Compare commits

..

971 Commits

Author SHA1 Message Date
Matthias
8371003c05 Merge pull request #2827 from freqtrade/release/2020-01
new Release 2020.01
2020-02-01 12:54:32 +01:00
Matthias
cff8498b42 Version bump 2020.01 2020-01-31 20:17:53 +01:00
Matthias
fdf6121b6e Merge branch 'master' into release/2020-01 2020-01-31 20:17:41 +01:00
Matthias
3541f7bfce Merge pull request #2808 from freqtrade/dependabot/pip/develop/plotly-4.5.0
Bump plotly from 4.4.1 to 4.5.0
2020-01-27 19:45:01 +01:00
Matthias
3a2443b5fa Merge pull request #2811 from freqtrade/dependabot/pip/develop/sqlalchemy-1.3.13
Bump sqlalchemy from 1.3.12 to 1.3.13
2020-01-27 09:47:15 +01:00
Matthias
e488ce0d07 Merge pull request #2809 from freqtrade/dependabot/pip/develop/urllib3-1.25.8
Bump urllib3 from 1.25.7 to 1.25.8
2020-01-27 09:46:11 +01:00
Matthias
521e497ba3 Merge pull request #2812 from freqtrade/dependabot/pip/develop/pytest-5.3.4
Bump pytest from 5.3.3 to 5.3.4
2020-01-27 09:38:37 +01:00
dependabot-preview[bot]
c9ee678a52 Bump sqlalchemy from 1.3.12 to 1.3.13
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.3.12 to 1.3.13.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 08:36:41 +00:00
Matthias
078e25e383 Merge pull request #2810 from freqtrade/dependabot/pip/develop/ccxt-1.21.91
Bump ccxt from 1.21.76 to 1.21.91
2020-01-27 09:35:35 +01:00
dependabot-preview[bot]
a3b0f75289 Bump pytest from 5.3.3 to 5.3.4
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.3.3 to 5.3.4.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.3.3...5.3.4)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 07:44:27 +00:00
dependabot-preview[bot]
66939bdcf6 Bump ccxt from 1.21.76 to 1.21.91
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.76 to 1.21.91.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.76...1.21.91)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 07:43:41 +00:00
dependabot-preview[bot]
184a6005a6 Bump urllib3 from 1.25.7 to 1.25.8
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.25.7 to 1.25.8.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/master/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.25.7...1.25.8)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 07:43:11 +00:00
dependabot-preview[bot]
161c06fd4e Bump plotly from 4.4.1 to 4.5.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.4.1 to 4.5.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.4.1...v4.5.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-27 07:42:52 +00:00
Matthias
5d7317ef77 Merge pull request #2807 from hroff-1902/refactor-freqtrade-2
Add notify_status() to FreqtradeBot
2020-01-27 06:44:20 +01:00
Matthias
aae14dd9fe Merge pull request #2806 from hroff-1902/minor-freqtrade-5
Minor cosmetics in start_trading
2020-01-27 06:37:47 +01:00
hroff-1902
30e3e434ab Add notify_status() to FreqtradeBot 2020-01-27 03:34:53 +03:00
hroff-1902
33645e45fd Minor cosmetics in start_trading 2020-01-27 02:49:25 +03:00
hroff-1902
27d46ed06f Merge pull request #2804 from freqtrade/utils_commands
Utils commands
2020-01-26 21:40:04 +03:00
Matthias
02563019fc move setup_utils_config to configuration module 2020-01-26 14:15:53 +01:00
Matthias
8c9119b471 Add docustring to commands module 2020-01-26 13:46:01 +01:00
Matthias
2d02c3f2a4 Split out pairlist_commands 2020-01-26 13:46:01 +01:00
Matthias
a3e9d04383 Adjust imports to new place for arguments 2020-01-26 13:46:01 +01:00
Matthias
7f851ad8d9 Move arguments and cli_options to commands module 2020-01-26 13:46:01 +01:00
Matthias
a1c684f67c Simplify noqa setup for module imports 2020-01-26 13:46:01 +01:00
Matthias
f347e5934a Small adjustments for moved commands 2020-01-26 13:46:01 +01:00
Matthias
e033df6a2f Move optimize_commands to commands module 2020-01-26 13:46:01 +01:00
Matthias
b254bdfea3 Move plot_utils to plot_commands 2020-01-26 13:46:01 +01:00
Matthias
70a0346b0a Move data-stuff to data-commands 2020-01-26 13:46:01 +01:00
Matthias
7e23304187 Adjust tests to new paths 2020-01-26 13:46:01 +01:00
Matthias
926bf07df1 Seperate a few commands into specific files 2020-01-26 13:46:01 +01:00
Matthias
6e85280467 Adjust imports 2020-01-26 13:46:01 +01:00
Matthias
80ed1c3e14 Move utils to commands 2020-01-26 13:46:01 +01:00
hroff-1902
1ae3fb4d2f Merge pull request #2803 from freqtrade/edge_no__init__
Move edge-module out of __init__.py
2020-01-26 15:21:21 +03:00
Matthias
3f2542fcbc Move edge-module out of __init__.py 2020-01-26 10:44:42 +01:00
hroff-1902
f6278da23f Merge pull request #2802 from freqtrade/try_fixrandomfailure
Fix missed mock
2020-01-25 16:05:22 +03:00
Matthias
a3ac05cc16 Fix missed mock 2020-01-25 13:38:13 +01:00
Matthias
a97bb10877 Merge pull request #2801 from freqtrade/backtest_arguments_2
Backtest arguments instead of dictionary
2020-01-25 13:11:23 +01:00
Matthias
bd4dd8403b Fix type-errors with stake_amount 2020-01-25 12:49:37 +01:00
hroff-1902
52f0ed5310 Adjust tests 2020-01-25 12:49:37 +01:00
hroff-1902
f4c7edf551 No args for backtest(), use arguments 2020-01-25 12:49:37 +01:00
hroff-1902
82797e768f Merge pull request #2796 from freqtrade/update_wallets_after_foresell
update wallets after forcesell
2020-01-23 00:10:47 +03:00
hroff-1902
9176064047 Merge pull request #2795 from freqtrade/tests_buy_rate
Add parametrized tests for get_buy_rate
2020-01-23 00:05:40 +03:00
Matthias
aad10ceee3 Add threading lock object for /forcesell
Protects against stoploss_on_exchange order recreation
in case of /forcesell (it's a timing issue, so may or may not happen).
2020-01-22 20:50:09 +01:00
Matthias
58ceda4b90 update wallets after forcesell 2020-01-22 19:54:55 +01:00
Matthias
f36bc80ad1 Add parametrized tests for get_buy_rate 2020-01-22 19:43:02 +01:00
hroff-1902
2b4d821d30 Merge pull request #2794 from freqtrade/rename_get_target_bid
rename get_target_bid
2020-01-22 17:19:04 +03:00
Matthias
8a940eb0c1 Align price finding function name on buy side with get_sell_rate 2020-01-22 14:46:28 +01:00
Matthias
9c2f21b07e Merge pull request #2788 from drdux/develop
added missing word in hyperopt loss example
2020-01-22 12:47:08 +01:00
hroff-1902
055f3fd1fd Merge pull request #2790 from freqtrade/backtest_optimize
Fix typo in sell-reason table generation
2020-01-22 12:29:20 +03:00
hroff-1902
40843566d0 Merge pull request #2791 from freqtrade/windows_ci_fix
upgrade pip in windows environment
2020-01-22 12:16:04 +03:00
Matthias
e13045b599 upgrade pip in windows environment 2020-01-22 06:17:13 +01:00
Matthias
7d2d0235a0 Fix typo in sell-reason table generation 2020-01-22 06:08:34 +01:00
Daniel Goller
bff0a09537 line was too long 2020-01-21 16:14:19 +00:00
Daniel Goller
c1c2717bc9 added missing word in hyperopt loss example 2020-01-21 15:49:24 +00:00
hroff-1902
66415d48d4 Merge pull request #2787 from freqtrade/dry_run_optional
remove default value calls for dry_run
2020-01-20 23:08:17 +03:00
hroff-1902
d54b1dade3 Merge pull request #2786 from freqtrade/fix/stoploss_on_exchange_dryrun
Fix/stoploss on exchange dryrun
2020-01-20 22:50:38 +03:00
Matthias
1bf475fa1a Remove .get calls for dry_run - it's a mandatory property 2020-01-20 20:24:40 +01:00
Matthias
099bbc5c7f Fix bug when stoploss_on_exchange in combination with dry-run
does not sell orders
2020-01-20 20:14:40 +01:00
Matthias
6e3336cb30 Adapt test to verify behaviour of stoploss_on_exchange in dry-run 2020-01-20 20:10:06 +01:00
Matthias
eb6c7f8595 Merge pull request #2781 from freqtrade/dependabot/pip/develop/ccxt-1.21.76
Bump ccxt from 1.21.56 to 1.21.76
2020-01-20 14:44:11 +01:00
Matthias
10a706851a Merge pull request #2782 from freqtrade/dependabot/pip/develop/pytest-5.3.3
Bump pytest from 5.3.2 to 5.3.3
2020-01-20 11:40:57 +01:00
dependabot-preview[bot]
8d4515935a Bump pytest from 5.3.2 to 5.3.3
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.3.2 to 5.3.3.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.3.2...5.3.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-20 07:49:18 +00:00
dependabot-preview[bot]
9474cb1792 Bump ccxt from 1.21.56 to 1.21.76
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.56 to 1.21.76.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.56...1.21.76)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-20 07:48:46 +00:00
hroff-1902
2f82122fc4 Merge pull request #2763 from freqtrade/fix/precision_rounding
Fix/precision rounding
2020-01-17 01:25:30 +03:00
hroff-1902
889929f782 Merge pull request #2772 from freqtrade/safe_sell_amount_update_wallet
Safe sell amount update wallet
2020-01-16 00:15:34 +03:00
Matthias
fa1e9dd70d Adjust tests to allow updating within safe_sell_amount 2020-01-15 21:53:04 +01:00
Matthias
29a5e4fba1 Update wallets before getting amount 2020-01-15 21:52:54 +01:00
hroff-1902
a20f502159 Merge pull request #2771 from freqtrade/fix/2770
Fix bad bug in safe_sell_amount
2020-01-15 23:33:04 +03:00
Matthias
8bcfe4a6aa Up log level of safe_sell_amount message 2020-01-15 21:01:36 +01:00
hroff-1902
854bb0056b Merge pull request #2583 from gaugau3000/doc_feature_section
Doc feature section
2020-01-15 22:55:39 +03:00
Matthias
90ed4c665b Cover equal case via test 2020-01-15 19:59:08 +01:00
Matthias
d1bf388b0e Wallet amount must be compared with >= 2020-01-15 19:56:14 +01:00
Matthias
6feb68b18d Change feature sorting to tell more of a story 2020-01-15 19:51:33 +01:00
Matthias
09621b3ef1 Merge pull request #2769 from tejeshreddy/update-comments
Update comments on backtesting
2020-01-15 15:44:46 +01:00
Tejesh
f73f0b1653 Update comments on backtesting 2020-01-15 19:29:00 +05:30
hroff-1902
f7f56f5eda Merge pull request #2768 from freqtrade/rpc/refresh_balance
refresh wallets on /balance call
2020-01-15 16:34:09 +03:00
Matthias
c8806a16a1 Allow wallet update from /balance 2020-01-15 06:43:41 +01:00
Matthias
4013701bdb allow wallet update to be skipped if the value is fresh enough.
Value is NOT configurable, having this wrong can result in bans on the
exchange.
2020-01-15 06:42:53 +01:00
Matthias
4c823f12e3 Sort imports 2020-01-14 20:25:58 +01:00
Matthias
1e58cd70ad Adapt tests to round price up 2020-01-14 20:16:47 +01:00
Matthias
bea4ad8eff Revert price_to_precision to rounding up 2020-01-14 20:16:20 +01:00
Matthias
d7957bd791 add advanced tests for price_to_precision 2020-01-14 16:04:39 +01:00
Matthias
425ec53b28 Combine amount_to_precision tests into one 2020-01-14 16:01:35 +01:00
Matthias
797dc8a4da Add more detailed tests for amount_to_precision 2020-01-14 15:54:53 +01:00
Matthias
d12a2a5888 Merge pull request #2752 from freqtrade/plotting/indicator_strategy
Allow enhanced plot-dataframe configuration
2020-01-13 19:53:15 +01:00
Matthias
845e27542a Merge pull request #2765 from freqtrade/dependabot/pip/develop/ccxt-1.21.56
Bump ccxt from 1.21.32 to 1.21.56
2020-01-13 11:56:07 +01:00
dependabot-preview[bot]
c67b253099 Bump ccxt from 1.21.32 to 1.21.56
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.32 to 1.21.56.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.32...1.21.56)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-13 10:38:34 +00:00
Matthias
154fff7d02 Merge pull request #2764 from freqtrade/dependabot/pip/develop/numpy-1.18.1
Bump numpy from 1.18.0 to 1.18.1
2020-01-13 11:37:31 +01:00
Matthias
82fd6e6fb3 Merge pull request #2766 from freqtrade/dependabot/pip/develop/python-telegram-bot-12.3.0
Bump python-telegram-bot from 12.2.0 to 12.3.0
2020-01-13 11:37:10 +01:00
dependabot-preview[bot]
b3938a86c3 Bump python-telegram-bot from 12.2.0 to 12.3.0
Bumps [python-telegram-bot](https://github.com/python-telegram-bot/python-telegram-bot) from 12.2.0 to 12.3.0.
- [Release notes](https://github.com/python-telegram-bot/python-telegram-bot/releases)
- [Changelog](https://github.com/python-telegram-bot/python-telegram-bot/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-telegram-bot/python-telegram-bot/compare/v12.2.0...v12.3.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-13 07:56:20 +00:00
dependabot-preview[bot]
2f8ed7ed19 Bump numpy from 1.18.0 to 1.18.1
Bumps [numpy](https://github.com/numpy/numpy) from 1.18.0 to 1.18.1.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/master/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.18.0...v1.18.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-13 07:55:35 +00:00
hroff-1902
af36635769 Minor changes in the docs 2020-01-13 06:41:16 +03:00
hroff-1902
495728f502 Refine docs 2020-01-13 06:41:16 +03:00
Matthias
5dccd01fb7 Merge pull request #2760 from freqtrade/remove_hardcoded_exchange_stuff
Remove hardcoded exchange parameters
2020-01-12 19:47:44 +01:00
Matthias
5fcab1eee8 Align method names to internal ccxt names
These methods are reimplemented from ccxt so we can test their behaviour.
