fill missing, calculable columns, profit, duration , abs etc.
trades_df = self._fill_calculable_fields(DataFrame(trades))
self._cached_pairs = self._process_expectancy(trades_df)
self._last_updated = arrow.utcnow().timestamp
return True
def stake_amount(self, pair: str, free_capital: float,
total_capital: float, capital_in_trade: float) -> float:
stoploss = self.stoploss(pair)
available_capital = (total_capital + capital_in_trade) * self._capital_percentage
allowed_capital_at_risk = available_capital * self._allowed_risk
max_position_size = abs(allowed_capital_at_risk / stoploss)
position_size = min(max_position_size, free_capital)
if pair in self._cached_pairs:
logger.info(
'winrate: %s, expectancy: %s, position size: %s, pair: %s,'
' capital in trade: %s, free capital: %s, total capital: %s,'
' stoploss: %s, available capital: %s.',
self._cached_pairs[pair].winrate,
self._cached_pairs[pair].expectancy,
position_size, pair,
capital_in_trade, free_capital, total_capital,
stoploss, available_capital
)
return round(position_size, 15)
def stoploss(self, pair: str) -> float:
if pair in self._cached_pairs:
return self._cached_pairs[pair].stoploss
else:
logger.warning('tried to access stoploss of a non-existing pair, '
'strategy stoploss is returned instead.')
return self.strategy.stoploss
def adjust(self, pairs: List[str]) -> list:
"""
Filters out and sorts "pairs" according to Edge calculated pairs
"""
final = []
for pair, info in self._cached_pairs.items():
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
pair in pairs:
final.append(pair)
if self._final_pairs != final:
self._final_pairs = final
if self._final_pairs:
logger.info(
'Minimum expectancy and minimum winrate are met only for %s,'
' so other pairs are filtered out.',
self._final_pairs
)
else:
logger.info(
'Edge removed all pairs as no pair with minimum expectancy '
'and minimum winrate was found !'
)
return self._final_pairs
def accepted_pairs(self) -> list:
"""
return a list of accepted pairs along with their winrate, expectancy and stoploss
"""
final = []
for pair, info in self._cached_pairs.items():
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)):
final.append({
'Pair': pair,
'Winrate': info.winrate,
'Expectancy': info.expectancy,
'Stoploss': info.stoploss,
})
return final
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
"""
The result frame contains a number of columns that are calculable
from other columns. These are left blank till all rows are added,
to be populated in single vector calls.
Columns to be populated are:
- Profit
- trade duration
- profit abs
:param result Dataframe
:return: result Dataframe
"""
# stake and fees
# stake = 0.015
# 0.05% is 0.0005
# fee = 0.001
# we set stake amount to an arbitrary amount.
# as it doesn't change the calculation.
# all returned values are relative. they are percentages.
stake = 0.015
fee = self.fee
open_fee = fee / 2
close_fee = fee / 2
result['trade_duration'] = result['close_time'] - result['open_time']
result['trade_duration'] = result['trade_duration'].map(
lambda x: int(x.total_seconds() / 60))
# Spends, Takes, Profit, Absolute Profit
# Buy Price
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
result['buy_fee'] = stake * open_fee
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
# Sell price
result['sell_sum'] = result['buy_vol'] * result['close_rate']
result['sell_fee'] = result['sell_sum'] * close_fee
result['sell_take'] = result['sell_sum'] - result['sell_fee']
# profit_percent
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
# Absolute profit
result['profit_abs'] = result['sell_take'] - result['buy_spend']
return result
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
"""
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
The calulation will be done per pair and per strategy.
"""
# Removing pairs having less than min_trades_number
min_trades_number = self.edge_config.get('min_trade_number', 10)
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
###################################
# Removing outliers (Only Pumps) from the dataset
# The method to detect outliers is to calculate standard deviation
# Then every value more than (standard deviation + 2*average) is out (pump)
#
# Removing Pumps
if self.edge_config.get('remove_pumps', False):
results = results.groupby(['pair', 'stoploss']).apply(
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
##########################################################################
# Removing trades having a duration more than X minutes (set in config)
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
results = results[results.trade_duration < max_trade_duration]
#######################################################################
if results.empty:
return {}
groupby_aggregator = {
'profit_abs': [
('nb_trades', 'count'), # number of all trades
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
],
'trade_duration': [('avg_trade_duration', 'mean')]
}
# Group by (pair and stoploss) by applying above aggregator
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
groupby_aggregator).reset_index(col_level=1)
# Dropping level 0 as we don't need it
df.columns = df.columns.droplevel(0)
# Calculating number of losing trades, average win and average loss
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
df['average_win'] = df['profit_sum'] / df['nb_win_trades']
df['average_loss'] = df['loss_sum'] / df['nb_loss_trades']
# Win rate = number of profitable trades / number of trades
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
# risk_reward_ratio = average win / average loss
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
# required_risk_reward = (1 / winrate) - 1
df['required_risk_reward'] = (1 / df['winrate']) - 1
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
# sort by expectancy and stoploss
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
final = {}
for x in df.itertuples():
final[x.pair] = PairInfo(
x.stoploss,
x.winrate,
x.risk_reward_ratio,
x.required_risk_reward,
x.expectancy,
x.nb_trades,
x.avg_trade_duration
)
# Returning a list of pairs in order of "expectancy"
return final
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
buy_column = ticker_data['buy'].values
sell_column = ticker_data['sell'].values
date_column = ticker_data['date'].values
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
result: list = []
for stoploss in stoploss_range:
result += self._detect_next_stop_or_sell_point(
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
)
return result
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
ohlc_columns, stoploss, pair):
"""
Iterate through ohlc_columns in order to find the next trade
Next trade opens from the first buy signal noticed to
The sell or stoploss signal after it.
It then cuts OHLC, buy_column, sell_column and date_column.
Cut from (the exit trade index) + 1.
Author: https://github.com/mishaker
"""
result: list = []
start_point = 0
while True:
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
# Return empty if we don't find trade entry (i.e. buy==1) or
# we find a buy but at the end of array
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
break
else:
# When a buy signal is seen,
# trade opens in reality on the next candle
open_trade_index += 1
stop_price_percentage = stoploss + 1
open_price = ohlc_columns[open_trade_index, 0]
stop_price = (open_price * stop_price_percentage)
# Searching for the index where stoploss is hit
stop_index = utf1st.find_1st(
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
# If we don't find it then we assume stop_index will be far in future (infinite number)
if stop_index == -1:
stop_index = float('inf')
# Searching for the index where sell is hit
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
# If we don't find it then we assume sell_index will be far in future (infinite number)
if sell_index == -1:
sell_index = float('inf')
# Check if we don't find any stop or sell point (in that case trade remains open)
# It is not interesting for Edge to consider it so we simply ignore the trade
# And stop iterating there is no more entry
if stop_index == sell_index == float('inf'):
break
if stop_index <= sell_index:
exit_index = open_trade_index + stop_index
exit_type = SellType.STOP_LOSS
exit_price = stop_price
elif stop_index > sell_index:
# If exit is SELL then we exit at the next candle
exit_index = open_trade_index + sell_index + 1
# Check if we have the next candle
if len(ohlc_columns) - 1 < exit_index:
break
exit_type = SellType.SELL_SIGNAL
exit_price = ohlc_columns[exit_index, 0]
trade = {'pair': pair,
'stoploss': stoploss,
'profit_percent': '',
'profit_abs': '',
'open_time': date_column[open_trade_index],
'close_time': date_column[exit_index],
'open_index': start_point + open_trade_index,
'close_index': start_point + exit_index,
'trade_duration': '',
'open_rate': round(open_price, 15),
'close_rate': round(exit_price, 15),
'exit_type': exit_type
}
result.append(trade)
# Giving a view of exit_index till the end of array
buy_column = buy_column[exit_index:]
sell_column = sell_column[exit_index:]
date_column = date_column[exit_index:]
ohlc_columns = ohlc_columns[exit_index:]
start_point += exit_index
return result

37
freqtrade/exceptions.py Normal file
View File

@@ -0,0 +1,37 @@
class FreqtradeException(Exception):
"""
Freqtrade base exception. Handled at the outermost level.
All other exception types are subclasses of this exception type.
"""
class OperationalException(FreqtradeException):
"""
Requires manual intervention and will stop the bot.
Most of the time, this is caused by an invalid Configuration.
"""
class DependencyException(FreqtradeException):
"""
Indicates that an assumed dependency is not met.
This could happen when there is currently not enough money on the account.
"""
class InvalidOrderException(FreqtradeException):
"""
This is returned when the order is not valid. Example:
If stoploss on exchange order is hit, then trying to cancel the order
should return this exception.
"""
class TemporaryError(FreqtradeException):
"""
Temporary network or exchange related error.
This could happen when an exchange is congested, unavailable, or the user
has networking problems. Usually resolves itself after a time.
"""

View File

@@ -1,18 +1,20 @@
from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS # noqa: F401
from freqtrade.exchange.exchange import Exchange # noqa: F401
from freqtrade.exchange.exchange import (get_exchange_bad_reason, # noqa: F401
# flake8: noqa: F401
from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS
from freqtrade.exchange.exchange import Exchange
from freqtrade.exchange.exchange import (get_exchange_bad_reason,
is_exchange_bad,
is_exchange_known_ccxt,
is_exchange_officially_supported,
ccxt_exchanges,
available_exchanges)
from freqtrade.exchange.exchange import (timeframe_to_seconds, # noqa: F401
from freqtrade.exchange.exchange import (timeframe_to_seconds,
timeframe_to_minutes,
timeframe_to_msecs,
timeframe_to_next_date,
timeframe_to_prev_date)
from freqtrade.exchange.exchange import (market_is_active, # noqa: F401
from freqtrade.exchange.exchange import (market_is_active,
symbol_is_pair)
from freqtrade.exchange.kraken import Kraken # noqa: F401
from freqtrade.exchange.binance import Binance # noqa: F401
from freqtrade.exchange.bibox import Bibox # noqa: F401
from freqtrade.exchange.kraken import Kraken
from freqtrade.exchange.binance import Binance
from freqtrade.exchange.bibox import Bibox
from freqtrade.exchange.ftx import Ftx

View File

@@ -4,8 +4,8 @@ from typing import Dict
import ccxt
from freqtrade import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
@@ -32,16 +32,26 @@ class Binance(Exchange):
return super().get_order_book(pair, limit)
def stoploss_limit(self, pair: str, amount: float, stop_price: float, rate: float) -> Dict:
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return order['type'] == 'stop_loss_limit' and stop_loss > float(order['info']['stopPrice'])
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
"""
creates a stoploss limit order.
this stoploss-limit is binance-specific.
It may work with a limited number of other exchanges, but this has not been tested yet.
"""
# Limit price threshold: As limit price should always be below stop-price
limit_price_pct = order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
rate = stop_price * limit_price_pct
ordertype = "stop_loss_limit"
stop_price = self.symbol_price_prec(pair, stop_price)
stop_price = self.price_to_precision(pair, stop_price)
# Ensure rate is less than stop price
if stop_price <= rate:
@@ -57,12 +67,12 @@ class Binance(Exchange):
params = self._params.copy()
params.update({'stopPrice': stop_price})
amount = self.symbol_amount_prec(pair, amount)
amount = self.amount_to_precision(pair, amount)
rate = self.symbol_price_prec(pair, rate)
rate = self.price_to_precision(pair, rate)
order = self._api.create_order(pair, ordertype, 'sell',
amount, rate, params)
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
amount=amount, price=stop_price, params=params)
logger.info('stoploss limit order added for %s. '
'stop price: %s. limit: %s', pair, stop_price, rate)
return order

View File

@@ -1,6 +1,6 @@
import logging
from freqtrade import DependencyException, TemporaryError
from freqtrade.exceptions import DependencyException, TemporaryError
logger = logging.getLogger(__name__)

