better readability and more consistent with daily sharpe loss method
This commit is contained in:
parent
aa8731d0fc
commit
3499f1b85c
@ -28,18 +28,19 @@ class SharpeHyperOptLoss(IHyperOptLoss):
|
||||
|
||||
Uses Sharpe Ratio calculation.
|
||||
"""
|
||||
total_profit = results.profit_percent
|
||||
total_profit = results["profit_percent"]
|
||||
days_period = (max_date - min_date).days
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
total_profit = total_profit - 0.0005
|
||||
expected_yearly_return = total_profit.sum() / days_period
|
||||
expected_returns_mean = total_profit.sum() / days_period
|
||||
up_stdev = np.std(total_profit)
|
||||
|
||||
if (np.std(total_profit) != 0.):
|
||||
sharp_ratio = expected_yearly_return / np.std(total_profit) * np.sqrt(365)
|
||||
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(365)
|
||||
else:
|
||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
||||
sharp_ratio = -20.
|
||||
|
||||
# print(expected_yearly_return, np.std(total_profit), sharp_ratio)
|
||||
# print(expected_returns_mean, up_stdev, sharp_ratio)
|
||||
return -sharp_ratio
|
||||
|
Loading…
Reference in New Issue
Block a user