2020-01-12 14:55:05 +01:00
Matthias
b60d7ad42f Use ccxt.decimal_to_precision instead of our own calculation 2020-01-12 14:41:09 +01:00
Matthias
fa1f9bcdbd expose precisionMode from exchange class 2020-01-12 14:37:45 +01:00
Matthias
53abfdbcbf Use sorted on set instead of explicit list conversion 2020-01-12 12:48:29 +01:00
Matthias
3519cebf66 Add test for failing stake_validation 2020-01-11 13:14:19 +01:00
Matthias
a7246ba1ec No need to "fix" stake_currency enum anymore 2020-01-11 12:51:42 +01:00
Matthias
60b47b6eec Add tests for get_quote_currencies 2020-01-11 12:01:34 +01:00
Matthias
ca2880537d Modify tests to skip stake_currency validations 2020-01-11 11:54:11 +01:00
Matthias
13274964a9 Implement validation for valid stake currency 2020-01-11 11:54:00 +01:00
Matthias
235a10ab86 Don't suppport <1m timeframes 2020-01-11 11:36:28 +01:00
Matthias
5faebad863 Don't hardcode TimeFrames - they can differ by exchange. 2020-01-11 11:16:05 +01:00
Matthias
90a9052377 Merge pull request #2734 from freqtrade/relative_stake
Relative stake maximum tradable amount
2020-01-11 08:18:35 +01:00
hroff-1902
d3de398395 Docs adjusted 2020-01-10 23:43:09 +03:00
hroff-1902
83b88e7916 Remove Required marks for new settings 2020-01-10 23:14:17 +03:00
hroff-1902
3faa2d0eb9 Refine description for last_stake_amount_min_ratio 2020-01-10 22:59:02 +03:00
Matthias
fab19ae3a7 Implement last_stake_amount_min_ratio 2020-01-10 06:36:28 +01:00
Matthias
e94dfdeff2 UPdate documentation to remove inexisting setting 2020-01-09 20:13:14 +01:00
Matthias
9713dc8d94 Ensure wallets.update is called before buy
closes #2756
2020-01-09 20:09:21 +01:00
Matthias
b748ed3435 UPdate documentaiton wording 2020-01-09 19:59:13 +01:00
hroff-1902
7c7f7b9ece Merge pull request #2755 from freqtrade/backtest_mean
Add average profit to sell_reason stats
2020-01-09 20:35:35 +03:00
Matthias
785cd2a640 Rename test module 2020-01-09 06:53:51 +01:00
Matthias
c475729c13 Extract edge reporting to optimize_reports 2020-01-09 06:52:34 +01:00
Matthias
989ab646a9 Add profit % to sell_reason table 2020-01-09 06:46:39 +01:00
Matthias
7461b5dc02 Mention custom strategy in features 2020-01-09 06:37:18 +01:00
Matthias
135487b2c9 SPlit control and Analyse feature into 2 seperate points 2020-01-09 06:35:05 +01:00
Matthias
b25f28d1ad Merge pull request #2730 from freqtrade/extract_bt_reporting
Extract backtest reporting
2020-01-09 06:09:05 +01:00
hroff-1902
cee8f3349e rearrange features -- move Run to the top 2020-01-09 04:16:57 +03:00
hroff-1902
9559cb988e reworked 2020-01-09 04:12:43 +03:00
Matthias
db34cb1b75 Do some adjustments to the wording of the index.md section 2020-01-08 19:41:34 +01:00
Matthias
c9b0b4c7a4 Add plot_config to optional plot 2020-01-08 19:35:00 +01:00
Matthias
c3fd894a6c Regenerate plots with new settings 2020-01-07 07:16:31 +01:00
Matthias
9f2d397e1f Merge pull request #2746 from freqtrade/dependabot/pip/develop/arrow-0.15.5
Bump arrow from 0.15.4 to 0.15.5
2020-01-06 13:07:13 +01:00
Matthias
7719d8fbea Merge pull request #2748 from freqtrade/dependabot/pip/develop/coveralls-1.10.0
Bump coveralls from 1.9.2 to 1.10.0
2020-01-06 13:01:20 +01:00
Matthias
3883d18b8a Add bollinger note 2020-01-06 12:59:17 +01:00
Matthias
2b3f2e5fa8 Add first version of documentation 2020-01-06 12:55:12 +01:00
Matthias
5ae554bdff Merge pull request #2747 from freqtrade/dependabot/pip/develop/pytest-mock-2.0.0
Bump pytest-mock from 1.13.0 to 2.0.0
2020-01-06 12:50:04 +01:00
dependabot-preview[bot]
6ac7dcf5e9 Bump arrow from 0.15.4 to 0.15.5
Bumps [arrow](https://github.com/crsmithdev/arrow) from 0.15.4 to 0.15.5.
- [Release notes](https://github.com/crsmithdev/arrow/releases)
- [Changelog](https://github.com/crsmithdev/arrow/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/crsmithdev/arrow/compare/0.15.4...0.15.5)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 11:45:22 +00:00
dependabot-preview[bot]
6da97fafa8 Bump coveralls from 1.9.2 to 1.10.0
Bumps [coveralls](https://github.com/coveralls-clients/coveralls-python) from 1.9.2 to 1.10.0.
- [Release notes](https://github.com/coveralls-clients/coveralls-python/releases)
- [Changelog](https://github.com/coveralls-clients/coveralls-python/blob/master/CHANGELOG.md)
- [Commits](https://github.com/coveralls-clients/coveralls-python/compare/1.9.2...1.10.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 11:45:12 +00:00
Matthias
6d4fe94285 Merge pull request #2751 from freqtrade/dependabot/pip/develop/ccxt-1.21.32
Bump ccxt from 1.21.23 to 1.21.32
2020-01-06 12:44:13 +01:00
Matthias
b27f3b8f2c Merge pull request #2749 from freqtrade/dependabot/pip/develop/flake8-tidy-imports-4.0.0
Bump flake8-tidy-imports from 3.1.0 to 4.0.0
2020-01-06 12:44:02 +01:00
Matthias
ed29232478 Merge pull request #2750 from freqtrade/dependabot/pip/develop/scikit-learn-0.22.1
Bump scikit-learn from 0.22 to 0.22.1
2020-01-06 12:43:43 +01:00
dependabot-preview[bot]
3c0d184097 Bump ccxt from 1.21.23 to 1.21.32
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.23 to 1.21.32.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.23...1.21.32)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 07:43:06 +00:00
dependabot-preview[bot]
d846114d3c Bump scikit-learn from 0.22 to 0.22.1
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 0.22 to 0.22.1.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/0.22...0.22.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 07:42:44 +00:00
dependabot-preview[bot]
aabeece4c0 Bump flake8-tidy-imports from 3.1.0 to 4.0.0
Bumps [flake8-tidy-imports](https://github.com/adamchainz/flake8-tidy-imports) from 3.1.0 to 4.0.0.
- [Release notes](https://github.com/adamchainz/flake8-tidy-imports/releases)
- [Changelog](https://github.com/adamchainz/flake8-tidy-imports/blob/master/HISTORY.rst)
- [Commits](https://github.com/adamchainz/flake8-tidy-imports/compare/3.1.0...4.0.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 07:42:19 +00:00
dependabot-preview[bot]
b614964ba9 Bump pytest-mock from 1.13.0 to 2.0.0
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 1.13.0 to 2.0.0.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v1.13.0...v2.0.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-01-06 07:41:39 +00:00
Matthias
888ea58df2 Add tests for new behaviour 2020-01-05 19:51:12 +01:00
Matthias
d0ccfa1925 Explicitly given indicators should override plot_config 2020-01-05 19:50:21 +01:00
Matthias
ca054799d0 Add tests for amend_last_stake_amount 2020-01-05 13:25:21 +01:00
Matthias
b37f34ff5b Implement amend_last_stake_amount 2020-01-05 13:25:11 +01:00
Matthias
a75420f75f Merge branch 'develop' into relative_stake 2020-01-05 12:55:55 +01:00
Matthias
7daa5bc338 Don't return None from unlimited_stake - 0 handles this just as well 2020-01-05 12:50:44 +01:00
Matthias
53499e01de Clearly differentiate trade buys sells (positive and negative)
* Swap trade buys to cyan circles
* Show sell-reason description on buy too
* Green positive sells - red negative / 0 sells
2020-01-04 20:27:27 +01:00
Matthias
bdda620397 add plot_config to startegy interface properly 2020-01-04 12:56:46 +01:00
Matthias
b5a806dec7 Fix typo and add tests for create_plotconfig 2020-01-04 11:30:21 +01:00
Matthias
4628024de6 Adapt tests to new add_indicator methodology 2020-01-04 11:18:51 +01:00
Matthias
f04873b0b0 Add plot_config to interface 2020-01-04 11:14:00 +01:00
Matthias
5853b9904c make Plot_config the default approach 2020-01-04 11:13:45 +01:00
Matthias
5d5074ac9c Implement first working version of plot_config 2020-01-04 10:13:42 +01:00
Matthias
84ef588163 support dicts as indicators 2020-01-04 10:13:42 +01:00
Matthias
d1cda3991c Merge pull request #2742 from freqtrade/hroff-1902-patch-1
Minor: Refine fee example in the docs
2020-01-04 09:46:57 +01:00
hroff-1902
24aa596e3c Minor: Refine fee example in the docs
Taken from https://github.com/freqtrade/freqtrade/issues/2738#issuecomment-570687230. slightly reworded.
2020-01-04 01:08:37 +03:00
hroff-1902
3798f94d4c Merge pull request #2732 from freqtrade/config_validation_split
Config validation split
2020-01-03 23:41:44 +03:00
hroff-1902
75dcc369c0 Merge pull request #2740 from freqtrade/doc/backtest_typo
Update Backtesting fee documentation
2020-01-03 22:40:02 +03:00
Matthias
e1f89e3ad3 Reword Note in backtesting fee docs 2020-01-03 20:11:58 +01:00
Matthias
7e7c82cf4a Small adjustments to relative_stake PR 2020-01-03 11:34:17 +01:00
Matthias
71dd038664 add tradable_balance_ratio to to all config samples 2020-01-03 11:23:06 +01:00
Matthias
55041878ae Update Backtesting fee documentation 2020-01-03 11:20:08 +01:00
Matthias
0dd274917f Update documentation regarding configuration of stake_amount 2020-01-03 11:16:59 +01:00
Matthias
f3beaa3374 Deprecate capital_available_percentage 2020-01-03 10:58:31 +01:00
Matthias
6d01653bfe Adapt test to test more cases with reduced tradable_balance 2020-01-03 10:41:34 +01:00
Matthias
455838648d Apply get_available_balance logic to regular trades, too 2020-01-03 10:41:10 +01:00
Matthias
3c7981160c Extract get_available_stake_amount 2020-01-03 10:14:23 +01:00
Matthias
4ac1ac7ef5 Warn about tradable balance being applied to the current amount of the
balance
2020-01-03 09:56:06 +01:00
hroff-1902
776fc56265 Merge pull request #2735 from freqtrade/doc/macos_install
Add note about MacOS installation
2020-01-03 10:28:14 +03:00
Matthias
a8d56b2850 IMplement check for unlimited settings
verifying that either max_open_trades or stake_amount is set for
operations without edge
2020-01-03 07:07:59 +01:00
Matthias
11059e532b Fix missed default minimum in documentation 2020-01-03 06:39:47 +01:00
Matthias
da1fea6582 Minor correction to wording of MacOS Specific install doc 2020-01-03 06:37:43 +01:00
hroff-1902
3315f994b6 Merge pull request #2733 from hroff-1902/minor-freqtrade-4
Cleanup buy/sell notification in freqtradebot
2020-01-02 22:46:06 +03:00
Matthias
560aea876e Remove fiat_currency temporary variable 2020-01-02 20:20:29 +01:00
hroff-1902
b24d359a27 Merge pull request #2737 from freqtrade/plotting_percent
show percent in sell hover message.
2020-01-02 22:04:34 +03:00
Matthias
90744ff5ab show percent instead of ratio (!) 2020-01-02 19:36:31 +01:00
Matthias
b48bf035f6 Add note about MacOS installation 2020-01-02 14:54:07 +01:00
Matthias
c13c11cfa1 Type does not need to be a list 2020-01-02 14:41:28 +01:00
Matthias
6e615998c0 Fix documentation typo 2020-01-02 13:52:35 +01:00
Matthias
94afb7cb1d Improve integration test with a few additional tests 2020-01-02 13:45:03 +01:00
Matthias
bfef3cf497 Add additional test case for lower balance ratios 2020-01-02 13:38:08 +01:00
Matthias
cba156dfff Add offset calculation for relative stake maximum limit 2020-01-02 13:20:57 +01:00
Matthias
64db1f6736 Prepare tests to valiate reduced full amount. 2020-01-02 13:16:18 +01:00
hroff-1902
a47a25ca88 Refine passing msg params 2020-01-02 14:38:25 +03:00
hroff-1902
88efa4065b Align the name of a variable to be same for buy and sell parts 2020-01-02 13:56:16 +03:00
hroff-1902
f15e5e9d57 Add _notify_buy() 2020-01-02 13:51:25 +03:00
hroff-1902
2ccdb67e4d Merge pull request #2731 from freqtrade/btanalysis_align_columns
Btanalysis align columns
2020-01-02 13:03:51 +03:00
Matthias
1b8943ac54 Add documentation for tradable_balance_ratio 2020-01-02 10:59:41 +01:00
Matthias
9382b38c41 Fix mypy error 2020-01-02 10:56:00 +01:00
Matthias
22fcf7b4dc Allow empty stake currency in certain cases 2020-01-02 10:47:37 +01:00
Matthias
20fc3b7978 validate config for utils too 2020-01-02 10:41:10 +01:00
Matthias
9325880fe5 Split config-validation requires 2020-01-02 10:39:32 +01:00
Matthias
cac0e37b06 Merge pull request #2729 from hroff-1902/minor-freqtrade-3
Cosmetics in freqtradebot
2020-01-02 10:06:42 +01:00
Matthias
2c8e8d8ef6 Align columns for btanalysis loading 2020-01-02 09:51:47 +01:00
Matthias
6fbdd6bee9 Remove unused directory from user_data 2020-01-02 09:51:24 +01:00
hroff-1902
e89fa44680 Arrange common section for update trade state methods 2020-01-02 11:50:54 +03:00
Matthias
a9fbad0741 Improve docstrings 2020-01-02 09:37:54 +01:00
Matthias
8cc48cf4b0 Fix tests where mocks fail now 2020-01-02 09:31:53 +01:00
Matthias
10ee23622a Extract tests for backtest_reports to their own test module 2020-01-02 09:31:53 +01:00
Matthias
904e1647e1 Extract generate_text_table_strategy to seperate module 2020-01-02 09:31:53 +01:00
Matthias
caec345c0b Extract generate_text_table_sell_reason from backtesting class 2020-01-02 09:31:53 +01:00
Matthias
18a53f4467 Extract generate_text_table from backtesting class 2020-01-02 09:31:47 +01:00
Matthias
6dfde99cbe Merge pull request #2728 from hroff-1902/minor-setup-msg
Minor: Fix message in setup.sh
2020-01-02 06:59:44 +01:00
hroff-1902
21418e2988 Minor: fix comment 2020-01-02 03:16:18 +03:00
hroff-1902
4475110df8 Cosmetics in freqtradebot 2020-01-02 03:07:24 +03:00
hroff-1902
0ea44b0143 Fix message in setup.sh 2020-01-02 02:36:59 +03:00
Matthias
3327ebf2b1 Merge pull request #2720 from hroff-1902/refactor-create-trades
Refactor create trades
2019-12-31 15:34:12 +01:00
Matthias
26a2395aeb Include Pair name in exception log message 2019-12-31 07:11:09 +01:00
Matthias
9d518b9d29 Add comment and don't hardcode 4 in test 2019-12-31 07:05:21 +01:00
Matthias
6ebb9017c7 Improve test enter_positions 2019-12-31 07:03:57 +01:00
Matthias
a88464de3a Improve some test code 2019-12-31 07:01:58 +01:00
hroff-1902
fd7af587da Rename process_maybe_execute_buys() --> enter_positions() 2019-12-30 22:50:56 +03:00
hroff-1902
84918ad424 Rename process_maybe_execute_sells() --> exit_positions() 2019-12-30 22:08:36 +03:00
Matthias
2537b8cb0c Merge pull request #2725 from freqtrade/minor_fix
[Minor] Edge-cli should use exchangeresolver
2019-12-30 19:27:40 +01:00
hroff-1902
78883663a0 Merge pull request #2726 from freqtrade/exceptions_seperate_file
Refactor Exceptions to their own file
2019-12-30 21:21:14 +03:00
hroff-1902
b00406a7eb Make process_maybe_execute_*() returning integers 2019-12-30 21:09:35 +03:00
hroff-1902
4d56e3b36e Address some comments made in the review 2019-12-30 20:54:32 +03:00
Matthias
8e9a3e8fc8 Capture FtBaseException at the outermost level 2019-12-30 15:11:07 +01:00
Matthias
1ffda29fd2 Adjust improts to new exception location 2019-12-30 15:02:17 +01:00
Matthias
024aa3ab6b Move exceptions to seperate module 2019-12-30 14:57:26 +01:00
Matthias
20abf67779 Add Debug "code" for randomly failing test 2019-12-30 14:29:36 +01:00
Matthias
fb3a53b8af Use ExchangeResolver for edge_cli too 2019-12-30 14:28:34 +01:00
Matthias
4c9295fe2d Rename Bid-strategy helpervariable to something shorter
avoids unnecessary wrapping...