View File

@@ -7,22 +7,27 @@ import inspect
import logging
from copy import deepcopy
from datetime import datetime, timezone
from math import ceil, floor
from math import ceil
from random import randint
from typing import Any, Dict, List, Optional, Tuple
import arrow
import ccxt
import ccxt.async_support as ccxt_async
from ccxt.base.decimal_to_precision import ROUND_DOWN, ROUND_UP
from ccxt.base.decimal_to_precision import (ROUND_DOWN, ROUND_UP, TICK_SIZE,
TRUNCATE, decimal_to_precision)
from pandas import DataFrame
from freqtrade import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError, constants)
from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange.common import BAD_EXCHANGES, retrier, retrier_async
from freqtrade.misc import deep_merge_dicts
CcxtModuleType = Any
logger = logging.getLogger(__name__)
@@ -50,7 +55,7 @@ class Exchange:
}
_ft_has: Dict = {}
def __init__(self, config: dict, validate: bool = True) -> None:
def __init__(self, config: Dict[str, Any], validate: bool = True) -> None:
"""
Initializes this module with the given config,
it does basic validation whether the specified exchange and pairs are valid.
@@ -61,8 +66,6 @@ class Exchange:
self._config.update(config)
self._cached_ticker: Dict[str, Any] = {}
# Holds last candle refreshed time of each pair
self._pairs_last_refresh_time: Dict[Tuple[str, str], int] = {}
# Timestamp of last markets refresh
@@ -116,6 +119,7 @@ class Exchange:
self._load_markets()
# Check if all pairs are available
self.validate_stakecurrency(config['stake_currency'])
self.validate_pairs(config['exchange']['pair_whitelist'])
self.validate_ordertypes(config.get('order_types', {}))
self.validate_order_time_in_force(config.get('order_time_in_force', {}))
@@ -133,7 +137,7 @@ class Exchange:
if self._api_async and inspect.iscoroutinefunction(self._api_async.close):
asyncio.get_event_loop().run_until_complete(self._api_async.close())
def _init_ccxt(self, exchange_config: dict, ccxt_module=ccxt,
def _init_ccxt(self, exchange_config: Dict[str, Any], ccxt_module: CcxtModuleType = ccxt,
ccxt_kwargs: dict = None) -> ccxt.Exchange:
"""
Initialize ccxt with given config and return valid
@@ -188,6 +192,11 @@ class Exchange:
self._load_markets()
return self._api.markets
@property
def precisionMode(self) -> str:
"""exchange ccxt precisionMode"""
return self._api.precisionMode
def get_markets(self, base_currencies: List[str] = None, quote_currencies: List[str] = None,
pairs_only: bool = False, active_only: bool = False) -> Dict:
"""
@@ -210,13 +219,20 @@ class Exchange:
markets = {k: v for k, v in markets.items() if market_is_active(v)}
return markets
def klines(self, pair_interval: Tuple[str, str], copy=True) -> DataFrame:
def get_quote_currencies(self) -> List[str]:
"""
Return a list of supported quote currencies
"""
markets = self.markets
return sorted(set([x['quote'] for _, x in markets.items()]))
def klines(self, pair_interval: Tuple[str, str], copy: bool = True) -> DataFrame:
if pair_interval in self._klines:
return self._klines[pair_interval].copy() if copy else self._klines[pair_interval]
else:
return DataFrame()
def set_sandbox(self, api, exchange_config: dict, name: str):
def set_sandbox(self, api: ccxt.Exchange, exchange_config: dict, name: str) -> None:
if exchange_config.get('sandbox'):
if api.urls.get('test'):
api.urls['api'] = api.urls['test']
@@ -226,7 +242,7 @@ class Exchange:
"Please check your config.json")
raise OperationalException(f'Exchange {name} does not provide a sandbox api')
def _load_async_markets(self, reload=False) -> None:
def _load_async_markets(self, reload: bool = False) -> None:
try:
if self._api_async:
asyncio.get_event_loop().run_until_complete(
@@ -259,11 +275,23 @@ class Exchange:
except ccxt.BaseError:
logger.exception("Could not reload markets.")
def validate_stakecurrency(self, stake_currency: str) -> None:
"""
Checks stake-currency against available currencies on the exchange.
:param stake_currency: Stake-currency to validate
:raise: OperationalException if stake-currency is not available.
"""
quote_currencies = self.get_quote_currencies()
if stake_currency not in quote_currencies:
raise OperationalException(
f"{stake_currency} is not available as stake on {self.name}. "
f"Available currencies are: {', '.join(quote_currencies)}")
def validate_pairs(self, pairs: List[str]) -> None:
"""
Checks if all given pairs are tradable on the current exchange.
Raises OperationalException if one pair is not available.
:param pairs: list of pairs
:raise: OperationalException if one pair is not available
:return: None
"""
@@ -278,14 +306,22 @@ class Exchange:
raise OperationalException(
f'Pair {pair} is not available on {self.name}. '
f'Please remove {pair} from your whitelist.')
elif self.markets[pair].get('info', {}).get('IsRestricted', False):
# From ccxt Documentation:
# markets.info: An associative array of non-common market properties,
# including fees, rates, limits and other general market information.
# The internal info array is different for each particular market,
# its contents depend on the exchange.
# It can also be a string or similar ... so we need to verify that first.
elif (isinstance(self.markets[pair].get('info', None), dict)
and self.markets[pair].get('info', {}).get('IsRestricted', False)):
# Warn users about restricted pairs in whitelist.
# We cannot determine reliably if Users are affected.
logger.warning(f"Pair {pair} is restricted for some users on this exchange."
f"Please check if you are impacted by this restriction "
f"on the exchange and eventually remove {pair} from your whitelist.")
def get_valid_pair_combination(self, curr_1, curr_2) -> str:
def get_valid_pair_combination(self, curr_1: str, curr_2: str) -> str:
"""
Get valid pair combination of curr_1 and curr_2 by trying both combinations.
"""
@@ -311,6 +347,10 @@ class Exchange:
raise OperationalException(
f"Invalid ticker interval '{timeframe}'. This exchange supports: {self.timeframes}")
if timeframe and timeframe_to_minutes(timeframe) < 1:
raise OperationalException(
f"Timeframes < 1m are currently not supported by Freqtrade.")
def validate_ordertypes(self, order_types: Dict) -> None:
"""
Checks if order-types configured in strategy/config are supported
@@ -335,7 +375,7 @@ class Exchange:
raise OperationalException(
f'Time in force policies are not supported for {self.name} yet.')
def validate_required_startup_candles(self, startup_candles) -> None:
def validate_required_startup_candles(self, startup_candles: int) -> None:
"""
Checks if required startup_candles is more than ohlcv_candle_limit.
Requires a grace-period of 5 candles - so a startup-period up to 494 is allowed by default.
@@ -354,40 +394,58 @@ class Exchange:
"""
return endpoint in self._api.has and self._api.has[endpoint]
def symbol_amount_prec(self, pair, amount: float):
def amount_to_precision(self, pair: str, amount: float) -> float:
'''
Returns the amount to buy or sell to a precision the Exchange accepts
Rounded down
Reimplementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
'''
if self.markets[pair]['precision']['amount']:
symbol_prec = self.markets[pair]['precision']['amount']
big_amount = amount * pow(10, symbol_prec)
amount = floor(big_amount) / pow(10, symbol_prec)
amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
precision=self.markets[pair]['precision']['amount'],
counting_mode=self.precisionMode,
))
return amount
def symbol_price_prec(self, pair, price: float):
def price_to_precision(self, pair: str, price: float) -> float:
'''
Returns the price buying or selling with to the precision the Exchange accepts
Returns the price rounded up to the precision the Exchange accepts.
Partial Reimplementation of ccxt internal method decimal_to_precision(),
which does not support rounding up
TODO: If ccxt supports ROUND_UP for decimal_to_precision(), we could remove this and
align with amount_to_precision().
Rounds up
'''
if self.markets[pair]['precision']['price']:
symbol_prec = self.markets[pair]['precision']['price']
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
# price = float(decimal_to_precision(price, rounding_mode=ROUND,
# precision=self.markets[pair]['precision']['price'],
# counting_mode=self.precisionMode,
# ))
if self.precisionMode == TICK_SIZE:
precision = self.markets[pair]['precision']['price']
missing = price % precision
if missing != 0:
price = price - missing + precision
else:
symbol_prec = self.markets[pair]['precision']['price']
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
return price
def dry_run_order(self, pair: str, ordertype: str, side: str, amount: float,
rate: float, params: Dict = {}) -> Dict[str, Any]:
order_id = f'dry_run_{side}_{randint(0, 10**6)}'
_amount = self.amount_to_precision(pair, amount)
dry_order = {
"id": order_id,
'pair': pair,
'price': rate,
'amount': amount,
"cost": amount * rate,
'amount': _amount,
"cost": _amount * rate,
'type': ordertype,
'side': side,
'remaining': amount,
'remaining': _amount,
'datetime': arrow.utcnow().isoformat(),
'status': "closed" if ordertype == "market" else "open",
'fee': None,
@@ -404,7 +462,7 @@ class Exchange:
"status": "closed",
"filled": closed_order["amount"],
"remaining": 0
})
})
if closed_order["type"] in ["stop_loss_limit"]:
closed_order["info"].update({"stopPrice": closed_order["price"]})
self._dry_run_open_orders[closed_order["id"]] = closed_order
@@ -413,13 +471,13 @@ class Exchange:
rate: float, params: Dict = {}) -> Dict:
try:
# Set the precision for amount and price(rate) as accepted by the exchange
amount = self.symbol_amount_prec(pair, amount)
amount = self.amount_to_precision(pair, amount)
needs_price = (ordertype != 'market'
or self._api.options.get("createMarketBuyOrderRequiresPrice", False))
rate = self.symbol_price_prec(pair, rate) if needs_price else None
rate_for_order = self.price_to_precision(pair, rate) if needs_price else None
return self._api.create_order(pair, ordertype, side,
amount, rate, params)
amount, rate_for_order, params)
except ccxt.InsufficientFunds as e:
raise DependencyException(
@@ -438,7 +496,7 @@ class Exchange:
raise OperationalException(e) from e
def buy(self, pair: str, ordertype: str, amount: float,
rate: float, time_in_force) -> Dict:
rate: float, time_in_force: str) -> Dict:
if self._config['dry_run']:
dry_order = self.dry_run_order(pair, ordertype, "buy", amount, rate)
@@ -451,7 +509,7 @@ class Exchange:
return self.create_order(pair, ordertype, 'buy', amount, rate, params)
def sell(self, pair: str, ordertype: str, amount: float,
rate: float, time_in_force='gtc') -> Dict:
rate: float, time_in_force: str = 'gtc') -> Dict:
if self._config['dry_run']:
dry_order = self.dry_run_order(pair, ordertype, "sell", amount, rate)
@@ -463,9 +521,17 @@ class Exchange:
return self.create_order(pair, ordertype, 'sell', amount, rate, params)
def stoploss_limit(self, pair: str, amount: float, stop_price: float, rate: float) -> Dict:
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
"""
creates a stoploss limit order.
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
raise OperationalException(f"stoploss is not implemented for {self.name}.")
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
"""
creates a stoploss order.
The precise ordertype is determined by the order_types dict or exchange default.
Since ccxt does not unify stoploss-limit orders yet, this needs to be implemented in each
exchange's subclass.
The exception below should never raise, since we disallow
@@ -473,12 +539,12 @@ class Exchange:
Note: Changes to this interface need to be applied to all sub-classes too.
"""
raise OperationalException(f"stoploss_limit is not implemented for {self.name}.")
raise OperationalException(f"stoploss is not implemented for {self.name}.")
@retrier
def get_balance(self, currency: str) -> float:
if self._config['dry_run']:
return constants.DRY_RUN_WALLET
return self._config['dry_run_wallet']
# ccxt exception is already handled by get_balances
balances = self.get_balances()
@@ -523,28 +589,17 @@ class Exchange:
raise OperationalException(e) from e
@retrier
def get_ticker(self, pair: str, refresh: Optional[bool] = True) -> dict:
if refresh or pair not in self._cached_ticker.keys():
try:
if pair not in self._api.markets or not self._api.markets[pair].get('active'):
raise DependencyException(f"Pair {pair} not available")
data = self._api.fetch_ticker(pair)
try:
self._cached_ticker[pair] = {
'bid': float(data['bid']),
'ask': float(data['ask']),
}
except KeyError:
logger.debug("Could not cache ticker data for %s", pair)
return data
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not load ticker due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
else:
logger.info("returning cached ticker-data for %s", pair)
return self._cached_ticker[pair]
def fetch_ticker(self, pair: str) -> dict:
try:
if pair not in self._api.markets or not self._api.markets[pair].get('active'):
raise DependencyException(f"Pair {pair} not available")
data = self._api.fetch_ticker(pair)
return data
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not load ticker due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int) -> List:
@@ -672,10 +727,11 @@ class Exchange:
f'Exchange {self._api.name} does not support fetching historical candlestick data.'
f'Message: {e}') from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(f'Could not load ticker history due to {e.__class__.__name__}. '
f'Message: {e}') from e
raise TemporaryError(f'Could not load ticker history for pair {pair} due to '
f'{e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(f'Could not fetch ticker data. Msg: {e}') from e
raise OperationalException(f'Could not fetch ticker data for pair {pair}. '
f'Msg: {e}') from e
@retrier_async
async def _async_fetch_trades(self, pair: str,
@@ -920,8 +976,8 @@ class Exchange:
raise OperationalException(e) from e
@retrier
def get_fee(self, symbol='ETH/BTC', type='', side='', amount=1,
price=1, taker_or_maker='maker') -> float:
def get_fee(self, symbol: str, type: str = '', side: str = '', amount: float = 1,
price: float = 1, taker_or_maker: str = 'maker') -> float:
try:
# validate that markets are loaded before trying to get fee
if self._api.markets is None or len(self._api.markets) == 0:
@@ -944,7 +1000,7 @@ def get_exchange_bad_reason(exchange_name: str) -> str:
return BAD_EXCHANGES.get(exchange_name, "")
def is_exchange_known_ccxt(exchange_name: str, ccxt_module=None) -> bool:
def is_exchange_known_ccxt(exchange_name: str, ccxt_module: CcxtModuleType = None) -> bool:
return exchange_name in ccxt_exchanges(ccxt_module)
@@ -952,14 +1008,14 @@ def is_exchange_officially_supported(exchange_name: str) -> bool:
return exchange_name in ['bittrex', 'binance']
def ccxt_exchanges(ccxt_module=None) -> List[str]:
def ccxt_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
"""
Return the list of all exchanges known to ccxt
"""
return ccxt_module.exchanges if ccxt_module is not None else ccxt.exchanges
def available_exchanges(ccxt_module=None) -> List[str]:
def available_exchanges(ccxt_module: CcxtModuleType = None) -> List[str]:
"""
Return exchanges available to the bot, i.e. non-bad exchanges in the ccxt list
"""
@@ -1019,7 +1075,8 @@ def timeframe_to_next_date(timeframe: str, date: datetime = None) -> datetime:
return datetime.fromtimestamp(new_timestamp, tz=timezone.utc)
def symbol_is_pair(market_symbol: str, base_currency: str = None, quote_currency: str = None):
def symbol_is_pair(market_symbol: str, base_currency: str = None,
quote_currency: str = None) -> bool:
"""
Check if the market symbol is a pair, i.e. that its symbol consists of the base currency and the
quote currency separated by '/' character. If base_currency and/or quote_currency is passed,
@@ -1032,7 +1089,7 @@ def symbol_is_pair(market_symbol: str, base_currency: str = None, quote_currency
(symbol_parts[1] == quote_currency if quote_currency else len(symbol_parts[1]) > 0))
def market_is_active(market):
def market_is_active(market: Dict) -> bool:
"""
Return True if the market is active.
"""

14
freqtrade/exchange/ftx.py Normal file
View File

@@ -0,0 +1,14 @@
""" FTX exchange subclass """
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Ftx(Exchange):
_ft_has: Dict = {
"ohlcv_candle_limit": 1500,
}

View File

@@ -4,7 +4,8 @@ from typing import Dict
import ccxt
from freqtrade import OperationalException, TemporaryError
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange import Exchange
from freqtrade.exchange.exchange import retrier
@@ -15,6 +16,7 @@ class Kraken(Exchange):
_params: Dict = {"trading_agreement": "agree"}
_ft_has: Dict = {
"stoploss_on_exchange": True,
"trades_pagination": "id",
"trades_pagination_arg": "since",
}
@@ -48,3 +50,51 @@ class Kraken(Exchange):
f'Could not get balance due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e
def stoploss_adjust(self, stop_loss: float, order: Dict) -> bool:
"""
Verify stop_loss against stoploss-order value (limit or price)
Returns True if adjustment is necessary.
"""
return order['type'] == 'stop-loss' and stop_loss > float(order['price'])
def stoploss(self, pair: str, amount: float, stop_price: float, order_types: Dict) -> Dict:
"""
Creates a stoploss market order.
Stoploss market orders is the only stoploss type supported by kraken.
"""
ordertype = "stop-loss"
stop_price = self.price_to_precision(pair, stop_price)
if self._config['dry_run']:
dry_order = self.dry_run_order(
pair, ordertype, "sell", amount, stop_price)
return dry_order
try:
params = self._params.copy()
amount = self.amount_to_precision(pair, amount)
order = self._api.create_order(symbol=pair, type=ordertype, side='sell',
amount=amount, price=stop_price, params=params)
logger.info('stoploss order added for %s. '
'stop price: %s.', pair, stop_price)
return order
except ccxt.InsufficientFunds as e:
raise DependencyException(
f'Insufficient funds to create {ordertype} sell order on market {pair}.'
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except ccxt.InvalidOrder as e:
raise InvalidOrderException(
f'Could not create {ordertype} sell order on market {pair}. '
f'Tried to create stoploss with amount {amount} at stoploss {stop_price}. '
f'Message: {e}') from e
except (ccxt.NetworkError, ccxt.ExchangeError) as e:
raise TemporaryError(
f'Could not place sell order due to {e.__class__.__name__}. Message: {e}') from e
except ccxt.BaseError as e:
raise OperationalException(e) from e

File diff suppressed because it is too large Load Diff

View File

@@ -5,7 +5,7 @@ from logging import Formatter
from logging.handlers import RotatingFileHandler, SysLogHandler
from typing import Any, Dict, List
from freqtrade import OperationalException
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)

View File

@@ -4,6 +4,7 @@ Main Freqtrade bot script.
Read the documentation to know what cli arguments you need.
"""
from freqtrade.exceptions import FreqtradeException, OperationalException
import sys
# check min. python version
if sys.version_info < (3, 6):
@@ -13,8 +14,7 @@ if sys.version_info < (3, 6):
import logging
from typing import Any, List
from freqtrade import OperationalException
from freqtrade.configuration import Arguments
from freqtrade.commands import Arguments
logger = logging.getLogger('freqtrade')
@@ -38,8 +38,8 @@ def main(sysargv: List[str] = None) -> None:
# No subcommand was issued.
raise OperationalException(
"Usage of Freqtrade requires a subcommand to be specified.\n"
"To have the previous behavior (bot executing trades in live/dry-run modes, "
"depending on the value of the `dry_run` setting in the config), run freqtrade "
"To have the bot executing trades in live/dry-run modes, "
"depending on the value of the `dry_run` setting in the config, run Freqtrade "
"as `freqtrade trade [options...]`.\n"
"To see the full list of options available, please use "
"`freqtrade --help` or `freqtrade <command> --help`."
@@ -50,7 +50,7 @@ def main(sysargv: List[str] = None) -> None:
except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...')
return_code = 0
except OperationalException as e:
except FreqtradeException as e:
logger.error(str(e))
return_code = 2
except Exception:

View File

@@ -6,6 +6,7 @@ import logging
import re
from datetime import datetime
from pathlib import Path
from typing import Any
from typing.io import IO
import numpy as np
@@ -40,28 +41,30 @@ def datesarray_to_datetimearray(dates: np.ndarray) -> np.ndarray:
return dates.dt.to_pydatetime()
def file_dump_json(filename: Path, data, is_zip=False) -> None:
def file_dump_json(filename: Path, data: Any, is_zip: bool = False) -> None:
"""
Dump JSON data into a file
:param filename: file to create
:param data: JSON Data to save
:return:
"""
logger.info(f'dumping json to "{filename}"')
if is_zip:
if filename.suffix != '.gz':
filename = filename.with_suffix('.gz')
logger.info(f'dumping json to "{filename}"')
with gzip.open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
else:
logger.info(f'dumping json to "{filename}"')
with open(filename, 'w') as fp:
rapidjson.dump(data, fp, default=str, number_mode=rapidjson.NM_NATIVE)
logger.debug(f'done json to "{filename}"')
def json_load(datafile: IO):
def json_load(datafile: IO) -> Any:
"""
load data with rapidjson
Use this to have a consistent experience,
@@ -90,6 +93,12 @@ def file_load_json(file):
return pairdata
def pair_to_filename(pair: str) -> str:
for ch in ['/', '-', ' ', '.', '@', '$', '+', ':']:
pair = pair.replace(ch, '_')
return pair
def format_ms_time(date: int) -> str:
"""
convert MS date to readable format.
@@ -125,11 +134,11 @@ def round_dict(d, n):
return {k: (round(v, n) if isinstance(v, float) else v) for k, v in d.items()}
def plural(num, singular: str, plural: str = None) -> str:
def plural(num: float, singular: str, plural: str = None) -> str:
return singular if (num == 1 or num == -1) else plural or singular + 's'
def render_template(templatefile: str, arguments: dict = {}):
def render_template(templatefile: str, arguments: dict = {}) -> str:
from jinja2 import Environment, PackageLoader, select_autoescape
@@ -138,5 +147,4 @@ def render_template(templatefile: str, arguments: dict = {}):
autoescape=select_autoescape(['html', 'xml'])
)
template = env.get_template(templatefile)
return template.render(**arguments)

View File

@@ -1,102 +0,0 @@
import logging
from typing import Any, Dict
from freqtrade import DependencyException, constants, OperationalException
from freqtrade.state import RunMode
from freqtrade.utils import setup_utils_configuration
logger = logging.getLogger(__name__)
def setup_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
"""
Prepare the configuration for the Hyperopt module
:param args: Cli args from Arguments()
:return: Configuration
"""
config = setup_utils_configuration(args, method)
if method == RunMode.BACKTEST:
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
raise DependencyException('stake amount could not be "%s" for backtesting' %
constants.UNLIMITED_STAKE_AMOUNT)
return config
def start_backtesting(args: Dict[str, Any]) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading backtesting module when it's not used
from freqtrade.optimize.backtesting import Backtesting
# Initialize configuration
config = setup_configuration(args, RunMode.BACKTEST)
logger.info('Starting freqtrade in Backtesting mode')
# Initialize backtesting object
backtesting = Backtesting(config)
backtesting.start()
def start_hyperopt(args: Dict[str, Any]) -> None:
"""
Start hyperopt script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading hyperopt module when it's not used
try:
from filelock import FileLock, Timeout
from freqtrade.optimize.hyperopt import Hyperopt
except ImportError as e:
raise OperationalException(
f"{e}. Please ensure that the hyperopt dependencies are installed.") from e
# Initialize configuration
config = setup_configuration(args, RunMode.HYPEROPT)
logger.info('Starting freqtrade in Hyperopt mode')
lock = FileLock(Hyperopt.get_lock_filename(config))
try:
with lock.acquire(timeout=1):
# Remove noisy log messages
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
logging.getLogger('filelock').setLevel(logging.WARNING)
# Initialize backtesting object
hyperopt = Hyperopt(config)
hyperopt.start()
except Timeout:
logger.info("Another running instance of freqtrade Hyperopt detected.")
logger.info("Simultaneous execution of multiple Hyperopt commands is not supported. "
"Hyperopt module is resource hungry. Please run your Hyperopt sequentially "
"or on separate machines.")
logger.info("Quitting now.")
# TODO: return False here in order to help freqtrade to exit
# with non-zero exit code...
# Same in Edge and Backtesting start() functions.
def start_edge(args: Dict[str, Any]) -> None:
"""
Start Edge script
:param args: Cli args from Arguments()
:return: None
"""
from freqtrade.optimize.edge_cli import EdgeCli
# Initialize configuration
config = setup_configuration(args, RunMode.EDGE)
logger.info('Starting freqtrade in Edge mode')
# Initialize Edge object
edge_cli = EdgeCli(config)
edge_cli.start()