2019-12-30 14:00:34 +01:00
hroff-1902
6a7163d3a9 Merge pull request #2724 from freqtrade/improve_strattemplate
[minor] Add trailing_only_offset to template and sample
2019-12-30 15:32:24 +03:00
Matthias
de23f3928d Add trailing_only_offset to template and sample 2019-12-30 09:58:20 +01:00
Matthias
8975e38b1d Merge pull request #2723 from freqtrade/dependabot/pip/develop/ccxt-1.21.23
Bump ccxt from 1.21.12 to 1.21.23
2019-12-30 09:32:03 +01:00
dependabot-preview[bot]
20a132651f Bump ccxt from 1.21.12 to 1.21.23
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.21.12 to 1.21.23.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.21.12...1.21.23)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-30 07:34:49 +00:00
hroff-1902
88ba7e467d Merge pull request #2722 from freqtrade/rpc/misinfo
[minor]Fix misinformation in /status table
2019-12-29 22:41:36 +03:00
Matthias
df7ceb4ccb Fix misinformation in /status table 2019-12-29 19:53:02 +01:00
Matthias
47bb8ad0d4 Merge pull request #2721 from freqtrade/jupyter_docs
Document usage of jupyter with venv kernel
2019-12-29 19:49:19 +01:00
Matthias
304d15e236 Small corrections 2019-12-29 19:35:42 +01:00
Matthias
d1c45cf3f8 Update analysis documentation to include kernel installation 2019-12-29 13:07:51 +01:00
hroff-1902
04f28ed9bc Refactor try/except: handle DependencyException for each pair separately 2019-12-29 05:03:10 +03:00
hroff-1902
ce84f74528 Adjust tests 2019-12-29 05:00:22 +03:00
hroff-1902
762604300f Refactor create_trades() 2019-12-29 04:37:44 +03:00
hroff-1902
433fd2a7c3 Merge pull request #2652 from freqtrade/safe_sell_amount
Safe sell amount
2019-12-29 00:09:21 +03:00
hroff-1902
09b77d9f14 Merge pull request #2718 from hroff-1902/minor-freqtrade-2
Minor: code cleanup in freqtradebot
2019-12-28 14:55:42 +03:00
hroff-1902
5c39ebd0a0 Adjust logging 2019-12-28 13:59:40 +03:00
hroff-1902
004993583b Merge pull request #2712 from freqtrade/strategylist
add list-strategies subcommand
2019-12-28 12:32:06 +03:00
Matthias
443fd8f7dd Merge branch 'develop' into safe_sell_amount 2019-12-28 09:42:52 +01:00
Matthias
b2fb28453f Fix tests after changing output 2019-12-28 06:39:25 +01:00
Matthias
fc98cf0037 Address PR feedback - change output to show Filename only 2019-12-28 06:25:45 +01:00
hroff-1902
6db75bc244 Merge pull request #2706 from freqtrade/data_dir
Convert datadir within config to Path
2019-12-28 05:14:48 +03:00
hroff-1902
d6ca562b03 Make mypy happy and handle hypothetical case when stake_amount == 0 2019-12-28 04:05:03 +03:00
hroff-1902
3dbd83e35a Introduce get_free_open_trades() method 2019-12-28 03:46:42 +03:00
hroff-1902
8eeabd2372 Move warning to create_trades() 2019-12-28 03:22:50 +03:00
hroff-1902
ed9cb4219d Make mypy happy 2019-12-28 02:58:23 +03:00
hroff-1902
ef92fd775c Align behavior: check for available in all cases: edge, unlimited and fixed 2019-12-28 02:53:41 +03:00
hroff-1902
abaeab89aa Make _calculate_unlimited_stake_amount() a separate method 2019-12-28 02:36:32 +03:00
hroff-1902
243bcb2368 Make _check_available_stake_amount() a separate method 2019-12-28 02:25:43 +03:00
hroff-1902
86f2693040 cosmetics 2019-12-28 01:54:12 +03:00
hroff-1902
b6d1c5b17a _get_trade_stake_amount() is not private 2019-12-28 01:44:51 +03:00
hroff-1902
039dfc302c No need to convert pair name 2019-12-28 01:34:31 +03:00
hroff-1902
56fd714de2 Merge pull request #2717 from freqtrade/markets_info_nodict
Check if markets.info is a dict before using it
2019-12-27 19:47:56 +03:00
Matthias
e51ac2c973 Remove unavailable pair ... 2019-12-27 16:22:41 +01:00
Matthias
cadde3ab6d Check if markets.info is a dict before using it 2019-12-27 16:15:44 +01:00
hroff-1902
9987e64e8c Merge pull request #2711 from freqtrade/doc/formatting
Align Edge documentation to configuration page
2019-12-26 00:36:40 +03:00
Matthias
98647b490c Remove wrong "once per hour" listings 2019-12-25 19:27:08 +01:00
hroff-1902
32118cc1cb Merge pull request #2714 from freqtrade/sell_reason_counts
backtesting - Sell reason counts
2019-12-25 13:35:11 +03:00
Matthias
63f41cf1c6 Update documentation with new result 2019-12-25 09:44:23 +01:00
Matthias
e5aed098b5 Enhance backtest results with sell reason profit / loss table 2019-12-25 09:39:29 +01:00
hroff-1902
5e6e625694 Merge pull request #2710 from freqtrade/rpc_balance_output
/balance should not convert to BTC
2019-12-24 23:59:05 +03:00
hroff-1902
a95454d338 Merge pull request #2709 from freqtrade/dry_wallet_fix
Fix bug in dry-run wallet
2019-12-24 23:55:22 +03:00
Matthias
ad75048678 Fix testing with path in windows 2019-12-24 15:53:40 +01:00
Matthias
402c761a23 Change loglevel of Path output to debug 2019-12-24 15:44:04 +01:00
Matthias
66f9ece061 Add documentation for strategy-list 2019-12-24 15:35:53 +01:00
Matthias
27b8617077 Add tests 2019-12-24 15:35:38 +01:00
Matthias
2ab989e274 Cleanup some code and add option 2019-12-24 15:28:35 +01:00
Matthias
5a11ca86bb Move instanciation out of search_object 2019-12-24 14:01:28 +01:00
Matthias
25e6d6a7bf Combine load_object methods into one 2019-12-24 13:54:46 +01:00
Matthias
eb1040ddb7 Convert resolvers to classmethods 2019-12-24 13:34:37 +01:00
Matthias
a68445692b Add first steps for list-strategies 2019-12-24 12:44:41 +01:00
Matthias
48935d2932 Align edge documentation to configuration page 2019-12-24 07:25:18 +01:00
Matthias
83ed0b38c1 Wordwrap before keep it secret 2019-12-24 07:13:44 +01:00
Matthias
90670e7401 Merge pull request #2686 from freqtrade/doc/pricing_reasons
Document buy / sell order pricings
2019-12-24 07:05:35 +01:00
Matthias
a105e5664a Align /balance output to show everything in stake currency
the conversation to BTC does not make sense
2019-12-24 06:58:30 +01:00
Matthias
b8442d536a Update integration test to also test dry-run-wallets 2019-12-24 06:47:25 +01:00
Matthias
6688a2c112 Merge branch 'develop' into doc/pricing_reasons 2019-12-24 06:33:51 +01:00
Matthias
33cfeaf9b0 Remove i.e. where it doesn't fit 2019-12-24 06:31:05 +01:00
Matthias
f487dac047 FIx bug in dry-run wallets causing balances to stay there after trades
are sold
2019-12-24 06:27:11 +01:00
hroff-1902
690eb2a52b configuration.md reviewed 2019-12-24 07:19:35 +03:00
hroff-1902
20b52fcef9 Merge pull request #2705 from freqtrade/refactor_resolvers
Refactor resolvers to static resolvers
2019-12-24 00:35:52 +03:00
Matthias
0ac5e5035c Remove unused import 2019-12-23 20:43:31 +01:00
Matthias
c6b9c8eca0 Forgot to save 2019-12-23 19:32:31 +01:00
Matthias
ecbb77c17f Add forgotten option 2019-12-23 15:13:55 +01:00
Matthias
bb8acc61db Convert datadir within config to Path
(it's used as Path all the time!)
2019-12-23 15:11:29 +01:00
Matthias
90cabd7c21 Wrap line 2019-12-23 10:46:35 +01:00
Matthias
c6d2233978 Convert StrategyLoader to static loader 2019-12-23 10:23:48 +01:00
Matthias
6d5aca4f32 Convert hyperoptloss resolver to static loader 2019-12-23 10:09:08 +01:00
Matthias
248ef5a0ea Convert HyperoptResolver to static loader 2019-12-23 10:06:19 +01:00
Matthias
560acb7cea Convert ExchangeResolver to static loader class 2019-12-23 10:03:18 +01:00
Matthias
5fefa9e97c Convert PairlistResolver to static loader 2019-12-23 09:56:12 +01:00
Matthias
1c5f8070e5 Refactor build_paths to staticmethod 2019-12-23 09:53:55 +01:00
Matthias
506907ddc9 Merge pull request #2704 from freqtrade/dependabot/pip/develop/scipy-1.4.1
Bump scipy from 1.3.3 to 1.4.1
2019-12-23 09:48:35 +01:00
Matthias
84f0f451a0 Merge pull request #2703 from freqtrade/dependabot/pip/develop/sqlalchemy-1.3.12
Bump sqlalchemy from 1.3.11 to 1.3.12
2019-12-23 09:47:02 +01:00
Matthias
fa466a54cd Merge pull request #2701 from freqtrade/dependabot/pip/develop/numpy-1.18.0
Bump numpy from 1.17.4 to 1.18.0
2019-12-23 09:40:15 +01:00
Matthias
3c668c2f8e Merge pull request #2699 from freqtrade/dependabot/docker/python-3.7.6-slim-stretch
Bump python from 3.7.5-slim-stretch to 3.7.6-slim-stretch
2019-12-23 09:39:22 +01:00
dependabot-preview[bot]
779278ed50 Bump sqlalchemy from 1.3.11 to 1.3.12
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.3.11 to 1.3.12.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 08:28:05 +00:00
Matthias
96f70118ca Merge pull request #2702 from freqtrade/dependabot/pip/develop/mypy-0.761
Bump mypy from 0.750 to 0.761
2019-12-23 09:26:50 +01:00
Matthias
4e62b62add Merge pull request #2700 from freqtrade/dependabot/pip/develop/ccxt-1.21.12
Bump ccxt from 1.20.84 to 1.21.12
2019-12-23 09:26:35 +01:00
dependabot-preview[bot]
9cfbe98a23 Bump scipy from 1.3.3 to 1.4.1
Bumps [scipy](https://github.com/scipy/scipy) from 1.3.3 to 1.4.1.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.3.3...v1.4.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 07:39:25 +00:00
dependabot-preview[bot]
31a7e9feed Bump mypy from 0.750 to 0.761
Bumps [mypy](https://github.com/python/mypy) from 0.750 to 0.761.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.750...v0.761)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 07:38:10 +00:00
dependabot-preview[bot]
20ad8a379d Bump numpy from 1.17.4 to 1.18.0
Bumps [numpy](https://github.com/numpy/numpy) from 1.17.4 to 1.18.0.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/master/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.17.4...v1.18.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 07:38:05 +00:00
dependabot-preview[bot]
8f17b81329 Bump ccxt from 1.20.84 to 1.21.12
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.20.84 to 1.21.12.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.20.84...1.21.12)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 07:37:04 +00:00
dependabot-preview[bot]
76a93fabc7 Bump python from 3.7.5-slim-stretch to 3.7.6-slim-stretch
Bumps python from 3.7.5-slim-stretch to 3.7.6-slim-stretch.

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-23 06:26:13 +00:00
hroff-1902
98eed4f2ed Merge pull request #2695 from freqtrade/custom_pairlock
Improve pairlocking mechanism to allow usage from within strategy
2019-12-22 15:03:24 +03:00
Matthias
2195ae59d6 Use different time offsets to avoid confusion 2019-12-22 12:49:01 +01:00
hroff-1902
4f88857442 Merge pull request #2694 from freqtrade/unfilled_strategy
Add unfilledtimeout to strategy overrides
2019-12-22 14:34:25 +03:00
hroff-1902
01d53c0160 Merge pull request #2697 from freqtrade/dry_run_db
persist Dry run db as default
2019-12-22 13:46:32 +03:00
hroff-1902
d98cd6f135 Merge pull request #2693 from freqtrade/doc/pypi
document how to do releases to pypi
2019-12-22 13:42:44 +03:00
Matthias
dc567f99d6 Update documentation to new handling of dry-mode database 2019-12-22 10:16:56 +01:00
Matthias
ffd7034c00 Persist dry-run trade per default 2019-12-22 10:16:16 +01:00
Matthias
43c25c8a32 add documentation for is_pair_locked 2019-12-22 09:59:25 +01:00
Matthias
a71deeda94 Document lock-pair implementation 2019-12-22 09:55:40 +01:00
Matthias
89b4f45fe3 Remove section about strategy template - use new-strategy intead 2019-12-22 09:47:37 +01:00
Matthias
9835312033 Improve pair_lock handling 2019-12-22 09:46:00 +01:00
Matthias
1ff0d0f1fa Add unfilledtimeout to strategy overrides 2019-12-22 09:35:06 +01:00
Matthias
1a73159200 Modify classifiers 2019-12-22 09:25:13 +01:00
Matthias
c417877eb8 sort pytest dependencies 2019-12-22 09:25:13 +01:00
Matthias
9ec4368c6f Add release documentation 2019-12-22 09:25:13 +01:00
Matthias
3f44d51355 Merge pull request #2691 from hroff-1902/cli-no-underscores
Minor: Please no underscores in cli options
2019-12-22 08:43:31 +01:00
hroff-1902
95bd9e8e0b No underscores in cli options 2019-12-22 00:17:51 +03:00
hroff-1902
bc92503c92 Merge pull request #2689 from freqtrade/edge_small_modifications
[minor] Edge small cleanup
2019-12-20 14:50:13 +03:00
hroff-1902
5ba106d96b Merge pull request #2687 from xmatthias/try_covsxxx
Try to get comment from forked repos
2019-12-20 14:26:22 +03:00
Matthias
fc5764f9df Edge small cleanup 2019-12-19 19:55:21 +01:00
Matthias
342f3f450b try with coveralls token in yml ... 2019-12-18 20:38:21 +01:00
Matthias
0c6b5e01fb Try with github-token 2019-12-18 20:30:42 +01:00
Matthias
6507a26cc1 Fix some tests after merge 2019-12-18 20:16:53 +01:00
Matthias
e72c6a0d94 use only first part of the currency to get wallet-amount (!!) 2019-12-18 20:02:15 +01:00
Matthias
834a0ed620 Merge branch 'develop' into safe_sell_amount 2019-12-18 19:45:31 +01:00
Matthias
1af962899d Fix note-box syntax error 2019-12-18 19:43:37 +01:00
Matthias
11e787c884 Finish depth_of_market documentation piece 2019-12-18 19:41:51 +01:00
Matthias
1c19856d26 add section about depth_of_market 2019-12-18 16:49:56 +01:00
Matthias
d73ba71ec6 Improve formatting of orderbook doc 2019-12-18 16:41:54 +01:00
Matthias
dc07037edf Add documentation for price finding 2019-12-18 16:38:57 +01:00
Matthias
21622ac313 Rename get_ticker to fetch_ticker 2019-12-18 16:34:30 +01:00
Matthias
ce190a7485 Merge pull request #2683 from hroff-1902/minor-data-history-4
Minor improvements in data.history
2019-12-18 06:26:06 +01:00
hroff-1902
cf4c3642ce Minor improvements in data.history 2019-12-18 01:06:03 +03:00
hroff-1902
021fa1ca1a Merge pull request #2678 from hroff-1902/dataprovider-history-split-refresh
Dataprovider history: split refresh part
2019-12-18 00:30:47 +03:00
hroff-1902
3a542bce62 Merge pull request #2674 from freqtrade/bt_trade_open_price
Pre-calculate open_trade_price
2019-12-17 21:51:13 +03:00
Matthias
c5e6a34f25 Remove unnecessary parenteses 2019-12-17 19:30:04 +01:00
hroff-1902
1537389617 Remove startup_candles argument in refresh_data 2019-12-17 18:23:31 +03:00
hroff-1902
b07d29b1af Merge pull request #2676 from freqtrade/investigate_random_test_fail
Fix random test failure.