View File

@@ -9,20 +9,24 @@ from datetime import datetime, timedelta
from pathlib import Path
from typing import Any, Dict, List, NamedTuple, Optional
import arrow
from pandas import DataFrame
from tabulate import tabulate
from freqtrade import OperationalException
from freqtrade.configuration import (TimeRange, remove_credentials,
validate_config_consistency)
from freqtrade.data import history
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.dataprovider import DataProvider
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.misc import file_dump_json
from freqtrade.optimize.optimize_reports import (
generate_text_table, generate_text_table_sell_reason,
generate_text_table_strategy)
from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode
from freqtrade.strategy.interface import IStrategy, SellType
from freqtrade.strategy.interface import IStrategy, SellCheckTuple, SellType
logger = logging.getLogger(__name__)
@@ -60,12 +64,12 @@ class Backtesting:
# Reset keys for backtesting
remove_credentials(self.config)
self.strategylist: List[IStrategy] = []
self.exchange = ExchangeResolver(self.config['exchange']['name'], self.config).exchange
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
if config.get('fee'):
self.fee = config['fee']
else:
self.fee = self.exchange.get_fee()
self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0])
if self.config.get('runmode') != RunMode.HYPEROPT:
self.dataprovider = DataProvider(self.config, self.exchange)
@@ -75,19 +79,19 @@ class Backtesting:
for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config)
stratconf['strategy'] = strat
self.strategylist.append(StrategyResolver(stratconf).strategy)
self.strategylist.append(StrategyResolver.load_strategy(stratconf))
validate_config_consistency(stratconf)
else:
# No strategy list specified, only one strategy
self.strategylist.append(StrategyResolver(self.config).strategy)
self.strategylist.append(StrategyResolver.load_strategy(self.config))
validate_config_consistency(self.config)
if "ticker_interval" not in self.config:
raise OperationalException("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`")
self.timeframe = str(self.config.get('ticker_interval'))
self.timeframe_mins = timeframe_to_minutes(self.timeframe)
self.timeframe_min = timeframe_to_minutes(self.timeframe)
# Get maximum required startup period
self.required_startup = max([strat.startup_candle_count for strat in self.strategylist])
@@ -109,15 +113,16 @@ class Backtesting:
'timerange') is None else str(self.config.get('timerange')))
data = history.load_data(
datadir=Path(self.config['datadir']),
datadir=self.config['datadir'],
pairs=self.config['exchange']['pair_whitelist'],
timeframe=self.timeframe,
timerange=timerange,
startup_candles=self.required_startup,
fail_without_data=True,
data_format=self.config.get('dataformat_ohlcv', 'json'),
)
min_date, max_date = history.get_timeframe(data)
min_date, max_date = history.get_timerange(data)
logger.info(
'Loading data from %s up to %s (%s days)..',
@@ -129,94 +134,6 @@ class Backtesting:
return data, timerange
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame,
skip_nan: bool = False) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:return: pretty printed table with tabulate as str
"""
stake_currency = str(self.config.get('stake_currency'))
max_open_trades = self.config.get('max_open_trades')
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
'tot profit ' + stake_currency, 'tot profit %', 'avg duration',
'profit', 'loss']
for pair in data:
result = results[results.pair == pair]
if skip_nan and result.profit_abs.isnull().all():
continue
tabular_data.append([
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_percent.sum() * 100.0,
result.profit_abs.sum(),
result.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
len(result[result.profit_abs > 0]),
len(result[result.profit_abs < 0])
])
# Append Total
tabular_data.append([
'TOTAL',
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
"""
Generate small table outlining Backtest results
"""
tabular_data = []
headers = ['Sell Reason', 'Count']
for reason, count in results['sell_reason'].value_counts().iteritems():
tabular_data.append([reason.value, count])
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
def _generate_text_table_strategy(self, all_results: dict) -> str:
"""
Generate summary table per strategy
"""
stake_currency = str(self.config.get('stake_currency'))
max_open_trades = self.config.get('max_open_trades')
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
'tot profit ' + stake_currency, 'tot profit %', 'avg duration',
'profit', 'loss']
for strategy, results in all_results.items():
tabular_data.append([
strategy,
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def _store_backtest_result(self, recordfilename: Path, results: DataFrame,
strategyname: Optional[str] = None) -> None:
@@ -234,7 +151,7 @@ class Backtesting:
logger.info(f'Dumping backtest results to {recordfilename}')
file_dump_json(recordfilename, records)
def _get_ticker_list(self, processed) -> Dict[str, DataFrame]:
def _get_ticker_list(self, processed: Dict) -> Dict[str, DataFrame]:
"""
Helper function to convert a processed tickerlist into a list for performance reasons.
@@ -261,6 +178,46 @@ class Backtesting:
ticker[pair] = [x for x in ticker_data.itertuples()]
return ticker
def _get_close_rate(self, sell_row, trade: Trade, sell: SellCheckTuple,
trade_dur: int) -> float:
"""
Get close rate for backtesting result
"""
# Special handling if high or low hit STOP_LOSS or ROI
if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
# Set close_rate to stoploss
return trade.stop_loss
elif sell.sell_type == (SellType.ROI):
roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None:
if roi == -1 and roi_entry % self.timeframe_min == 0:
# When forceselling with ROI=-1, the roi time will always be equal to trade_dur.
# If that entry is a multiple of the timeframe (so on candle open)
# - we'll use open instead of close
return sell_row.open
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
close_rate = - (trade.open_rate * roi + trade.open_rate *
(1 + trade.fee_open)) / (trade.fee_close - 1)
if (trade_dur > 0 and trade_dur == roi_entry
and roi_entry % self.timeframe_min == 0
and sell_row.open > close_rate):
# new ROI entry came into effect.
# use Open rate if open_rate > calculated sell rate
return sell_row.open
# Use the maximum between close_rate and low as we
# cannot sell outside of a candle.
# Applies when a new ROI setting comes in place and the whole candle is above that.
return max(close_rate, sell_row.low)
else:
# This should not be reached...
return sell_row.open
else:
return sell_row.open
def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict,
@@ -287,29 +244,10 @@ class Backtesting:
sell_row.sell, low=sell_row.low, high=sell_row.high)
if sell.sell_flag:
trade_dur = int((sell_row.date - buy_row.date).total_seconds() // 60)
# Special handling if high or low hit STOP_LOSS or ROI
if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
# Set close_rate to stoploss
closerate = trade.stop_loss
elif sell.sell_type == (SellType.ROI):
roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None:
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
closerate = - (trade.open_rate * roi + trade.open_rate *
(1 + trade.fee_open)) / (trade.fee_close - 1)
# Use the maximum between closerate and low as we
# cannot sell outside of a candle.
# Applies when using {"xx": -1} as roi to force sells after xx minutes
closerate = max(closerate, sell_row.low)
else:
# This should not be reached...
closerate = sell_row.open
else:
closerate = sell_row.open
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
return BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=closerate),
profit_percent=trade.calc_profit_ratio(rate=closerate),
profit_abs=trade.calc_profit(rate=closerate),
open_time=buy_row.date,
close_time=sell_row.date,
@@ -325,7 +263,7 @@ class Backtesting:
# no sell condition found - trade stil open at end of backtest period
sell_row = partial_ticker[-1]
bt_res = BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=sell_row.open),
profit_percent=trade.calc_profit_ratio(rate=sell_row.open),
profit_abs=trade.calc_profit(rate=sell_row.open),
open_time=buy_row.date,
close_time=sell_row.date,
@@ -345,30 +283,28 @@ class Backtesting:
return bt_res
return None
def backtest(self, args: Dict) -> DataFrame:
def backtest(self, processed: Dict, stake_amount: float,
start_date: arrow.Arrow, end_date: arrow.Arrow,
max_open_trades: int = 0, position_stacking: bool = False) -> DataFrame:
"""
Implements backtesting functionality
Implement backtesting functionality
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
Of course try to not have ugly code. By some accessor are sometime slower than functions.
Avoid, logging on this method
Avoid extensive logging in this method and functions it calls.
:param args: a dict containing:
stake_amount: btc amount to use for each trade
processed: a processed dictionary with format {pair, data}
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
position_stacking: do we allow position stacking? (default: False)
:return: DataFrame
:param processed: a processed dictionary with format {pair, data}
:param stake_amount: amount to use for each trade
:param start_date: backtesting timerange start datetime
:param end_date: backtesting timerange end datetime
:param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited
:param position_stacking: do we allow position stacking?
:return: DataFrame with trades (results of backtesting)
"""
# Arguments are long and noisy, so this is commented out.
# Uncomment if you need to debug the backtest() method.
# logger.debug(f"Start backtest, args: {args}")
processed = args['processed']
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
position_stacking = args.get('position_stacking', False)
start_date = args['start_date']
end_date = args['end_date']
logger.debug(f"Run backtest, stake_amount: {stake_amount}, "
f"start_date: {start_date}, end_date: {end_date}, "
f"max_open_trades: {max_open_trades}, position_stacking: {position_stacking}"
)
trades = []
trade_count_lock: Dict = {}
@@ -378,7 +314,7 @@ class Backtesting:
lock_pair_until: Dict = {}
# Indexes per pair, so some pairs are allowed to have a missing start.
indexes: Dict = {}
tmp = start_date + timedelta(minutes=self.timeframe_mins)
tmp = start_date + timedelta(minutes=self.timeframe_min)
# Loop timerange and get candle for each pair at that point in time
while tmp < end_date:
@@ -430,23 +366,26 @@ class Backtesting:
lock_pair_until[pair] = end_date.datetime
# Move time one configured time_interval ahead.
tmp += timedelta(minutes=self.timeframe_mins)
tmp += timedelta(minutes=self.timeframe_min)
return DataFrame.from_records(trades, columns=BacktestResult._fields)
def start(self) -> None:
"""
Run a backtesting end-to-end
Run backtesting end-to-end
:return: None
"""
data: Dict[str, Any] = {}
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
max_open_trades = self.config['max_open_trades']
else:
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
max_open_trades = 0
position_stacking = self.config.get('position_stacking', False)
data, timerange = self.load_bt_data()
@@ -460,8 +399,8 @@ class Backtesting:
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = history.trim_dataframe(df, timerange)
min_date, max_date = history.get_timeframe(preprocessed)
preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = history.get_timerange(preprocessed)
logger.info(
'Backtesting with data from %s up to %s (%s days)..',
@@ -469,14 +408,12 @@ class Backtesting:
)
# Execute backtest and print results
all_results[self.strategy.get_strategy_name()] = self.backtest(
{
'stake_amount': self.config.get('stake_amount'),
'processed': preprocessed,
'max_open_trades': max_open_trades,
'position_stacking': self.config.get('position_stacking', False),
'start_date': min_date,
'end_date': max_date,
}
processed=preprocessed,
stake_amount=self.config['stake_amount'],
start_date=min_date,
end_date=max_date,
max_open_trades=max_open_trades,
position_stacking=position_stacking,
)
for strategy, results in all_results.items():
@@ -487,16 +424,27 @@ class Backtesting:
print(f"Result for strategy {strategy}")
print(' BACKTESTING REPORT '.center(133, '='))
print(self._generate_text_table(data, results))
print(generate_text_table(data,
stake_currency=self.config['stake_currency'],
max_open_trades=self.config['max_open_trades'],
results=results))
print(' SELL REASON STATS '.center(133, '='))
print(self._generate_text_table_sell_reason(data, results))
print(generate_text_table_sell_reason(data,
stake_currency=self.config['stake_currency'],
max_open_trades=self.config['max_open_trades'],
results=results))
print(' LEFT OPEN TRADES REPORT '.center(133, '='))
print(self._generate_text_table(data, results.loc[results.open_at_end], True))
print(generate_text_table(data,
stake_currency=self.config['stake_currency'],
max_open_trades=self.config['max_open_trades'],
results=results.loc[results.open_at_end], skip_nan=True))
print()
if len(all_results) > 1:
# Print Strategy summary table
print(' Strategy Summary '.center(133, '='))
print(self._generate_text_table_strategy(all_results))
print(' STRATEGY SUMMARY '.center(133, '='))
print(generate_text_table_strategy(self.config['stake_currency'],
self.config['max_open_trades'],
all_results=all_results))
print('\nFor more details, please look at the detail tables above')

View File

@@ -6,14 +6,12 @@ This module contains the edge backtesting interface
import logging
from typing import Any, Dict
from tabulate import tabulate
from freqtrade import constants
from freqtrade.configuration import (TimeRange, remove_credentials,
validate_config_consistency)
from freqtrade.edge import Edge
from freqtrade.exchange import Exchange
from freqtrade.resolvers import StrategyResolver
from freqtrade.optimize.optimize_reports import generate_edge_table
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
logger = logging.getLogger(__name__)
@@ -33,8 +31,8 @@ class EdgeCli:
# Reset keys for edge
remove_credentials(self.config)
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
self.exchange = Exchange(self.config)
self.strategy = StrategyResolver(self.config).strategy
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self.strategy = StrategyResolver.load_strategy(self.config)
validate_config_consistency(self.config)
@@ -42,38 +40,11 @@ class EdgeCli:
# Set refresh_pairs to false for edge-cli (it must be true for edge)
self.edge._refresh_pairs = False
self.timerange = TimeRange.parse_timerange(None if self.config.get(
self.edge._timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
self.edge._timerange = self.timerange
def _generate_edge_table(self, results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
tabular_data = []
headers = ['pair', 'stoploss', 'win rate', 'risk reward ratio',
'required risk reward', 'expectancy', 'total number of trades',
'average duration (min)']
for result in results.items():
if result[1].nb_trades > 0:
tabular_data.append([
result[0],
result[1].stoploss,
result[1].winrate,
result[1].risk_reward_ratio,
result[1].required_risk_reward,
result[1].expectancy,
result[1].nb_trades,
round(result[1].avg_trade_duration)
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def start(self) -> None:
result = self.edge.calculate()
if result:
print('') # blank line for readability
print(self._generate_edge_table(self.edge._cached_pairs))
print(generate_edge_table(self.edge._cached_pairs))

View File

@@ -6,7 +6,9 @@ This module contains the hyperopt logic
import locale
import logging
import random
import sys
import warnings
from collections import OrderedDict
from operator import itemgetter
from pathlib import Path
@@ -19,19 +21,25 @@ from colorama import init as colorama_init
from joblib import (Parallel, cpu_count, delayed, dump, load,
wrap_non_picklable_objects)
from pandas import DataFrame
from skopt import Optimizer
from skopt.space import Dimension
from freqtrade import OperationalException
from freqtrade.data.history import get_timeframe, trim_dataframe
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import get_timerange
from freqtrade.exceptions import OperationalException
from freqtrade.misc import plural, round_dict
from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F4
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F4
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
from freqtrade.resolvers.hyperopt_resolver import (HyperOptLossResolver,
HyperOptResolver)
# Suppress scikit-learn FutureWarnings from skopt
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=FutureWarning)
from skopt import Optimizer
from skopt.space import Dimension
logger = logging.getLogger(__name__)
@@ -52,14 +60,15 @@ class Hyperopt:
hyperopt = Hyperopt(config)
hyperopt.start()
"""
def __init__(self, config: Dict[str, Any]) -> None:
self.config = config
self.backtesting = Backtesting(self.config)
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
self.custom_hyperoptloss = HyperOptLossResolver(self.config).hyperoptloss
self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config)
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
self.trials_file = (self.config['user_data_dir'] /
@@ -83,13 +92,13 @@ class Hyperopt:
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_indicators'):
self.backtesting.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore
self.custom_hyperopt.populate_indicators # type: ignore
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.populate_buy_trend # type: ignore
self.custom_hyperopt.populate_buy_trend # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.populate_sell_trend # type: ignore
self.custom_hyperopt.populate_sell_trend # type: ignore
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
@@ -110,11 +119,11 @@ class Hyperopt:
self.print_json = self.config.get('print_json', False)
@staticmethod
def get_lock_filename(config) -> str:
def get_lock_filename(config: Dict[str, Any]) -> str:
return str(config['user_data_dir'] / 'hyperopt.lock')
def clean_hyperopt(self):
def clean_hyperopt(self) -> None:
"""
Remove hyperopt pickle files to restart hyperopt.
"""
@@ -151,7 +160,7 @@ class Hyperopt:
f"saved to '{self.trials_file}'.")
@staticmethod
def _read_trials(trials_file) -> List:
def _read_trials(trials_file: Path) -> List:
"""
Read hyperopt trials file
"""
@@ -177,13 +186,12 @@ class Hyperopt:
result['stoploss'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('stoploss')}
if self.has_space('trailing'):
result['trailing'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('trailing')}
result['trailing'] = self.custom_hyperopt.generate_trailing_params(params)
return result
@staticmethod
def print_epoch_details(results, total_epochs, print_json: bool,
def print_epoch_details(results, total_epochs: int, print_json: bool,
no_header: bool = False, header_str: str = None) -> None:
"""
Display details of the hyperopt result
@@ -212,7 +220,7 @@ class Hyperopt:
Hyperopt._params_pretty_print(params, 'trailing', "Trailing stop:")
@staticmethod
def _params_update_for_json(result_dict, params, space: str):
def _params_update_for_json(result_dict, params, space: str) -> None:
if space in params:
space_params = Hyperopt._space_params(params, space)
if space in ['buy', 'sell']:
@@ -229,7 +237,7 @@ class Hyperopt:
result_dict.update(space_params)
@staticmethod
def _params_pretty_print(params, space: str, header: str):
def _params_pretty_print(params, space: str, header: str) -> None:
if space in params:
space_params = Hyperopt._space_params(params, space, 5)
if space == 'stoploss':
@@ -245,7 +253,7 @@ class Hyperopt:
return round_dict(d, r) if r else d
@staticmethod
def is_best_loss(results, current_best_loss) -> bool:
def is_best_loss(results, current_best_loss: float) -> bool:
return results['loss'] < current_best_loss
def print_results(self, results) -> None:
@@ -339,41 +347,39 @@ class Hyperopt:
if self.has_space('roi'):
self.backtesting.strategy.minimal_roi = \
self.custom_hyperopt.generate_roi_table(params_dict)
self.custom_hyperopt.generate_roi_table(params_dict)
if self.has_space('buy'):
self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.buy_strategy_generator(params_dict)
self.custom_hyperopt.buy_strategy_generator(params_dict)
if self.has_space('sell'):
self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.sell_strategy_generator(params_dict)
self.custom_hyperopt.sell_strategy_generator(params_dict)
if self.has_space('stoploss'):
self.backtesting.strategy.stoploss = params_dict['stoploss']
if self.has_space('trailing'):
self.backtesting.strategy.trailing_stop = params_dict['trailing_stop']
self.backtesting.strategy.trailing_stop_positive = \
params_dict['trailing_stop_positive']
d = self.custom_hyperopt.generate_trailing_params(params_dict)
self.backtesting.strategy.trailing_stop = d['trailing_stop']
self.backtesting.strategy.trailing_stop_positive = d['trailing_stop_positive']
self.backtesting.strategy.trailing_stop_positive_offset = \
params_dict['trailing_stop_positive_offset']
d['trailing_stop_positive_offset']
self.backtesting.strategy.trailing_only_offset_is_reached = \
params_dict['trailing_only_offset_is_reached']
d['trailing_only_offset_is_reached']
processed = load(self.tickerdata_pickle)
min_date, max_date = get_timeframe(processed)
min_date, max_date = get_timerange(processed)
backtesting_results = self.backtesting.backtest(
{
'stake_amount': self.config['stake_amount'],
'processed': processed,
'max_open_trades': self.max_open_trades,
'position_stacking': self.position_stacking,
'start_date': min_date,
'end_date': max_date,
}
processed=processed,
stake_amount=self.config['stake_amount'],
start_date=min_date,
end_date=max_date,
max_open_trades=self.max_open_trades,
position_stacking=self.position_stacking,
)
return self._get_results_dict(backtesting_results, min_date, max_date,
params_dict, params_details)
@@ -421,7 +427,7 @@ class Hyperopt:
f"Avg profit {results_metrics['avg_profit']: 6.2f}%. "
f"Total profit {results_metrics['total_profit']: 11.8f} {stake_cur} "
f"({results_metrics['profit']: 7.2f}\N{GREEK CAPITAL LETTER SIGMA}%). "
f"Avg duration {results_metrics['duration']:5.1f} mins."
f"Avg duration {results_metrics['duration']:5.1f} min."
).encode(locale.getpreferredencoding(), 'replace').decode('utf-8')
def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer:
@@ -431,10 +437,10 @@ class Hyperopt:
acq_optimizer="auto",
n_initial_points=INITIAL_POINTS,
acq_optimizer_kwargs={'n_jobs': cpu_count},
random_state=self.config.get('hyperopt_random_state', None),
random_state=self.random_state,
)
def fix_optimizer_models_list(self):
def fix_optimizer_models_list(self) -> None:
"""
WORKAROUND: Since skopt is not actively supported, this resolves problems with skopt
memory usage, see also: https://github.com/scikit-optimize/scikit-optimize/pull/746
@@ -456,7 +462,7 @@ class Hyperopt:
wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked)
@staticmethod
def load_previous_results(trials_file) -> List:
def load_previous_results(trials_file: Path) -> List:
"""
Load data for epochs from the file if we have one
"""
@@ -465,12 +471,18 @@ class Hyperopt:
trials = Hyperopt._read_trials(trials_file)
if trials[0].get('is_best') is None:
raise OperationalException(
"The file with Hyperopt results is incompatible with this version "
"of Freqtrade and cannot be loaded.")
"The file with Hyperopt results is incompatible with this version "
"of Freqtrade and cannot be loaded.")
logger.info(f"Loaded {len(trials)} previous evaluations from disk.")
return trials
def _set_random_state(self, random_state: Optional[int]) -> int:
return random_state or random.randint(1, 2**16 - 1)
def start(self) -> None:
self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
logger.info(f"Using optimizer random state: {self.random_state}")
data, timerange = self.backtesting.load_bt_data()
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
@@ -478,7 +490,7 @@ class Hyperopt:
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = get_timeframe(data)
min_date, max_date = get_timerange(data)
logger.info(
'Hyperopting with data from %s up to %s (%s days)..',

View File

@@ -4,17 +4,15 @@ This module defines the interface to apply for hyperopt
"""
import logging
import math
from abc import ABC
from typing import Dict, Any, Callable, List
from typing import Any, Callable, Dict, List
from skopt.space import Categorical, Dimension, Integer, Real
from freqtrade import OperationalException
from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.misc import round_dict
logger = logging.getLogger(__name__)
@@ -106,7 +104,7 @@ class IHyperOpt(ABC):
roi_t_alpha = 1.0
roi_p_alpha = 1.0
timeframe_mins = timeframe_to_minutes(IHyperOpt.ticker_interval)
timeframe_min = timeframe_to_minutes(IHyperOpt.ticker_interval)
# We define here limits for the ROI space parameters automagically adapted to the
# timeframe used by the bot:
@@ -117,8 +115,8 @@ class IHyperOpt(ABC):
#
# The scaling is designed so that it maps exactly to the legacy Freqtrade roi_space()
# method for the 5m ticker interval.
roi_t_scale = timeframe_mins / 5
roi_p_scale = math.log1p(timeframe_mins) / math.log1p(5)
roi_t_scale = timeframe_min / 5
roi_p_scale = math.log1p(timeframe_min) / math.log1p(5)
roi_limits = {
'roi_t1_min': int(10 * roi_t_scale * roi_t_alpha),
'roi_t1_max': int(120 * roi_t_scale * roi_t_alpha),
@@ -174,6 +172,19 @@ class IHyperOpt(ABC):
Real(-0.35, -0.02, name='stoploss'),
]
@staticmethod
def generate_trailing_params(params: Dict) -> Dict:
"""
Create dict with trailing stop parameters.
"""
return {
'trailing_stop': params['trailing_stop'],
'trailing_stop_positive': params['trailing_stop_positive'],
'trailing_stop_positive_offset': (params['trailing_stop_positive'] +
params['trailing_stop_positive_offset_p1']),
'trailing_only_offset_is_reached': params['trailing_only_offset_is_reached'],
}
@staticmethod
def trailing_space() -> List[Dimension]:
"""
@@ -190,8 +201,15 @@ class IHyperOpt(ABC):
# other 'trailing' hyperspace parameters.
Categorical([True], name='trailing_stop'),
Real(0.02, 0.35, name='trailing_stop_positive'),
Real(0.01, 0.1, name='trailing_stop_positive_offset'),
Real(0.01, 0.35, name='trailing_stop_positive'),
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
# so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method.
# This is similar to the hyperspace dimensions used for constructing the ROI tables.
Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'),
]

View File

@@ -28,18 +28,19 @@ class SharpeHyperOptLoss(IHyperOptLoss):
Uses Sharpe Ratio calculation.
"""
total_profit = results.profit_percent
total_profit = results["profit_percent"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_yearly_return = total_profit.sum() / days_period
expected_returns_mean = total_profit.sum() / days_period
up_stdev = np.std(total_profit)
if (np.std(total_profit) != 0.):
sharp_ratio = expected_yearly_return / np.std(total_profit) * np.sqrt(365)
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20.
# print(expected_yearly_return, np.std(total_profit), sharp_ratio)
# print(expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio

View File

@@ -0,0 +1,62 @@
"""
SharpeHyperOptLossDaily
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
import math
from datetime import datetime
from pandas import DataFrame, date_range
from freqtrade.optimize.hyperopt import IHyperOptLoss
class SharpeHyperOptLossDaily(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Sharpe Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Sharpe Ratio calculation.
"""
resample_freq = '1D'
slippage_per_trade_ratio = 0.0005
days_in_year = 365
annual_risk_free_rate = 0.0
risk_free_rate = annual_risk_free_rate / days_in_year
# apply slippage per trade to profit_percent
results.loc[:, 'profit_percent_after_slippage'] = \
results['profit_percent'] - slippage_per_trade_ratio
# create the index within the min_date and end max_date
t_index = date_range(start=min_date, end=max_date, freq=resample_freq,
normalize=True)
sum_daily = (
results.resample(resample_freq, on='close_time').agg(
{"profit_percent_after_slippage": sum}).reindex(t_index).fillna(0)
)
total_profit = sum_daily["profit_percent_after_slippage"] - risk_free_rate
expected_returns_mean = total_profit.mean()
up_stdev = total_profit.std()
if (up_stdev != 0.):
sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year)
else:
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
sharp_ratio = -20.
# print(t_index, sum_daily, total_profit)
# print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio)
return -sharp_ratio