2019-12-17 14:23:30 +03:00
hroff-1902
b2796f99b6 Remove redundant refresh_pair_history 2019-12-17 14:06:21 +03:00
Matthias
bbb05b5286 Remove fixed random order 2019-12-17 11:51:50 +01:00
hroff-1902
60f89c8c01 Split refresh from load_data/load_pair_history 2019-12-17 13:43:42 +03:00
Matthias
8513a5e2d6 Fix failures in test_main 2019-12-17 11:35:39 +01:00
hroff-1902
69f8738d00 Merge pull request #2675 from freqtrade/align_test_history
Align usage of history import in test
2019-12-17 13:13:40 +03:00
hroff-1902
c32507252e Merge pull request #2671 from freqtrade/doc/incompletecandle
Add documentation about ohlcv_partial_candle
2019-12-17 13:10:36 +03:00
Matthias
2e2f084f66 Try to clear caplog ... 2019-12-17 11:07:59 +01:00
Matthias
e1c0c6af7d fix random-seed to failing one 2019-12-17 10:51:49 +01:00
Matthias
86de88ed48 Align usage of history import in test 2019-12-17 09:36:26 +01:00
Matthias
1042f9847a Merge pull request #2672 from hroff-1902/minor-data-history-2
Minor: improvements in data/history.py
2019-12-17 09:22:56 +01:00
Matthias
a2964afd42 Rename profit_percent to profit_ratio to be consistent 2019-12-17 08:53:30 +01:00
Matthias
539b5627fd Fix typo 2019-12-17 08:31:44 +01:00
Matthias
cbd10309f5 Add mid-state test 2019-12-17 07:13:08 +01:00
Matthias
362a40db6f Update docstring 2019-12-17 07:09:56 +01:00
Matthias
861a7834fc Call calc_open_price() whenever necessary 2019-12-17 07:08:36 +01:00
Matthias
307ade6251 Cache open_trade_price 2019-12-17 07:02:02 +01:00
Matthias
0b5354f13d Add required arguments to Trade method 2019-12-17 06:58:10 +01:00
Matthias
707c5668a5 Fix typo 2019-12-17 06:11:44 +01:00
hroff-1902
0277cd82ea Make mypy happy 2019-12-16 23:25:57 +03:00
Matthias
9cea5cd442 Add documentation about ohlcv_partial_candle 2019-12-16 20:38:36 +01:00
hroff-1902
a6fc743d85 Align code in _download_*_history() 2019-12-16 22:12:26 +03:00
hroff-1902
fa968996ed Remove useless check 2019-12-16 22:01:26 +03:00
hroff-1902
4cd45b6535 Rename download_*_history as non-public 2019-12-16 21:57:03 +03:00
hroff-1902
2af9ffa7f2 Align refresh_backtest_ to each other 2019-12-16 21:43:33 +03:00
hroff-1902
39197458f4 Merge pull request #2661 from freqtrade/wallet_dry
Introduce Dry-Run Wallet
2019-12-16 14:00:11 +03:00
Matthias
35bbe12065 Merge pull request #2668 from freqtrade/dependabot/pip/develop/ccxt-1.20.84
Bump ccxt from 1.20.46 to 1.20.84
2019-12-16 11:08:45 +01:00
Matthias
9add86144c Merge pull request #2667 from freqtrade/dependabot/pip/develop/mkdocs-material-4.6.0
Bump mkdocs-material from 4.5.1 to 4.6.0
2019-12-16 10:50:47 +01:00
Matthias
03c8d65d07 Merge pull request #2666 from freqtrade/dependabot/pip/develop/plotly-4.4.1
Bump plotly from 4.3.0 to 4.4.1
2019-12-16 10:47:01 +01:00
dependabot-preview[bot]
75e6acd6ed Bump ccxt from 1.20.46 to 1.20.84
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.20.46 to 1.20.84.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.20.46...1.20.84)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 09:46:17 +00:00
Matthias
95b4189d69 Merge pull request #2669 from freqtrade/dependabot/pip/develop/cachetools-4.0.0
Bump cachetools from 3.1.1 to 4.0.0
2019-12-16 10:45:02 +01:00
Matthias
22dd91fc21 Merge pull request #2665 from freqtrade/dependabot/pip/develop/joblib-0.14.1
Bump joblib from 0.14.0 to 0.14.1
2019-12-16 10:44:00 +01:00
Matthias
700370ac5c Merge pull request #2664 from freqtrade/dependabot/pip/develop/pytest-5.3.2
Bump pytest from 5.3.1 to 5.3.2
2019-12-16 10:43:35 +01:00
dependabot-preview[bot]
05de60a7fe Bump cachetools from 3.1.1 to 4.0.0
Bumps [cachetools](https://github.com/tkem/cachetools) from 3.1.1 to 4.0.0.
- [Release notes](https://github.com/tkem/cachetools/releases)
- [Changelog](https://github.com/tkem/cachetools/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/tkem/cachetools/compare/v3.1.1...v4.0.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:31:38 +00:00
dependabot-preview[bot]
cc41cdbf22 Bump mkdocs-material from 4.5.1 to 4.6.0
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 4.5.1 to 4.6.0.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/4.5.1...4.6.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:30:46 +00:00
dependabot-preview[bot]
c05af1b63c Bump plotly from 4.3.0 to 4.4.1
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.3.0 to 4.4.1.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.3.0...v4.4.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:30:27 +00:00
dependabot-preview[bot]
33db37a915 Bump joblib from 0.14.0 to 0.14.1
Bumps [joblib](https://github.com/joblib/joblib) from 0.14.0 to 0.14.1.
- [Release notes](https://github.com/joblib/joblib/releases)
- [Changelog](https://github.com/joblib/joblib/blob/master/CHANGES.rst)
- [Commits](https://github.com/joblib/joblib/compare/0.14.0...0.14.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:30:04 +00:00
dependabot-preview[bot]
e398c37526 Bump pytest from 5.3.1 to 5.3.2
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.3.1 to 5.3.2.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.3.1...5.3.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-16 07:29:42 +00:00
Matthias
655672c957 Enhance documentation Note 2019-12-16 06:22:54 +01:00
hroff-1902
2282f4bd37 Merge pull request #2660 from freqtrade/release_doc-
[minor][doc] Add release section about collapsible section
2019-12-15 20:27:27 +03:00
Matthias
ce845ab092 Improve docstring for dry-run wallet method 2019-12-15 11:03:40 +01:00
Matthias
b5b6458f12 Add note about unlimited stake amount 2019-12-15 10:57:27 +01:00
Matthias
56e13c8919 Enhance documentation for dry-run wallet 2019-12-15 10:55:15 +01:00
Matthias
23d467eb0d Show simulation note also in restserver 2019-12-15 10:41:57 +01:00
Matthias
c741b67c3c Adjust tests for dry_run wallet simulation 2019-12-15 10:39:52 +01:00
Matthias
5a5741878c Improve dry-run calculations 2019-12-15 10:26:56 +01:00
Matthias
4463d58470 Add release section about collapsible section 2019-12-15 09:49:56 +01:00
Matthias
f0bbc75038 Combine dry_run wallet into original Wallets class 2019-12-15 09:48:35 +01:00
Matthias
7c53dcb0af Merge pull request #2656 from freqtrade/new_release
New release - 2019.11
2019-12-15 09:44:10 +01:00
Matthias
fda8f7e305 Introuce WalletDry - supporting dry-run wallets 2019-12-15 09:38:18 +01:00
Matthias
52b212db64 Fix tests after changing dry_run_wallet amount 2019-12-15 09:38:06 +01:00
Matthias
931d24b5a8 Have dry_run_wallet default to 1000 2019-12-15 09:26:17 +01:00
Matthias
18dfa56752 Merge pull request #2659 from hroff-1902/fix_mypy
[critical]: Fix mypy errors in develop
2019-12-15 09:20:36 +01:00
hroff-1902
26ab108890 Fix mypy errors in develop 2019-12-15 01:10:09 +03:00
hroff-1902
1cc174c007 Merge pull request #2624 from freqtrade/backtest_refactor
handle and document ROI=-1
2019-12-14 23:11:36 +03:00
hroff-1902
e26f563f4b Merge pull request #2655 from freqtrade/avoid_keyerror_backtest
Use first pair of pairlist to get fee
2019-12-14 23:10:40 +03:00
hroff-1902
ebd0a1722d Merge pull request #2657 from freqtrade/rpc_fixtypo
[minor] Fix typo causing a trailing "tic" in /show_config output
2019-12-14 22:43:37 +03:00
Matthias
f81c49ce6d Fix typo causing a trailing "tic" in /show_config output 2019-12-14 19:53:20 +01:00
Matthias
ded2d3c293 Version bump to 2019.11 2019-12-14 16:11:34 +01:00
Matthias
2f7181e236 Merge pull request #2648 from hroff-1902/hyperopt-random-state
Seed hyperopt random_state if not passed
2019-12-14 15:54:59 +01:00
Matthias
2275a1539e Remove default symbol from get_fee() 2019-12-14 13:22:42 +01:00
hroff-1902
f2266ea9f4 Use shorter range for seeded random-state 2019-12-14 15:17:45 +03:00
hroff-1902
82ff878e38 Fix typo in the docs 2019-12-14 15:15:20 +03:00
hroff-1902
7200bc3fba Merge pull request #2654 from freqtrade/rpc/show_config
improve show config when using trailing stop
2019-12-14 15:11:12 +03:00
Matthias
a48c0ad868 Use first pair of pairlist to get fee
Use this instead of hardcoded ETH/BTC - so backtesting works with
exchanges without ETH/BTC pair
2019-12-14 12:55:02 +01:00
Matthias
e4cc5c479f Test new show_config branch 2019-12-13 20:27:39 +01:00
Matthias
014c18ead2 Improve output from show_config when trailing_stop is active 2019-12-13 20:27:06 +01:00
hroff-1902
3bd873f3c6 Add notes on random-state to the docs 2019-12-13 13:59:18 +03:00
hroff-1902
6c4f424887 Merge pull request #2651 from freqtrade/dry_amount
Round amount to precision also for dry-runs
2019-12-13 13:13:20 +03:00
Matthias
04257d8ecc Add tests for safe_sell_amount 2019-12-13 07:06:54 +01:00
Matthias
b69f5afaaf Round amount to precision also for dry-runs 2019-12-13 06:59:10 +01:00
Matthias
5db883906a Try to verify available amount on the exchange 2019-12-13 06:52:33 +01:00
Matthias
703924d6c4 Merge pull request #2643 from freqtrade/mins
Remove min (plural) from codebase
2019-12-12 14:27:39 +01:00
Matthias
330b8cf8a1 space before unit ... 2019-12-12 14:08:44 +01:00
hroff-1902
6e778ad710 Seed hyperopt random_state if not passed 2019-12-12 03:12:28 +03:00
Matthias
f44e3dc319 Merge pull request #2642 from hroff-1902/fix-hyperopt-trailing
Fix generation of hyperopt trailing params
2019-12-11 19:53:42 +01:00
Matthias
d8b2d39f2f Merge pull request #2628 from freqtrade/rpc/sell_duration
Telegram / sell duration
2019-12-11 07:15:00 +01:00
Matthias
7c7ca1cb90 Remove min (plural) from codebase 2019-12-11 07:12:37 +01:00
Matthias
1058e5fb72 No plural for min 2019-12-11 06:48:40 +01:00
Matthias
b2a9b87be3 Merge pull request #2632 from freqtrade/dependabot/pip/develop/scikit-learn-0.22
Bump scikit-learn from 0.21.3 to 0.22
2019-12-10 16:20:39 +01:00
Matthias
3f9f29ba4e Fix Flake8 import error 2019-12-10 16:10:51 +01:00
Matthias
390db9503f Show humanized and minutes version of duration 2019-12-10 15:12:36 +01:00
hroff-1902
3448f86263 Suppress scikit-learn FutureWarnings from skopt imports 2019-12-10 15:46:29 +03:00
hroff-1902
3252654ed3 Test adjusted 2019-12-10 14:06:17 +03:00
Matthias
29745bb4ec Merge pull request #2641 from hroff-1902/hyperopt-list
minor: Fix documentation formatting
2019-12-10 06:00:44 +01:00
hroff-1902
641e3fdf7a Fix generation of hyperopt trailing params 2019-12-10 03:32:43 +03:00
hroff-1902
2f76eaf358 minor: Fix documentation formatting 2019-12-10 00:33:57 +03:00
hroff-1902
0e4ef33d6a Merge pull request #2581 from hroff-1902/hyperopt-list
Add hyperopt-list and hyperopt-show commands
2019-12-10 00:30:26 +03:00
hroff-1902
18c73ceb90 Add tests for the last commit 2019-12-10 00:22:11 +03:00
hroff-1902
8431b54b21 Fix index limits handling 2019-12-09 23:50:40 +03:00
hroff-1902
5fc357ee10 Fix typo 2019-12-09 23:43:50 +03:00
Matthias
de33ec4250 use sell_row.open also when the active ROI value just changed 2019-12-09 16:52:12 +01:00
hroff-1902
a9f7e9fb7a Fix NO_CONF; fix tests 2019-12-09 12:49:04 +03:00
Matthias
aa335d8485 Merge pull request #2634 from freqtrade/dependabot/pip/develop/ccxt-1.20.46
Bump ccxt from 1.20.22 to 1.20.46
2019-12-09 09:00:08 +01:00
Matthias
82f7798f48 Merge pull request #2635 from freqtrade/dependabot/pip/develop/colorama-0.4.3
Bump colorama from 0.4.1 to 0.4.3
2019-12-09 08:59:46 +01:00
Matthias
ce80bbe24c Merge pull request #2633 from freqtrade/dependabot/pip/develop/coveralls-1.9.2
Bump coveralls from 1.8.2 to 1.9.2
2019-12-09 08:59:35 +01:00
Matthias
da195d0272 Merge pull request #2631 from freqtrade/dependabot/pip/develop/mkdocs-material-4.5.1
Bump mkdocs-material from 4.5.0 to 4.5.1
2019-12-09 08:42:00 +01:00
Matthias
4eae02b723 Merge pull request #2630 from freqtrade/dependabot/pip/develop/pytest-mock-1.13.0
Bump pytest-mock from 1.12.1 to 1.13.0
2019-12-09 08:34:01 +01:00
dependabot-preview[bot]
081b21fe82 Bump colorama from 0.4.1 to 0.4.3
Bumps [colorama](https://github.com/tartley/colorama) from 0.4.1 to 0.4.3.
- [Release notes](https://github.com/tartley/colorama/releases)
- [Changelog](https://github.com/tartley/colorama/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/tartley/colorama/compare/0.4.1...0.4.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-09 07:26:53 +00:00
dependabot-preview[bot]
ed053d240e Bump ccxt from 1.20.22 to 1.20.46
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.20.22 to 1.20.46.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.20.22...1.20.46)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-09 07:26:42 +00:00
dependabot-preview[bot]
0ca3157a8b Bump coveralls from 1.8.2 to 1.9.2
Bumps [coveralls](https://github.com/coveralls-clients/coveralls-python) from 1.8.2 to 1.9.2.
- [Release notes](https://github.com/coveralls-clients/coveralls-python/releases)
- [Changelog](https://github.com/coveralls-clients/coveralls-python/blob/master/CHANGELOG.md)
- [Commits](https://github.com/coveralls-clients/coveralls-python/compare/1.8.2...1.9.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-09 07:26:06 +00:00
dependabot-preview[bot]
25447329a0 Bump scikit-learn from 0.21.3 to 0.22
Bumps [scikit-learn](https://github.com/scikit-learn/scikit-learn) from 0.21.3 to 0.22.
- [Release notes](https://github.com/scikit-learn/scikit-learn/releases)
- [Commits](https://github.com/scikit-learn/scikit-learn/compare/0.21.3...0.22)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-09 07:25:44 +00:00
dependabot-preview[bot]
4934456751 Bump mkdocs-material from 4.5.0 to 4.5.1
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 4.5.0 to 4.5.1.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/4.5.0...4.5.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-09 07:25:28 +00:00
dependabot-preview[bot]
0f4dcaa403 Bump pytest-mock from 1.12.1 to 1.13.0
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 1.12.1 to 1.13.0.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v1.12.1...v1.13.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-09 07:25:03 +00:00
hroff-1902
4b560880fd Add tests for hyperopt-list, hyperopt-show 2019-12-09 04:37:58 +03:00
Matthias
dc9fed4a5f Adjust documentation 2019-12-08 14:10:26 +01:00
Matthias
88a24da272 Adapt tests to sending open / close date 2019-12-08 14:10:04 +01:00
Matthias
e4655c9b07 include trade-duration with sell-notification 2019-12-08 14:07:46 +01:00
Matthias
1495c93083 Merge pull request #2627 from freqtrade/fix/dockerlatest
Docker: Build latest along with develop image
2019-12-08 11:42:27 +01:00
Matthias
21c6855705 Build latest along with develop image 2019-12-07 20:21:25 +01:00
hroff-1902
a7d6dc9d3a Merge pull request #2625 from freqtrade/validate_stakecurrency
Validate stake-currency against pairlist
2019-12-07 22:08:46 +03:00
Matthias
ed7207d4c8 Show pairs which are wrong ... 2019-12-07 19:31:15 +01:00
Matthias
bb9235c715 Validate stake-currency against pairlist - making sure only correct
pairs are in the whitelist
2019-12-07 15:42:47 +01:00
Matthias
45d12dbc83 Avoid a few calculations during backtesting 2019-12-07 15:28:56 +01:00
Matthias
189835b963 Add documentation for ROI-1 case 2019-12-07 15:26:10 +01:00
Matthias
3163cbdf8a Apply special case for negative ROI 2019-12-07 15:18:12 +01:00
Matthias
1e6f9f9fe2 Add testcase for negative ROI sell using open 2019-12-07 15:18:09 +01:00
Matthias
3091869115 refactor get_close_rate out of get_sell_trade-entry 2019-12-07 14:30:14 +01:00
hroff-1902
9e85376a2d Merge pull request #2619 from freqtrade/hyperopt_quick_mode
Document "quick" hyperopt of roi/stoploss and trailing stoploss
2019-12-06 09:18:40 +03:00
Matthias
a379c19e9a Merge pull request #2618 from freqtrade/fix/hyperopt_no_tickerinterval
Fix hyperopt with ticker_interval from strategy
2019-12-06 06:48:10 +01:00
Matthias
2bd4008cb2 fix space name ... 2019-12-06 06:06:41 +01:00
hroff-1902
d21ae4edd3 Add fixes for comments in the review 2019-12-05 23:29:31 +03:00
Matthias
1da008b3af Document "quick" hyperopt of roi/stoploss and trailing stoploss 2019-12-05 20:44:12 +01:00
Matthias
703458f365 Add test for loading ticker-interval from strategy 2019-12-05 20:35:54 +01:00
Matthias
4b0a4c936a Fix hyperopt with ticker_interval from strategy 2019-12-05 20:31:02 +01:00
hroff-1902
216094a761 Add reference to hyperopt-list and hyperopt-show to the Hyperopt doc 2019-12-05 14:30:55 +03:00
hroff-1902
4efd8b96e5 Add description for hyperopt-list and hyperopt-show to the docs 2019-12-05 14:16:18 +03:00
hroff-1902
b61f43835d Make flake happy 2019-12-05 01:11:06 +03:00
hroff-1902
017a94adc1 Merge develop 2019-12-05 01:08:38 +03:00
hroff-1902
b20bea8492 Adjust tests 2019-12-04 23:15:19 +03:00
hroff-1902
54694dd3a4 Manual merge of some conflicts in hyperopt 2019-12-04 23:14:47 +03:00
hroff-1902
8dd9b5c6fb Merge pull request #2606 from freqtrade/volume_tester
Subcommand: test-pairlist
2019-12-04 18:31:37 +03:00
Matthias
16a50fbe4e Resort documentation 2019-12-04 14:30:53 +01:00
hroff-1902
32897ce769 Merge pull request #2612 from freqtrade/fix/nullerror
Don't return None from load_pair_history
2019-12-04 14:45:44 +03:00
Matthias
51f074ba4b Don't print quote-currency for -1 2019-12-04 12:25:57 +01:00
Matthias
0ba804d051 Address first part of feedback 2019-12-04 12:14:37 +01:00
Matthias
611a594a46 Merge pull request #2607 from hroff-1902/docs/create-advanced-hyperopt
Move docs on loss function creation to a separate doc file
2019-12-04 07:58:30 +01:00
Matthias
8a7fe3f1d6 The file will (for users) be in user_data - just in the repo it's in
templates
2019-12-04 07:01:09 +01:00
Matthias
054484ad73 load_pair_history should not return None, but an empty dataframe if no
data is found
2019-12-04 06:57:44 +01:00
hroff-1902
ac3e061508 Resolve issues stated in the review 2019-12-03 23:20:00 +03:00
hroff-1902
ddf86d6342 Adjust docs index 2019-12-03 21:36:25 +03:00
hroff-1902
ba29a2ffe4 Move docs on loss function creation to a separate doc file 2019-12-03 21:30:50 +03:00
Matthias
b33e47a49e Update documentation with test-pairlist 2019-12-03 16:15:10 +01:00
Matthias
298e8b2332 Add testcase for test_pairlist 2019-12-03 15:10:27 +01:00
Matthias
78f8ba1226 Merge pull request #2605 from freqtrade/hroff-1902-patch-1
minor: fix typo in docs
2019-12-03 12:27:52 +01:00
hroff-1902
17e03559dc minor: fix typo in docs 2019-12-03 12:51:52 +03:00
hroff-1902
2825206d37 Merge pull request #2604 from freqtrade/binance_pairlist
Binance/Kraken default whitelists
2019-12-03 09:11:39 +03:00
Matthias
cd20d5b5c5 Update kraken pairlist 2019-12-03 06:41:59 +01:00
Matthias
ebf6dad3f6 Update binance pairlist default config 2019-12-03 06:37:10 +01:00
Matthias
683406b57d correct fallback to stake_currency 2019-12-03 06:36:43 +01:00
hroff-1902
406dfe21f8 Merge pull request #2492 from hroff-1902/hyperopt-trailing-space
Add trailing stoploss hyperspace
2019-12-03 00:23:14 +03:00
Matthias
346d381ab8 Merge pull request #2597 from freqtrade/dependabot/pip/develop/mypy-0.750
Bump mypy from 0.740 to 0.750
2019-12-02 09:35:59 +01:00
Matthias
d7980fa0b6 Merge pull request #2599 from freqtrade/dependabot/pip/develop/ccxt-1.20.22
Bump ccxt from 1.19.86 to 1.20.22
2019-12-02 08:58:12 +01:00
dependabot-preview[bot]
fc7b9846ae Bump mypy from 0.740 to 0.750
Bumps [mypy](https://github.com/python/mypy) from 0.740 to 0.750.
- [Release notes](https://github.com/python/mypy/releases)
- [Commits](https://github.com/python/mypy/compare/v0.740...v0.750)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-02 07:46:57 +00:00
Matthias
15e695a9bd Merge pull request #2598 from freqtrade/dependabot/pip/develop/pytest-5.3.1
Bump pytest from 5.3.0 to 5.3.1
2019-12-02 08:45:47 +01:00
dependabot-preview[bot]
110fbd3f06 Bump ccxt from 1.19.86 to 1.20.22
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.19.86 to 1.20.22.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.19.86...1.20.22)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-02 07:19:49 +00:00
dependabot-preview[bot]
f0428be91e Bump pytest from 5.3.0 to 5.3.1
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.3.0 to 5.3.1.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/5.3.1/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.3.0...5.3.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-12-02 07:19:06 +00:00
Matthias
0b03c6c786 Implement to json 2019-12-02 07:00:38 +01:00
Matthias
150a497cb4 output pairlist after fetching all 2019-12-02 06:56:19 +01:00
Matthias
3d666ea68e Merge pull request #2594 from freqtrade/hroff-1902-patch-1
minor: Fix formatting typo in docs
2019-12-02 06:55:54 +01:00
hroff-1902
ee733210ca minor: Fix formatting typo in docs 2019-12-01 19:10:30 +03:00
hroff-1902
86342efa7a Adjust test 2019-12-01 18:34:25 +03:00
hroff-1902
05967442c3 Adjust test 2019-12-01 18:01:59 +03:00
hroff-1902
d6b587678e Adjust test 2019-12-01 17:44:14 +03:00
hroff-1902
668d42447f Refactor log_trials_result() 2019-12-01 16:15:00 +03:00
hroff-1902
32c9b5f415 Description for generate_roi_table reformulated slightly 2019-12-01 13:13:41 +03:00
hroff-1902
f42ce8fc2a Fix typo in the docs 2019-12-01 13:07:17 +03:00
Matthias
6b142d716f Merge pull request #2418 from hroff-1902/logging-syslog
Add logging to syslog and journald
2019-12-01 09:45:19 +01:00
hroff-1902
26a7af85ea Add trailing_space() into AdvancedSampleHyperOpt 2019-12-01 03:31:03 +03:00
hroff-1902
69b0767165 Merge remote-tracking branch 'upstream/develop' into hyperopt-trailing-space 2019-12-01 03:28:23 +03:00
hroff-1902
f862b4d0f0 Add description for 'default' space 2019-12-01 02:50:44 +03:00
hroff-1902
a88bfa8ded Fix: trailing_stop_positive should be positive 2019-12-01 02:27:17 +03:00
hroff-1902
fffd47e3d8 Add description of trailing space into docs 2019-12-01 01:28:26 +03:00
hroff-1902
7a3c3c4ddf Add directlink to the section 2019-11-30 22:35:13 +03:00
hroff-1902
eafccb445c Add command sample for journalctl with -u 2019-11-30 22:32:12 +03:00
hroff-1902
b040cbffdd syslog and journald cases splitted 2019-11-30 22:28:48 +03:00
Matthias
153434561d Add test_pairlist method 2019-11-30 19:53:22 +01:00
hroff-1902
36b2ed172c Merge branch 'develop' into logging-syslog 2019-11-30 21:38:50 +03:00
gaugau3000
58d70b2079 doc explicit optimization feature 2019-11-29 09:35:13 +01:00
Matthias
e0e0bad7c1 Merge pull request #2577 from xmatthias/configvalidation
"fix" config validation
2019-11-29 06:25:41 +01:00
gaugau3000
0e9e6b3443 refactor feature details doc 2019-11-28 21:22:40 +01:00
gaugau3000
9199fd5964 change doc into 2019-11-28 21:21:43 +01:00
hroff-1902
8f9b5095b5 Fix some tests 2019-11-27 22:52:43 +03:00
Matthias
5b996920f2 Merge branch 'develop' into configvalidation 2019-11-27 19:48:21 +01:00
Matthias
bcec070ad7 Merge pull request #2576 from hroff-1902/fix/get_min_pair_stake_amount
Fix _get_min_pair_stake_amount
2019-11-27 19:28:52 +01:00
hroff-1902
c3d7411668 Fix imports 2019-11-27 19:35:22 +03:00
Matthias
997c426228 fix some datatypes 2019-11-27 16:51:03 +01:00
hroff-1902
7a52334c9f Merge pull request #2533 from xmatthias/rpc/balance
/Balance rework
2019-11-27 18:39:18 +03:00
Matthias
111f018c85 Add datatype to configuration documentation 2019-11-27 14:46:09 +01:00
Matthias
64da877161 Update stake_amount description 2019-11-27 14:24:14 +01:00
Matthias
f0e6a9e0e3 Address feedback 2019-11-27 14:18:40 +01:00
hroff-1902
a373e48939 Comment added 2019-11-27 14:53:01 +03:00
hroff-1902
f2cd4fdafe Fix the rest of tests 2019-11-27 05:12:54 +03:00
hroff-1902
9991c892ac Merge branch 'develop' into hyperopt-list 2019-11-26 15:14:42 +03:00
hroff-1902
8e7512161a Add hyperopt-list and hyperopt-show commands 2019-11-26 15:01:42 +03:00
hroff-1902
5e09913e3d Merge pull request #2578 from freqtrade/actions_coveralls
Try coveralls fixing (again ...)
2019-11-26 14:24:25 +03:00
Matthias
cceb00c406 Try coveralls 2019-11-26 12:12:41 +01:00
Matthias
585b8332ad Improve tests and unify required attribute 2019-11-26 11:48:01 +01:00
hroff-1902
066f324060 Make flake happy 2019-11-26 12:28:04 +03:00
hroff-1902
8e1e20bf0d Fix some tests 2019-11-26 12:07:43 +03:00
hroff-1902
0ac592ad40 Fix markets in conftest 2019-11-26 12:00:20 +03:00
hroff-1902
17269c88be Fix _get_min_pair_stake_amount() 2019-11-26 11:57:58 +03:00
hroff-1902
8204107315 Add test for get_min_pair_stake_amount() with real data 2019-11-26 11:57:02 +03:00
Matthias
9e7d367b5c Realign strategy_override paramters 2019-11-25 15:43:09 +01:00
Matthias
12b9257c6d new-lines before defaults in documentation 2019-11-25 14:25:02 +01:00
Matthias
37f698d9c1 move default values to Description field 2019-11-25 14:20:41 +01:00
Matthias
e7c17df844 validate defaults in documentation 2019-11-25 12:56:05 +01:00
Matthias
28ec8b5bc2 Merge pull request #2568 from freqtrade/dependabot/pip/develop/scipy-1.3.3
Bump scipy from 1.3.2 to 1.3.3
2019-11-25 10:37:09 +01:00
Matthias
200b8e48bf Merge pull request #2570 from freqtrade/dependabot/pip/develop/pytest-mock-1.12.1
Bump pytest-mock from 1.11.2 to 1.12.1
2019-11-25 10:36:43 +01:00
Matthias
2a8ad9e35b Merge pull request #2572 from freqtrade/dependabot/pip/develop/jsonschema-3.2.0
Bump jsonschema from 3.1.1 to 3.2.0
2019-11-25 10:36:22 +01:00
Matthias
be8ad0f022 Merge pull request #2571 from freqtrade/dependabot/pip/develop/pytest-5.3.0
Bump pytest from 5.2.4 to 5.3.0
2019-11-25 10:36:08 +01:00
Matthias
a77efc3949 Merge pull request #2569 from freqtrade/dependabot/pip/develop/ccxt-1.19.86
Bump ccxt from 1.19.54 to 1.19.86
2019-11-25 10:35:50 +01:00
dependabot-preview[bot]
418ca00305 Bump jsonschema from 3.1.1 to 3.2.0
Bumps [jsonschema](https://github.com/Julian/jsonschema) from 3.1.1 to 3.2.0.