View File

@@ -0,0 +1,175 @@
from datetime import timedelta
from typing import Dict
from pandas import DataFrame
from tabulate import tabulate
def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
results: DataFrame, skip_nan: bool = False) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
:param stake_currency: stake-currency - used to correctly name headers
:param max_open_trades: Maximum allowed open trades
:param results: Dataframe containing the backtest results
:param skip_nan: Print "left open" open trades
:return: pretty printed table with tabulate as string
"""
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = [
'Pair',
'Buys',
'Avg Profit %',
'Cum Profit %',
f'Tot Profit {stake_currency}',
'Tot Profit %',
'Avg Duration',
'Wins',
'Draws',
'Losses'
]
for pair in data:
result = results[results.pair == pair]
if skip_nan and result.profit_abs.isnull().all():
continue
tabular_data.append([
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_percent.sum() * 100.0,
result.profit_abs.sum(),
result.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
len(result[result.profit_abs > 0]),
len(result[result.profit_abs == 0]),
len(result[result.profit_abs < 0])
])
# Append Total
tabular_data.append([
'TOTAL',
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs == 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def generate_text_table_sell_reason(
data: Dict[str, Dict], stake_currency: str, max_open_trades: int, results: DataFrame
) -> str:
"""
Generate small table outlining Backtest results
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
:param results: Dataframe containing the backtest results
:return: pretty printed table with tabulate as string
"""
tabular_data = []
headers = [
"Sell Reason",
"Sells",
"Wins",
"Draws",
"Losses",
"Avg Profit %",
"Cum Profit %",
f"Tot Profit {stake_currency}",
"Tot Profit %",
]
for reason, count in results['sell_reason'].value_counts().iteritems():
result = results.loc[results['sell_reason'] == reason]
wins = len(result[result['profit_abs'] > 0])
draws = len(result[result['profit_abs'] == 0])
loss = len(result[result['profit_abs'] < 0])
profit_mean = round(result['profit_percent'].mean() * 100.0, 2)
profit_sum = round(result["profit_percent"].sum() * 100.0, 2)
profit_tot = result['profit_abs'].sum()
profit_percent_tot = round(result['profit_percent'].sum() * 100.0 / max_open_trades, 2)
tabular_data.append(
[
reason.value,
count,
wins,
draws,
loss,
profit_mean,
profit_sum,
profit_tot,
profit_percent_tot,
]
)
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
all_results: Dict) -> str:
"""
Generate summary table per strategy
:param stake_currency: stake-currency - used to correctly name headers
:param max_open_trades: Maximum allowed open trades used for backtest
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
:return: pretty printed table with tabulate as string
"""
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['Strategy', 'Buys', 'Avg Profit %', 'Cum Profit %',
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
'Wins', 'Draws', 'Losses']
for strategy, results in all_results.items():
tabular_data.append([
strategy,
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs == 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def generate_edge_table(results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
tabular_data = []
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
'Required Risk Reward', 'Expectancy', 'Total Number of Trades',
'Average Duration (min)']
for result in results.items():
if result[1].nb_trades > 0:
tabular_data.append([
result[0],
result[1].stoploss,
result[1].winrate,
result[1].risk_reward_ratio,
result[1].required_risk_reward,
result[1].expectancy,
result[1].nb_trades,
round(result[1].avg_trade_duration)
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore

View File

@@ -7,7 +7,7 @@ Provides lists as configured in config.json
import logging
from abc import ABC, abstractmethod, abstractproperty
from copy import deepcopy
from typing import Dict, List
from typing import Any, Dict, List
from freqtrade.exchange import market_is_active
@@ -16,7 +16,8 @@ logger = logging.getLogger(__name__)
class IPairList(ABC):
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
def __init__(self, exchange, pairlistmanager,
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None:
"""
:param exchange: Exchange instance

View File

@@ -35,8 +35,8 @@ class PrecisionFilter(IPairList):
"""
stop_price = ticker['ask'] * stoploss
# Adjust stop-prices to precision
sp = self._exchange.symbol_price_prec(ticker["symbol"], stop_price)
stop_gap_price = self._exchange.symbol_price_prec(ticker["symbol"], stop_price * 0.99)
sp = self._exchange.price_to_precision(ticker["symbol"], stop_price)
stop_gap_price = self._exchange.price_to_precision(ticker["symbol"], stop_price * 0.99)
logger.debug(f"{ticker['symbol']} - {sp} : {stop_gap_price}")
if sp <= stop_gap_price:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
@@ -48,10 +48,10 @@ class PrecisionFilter(IPairList):
"""
Filters and sorts pairlists and assigns and returns them again.
"""
stoploss = None
if self._config.get('stoploss') is not None:
stoploss = self._config.get('stoploss')
if stoploss is not None:
# Precalculate sanitized stoploss value to avoid recalculation for every pair
stoploss = 1 - abs(self._config.get('stoploss'))
stoploss = 1 - abs(stoploss)
# Copy list since we're modifying this list
for p in deepcopy(pairlist):
ticker = tickers.get(p)

View File

@@ -1,6 +1,6 @@
import logging
from copy import deepcopy
from typing import Dict, List
from typing import Any, Dict, List
from freqtrade.pairlist.IPairList import IPairList
@@ -9,7 +9,8 @@ logger = logging.getLogger(__name__)
class PriceFilter(IPairList):
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
def __init__(self, exchange, pairlistmanager,
config: Dict[str, Any], pairlistconfig: Dict[str, Any],
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)

View File

@@ -0,0 +1,59 @@
import logging
from copy import deepcopy
from typing import Dict, List
from freqtrade.pairlist.IPairList import IPairList
logger = logging.getLogger(__name__)
class SpreadFilter(IPairList):
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
self._max_spread_ratio = pairlistconfig.get('max_spread_ratio', 0.005)
@property
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requries tickers, an empty List is passed
as tickers argument to filter_pairlist
"""
return True
def short_desc(self) -> str:
"""
Short whitelist method description - used for startup-messages
"""
return (f"{self.name} - Filtering pairs with ask/bid diff above "
f"{self._max_spread_ratio * 100}%.")
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new whitelist
"""
# Copy list since we're modifying this list
spread = None
for p in deepcopy(pairlist):
ticker = tickers.get(p)
assert ticker is not None
if 'bid' in ticker and 'ask' in ticker:
spread = 1 - ticker['bid'] / ticker['ask']
if not ticker or spread > self._max_spread_ratio:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because spread {spread * 100:.3f}% >"
f"{self._max_spread_ratio * 100}%")
pairlist.remove(p)
else:
pairlist.remove(p)
return pairlist

View File

@@ -6,9 +6,9 @@ Provides lists as configured in config.json
"""
import logging
from datetime import datetime
from typing import Dict, List
from typing import Any, Dict, List
from freqtrade import OperationalException
from freqtrade.exceptions import OperationalException
from freqtrade.pairlist.IPairList import IPairList
logger = logging.getLogger(__name__)
@@ -18,7 +18,7 @@ SORT_VALUES = ['askVolume', 'bidVolume', 'quoteVolume']
class VolumePairList(IPairList):
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
def __init__(self, exchange, pairlistmanager, config: Dict[str, Any], pairlistconfig: dict,
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
@@ -28,6 +28,7 @@ class VolumePairList(IPairList):
'for "pairlist.config.number_assets"')
self._number_pairs = self._pairlistconfig['number_assets']
self._sort_key = self._pairlistconfig.get('sort_key', 'quoteVolume')
self._min_value = self._pairlistconfig.get('min_value', 0)
self.refresh_period = self._pairlistconfig.get('refresh_period', 1800)
if not self._exchange.exchange_has('fetchTickers'):
@@ -73,11 +74,13 @@ class VolumePairList(IPairList):
tickers,
self._config['stake_currency'],
self._sort_key,
self._min_value
)
else:
return pairlist
def _gen_pair_whitelist(self, pairlist, tickers, base_currency: str, key: str) -> List[str]:
def _gen_pair_whitelist(self, pairlist: List[str], tickers: Dict,
base_currency: str, key: str, min_val: int) -> List[str]:
"""
Updates the whitelist with with a dynamically generated list
:param base_currency: base currency as str
@@ -96,6 +99,9 @@ class VolumePairList(IPairList):
# If other pairlist is in front, use the incomming pairlist.
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
if min_val > 0:
filtered_tickers = list(filter(lambda t: t[key] > min_val, filtered_tickers))
sorted_tickers = sorted(filtered_tickers, reverse=True, key=lambda t: t[key])
# Validate whitelist to only have active market pairs

View File

@@ -4,11 +4,12 @@ Static List provider
Provides lists as configured in config.json
"""
from cachetools import TTLCache, cached
import logging
from typing import Dict, List
from freqtrade import OperationalException
from cachetools import TTLCache, cached
from freqtrade.exceptions import OperationalException
from freqtrade.pairlist.IPairList import IPairList
from freqtrade.resolvers import PairListResolver
@@ -28,13 +29,13 @@ class PairListManager():
if 'method' not in pl:
logger.warning(f"No method in {pl}")
continue
pairl = PairListResolver(pl.get('method'),
exchange=exchange,
pairlistmanager=self,
config=config,
pairlistconfig=pl,
pairlist_pos=len(self._pairlists)
).pairlist
pairl = PairListResolver.load_pairlist(pl.get('method'),
exchange=exchange,
pairlistmanager=self,
config=config,
pairlistconfig=pl,
pairlist_pos=len(self._pairlists)
)
self._tickers_needed = pairl.needstickers or self._tickers_needed
self._pairlists.append(pairl)

View File

@@ -16,7 +16,7 @@ from sqlalchemy.orm.scoping import scoped_session
from sqlalchemy.orm.session import sessionmaker
from sqlalchemy.pool import StaticPool
from freqtrade import OperationalException
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
@@ -64,11 +64,11 @@ def init(db_url: str, clean_open_orders: bool = False) -> None:
clean_dry_run_db()
def has_column(columns, searchname: str) -> bool:
def has_column(columns: List, searchname: str) -> bool:
return len(list(filter(lambda x: x["name"] == searchname, columns))) == 1
def get_column_def(columns, column: str, default: str) -> str:
def get_column_def(columns: List, column: str, default: str) -> str:
return default if not has_column(columns, column) else column
@@ -86,7 +86,7 @@ def check_migrate(engine) -> None:
logger.debug(f'trying {table_back_name}')
# Check for latest column
if not has_column(cols, 'stop_loss_pct'):
if not has_column(cols, 'open_trade_price'):
logger.info(f'Running database migration - backup available as {table_back_name}')
fee_open = get_column_def(cols, 'fee_open', 'fee')
@@ -104,6 +104,8 @@ def check_migrate(engine) -> None:
sell_reason = get_column_def(cols, 'sell_reason', 'null')
strategy = get_column_def(cols, 'strategy', 'null')
ticker_interval = get_column_def(cols, 'ticker_interval', 'null')
open_trade_price = get_column_def(cols, 'open_trade_price',
f'amount * open_rate * (1 + {fee_open})')
# Schema migration necessary
engine.execute(f"alter table trades rename to {table_back_name}")
@@ -121,7 +123,7 @@ def check_migrate(engine) -> None:
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
stoploss_order_id, stoploss_last_update,
max_rate, min_rate, sell_reason, strategy,
ticker_interval
ticker_interval, open_trade_price
)
select id, lower(exchange),
case
@@ -140,7 +142,8 @@ def check_migrate(engine) -> None:
{initial_stop_loss_pct} initial_stop_loss_pct,
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
{strategy} strategy, {ticker_interval} ticker_interval
{strategy} strategy, {ticker_interval} ticker_interval,
{open_trade_price} open_trade_price
from {table_back_name}
""")
@@ -182,6 +185,8 @@ class Trade(_DECL_BASE):
fee_close = Column(Float, nullable=False, default=0.0)
open_rate = Column(Float)
open_rate_requested = Column(Float)
# open_trade_price - calcuated via _calc_open_trade_price
open_trade_price = Column(Float)
close_rate = Column(Float)
close_rate_requested = Column(Float)
close_profit = Column(Float)
@@ -210,6 +215,10 @@ class Trade(_DECL_BASE):
strategy = Column(String, nullable=True)
ticker_interval = Column(Integer, nullable=True)
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.recalc_open_trade_price()
def __repr__(self):
open_since = self.open_date.strftime('%Y-%m-%d %H:%M:%S') if self.is_open else 'closed'
@@ -237,14 +246,15 @@ class Trade(_DECL_BASE):
if self.initial_stop_loss_pct else None),
}
def adjust_min_max_rates(self, current_price: float):
def adjust_min_max_rates(self, current_price: float) -> None:
"""
Adjust the max_rate and min_rate.
"""
self.max_rate = max(current_price, self.max_rate or self.open_rate)
self.min_rate = min(current_price, self.min_rate or self.open_rate)
def adjust_stop_loss(self, current_price: float, stoploss: float, initial: bool = False):
def adjust_stop_loss(self, current_price: float, stoploss: float,
initial: bool = False) -> None:
"""
This adjusts the stop loss to it's most recently observed setting
:param current_price: Current rate the asset is traded
@@ -302,15 +312,16 @@ class Trade(_DECL_BASE):
# Update open rate and actual amount
self.open_rate = Decimal(order['price'])
self.amount = Decimal(order['amount'])
self.recalc_open_trade_price()
logger.info('%s_BUY has been fulfilled for %s.', order_type.upper(), self)
self.open_order_id = None
elif order_type in ('market', 'limit') and order['side'] == 'sell':
self.close(order['price'])
logger.info('%s_SELL has been fulfilled for %s.', order_type.upper(), self)
elif order_type == 'stop_loss_limit':
elif order_type in ('stop_loss_limit', 'stop-loss'):
self.stoploss_order_id = None
self.close_rate_requested = self.stop_loss
logger.info('STOP_LOSS_LIMIT is hit for %s.', self)
logger.info('%s is hit for %s.', order_type.upper(), self)
self.close(order['average'])
else:
raise ValueError(f'Unknown order type: {order_type}')
@@ -322,7 +333,7 @@ class Trade(_DECL_BASE):
and marks trade as closed
"""
self.close_rate = Decimal(rate)
self.close_profit = self.calc_profit_percent()
self.close_profit = self.calc_profit_ratio()
self.close_date = datetime.utcnow()
self.is_open = False
self.open_order_id = None
@@ -331,31 +342,36 @@ class Trade(_DECL_BASE):
self
)
def calc_open_trade_price(self, fee: Optional[float] = None) -> float:
def _calc_open_trade_price(self) -> float:
"""
Calculate the open_rate including fee.
:param fee: fee to use on the open rate (optional).
If rate is not set self.fee will be used
Calculate the open_rate including open_fee.
:return: Price in of the open trade incl. Fees
"""
buy_trade = (Decimal(self.amount) * Decimal(self.open_rate))
fees = buy_trade * Decimal(fee or self.fee_open)
buy_trade = Decimal(self.amount) * Decimal(self.open_rate)
fees = buy_trade * Decimal(self.fee_open)
return float(buy_trade + fees)
def recalc_open_trade_price(self) -> None:
"""
Recalculate open_trade_price.
Must be called whenever open_rate or fee_open is changed.
"""
self.open_trade_price = self._calc_open_trade_price()
def calc_close_trade_price(self, rate: Optional[float] = None,
fee: Optional[float] = None) -> float:
"""
Calculate the close_rate including fee
:param fee: fee to use on the close rate (optional).
If rate is not set self.fee will be used
If rate is not set self.fee will be used
:param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used
If rate is not set self.close_rate will be used
:return: Price in BTC of the open trade
"""
if rate is None and not self.close_rate:
return 0.0
sell_trade = (Decimal(self.amount) * Decimal(rate or self.close_rate))
sell_trade = Decimal(self.amount) * Decimal(rate or self.close_rate)
fees = sell_trade * Decimal(fee or self.fee_close)
return float(sell_trade - fees)
@@ -364,34 +380,32 @@ class Trade(_DECL_BASE):
"""
Calculate the absolute profit in stake currency between Close and Open trade
:param fee: fee to use on the close rate (optional).
If rate is not set self.fee will be used
If rate is not set self.fee will be used
:param rate: close rate to compare with (optional).
If rate is not set self.close_rate will be used
If rate is not set self.close_rate will be used
:return: profit in stake currency as float
"""
open_trade_price = self.calc_open_trade_price()
close_trade_price = self.calc_close_trade_price(
rate=(rate or self.close_rate),
fee=(fee or self.fee_close)
)
profit = close_trade_price - open_trade_price
profit = close_trade_price - self.open_trade_price
return float(f"{profit:.8f}")
def calc_profit_percent(self, rate: Optional[float] = None,
fee: Optional[float] = None) -> float:
def calc_profit_ratio(self, rate: Optional[float] = None,
fee: Optional[float] = None) -> float:
"""
Calculates the profit in percentage (including fee).
Calculates the profit as ratio (including fee).
:param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used
If rate is not set self.close_rate will be used
:param fee: fee to use on the close rate (optional).
:return: profit in percentage as float
:return: profit ratio as float
"""
open_trade_price = self.calc_open_trade_price()
close_trade_price = self.calc_close_trade_price(
rate=(rate or self.close_rate),
fee=(fee or self.fee_close)
)
profit_percent = (close_trade_price / open_trade_price) - 1
profit_percent = (close_trade_price / self.open_trade_price) - 1
return float(f"{profit_percent:.8f}")
@staticmethod