- [Release notes](https://github.com/Julian/jsonschema/releases)
- [Changelog](https://github.com/Julian/jsonschema/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/Julian/jsonschema/compare/v3.1.1...v3.2.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-25 07:22:09 +00:00
dependabot-preview[bot]
03f02294d1 Bump pytest from 5.2.4 to 5.3.0
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.2.4 to 5.3.0.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.2.4...5.3.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-25 07:21:52 +00:00
dependabot-preview[bot]
0a7a1290e3 Bump pytest-mock from 1.11.2 to 1.12.1
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 1.11.2 to 1.12.1.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v1.11.2...v1.12.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-25 07:21:32 +00:00
dependabot-preview[bot]
28f73ecb3d Bump ccxt from 1.19.54 to 1.19.86
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.19.54 to 1.19.86.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.19.54...1.19.86)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-25 07:21:16 +00:00
dependabot-preview[bot]
6ab7f93ce7 Bump scipy from 1.3.2 to 1.3.3
Bumps [scipy](https://github.com/scipy/scipy) from 1.3.2 to 1.3.3.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.3.2...v1.3.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-25 07:20:40 +00:00
Matthias
d1511a1085 Update some config documentation 2019-11-25 07:12:39 +01:00
Matthias
0775ac081a Cleanup constants and required 2019-11-25 07:12:30 +01:00
Matthias
646a9d12b2 Align quoting of json schema 2019-11-25 07:06:55 +01:00
Matthias
e7be742c58 Run validation after custom validations 2019-11-25 07:05:30 +01:00
Matthias
8d002a8f28 Fix some more tests 2019-11-25 07:05:30 +01:00
Matthias
af3eea3805 Move config json validation to after strategy loading
Otherwise attributes are mandatory in configuration
while they could be set in the strategy
2019-11-25 07:05:30 +01:00
Matthias
4dc0631a4b Lower minimum tradeable value 2019-11-25 07:05:30 +01:00
Matthias
a3415e52c0 Fix some test-types 2019-11-25 07:05:30 +01:00
Matthias
1b337fe5e1 Remove unnecessary code piece 2019-11-24 19:47:20 +01:00
Matthias
50350a09cd use wallets instead of doing a direct call to /balance 2019-11-24 19:41:51 +01:00
Matthias
1bf8d8cff3 show /balance in stake currency 2019-11-24 19:30:09 +01:00
Matthias
62d50f512d add tests for balance from get-tickers 2019-11-24 19:30:09 +01:00
Matthias
8c64be3cfd get tickers only once to show balance 2019-11-24 19:22:43 +01:00
hroff-1902
cc0a733f1f Merge pull request #2565 from freqtrade/pairlists_transition
Pairlists transition
2019-11-24 15:26:01 +03:00
hroff-1902
1b645d64c8 Merge pull request #2538 from freqtrade/strategy_template
new-strategy / new-hyperopt - from templates
2019-11-24 15:21:23 +03:00
Matthias
a374df7622 some minor fixes from feedback 2019-11-24 09:55:34 +01:00
Matthias
cbf710a4f8 Fix coveralls (?) 2019-11-24 09:50:31 +01:00
Matthias
f05818a86e Allow transition from "no-config"-pairlist to pairlists 2019-11-24 09:49:29 +01:00
hroff-1902
cab748588c Merge pull request #2566 from freqtrade/actions_again
reenable slack
2019-11-23 22:50:46 +03:00
Matthias
63ad95a474 reenable slack 2019-11-23 20:20:34 +01:00
Matthias
e9da4d8505 Merge pull request #2563 from hroff-1902/hyperopt-save
Hyperopt: Save epochs at intermediate points
2019-11-23 19:25:35 +01:00
hroff-1902
26a2292f6d Merge pull request #2564 from freqtrade/plots_plot
[minor] Adjust plotting test to match user_data folder
2019-11-23 21:07:46 +03:00
Matthias
5fb14e769b Adjust folder to match user_data folder - otherwise running tests
creates this folder
2019-11-23 14:52:44 +01:00
Matthias
c7c7a1c2aa skip test due to no journald installed 2019-11-23 14:27:23 +01:00
Matthias
1242263d25 Make test OS dependent 2019-11-23 14:20:41 +01:00
Matthias
31c598f88a Add tests for advanced logging setup 2019-11-23 14:12:27 +01:00
hroff-1902
6cb4830534 Testcase added 2019-11-23 12:30:49 +03:00
hroff-1902
067267f4cf Log messages improved (plural/singular) 2019-11-23 12:20:41 +03:00
hroff-1902
99db53417c Tests adjusted 2019-11-23 12:00:43 +03:00
hroff-1902
737c07c5b6 Make mypy happy 2019-11-23 11:51:52 +03:00
hroff-1902
097cdcb57a Save epochs at intermediate points 2019-11-23 11:32:33 +03:00
hroff-1902
175591e524 Fix test 2019-11-23 04:03:47 +03:00
hroff-1902
e7ddd81251 Merge branch 'develop' into hyperopt-trailing-space 2019-11-23 03:42:58 +03:00
hroff-1902
a183162d8b Add description into Advanced Setup section 2019-11-23 03:37:29 +03:00
Matthias
a6bb7595e8 Update utils doc 2019-11-22 13:44:50 +01:00
Matthias
210d468a9b Reinstate mfi ... 2019-11-21 20:01:08 +01:00
Matthias
5f8fcebb88 Parametrize hyperopt file 2019-11-21 19:49:04 +01:00
Matthias
f23f659ac5 Use strings instead of subtemplates 2019-11-21 19:28:53 +01:00
Matthias
99eeb2e605 Merge pull request #2560 from hroff-1902/fix-informative
minor: Fix second part of freqtrade-strategies #51
2019-11-21 11:06:15 +01:00
hroff-1902
f26171082c Merge pull request #2552 from xmatthias/ci/coveralls
FIx failure for PR's from forked repositories
2019-11-21 12:15:32 +03:00
hroff-1902
2acd2542ac Merge pull request #2559 from freqtrade/fix/cancelordercrash
Fix 'remaining' bug when handling buy timeout
2019-11-21 12:09:43 +03:00
Matthias
f26c40082d Allow selection of templates for strategy 2019-11-21 07:21:19 +01:00
Matthias
b3dbb81838 Add subtemplates 2019-11-21 07:13:56 +01:00
Matthias
5e5ef21f61 Align example imports 2019-11-21 06:49:16 +01:00
Matthias
be4a4180ae Use single line comments for samples 2019-11-21 06:40:30 +01:00
Matthias
f7322358cf Update documentation 2019-11-21 06:32:45 +01:00
Matthias
671b98ecad Fix windows test 2019-11-21 06:32:45 +01:00
Matthias
ed04f7f39d Create userdir and backtest SampleStrategy 2019-11-21 06:32:45 +01:00
Matthias
cbb187e9b9 Use constant for Strategy and hyperopt userdirpaths 2019-11-21 06:32:45 +01:00
Matthias
03cdfe8cae Add tests for new-hyperopt 2019-11-21 06:32:45 +01:00
Matthias
37f8139432 Small stylistic fixes 2019-11-21 06:32:45 +01:00
Matthias
79891671e9 Adapt after rebase 2019-11-21 06:32:45 +01:00
Matthias
65489c894d Add no-arg test 2019-11-21 06:32:45 +01:00
Matthias
b36a1d3260 test new_stratgy 2019-11-21 06:32:45 +01:00
Matthias
8a1d02e185 Update numpy imports in sample strategies 2019-11-21 06:32:45 +01:00
Matthias
8c2ff2f46e Add template for new-hyperopt command 2019-11-21 06:32:45 +01:00
Matthias
e492d47621 Disallow usage of DefaultStrategy 2019-11-21 06:32:45 +01:00
Matthias
98baae9456 Add jinja2 to requirements 2019-11-21 06:32:45 +01:00
Matthias
e3cf6188a1 Add first version of new-strategy generation from template 2019-11-21 06:32:45 +01:00
Matthias
8cf8ab089e Add note about create-datadir to install instruction 2019-11-21 06:32:45 +01:00
Matthias
ed1d450099 Update documentation for create-userdir util 2019-11-21 06:32:45 +01:00
Matthias
41494f28da Allow resetting of the directory 2019-11-21 06:32:45 +01:00
Matthias
19b1a6c638 create-userdir should create the notebooks folder, too 2019-11-21 06:32:45 +01:00
Matthias
471bd4d889 Small stylistic fixes 2019-11-21 06:32:45 +01:00
Matthias
084efc98d7 Address test-failures due to file moves 2019-11-21 06:32:45 +01:00
Matthias
1d2ef5c2ce Extract directory_operation tests to it's own test file 2019-11-21 06:32:45 +01:00
Matthias
fd45ebd0e9 Copy templates when creating userdir 2019-11-21 06:32:45 +01:00
Matthias
258d4bd6ae move sample-files from user_data to templates folder 2019-11-21 06:32:45 +01:00
hroff-1902
b8aa727edf Fix second part of freqtrade-strategies #51 2019-11-21 05:10:48 +03:00
Matthias
eac01960a7 Add testcase for empty-order case 2019-11-20 20:37:46 +01:00
Matthias
a5bd4e329a improve cancel_order handling 2019-11-20 20:36:38 +01:00
hroff-1902
5ce665f279 Merge pull request #2540 from freqtrade/rpc/fixes
Improve rest api client / status response
2019-11-20 22:18:51 +03:00
Matthias
9aac080414 Fix 'remaining' bug when handling buy timeout 2019-11-20 20:10:41 +01:00
Matthias
8b639b5026 Remove only :return: 2019-11-20 19:54:16 +01:00
Matthias
7f119a28e7 Merge pull request #2557 from freqtrade/hroff-1902-patch-1
minor: Add example of usage for Aroon, Aroon Oscillator
2019-11-20 19:39:49 +01:00
hroff-1902
5f88c4aad9 Add example of usage for Aroon, Aroon Oscillator 2019-11-20 19:31:30 +03:00
hroff-1902
dfe3d78767 Merge pull request #2541 from freqtrade/rpc/show_config
[Rpc] - show config
2019-11-20 18:42:41 +03:00
hroff-1902
633996216a Improve commands help list 2019-11-20 15:25:56 +03:00
Matthias
09b302abf7 Merge pull request #2442 from freqtrade/volumeList_enhanced_filter
Pairlists enhanced filter options
2019-11-19 20:19:10 +01:00
Matthias
c92f233c15 Move settings to correct location 2019-11-19 19:33:04 +01:00
Matthias
751157b4ea Don't notify on builds from forks
they don't have secrets available ATM
2019-11-19 12:20:21 +01:00
Matthias
5f62a9e4d8 rename ttl to refresh_period 2019-11-19 06:50:23 +01:00
Matthias
a8855bf795 rename LowPriceFilter to PrieFilter 2019-11-19 06:49:45 +01:00
Matthias
c22b00b303 move pairlist filters out of config[] 2019-11-19 06:37:06 +01:00
Matthias
67c5115b41 Merge pull request #2545 from freqtrade/dependabot/pip/develop/plotly-4.3.0
Bump plotly from 4.2.1 to 4.3.0
2019-11-18 09:45:16 +01:00
Matthias
ab4b1cc8fe Merge pull request #2550 from freqtrade/dependabot/pip/develop/ccxt-1.19.54
Bump ccxt from 1.19.25 to 1.19.54
2019-11-18 09:39:34 +01:00
Matthias
716785c65f Merge pull request #2546 from freqtrade/dependabot/pip/develop/pytest-5.2.4
Bump pytest from 5.2.2 to 5.2.4
2019-11-18 09:39:16 +01:00
Matthias
baa7fd6c79 Merge pull request #2549 from freqtrade/dependabot/pip/develop/mkdocs-material-4.5.0
Bump mkdocs-material from 4.4.3 to 4.5.0
2019-11-18 09:38:33 +01:00
Matthias
9045f796e0 Merge pull request #2548 from freqtrade/dependabot/pip/develop/tabulate-0.8.6
Bump tabulate from 0.8.5 to 0.8.6
2019-11-18 09:38:21 +01:00
Matthias
988c1744af Merge pull request #2547 from freqtrade/dependabot/pip/develop/python-rapidjson-0.9.1
Bump python-rapidjson from 0.8.0 to 0.9.1
2019-11-18 09:38:01 +01:00
dependabot-preview[bot]
cd6d276119 Bump pytest from 5.2.2 to 5.2.4
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.2.2 to 5.2.4.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.2.2...5.2.4)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-18 07:42:57 +00:00
Matthias
d085a2bd3e Merge pull request #2544 from freqtrade/dependabot/pip/develop/flake8-tidy-imports-3.1.0
Bump flake8-tidy-imports from 3.0.0 to 3.1.0
2019-11-18 08:41:42 +01:00
dependabot-preview[bot]
dddccf8f1a Bump ccxt from 1.19.25 to 1.19.54
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.19.25 to 1.19.54.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.19.25...1.19.54)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-18 07:39:12 +00:00
Matthias
8b3fb3d6d5 Merge pull request #2543 from freqtrade/dependabot/pip/develop/sqlalchemy-1.3.11
Bump sqlalchemy from 1.3.10 to 1.3.11
2019-11-18 08:37:43 +01:00
Matthias
80b450d4e6 Merge pull request #2542 from freqtrade/dependabot/pip/develop/urllib3-1.25.7
Bump urllib3 from 1.25.6 to 1.25.7
2019-11-18 08:30:02 +01:00
dependabot-preview[bot]
0bc71403ff Bump mkdocs-material from 4.4.3 to 4.5.0
Bumps [mkdocs-material](https://github.com/squidfunk/mkdocs-material) from 4.4.3 to 4.5.0.
- [Release notes](https://github.com/squidfunk/mkdocs-material/releases)
- [Changelog](https://github.com/squidfunk/mkdocs-material/blob/master/CHANGELOG)
- [Commits](https://github.com/squidfunk/mkdocs-material/compare/4.4.3...4.5.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-18 07:24:39 +00:00
dependabot-preview[bot]
cb6b3e17a9 Bump tabulate from 0.8.5 to 0.8.6
Bumps [tabulate](https://github.com/astanin/python-tabulate) from 0.8.5 to 0.8.6.
- [Release notes](https://github.com/astanin/python-tabulate/releases)
- [Changelog](https://github.com/astanin/python-tabulate/blob/master/CHANGELOG)
- [Commits](https://github.com/astanin/python-tabulate/compare/v0.8.5...v0.8.6)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-18 07:22:41 +00:00
dependabot-preview[bot]
e7157faddd Bump python-rapidjson from 0.8.0 to 0.9.1
Bumps [python-rapidjson](https://github.com/python-rapidjson/python-rapidjson) from 0.8.0 to 0.9.1.
- [Release notes](https://github.com/python-rapidjson/python-rapidjson/releases)
- [Changelog](https://github.com/python-rapidjson/python-rapidjson/blob/master/CHANGES.rst)
- [Commits](https://github.com/python-rapidjson/python-rapidjson/compare/v0.8.0...v0.9.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-18 07:22:18 +00:00
dependabot-preview[bot]
a33d408780 Bump plotly from 4.2.1 to 4.3.0
Bumps [plotly](https://github.com/plotly/plotly.py) from 4.2.1 to 4.3.0.
- [Release notes](https://github.com/plotly/plotly.py/releases)
- [Changelog](https://github.com/plotly/plotly.py/blob/master/CHANGELOG.md)
- [Commits](https://github.com/plotly/plotly.py/compare/v4.2.1...v4.3.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-18 07:21:25 +00:00
dependabot-preview[bot]
42474b7144 Bump flake8-tidy-imports from 3.0.0 to 3.1.0
Bumps [flake8-tidy-imports](https://github.com/adamchainz/flake8-tidy-imports) from 3.0.0 to 3.1.0.
- [Release notes](https://github.com/adamchainz/flake8-tidy-imports/releases)
- [Changelog](https://github.com/adamchainz/flake8-tidy-imports/blob/master/HISTORY.rst)
- [Commits](https://github.com/adamchainz/flake8-tidy-imports/compare/3.0.0...3.1.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-18 07:20:50 +00:00
dependabot-preview[bot]
933564591d Bump sqlalchemy from 1.3.10 to 1.3.11
Bumps [sqlalchemy](https://github.com/sqlalchemy/sqlalchemy) from 1.3.10 to 1.3.11.
- [Release notes](https://github.com/sqlalchemy/sqlalchemy/releases)
- [Changelog](https://github.com/sqlalchemy/sqlalchemy/blob/master/CHANGES)
- [Commits](https://github.com/sqlalchemy/sqlalchemy/commits)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-18 07:20:30 +00:00
dependabot-preview[bot]
599e18b920 Bump urllib3 from 1.25.6 to 1.25.7
Bumps [urllib3](https://github.com/urllib3/urllib3) from 1.25.6 to 1.25.7.
- [Release notes](https://github.com/urllib3/urllib3/releases)
- [Changelog](https://github.com/urllib3/urllib3/blob/master/CHANGES.rst)
- [Commits](https://github.com/urllib3/urllib3/compare/1.25.6...1.25.7)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-18 07:20:02 +00:00
Matthias
547d65b065 Fix broken test 2019-11-17 15:22:44 +01:00
Matthias
e4e8a611be Add tests for telegram 2019-11-17 15:13:24 +01:00
Matthias
2b190e5638 Add documentation 2019-11-17 15:05:56 +01:00
Matthias
acab56793f Add /show_config to telegram 2019-11-17 15:03:45 +01:00
Matthias
2c976bdd24 Add show_config endpoint 2019-11-17 15:03:38 +01:00
Matthias
3aee8d2b2a Improve rest api client / status response 2019-11-17 14:40:59 +01:00
hroff-1902
841c379797 Merge pull request #2539 from freqtrade/seperate_docs_ci
seperate docs job
2019-11-17 13:20:21 +03:00
Matthias
b6a12044ba seperate docs job 2019-11-17 10:38:16 +01:00
hroff-1902
8e087cb639 Merge pull request #2535 from freqtrade/fix/quitting
Fix non-terminating bot
2019-11-17 01:15:59 +03:00
hroff-1902
bcb5913291 Merge pull request #2536 from freqtrade/coveralls_actions
Try moving coveralls to github actions
2019-11-16 23:05:05 +03:00
Matthias
be53c0885d Try moving coveralls to github actions 2019-11-16 15:53:45 +01:00
Matthias
91047830fd Add tst for worker termination 2019-11-16 09:56:16 +01:00
Matthias
6e0655b3b7 add empty worker variable 2019-11-16 09:47:56 +01:00
Matthias
edc0d7f2c7 Fix non-terminating bot 2019-11-15 20:10:17 +01:00
Matthias
1d18e0a11a Merge pull request #2518 from freqtrade/github_actions_tests
Move freqtrade CI to github actions
2019-11-15 06:58:12 +01:00
Matthias
b167fb071a fix windows test 2019-11-14 08:44:10 +01:00
Matthias
3b9899dfd4 hyperopts ... 2019-11-14 07:06:00 +01:00
Matthias
f94d46316e update checkout action to pinned version 2019-11-14 06:51:02 +01:00
Matthias
569a547b3f Update Actions CI to new subcommands 2019-11-14 06:49:21 +01:00
Matthias
6c306c0013 Merge branch 'develop' into github_actions_tests 2019-11-14 06:45:14 +01:00
Matthias
9b050523e9 Merge pull request #2397 from freqtrade/feat/new_args_system
require subcommand for all actions
2019-11-14 06:28:42 +01:00
hroff-1902
f9a92c2879 Adjust test 2019-11-13 23:32:37 +03:00
hroff-1902
ab194c7d75 Add test 2019-11-13 23:09:05 +03:00
hroff-1902
904a9c5dc7 Merge pull request #2527 from freqtrade/fix/openorder_plotprofit
plot-profit script fails in certain conditions
2019-11-13 22:58:44 +03:00
Matthias
38243c52fd Filter open trades - they are not added to the profit calc 2019-11-13 20:46:21 +01:00
Matthias
c8c48156dd Don't load trades twice ... 2019-11-13 20:44:55 +01:00
hroff-1902
f4d18034d9 Merge pull request #2523 from freqtrade/timeout_handling
Improve timedout handling
2019-11-13 22:25:58 +03:00
Matthias
17c11b2afa Merge pull request #2525 from hroff-1902/exchange-bibox
Add fix for bibox exchange
2019-11-13 19:52:50 +01:00
Matthias
68904296e7 Allow timeout of 0 2019-11-13 19:38:38 +01:00
Matthias
d4499338e0 Merge pull request #2519 from freqtrade/actions_test
Update dockerhub description from github readme.md
2019-11-13 19:30:36 +01:00
hroff-1902
6174a5dd55 Reimplement adjustment of ccxt 'has' with more generic ccxt_config class attribute 2019-11-13 20:22:23 +03:00
hroff-1902
e26bbc7de8 Add fix for bibox exchange 2019-11-13 19:50:54 +03:00
Matthias
62c1ff776e update action to 2.1.0 2019-11-13 13:59:38 +01:00
hroff-1902
baea06eac7 Merge pull request #2522 from freqtrade/replace_tickerinterval
Replace tickerinterval
2019-11-13 13:50:07 +03:00
Matthias
6ac73f7cde Update missed strings 2019-11-13 11:28:26 +01:00
Matthias
66619204ba re-add hyperopts multiple ... 2019-11-13 11:13:48 +01:00
hroff-1902
1d7fb2ffac Merge pull request #2521 from freqtrade/rpc/status_table
Add fiat to status table
2019-11-13 13:10:18 +03:00
Matthias
c42c5a1f85 Adjust "requires subcommand" message 2019-11-13 10:03:59 +01:00
Matthias
5b62ad876e Remove hyperopts occurances 2019-11-13 09:39:00 +01:00
hroff-1902
ec460ab9c9 Merge pull request #2520 from freqtrade/fix/randomtestfailure
[minor] Add sleep to allow thread to start
2019-11-13 00:35:04 +03:00
Matthias
2eb6513251 Improve timedout handling 2019-11-12 15:45:14 +01:00
Matthias
c449e39280 Replace more occurances of ticker_interval 2019-11-12 15:13:06 +01:00
Matthias
1c57a4ac35 more replacements of ticker_interval 2019-11-12 15:13:06 +01:00
Matthias
334ac8b10c Adapt documentation for timeframe 2019-11-12 15:13:06 +01:00
Matthias
d801dec6aa Some more places with ticker_interval gone 2019-11-12 15:13:06 +01:00
Matthias
08aedc18e1 Exchange ticker_interval with timeframe in some more places 2019-11-12 15:13:06 +01:00
Matthias
e4bdb92521 Replace some occurances of ticker_interval with timeframe 2019-11-12 15:13:06 +01:00
Matthias
11f7ab61b9 Remove decimal import from rpc 2019-11-12 15:11:31 +01:00
Matthias
df9bfb6c2e Add FIAT currency to status-table 2019-11-12 14:58:41 +01:00
Matthias
ab9506df48 simplify status_table command 2019-11-12 13:55:18 +01:00
Matthias
136ef077b2 Add sleep to allow thread to start 2019-11-12 13:14:43 +01:00
Matthias
e8a8f416f3 Update dockerhub description from github readme.md 2019-11-12 11:04:03 +01:00
Matthias
8c76f45030 Use correct dockerhub image name 2019-11-12 10:54:38 +01:00
Matthias
96f550c6aa Disable tests 2019-11-12 10:35:36 +01:00
Matthias
37ef5c38f0 integrate Slack notification 2019-11-12 10:33:49 +01:00
Matthias
66a273b31b Merge branch 'develop' into volumeList_enhanced_filter 2019-11-12 09:31:46 +01:00
Matthias
52e24c3a25 Split error-messsage between incompatible and wrong stake amount 2019-11-12 09:27:53 +01:00
Matthias
7a2d917c66 Merge pull request #2516 from freqtrade/hroff-1902-patch-1
minor: Fix typo in the rest-api docs
2019-11-12 06:35:26 +01:00
hroff-1902
025350ebff Fix typo in the rest-api docs 2019-11-12 00:07:27 +03:00
hroff-1902
411e035005 Merge pull request #2514 from freqtrade/pong
Add ping endpoing
2019-11-11 22:42:32 +03:00
Matthias
800997437a Update documentation 2019-11-11 20:25:44 +01:00
Matthias
75d5ff69ef Add ping endpoing 2019-11-11 20:10:56 +01:00
Matthias
a241c2af0d Build macos - ... 2019-11-11 19:42:05 +01:00
Matthias
d1729a624d fix windows build 2019-11-11 19:37:22 +01:00
Matthias
e51a720193 Apply cache to pi image 2019-11-11 19:37:18 +01:00
Matthias
ff1d36434d Add github actions action 2019-11-11 19:37:10 +01:00
Matthias
904ae5af91 Merge pull request #2512 from freqtrade/dependabot/pip/develop/numpy-1.17.4
Bump numpy from 1.17.3 to 1.17.4
2019-11-11 14:24:40 +01:00
Matthias
42e8e1c16a Merge pull request #2511 from freqtrade/dependabot/pip/develop/scipy-1.3.2
Bump scipy from 1.3.1 to 1.3.2
2019-11-11 11:41:58 +01:00
Matthias
9fb493d2f4 Merge pull request #2510 from freqtrade/dependabot/pip/develop/ccxt-1.19.25
Bump ccxt from 1.19.14 to 1.19.25
2019-11-11 11:27:43 +01:00
dependabot-preview[bot]
031157f215 Bump numpy from 1.17.3 to 1.17.4
Bumps [numpy](https://github.com/numpy/numpy) from 1.17.3 to 1.17.4.
- [Release notes](https://github.com/numpy/numpy/releases)
- [Changelog](https://github.com/numpy/numpy/blob/master/doc/HOWTO_RELEASE.rst.txt)
- [Commits](https://github.com/numpy/numpy/compare/v1.17.3...v1.17.4)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-11 10:20:30 +00:00
dependabot-preview[bot]
c65d217d1e Bump scipy from 1.3.1 to 1.3.2
Bumps [scipy](https://github.com/scipy/scipy) from 1.3.1 to 1.3.2.