View File

@@ -3,11 +3,14 @@ from pathlib import Path
from typing import Any, Dict, List
import pandas as pd
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.data.btanalysis import (combine_tickers_with_mean,
create_cum_profit,
extract_trades_of_period, load_trades)
from freqtrade.data.converter import trim_dataframe
from freqtrade.data.history import load_data
from freqtrade.misc import pair_to_filename
from freqtrade.resolvers import StrategyResolver
logger = logging.getLogger(__name__)
@@ -36,39 +39,46 @@ def init_plotscript(config):
# Set timerange to use
timerange = TimeRange.parse_timerange(config.get("timerange"))
tickers = history.load_data(
datadir=Path(str(config.get("datadir"))),
tickers = load_data(
datadir=config.get("datadir"),
pairs=pairs,
timeframe=config.get('ticker_interval', '5m'),
timerange=timerange,
data_format=config.get('dataformat_ohlcv', 'json'),
)
trades = load_trades(config['trade_source'],
db_url=config.get('db_url'),
exportfilename=config.get('exportfilename'),
)
trades = history.trim_dataframe(trades, timerange, 'open_time')
trades = trim_dataframe(trades, timerange, 'open_time')
return {"tickers": tickers,
"trades": trades,
"pairs": pairs,
}
def add_indicators(fig, row, indicators: List[str], data: pd.DataFrame) -> make_subplots:
def add_indicators(fig, row, indicators: Dict[str, Dict], data: pd.DataFrame) -> make_subplots:
"""
Generator all the indicator selected by the user for a specific row
Generate all the indicators selected by the user for a specific row, based on the configuration
:param fig: Plot figure to append to
:param row: row number for this plot
:param indicators: List of indicators present in the dataframe
:param indicators: Dict of Indicators with configuration options.
Dict key must correspond to dataframe column.
:param data: candlestick DataFrame
"""
for indicator in indicators:
for indicator, conf in indicators.items():
logger.debug(f"indicator {indicator} with config {conf}")
if indicator in data:
kwargs = {'x': data['date'],
'y': data[indicator].values,
'mode': 'lines',
'name': indicator
}
if 'color' in conf:
kwargs.update({'line': {'color': conf['color']}})
scatter = go.Scatter(
x=data['date'],
y=data[indicator].values,
mode='lines',
name=indicator
**kwargs
)
fig.add_trace(scatter, row, 1)
else:
@@ -107,11 +117,31 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
"""
# Trades can be empty
if trades is not None and len(trades) > 0:
# Create description for sell summarizing the trade
trades['desc'] = trades.apply(lambda row: f"{round(row['profitperc'] * 100, 1)}%, "
f"{row['sell_reason']}, {row['duration']} min",
axis=1)
trade_buys = go.Scatter(
x=trades["open_time"],
y=trades["open_rate"],
mode='markers',
name='trade_buy',
name='Trade buy',
text=trades["desc"],
marker=dict(
symbol='circle-open',
size=11,
line=dict(width=2),
color='cyan'
)
)
trade_sells = go.Scatter(
x=trades.loc[trades['profitperc'] > 0, "close_time"],
y=trades.loc[trades['profitperc'] > 0, "close_rate"],
text=trades.loc[trades['profitperc'] > 0, "desc"],
mode='markers',
name='Sell - Profit',
marker=dict(
symbol='square-open',
size=11,
@@ -119,16 +149,12 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
color='green'
)
)
# Create description for sell summarizing the trade
desc = trades.apply(lambda row: f"{round(row['profitperc'], 3)}%, {row['sell_reason']}, "
f"{row['duration']}min",
axis=1)
trade_sells = go.Scatter(
x=trades["close_time"],
y=trades["close_rate"],
text=desc,
trade_sells_loss = go.Scatter(
x=trades.loc[trades['profitperc'] <= 0, "close_time"],
y=trades.loc[trades['profitperc'] <= 0, "close_rate"],
text=trades.loc[trades['profitperc'] <= 0, "desc"],
mode='markers',
name='trade_sell',
name='Sell - Loss',
marker=dict(
symbol='square-open',
size=11,
@@ -138,14 +164,53 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
)
fig.add_trace(trade_buys, 1, 1)
fig.add_trace(trade_sells, 1, 1)
fig.add_trace(trade_sells_loss, 1, 1)
else:
logger.warning("No trades found.")
return fig
def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFrame = None,
def create_plotconfig(indicators1: List[str], indicators2: List[str],
plot_config: Dict[str, Dict]) -> Dict[str, Dict]:
"""
Combines indicators 1 and indicators 2 into plot_config if necessary
:param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators
:param plot_config: Dict of Dicts containing advanced plot configuration
:return: plot_config - eventually with indicators 1 and 2
"""
if plot_config:
if indicators1:
plot_config['main_plot'] = {ind: {} for ind in indicators1}
if indicators2:
plot_config['subplots'] = {'Other': {ind: {} for ind in indicators2}}
if not plot_config:
# If no indicators and no plot-config given, use defaults.
if not indicators1:
indicators1 = ['sma', 'ema3', 'ema5']
if not indicators2:
indicators2 = ['macd', 'macdsignal']
# Create subplot configuration if plot_config is not available.
plot_config = {
'main_plot': {ind: {} for ind in indicators1},
'subplots': {'Other': {ind: {} for ind in indicators2}},
}
if 'main_plot' not in plot_config:
plot_config['main_plot'] = {}
if 'subplots' not in plot_config:
plot_config['subplots'] = {}
return plot_config
def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFrame = None, *,
indicators1: List[str] = [],
indicators2: List[str] = [],) -> go.Figure:
indicators2: List[str] = [],
plot_config: Dict[str, Dict] = {},
) -> go.Figure:
"""
Generate the graph from the data generated by Backtesting or from DB
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators
@@ -154,21 +219,26 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
:param trades: All trades created
:param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators
:return: None
:param plot_config: Dict of Dicts containing advanced plot configuration
:return: Plotly figure
"""
plot_config = create_plotconfig(indicators1, indicators2, plot_config)
rows = 2 + len(plot_config['subplots'])
row_widths = [1 for _ in plot_config['subplots']]
# Define the graph
fig = make_subplots(
rows=3,
rows=rows,
cols=1,
shared_xaxes=True,
row_width=[1, 1, 4],
row_width=row_widths + [1, 4],
vertical_spacing=0.0001,
)
fig['layout'].update(title=pair)
fig['layout']['yaxis1'].update(title='Price')
fig['layout']['yaxis2'].update(title='Volume')
fig['layout']['yaxis3'].update(title='Other')
for i, name in enumerate(plot_config['subplots']):
fig['layout'][f'yaxis{3 + i}'].update(title=name)
fig['layout']['xaxis']['rangeslider'].update(visible=False)
# Common information
@@ -238,12 +308,13 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
)
fig.add_trace(bb_lower, 1, 1)
fig.add_trace(bb_upper, 1, 1)
if 'bb_upperband' in indicators1 and 'bb_lowerband' in indicators1:
indicators1.remove('bb_upperband')
indicators1.remove('bb_lowerband')
if ('bb_upperband' in plot_config['main_plot']
and 'bb_lowerband' in plot_config['main_plot']):
del plot_config['main_plot']['bb_upperband']
del plot_config['main_plot']['bb_lowerband']
# Add indicators to main plot
fig = add_indicators(fig=fig, row=1, indicators=indicators1, data=data)
fig = add_indicators(fig=fig, row=1, indicators=plot_config['main_plot'], data=data)
fig = plot_trades(fig, trades)
@@ -254,11 +325,14 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
name='Volume',
marker_color='DarkSlateGrey',
marker_line_color='DarkSlateGrey'
)
)
fig.add_trace(volume, 2, 1)
# Add indicators to separate row
fig = add_indicators(fig=fig, row=3, indicators=indicators2, data=data)
for i, name in enumerate(plot_config['subplots']):
fig = add_indicators(fig=fig, row=3 + i,
indicators=plot_config['subplots'][name],
data=data)
return fig
@@ -300,12 +374,12 @@ def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
return fig
def generate_plot_filename(pair, timeframe) -> str:
def generate_plot_filename(pair: str, timeframe: str) -> str:
"""
Generate filenames per pair/timeframe to be used for storing plots
"""
pair_name = pair.replace("/", "_")
file_name = 'freqtrade-plot-' + pair_name + '-' + timeframe + '.html'
pair_s = pair_to_filename(pair)
file_name = 'freqtrade-plot-' + pair_s + '-' + timeframe + '.html'
logger.info('Generate plot file for %s', pair)
@@ -340,7 +414,7 @@ def load_and_plot_trades(config: Dict[str, Any]):
- Generate plot files
:return: None
"""
strategy = StrategyResolver(config).strategy
strategy = StrategyResolver.load_strategy(config)
plot_elements = init_plotscript(config)
trades = plot_elements['trades']
@@ -359,8 +433,9 @@ def load_and_plot_trades(config: Dict[str, Any]):
pair=pair,
data=dataframe,
trades=trades_pair,
indicators1=config["indicators1"],
indicators2=config["indicators2"],
indicators1=config.get("indicators1", []),
indicators2=config.get("indicators2", []),
plot_config=strategy.plot_config if hasattr(strategy, 'plot_config') else {}
)
store_plot_file(fig, filename=generate_plot_filename(pair, config['ticker_interval']),

View File

@@ -14,10 +14,10 @@ class ExchangeResolver(IResolver):
"""
This class contains all the logic to load a custom exchange class
"""
object_type = Exchange
__slots__ = ['exchange']
def __init__(self, exchange_name: str, config: dict, validate: bool = True) -> None:
@staticmethod
def load_exchange(exchange_name: str, config: dict, validate: bool = True) -> Exchange:
"""
Load the custom class from config parameter
:param config: configuration dictionary
@@ -25,17 +25,20 @@ class ExchangeResolver(IResolver):
# Map exchange name to avoid duplicate classes for identical exchanges
exchange_name = MAP_EXCHANGE_CHILDCLASS.get(exchange_name, exchange_name)
exchange_name = exchange_name.title()
exchange = None
try:
self.exchange = self._load_exchange(exchange_name, kwargs={'config': config,
'validate': validate})
exchange = ExchangeResolver._load_exchange(exchange_name,
kwargs={'config': config,
'validate': validate})
except ImportError:
logger.info(
f"No {exchange_name} specific subclass found. Using the generic class instead.")
if not hasattr(self, "exchange"):
self.exchange = Exchange(config, validate=validate)
if not exchange:
exchange = Exchange(config, validate=validate)
return exchange
def _load_exchange(
self, exchange_name: str, kwargs: dict) -> Exchange:
@staticmethod
def _load_exchange(exchange_name: str, kwargs: dict) -> Exchange:
"""
Loads the specified exchange.
Only checks for exchanges exported in freqtrade.exchanges

View File

@@ -5,10 +5,10 @@ This module load custom hyperopt
"""
import logging
from pathlib import Path
from typing import Optional, Dict
from typing import Dict
from freqtrade import OperationalException
from freqtrade.constants import DEFAULT_HYPEROPT_LOSS, USERPATH_HYPEROPTS
from freqtrade.exceptions import OperationalException
from freqtrade.optimize.hyperopt_interface import IHyperOpt
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss
from freqtrade.resolvers import IResolver
@@ -20,11 +20,15 @@ class HyperOptResolver(IResolver):
"""
This class contains all the logic to load custom hyperopt class
"""
__slots__ = ['hyperopt']
object_type = IHyperOpt
object_type_str = "Hyperopt"
user_subdir = USERPATH_HYPEROPTS
initial_search_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
def __init__(self, config: Dict) -> None:
@staticmethod
def load_hyperopt(config: Dict) -> IHyperOpt:
"""
Load the custom class from config parameter
Load the custom hyperopt class from config parameter
:param config: configuration dictionary
"""
if not config.get('hyperopt'):
@@ -33,50 +37,33 @@ class HyperOptResolver(IResolver):
hyperopt_name = config['hyperopt']
self.hyperopt = self._load_hyperopt(hyperopt_name, config,
extra_dir=config.get('hyperopt_path'))
hyperopt = HyperOptResolver.load_object(hyperopt_name, config,
kwargs={'config': config},
extra_dir=config.get('hyperopt_path'))
if not hasattr(self.hyperopt, 'populate_indicators'):
if not hasattr(hyperopt, 'populate_indicators'):
logger.warning("Hyperopt class does not provide populate_indicators() method. "
"Using populate_indicators from the strategy.")
if not hasattr(self.hyperopt, 'populate_buy_trend'):
if not hasattr(hyperopt, 'populate_buy_trend'):
logger.warning("Hyperopt class does not provide populate_buy_trend() method. "
"Using populate_buy_trend from the strategy.")
if not hasattr(self.hyperopt, 'populate_sell_trend'):
if not hasattr(hyperopt, 'populate_sell_trend'):
logger.warning("Hyperopt class does not provide populate_sell_trend() method. "
"Using populate_sell_trend from the strategy.")
def _load_hyperopt(
self, hyperopt_name: str, config: Dict, extra_dir: Optional[str] = None) -> IHyperOpt:
"""
Search and loads the specified hyperopt.
:param hyperopt_name: name of the module to import
:param config: configuration dictionary
:param extra_dir: additional directory to search for the given hyperopt
:return: HyperOpt instance or None
"""
current_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
abs_paths = self.build_search_paths(config, current_path=current_path,
user_subdir=USERPATH_HYPEROPTS, extra_dir=extra_dir)
hyperopt = self._load_object(paths=abs_paths, object_type=IHyperOpt,
object_name=hyperopt_name, kwargs={'config': config})
if hyperopt:
return hyperopt
raise OperationalException(
f"Impossible to load Hyperopt '{hyperopt_name}'. This class does not exist "
"or contains Python code errors."
)
return hyperopt
class HyperOptLossResolver(IResolver):
"""
This class contains all the logic to load custom hyperopt loss class
"""
__slots__ = ['hyperoptloss']
object_type = IHyperOptLoss
object_type_str = "HyperoptLoss"
user_subdir = USERPATH_HYPEROPTS
initial_search_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
def __init__(self, config: Dict) -> None:
@staticmethod
def load_hyperoptloss(config: Dict) -> IHyperOptLoss:
"""
Load the custom class from config parameter
:param config: configuration dictionary
@@ -86,38 +73,15 @@ class HyperOptLossResolver(IResolver):
# default hyperopt loss
hyperoptloss_name = config.get('hyperopt_loss') or DEFAULT_HYPEROPT_LOSS
self.hyperoptloss = self._load_hyperoptloss(
hyperoptloss_name, config, extra_dir=config.get('hyperopt_path'))
hyperoptloss = HyperOptLossResolver.load_object(hyperoptloss_name,
config, kwargs={},
extra_dir=config.get('hyperopt_path'))
# Assign ticker_interval to be used in hyperopt
self.hyperoptloss.__class__.ticker_interval = str(config['ticker_interval'])
hyperoptloss.__class__.ticker_interval = str(config['ticker_interval'])
if not hasattr(self.hyperoptloss, 'hyperopt_loss_function'):
if not hasattr(hyperoptloss, 'hyperopt_loss_function'):
raise OperationalException(
f"Found HyperoptLoss class {hyperoptloss_name} does not "
"implement `hyperopt_loss_function`.")
def _load_hyperoptloss(
self, hyper_loss_name: str, config: Dict,
extra_dir: Optional[str] = None) -> IHyperOptLoss:
"""
Search and loads the specified hyperopt loss class.
:param hyper_loss_name: name of the module to import
:param config: configuration dictionary
:param extra_dir: additional directory to search for the given hyperopt
:return: HyperOptLoss instance or None
"""
current_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
abs_paths = self.build_search_paths(config, current_path=current_path,
user_subdir=USERPATH_HYPEROPTS, extra_dir=extra_dir)
hyperoptloss = self._load_object(paths=abs_paths, object_type=IHyperOptLoss,
object_name=hyper_loss_name)
if hyperoptloss:
return hyperoptloss
raise OperationalException(
f"Impossible to load HyperoptLoss '{hyper_loss_name}'. This class does not exist "
"or contains Python code errors."
)
return hyperoptloss

View File

@@ -7,7 +7,9 @@ import importlib.util
import inspect
import logging
from pathlib import Path
from typing import Any, List, Optional, Tuple, Union, Generator
from typing import Any, Dict, Iterator, List, Optional, Tuple, Type, Union
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__)
@@ -16,11 +18,19 @@ class IResolver:
"""
This class contains all the logic to load custom classes
"""
# Childclasses need to override this
object_type: Type[Any]
object_type_str: str
user_subdir: Optional[str] = None
initial_search_path: Optional[Path]
def build_search_paths(self, config, current_path: Path, user_subdir: Optional[str] = None,
@classmethod
def build_search_paths(cls, config: Dict[str, Any], user_subdir: Optional[str] = None,
extra_dir: Optional[str] = None) -> List[Path]:
abs_paths: List[Path] = [current_path]
abs_paths: List[Path] = []
if cls.initial_search_path:
abs_paths.append(cls.initial_search_path)
if user_subdir:
abs_paths.insert(0, config['user_data_dir'].joinpath(user_subdir))
@@ -31,42 +41,47 @@ class IResolver:
return abs_paths
@staticmethod
def _get_valid_object(object_type, module_path: Path,
object_name: str) -> Generator[Any, None, None]:
@classmethod
def _get_valid_object(cls, module_path: Path, object_name: Optional[str],
enum_failed: bool = False) -> Iterator[Any]:
"""
Generator returning objects with matching object_type and object_name in the path given.
:param object_type: object_type (class)
:param module_path: absolute path to the module
:param object_name: Class name of the object
:param enum_failed: If True, will return None for modules which fail.
Otherwise, failing modules are skipped.
:return: generator containing matching objects
"""
# Generate spec based on absolute path
# Pass object_name as first argument to have logging print a reasonable name.
spec = importlib.util.spec_from_file_location(object_name, str(module_path))
spec = importlib.util.spec_from_file_location(object_name or "", str(module_path))
module = importlib.util.module_from_spec(spec)
try:
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
except (ModuleNotFoundError, SyntaxError) as err:
# Catch errors in case a specific module is not installed
logger.warning(f"Could not import {module_path} due to '{err}'")
if enum_failed:
return iter([None])
valid_objects_gen = (
obj for name, obj in inspect.getmembers(module, inspect.isclass)
if object_name == name and object_type in obj.__bases__
if ((object_name is None or object_name == name) and
issubclass(obj, cls.object_type) and obj is not cls.object_type)
)
return valid_objects_gen
@staticmethod
def _search_object(directory: Path, object_type, object_name: str,
kwargs: dict = {}) -> Union[Tuple[Any, Path], Tuple[None, None]]:
@classmethod
def _search_object(cls, directory: Path, object_name: str
) -> Union[Tuple[Any, Path], Tuple[None, None]]:
"""
Search for the objectname in the given directory
:param directory: relative or absolute directory path
:return: object instance
:param object_name: ClassName of the object to load
:return: object class
"""
logger.debug("Searching for %s %s in '%s'", object_type.__name__, object_name, directory)
logger.debug(f"Searching for {cls.object_type.__name__} {object_name} in '{directory}'")
for entry in directory.iterdir():
# Only consider python files
if not str(entry).endswith('.py'):
@@ -74,14 +89,14 @@ class IResolver:
continue
module_path = entry.resolve()
obj = next(IResolver._get_valid_object(object_type, module_path, object_name), None)
obj = next(cls._get_valid_object(module_path, object_name), None)
if obj:
return (obj(**kwargs), module_path)
return (obj, module_path)
return (None, None)
@staticmethod
def _load_object(paths: List[Path], object_type, object_name: str,
@classmethod
def _load_object(cls, paths: List[Path], object_name: str,
kwargs: dict = {}) -> Optional[Any]:
"""
Try to load object from path list.
@@ -89,16 +104,67 @@ class IResolver:
for _path in paths:
try:
(module, module_path) = IResolver._search_object(directory=_path,
object_type=object_type,
object_name=object_name,
kwargs=kwargs)
(module, module_path) = cls._search_object(directory=_path,
object_name=object_name)
if module:
logger.info(
f"Using resolved {object_type.__name__.lower()[1:]} {object_name} "
f"Using resolved {cls.object_type.__name__.lower()[1:]} {object_name} "
f"from '{module_path}'...")
return module
return module(**kwargs)
except FileNotFoundError:
logger.warning('Path "%s" does not exist.', _path.resolve())
return None
@classmethod
def load_object(cls, object_name: str, config: dict, kwargs: dict,
extra_dir: Optional[str] = None) -> Any:
"""
Search and loads the specified object as configured in hte child class.
:param objectname: name of the module to import
:param config: configuration dictionary
:param extra_dir: additional directory to search for the given pairlist
:raises: OperationalException if the class is invalid or does not exist.
:return: Object instance or None
"""
abs_paths = cls.build_search_paths(config,
user_subdir=cls.user_subdir,
extra_dir=extra_dir)
pairlist = cls._load_object(paths=abs_paths, object_name=object_name,
kwargs=kwargs)
if pairlist:
return pairlist
raise OperationalException(
f"Impossible to load {cls.object_type_str} '{object_name}'. This class does not exist "
"or contains Python code errors."
)
@classmethod
def search_all_objects(cls, directory: Path,
enum_failed: bool) -> List[Dict[str, Any]]:
"""
Searches a directory for valid objects
:param directory: Path to search
:param enum_failed: If True, will return None for modules which fail.
Otherwise, failing modules are skipped.
:return: List of dicts containing 'name', 'class' and 'location' entires
"""
logger.debug(f"Searching for {cls.object_type.__name__} '{directory}'")
objects = []
for entry in directory.iterdir():
# Only consider python files
if not str(entry).endswith('.py'):
logger.debug('Ignoring %s', entry)
continue
module_path = entry.resolve()
logger.debug(f"Path {module_path}")
for obj in cls._get_valid_object(module_path, object_name=None,
enum_failed=enum_failed):
objects.append(
{'name': obj.__name__ if obj is not None else '',
'class': obj,
'location': entry,
})
return objects

Some files were not shown because too many files have changed in this diff Show More