- [Release notes](https://github.com/scipy/scipy/releases)
- [Commits](https://github.com/scipy/scipy/compare/v1.3.1...v1.3.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-11 10:19:36 +00:00
dependabot-preview[bot]
0a13f7e1c7 Bump ccxt from 1.19.14 to 1.19.25
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.19.14 to 1.19.25.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.19.14...1.19.25)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-11 10:18:58 +00:00
Matthias
173375de7c Merge pull request #2508 from freqtrade/hroff-1902-patch-1
minor: More cosmetics on Exchange Notes
2019-11-11 10:39:20 +01:00
hroff-1902
27d81bb68c minor: More cosmetics on Exchange Notes 2019-11-11 12:23:24 +03:00
Matthias
044105e8e0 Merge pull request #2507 from freqtrade/hroff-1902-patch-3
minor: Exchange notes docs
2019-11-11 10:11:46 +01:00
Matthias
48f8a62335 Merge pull request #2506 from freqtrade/hroff-1902-patch-1
minor: Fix link in the Faq docs
2019-11-11 09:59:52 +01:00
Matthias
71f99ba79c Merge pull request #2504 from freqtrade/hroff-1902-patch-2
Minor: Exchange notes typographical cosmetics
2019-11-11 09:59:09 +01:00
hroff-1902
95492958f9 wordings 2019-11-11 11:37:57 +03:00
hroff-1902
661c8251c5 minor: Exchange notes docs
* Formatting (structure of sections)
* Cosmetic changes

This was not noticed in terms of #2505
2019-11-11 11:23:29 +03:00
hroff-1902
83067c1edc minor: Fix link in the Faq docs 2019-11-11 11:18:43 +03:00
hroff-1902
c5ed004c9e Merge pull request #2505 from freqtrade/bittrex_restricted_markets
Add restricted markets snippet to documentation
2019-11-11 11:13:47 +03:00
Matthias
04b51a982e Include warning-message to bittrex explanation 2019-11-11 08:55:37 +01:00
Matthias
e810597eec Add restricted markets snippet to documentation 2019-11-11 07:16:35 +01:00
hroff-1902
692d6afbd9 Minor exchange notes typographical cosmetics 2019-11-11 02:17:41 +03:00
hroff-1902
59fa02e11a Merge pull request #2499 from freqtrade/hroff-1902-patch-1
minor: Wordings on top of #2495
2019-11-11 01:27:43 +03:00
hroff-1902
6ef6a24841 Merge pull request #2501 from freqtrade/readme_small_work
[docs] Add seperate exchange section in docs
2019-11-11 01:14:16 +03:00
Matthias
eba55c2783 Change link 2019-11-10 19:31:13 +01:00
Matthias
085aa3084e Implement ticker caching 2019-11-09 19:45:09 +01:00
Matthias
de2d04f06b Add note about systemd load location
closes #2461
2019-11-09 16:24:24 +01:00
Matthias
12654cb810 Add seperate exchange section in docs 2019-11-09 16:19:58 +01:00
Matthias
4b15873ee1 Simplify examples 2019-11-09 15:41:51 +01:00
Matthias
748fe94603 Merge branch 'develop' into volumeList_enhanced_filter 2019-11-09 15:34:47 +01:00
Matthias
86a5dfa62e Update documentation 2019-11-09 15:28:36 +01:00
Matthias
0b4800835c update documentation 2019-11-09 15:28:03 +01:00
Matthias
5caeca7509 Improve tests for pairlist-sequence behaviour 2019-11-09 15:23:36 +01:00
Matthias
7ff61f12e9 pass pairlist position into the pairlists 2019-11-09 15:04:04 +01:00
Matthias
ae35649366 improve pairlistmanager errorhandling 2019-11-09 14:49:41 +01:00
Matthias
a01b34a004 tests 2019-11-09 14:44:39 +01:00
Matthias
02b9da8aba Update documentation 2019-11-09 14:39:28 +01:00
Matthias
ed0c7a6aaf Update configschema to fit new pairlists approach 2019-11-09 14:16:11 +01:00
Matthias
25cb935eee Some more adjustments for new pairlist 2019-11-09 14:16:03 +01:00
Matthias
c74d766275 move from name to name_list 2019-11-09 14:00:32 +01:00
Matthias
37985310d5 remove cachetools dependency 2019-11-09 13:59:35 +01:00
Matthias
c3b4a4dde1 Update sample configurations 2019-11-09 13:59:19 +01:00
Matthias
d7262c0b4e Fix correct ticker type 2019-11-09 13:40:36 +01:00
Matthias
870966dcd0 Fix more tests 2019-11-09 09:42:34 +01:00
Matthias
85beb3b6a9 Fix test 2019-11-09 09:31:17 +01:00
Matthias
bf69b055eb Add name getting 2019-11-09 09:07:46 +01:00
Matthias
31c7189b8b Verify blacklist correctly 2019-11-09 07:23:34 +01:00
Matthias
eaf3fd80c5 Allow blacklist-verification from all pairlists 2019-11-09 07:19:46 +01:00
Matthias
1059586226 Small adjustments 2019-11-09 07:07:33 +01:00
Matthias
b610e8c7e6 Don't refresh tickers if they are not needed 2019-11-09 07:05:17 +01:00
Matthias
e632720c02 Allow chaining of pairlists 2019-11-09 06:55:16 +01:00
hroff-1902
1f042f5e32 Quick start and easy installation sections reworked 2019-11-08 19:38:32 +03:00
hroff-1902
54b63e89f8 Wordings on top of #2495 2019-11-08 17:32:18 +03:00
Matthias
3f65c31883 Merge pull request #2495 from gaugau3000/prepare_reorg_install_doc
Prepare reorg install doc : explain differences between master and develop
2019-11-08 14:43:27 +01:00
hroff-1902
31ab32f0b9 Always set trailing_stop=True with 'trailing' hyperspace 2019-11-08 12:47:28 +03:00
Gautier Pialat
bc5c91f681 add missing note block 2019-11-08 10:29:00 +01:00
Gautier Pialat
076ef0407b git branch note explanation 2019-11-08 09:39:06 +01:00
Gautier Pialat
b0150d548a remove not use statement 2019-11-08 09:37:54 +01:00
hroff-1902
60acbc97ab Merge pull request #2494 from freqtrade/fix/timezone_timestamp
Fix UTC handling of timestamp() conversation in fetch_my_trades
2019-11-08 11:33:47 +03:00
Matthias
dd47bd04cd Move description to correct place 2019-11-08 01:32:08 -05:00
Matthias
da57396d07 Fix UTC handling of timestamp() conversation in fetch_my_trades 2019-11-08 06:55:07 +01:00
hroff-1902
d3a3765819 Fix test 2019-11-08 03:48:08 +03:00
hroff-1902
f90676cfc5 Add trailing stoploss hyperspace 2019-11-08 03:07:43 +03:00
Matthias
ad2289c34c Merge pull request #2488 from freqtrade/hyperopt_specialchar
[minor] Fix UnicodeError in hyperopt output
2019-11-07 06:18:15 +01:00
Matthias
ca77dbe8da Fix UnicodeError in hyperopt output 2019-11-06 19:33:15 +01:00
Matthias
6c6efd7214 Merge pull request #2481 from freqtrade/dependabot/pip/develop/ccxt-1.19.14
Bump ccxt from 1.18.1346 to 1.19.14
2019-11-06 10:13:46 +01:00
Matthias
7f099d41fa Merge pull request #2484 from freqtrade/dependabot/pip/develop/pandas-0.25.3
Bump pandas from 0.25.2 to 0.25.3
2019-11-06 10:13:31 +01:00
dependabot-preview[bot]
60109aaa1f Bump ccxt from 1.18.1346 to 1.19.14
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.18.1346 to 1.19.14.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.18.1346...1.19.14)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-06 08:37:38 +00:00
Matthias
ef057c16cb Merge pull request #2483 from freqtrade/dependabot/pip/develop/flake8-3.7.9
Bump flake8 from 3.7.8 to 3.7.9
2019-11-06 09:36:43 +01:00
Matthias
39e728a7c2 Merge pull request #2482 from freqtrade/dependabot/pip/develop/arrow-0.15.4
Bump arrow from 0.15.2 to 0.15.4
2019-11-06 09:36:18 +01:00
dependabot-preview[bot]
28f0c00281 Bump pandas from 0.25.2 to 0.25.3
Bumps [pandas](https://github.com/pandas-dev/pandas) from 0.25.2 to 0.25.3.
- [Release notes](https://github.com/pandas-dev/pandas/releases)
- [Changelog](https://github.com/pandas-dev/pandas/blob/master/RELEASE.md)
- [Commits](https://github.com/pandas-dev/pandas/compare/v0.25.2...v0.25.3)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-06 07:21:55 +00:00
dependabot-preview[bot]
bc78316aa5 Bump flake8 from 3.7.8 to 3.7.9
Bumps [flake8](https://gitlab.com/pycqa/flake8) from 3.7.8 to 3.7.9.
- [Release notes](https://gitlab.com/pycqa/flake8/tags)
- [Commits](https://gitlab.com/pycqa/flake8/compare/3.7.8...3.7.9)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-06 07:21:39 +00:00
dependabot-preview[bot]
b8a6c55b10 Bump arrow from 0.15.2 to 0.15.4
Bumps [arrow](https://github.com/crsmithdev/arrow) from 0.15.2 to 0.15.4.
- [Release notes](https://github.com/crsmithdev/arrow/releases)
- [Changelog](https://github.com/crsmithdev/arrow/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/crsmithdev/arrow/compare/0.15.2...0.15.4)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-11-06 07:21:09 +00:00
Matthias
6df1dd1ef2 Merge pull request #2479 from freqtrade/fix/bids_to_delta
Fix bug where bids_to_ask_delta causes doublebuys
2019-11-05 21:14:26 +01:00
Matthias
c8638ce82f Fix bug where bids_to_ask_delta causes doublebuys
The continue must happen irrespective of the outcome of this - otherwise
the below BUY will happen anyway.
2019-11-05 21:03:06 +01:00
Matthias
1a61d89bcc Merge pull request #2476 from freqtrade/unify_key_removal
Introduce remove_credentials to remove code duplication
2019-11-05 19:34:23 +01:00
Matthias
eb0b0350e0 Introduce remove_credentials to remove code duplication 2019-11-05 12:39:19 +01:00
Matthias
4ec7fcd836 Merge pull request #2475 from gaugau3000/docker_doc_update
Update docker doc (new note about restart policy)
2019-11-05 12:32:23 +01:00
Gautier Pialat
f6a66cd3de Fix typo 2019-11-05 12:14:39 +01:00
Gautier Pialat
871019c8b9 docker doc update about restart policy 2019-11-05 12:08:57 +01:00
hroff-1902
581907305a Merge pull request #2467 from freqtrade/check_exchange_other
Don't check exchange for Utils commands
2019-11-04 19:28:07 +03:00
hroff-1902
54b0fbca59 Merge pull request #2468 from freqtrade/fix_pandas_wraning
Fix pandas access warning
2019-11-04 15:32:05 +03:00
Matthias
1e44f93c31 Fix pandas access warning 2019-11-03 10:58:31 +01:00
Matthias
3eca80217c Don't check exchange for Utils commands 2019-11-03 10:18:46 +01:00
Matthias
6f01d7f8ea Merge branch 'develop' into feat/new_args_system 2019-11-03 10:09:49 +01:00
Matthias
500d16620b Merge pull request #2465 from freqtrade/hyperopt_populate_from_strategy
Hyperopt populate from strategy
2019-11-03 10:03:33 +01:00
Matthias
6550e1fa99 Change docstring in sampleHyperopt 2019-11-03 09:55:38 +01:00
Matthias
80ad37ad93 Updated plot_indicators test 2019-11-02 14:17:15 +01:00
Matthias
3287cdd47a Improve documentation regarding loading methods from hyperopt 2019-11-02 13:01:42 +01:00
Matthias
12e86ee4bd Make travis test-hyperopt the sample strategy 2019-11-02 11:12:08 +01:00
Matthias
97d0f93d3c Align samples (hyperopt and strategy) to work together 2019-11-02 11:11:13 +01:00
Matthias
861f10dca6 Allow populate-indicators to come from strategy 2019-11-02 11:10:33 +01:00
Matthias
2a1385f94b Merge pull request #2462 from freqtrade/hroff-1902-patch-1
Update faq with examples of grepping the log
2019-11-02 06:47:15 +01:00
hroff-1902
e9af6b393f Fix typo 2019-11-02 02:32:57 +03:00
hroff-1902
2124661cee Update faq with examples of grepping the log 2019-11-02 02:22:58 +03:00
hroff-1902
e8a08011be Merge pull request #2460 from freqtrade/new_runmodes
[minor] Add new runmodes
2019-11-01 21:40:23 +03:00
Matthias
691cec7956 Be more selective which startup-messages are shown 2019-11-01 16:42:57 +01:00
Matthias
241d947564 Add new runmodes 2019-11-01 15:39:49 +01:00
Matthias
880834b902 Merge pull request #2446 from hroff-1902/log-stderr
Log to stderr
2019-11-01 06:14:55 +01:00
hroff-1902
f435384bf0 Merge pull request #2451 from freqtrade/bt_analysis_maxopen
Bt analysis maxopen at any time
2019-11-01 00:13:31 +03:00
hroff-1902
3149c12a14 Merge pull request #2444 from freqtrade/sql_cleanup
Fix scoped_session and add Documentation for strategy
2019-10-31 23:19:30 +03:00
hroff-1902
6a9a2e7f88 Merge pull request #2452 from freqtrade/fix/1717
Allow configuration of stoploss on exchange limit
2019-10-31 23:13:37 +03:00
hroff-1902
5b87393a95 Merge pull request #2457 from freqtrade/integration_tests
split up test_freqtradebot.py
2019-10-31 22:05:03 +03:00
Matthias
5a27b10579 Merge pull request #2450 from freqtrade/rpi_docs
[docs] Update Raspberry documentation
2019-10-31 13:30:45 +01:00
Matthias
a80e49bd81 Change level of rpi header 2019-10-31 12:49:41 +01:00
hroff-1902
ffed13b979 Merge pull request #2455 from freqtrade/reduce_startup_indicator_logfrequency
[minor][log]Reduce frequency of "startup-period" message
2019-10-31 13:10:16 +03:00
hroff-1902
9f0f1096e1 Merge pull request #2459 from freqtrade/exchange_helpers
Move exchange-constants and retriers to exchange.common
2019-10-31 13:09:01 +03:00
Matthias
9a42afe0be Move exchange-constants and retriers to exchange.common 2019-10-31 10:59:17 +01:00
Matthias
b6616d7a13 Add test helping debug #1985 2019-10-31 10:04:28 +01:00
Matthias
7be378aaa9 Remove markets mock where it's not needed 2019-10-31 07:26:48 +01:00
Matthias
734a9d5d87 Seperate tests related to worker from test_freqtradebot 2019-10-31 07:16:25 +01:00
Matthias
ce6b869f84 Cleanup test 2019-10-31 07:11:57 +01:00
Matthias
dc5f1b2878 Extract integration tests into sepearte file 2019-10-31 07:08:02 +01:00
hroff-1902
a041b8bf72 Merge remote-tracking branch 'upstream/develop' into log-stderr 2019-10-31 09:07:07 +03:00
hroff-1902
4fa12ffda0 Merge pull request #2454 from freqtrade/release_docs
[minor][docs] Update release-documentation to fit new release style
2019-10-31 09:02:55 +03:00
Matthias
5dcf28cafb Reduce frequency of "startup-period" message 2019-10-31 06:57:37 +01:00
Matthias
365a408df5 Update release-documentation to fit new release style 2019-10-31 06:43:42 +01:00
Matthias
9e988783de Allow configuration of stoploss on exchange limit
fixes #1717
2019-10-30 20:07:26 +01:00
Matthias
bba8e61409 Rename function in samples 2019-10-30 20:05:44 +01:00
Matthias
dee9b84322 Merge branch 'develop' into volumeList_enhanced_filter 2019-10-30 16:41:17 +01:00
Matthias
ad98d61939 Update developer docs 2019-10-30 16:39:45 +01:00
Matthias
14758dbe10 Some small cleanups 2019-10-30 16:32:22 +01:00
Matthias
d89a7d5235 Document new method to configure filters 2019-10-30 16:30:47 +01:00
Matthias
640423c362 Add config samples for chainable pairlist filters 2019-10-30 16:02:24 +01:00
Matthias
fd9c02603c Introduce chainable PairlistFilters 2019-10-30 15:59:52 +01:00
Matthias
44289e4c58 Allow not using files from user_dir 2019-10-30 15:57:08 +01:00
Matthias
6928c685a8 Add documentation sample for parallel_trade_analysis 2019-10-30 14:12:41 +01:00
Matthias
dd408aa5d6 Add analyze_trade_parallelism analysis function 2019-10-30 14:07:23 +01:00
Matthias
dac88c6aed extract Find parallel trades per interval 2019-10-30 13:35:55 +01:00
Matthias
78fe5a46c1 Update travis to verify for correct title usage 2019-10-30 13:27:36 +01:00
Matthias
7a96d3c9ae Update raspbian install documentation
Fix "box" titles ... they need to be in quotes!
2019-10-30 13:27:04 +01:00
Matthias
b7b1e66c6e Convert to % as part of RPC to allow users to use unrounded ratio 2019-10-30 11:12:49 +01:00
Matthias
5ed7771148 Update documentation to include get_trades
fixes #1753
2019-10-30 11:12:49 +01:00
Matthias
c2076d86a4 Use scoped_session as intended 2019-10-30 11:12:49 +01:00
Matthias
b37c5e4878 use get_trades in rpc modules 2019-10-30 11:12:49 +01:00
Matthias
26a5800a7f Extract get_trades function 2019-10-30 11:12:49 +01:00
Matthias
01efebc42f Extract query to it's own function 2019-10-30 11:12:49 +01:00
Matthias
ab117527c9 Refactor get_best_pair to persistence 2019-10-30 11:12:49 +01:00
Matthias
f20f5cebbe Move performance-calculation to persistence 2019-10-30 11:12:49 +01:00
Matthias
0c3a8ddfb9 Merge branch 'develop' into feat/new_args_system 2019-10-30 11:12:27 +01:00
hroff-1902
669a6cf119 Merge pull request #2448 from freqtrade/fix/POWRfailure
Replace coins in whitelist with existing ones
2019-10-30 12:55:45 +03:00
Matthias
6fe7b13e37 Replace coins in whitelist with existing ones 2019-10-30 09:26:08 +01:00
hroff-1902
9c180e587b Log to stderr 2019-10-30 04:04:28 +03:00
Matthias
a368646745 Merge branch 'develop' into feat/new_args_system 2019-10-29 19:33:56 +01:00
Matthias
de2cc58b0c Final cleanups and added tests 2019-10-29 10:44:35 +01:00
Matthias
d803d86f4d Add low_price_percent_filter 2019-10-29 09:32:06 +01:00
hroff-1902
5254059fe4 Merge pull request #2430 from freqtrade/startup_period_bt
Add Startup period for strategies
2019-10-28 23:33:30 +03:00
Matthias
d706571e6f Extract precision_filter to seperate function 2019-10-28 19:41:00 +01:00
hroff-1902
907baea8b2 Merge pull request #2439 from freqtrade/fix/plotprofit
Plot-profit does not work with db file
2019-10-28 21:04:31 +03:00
hroff-1902
062536438e Merge pull request #2433 from freqtrade/docs/stop_positive
[Docs] stoploss documentation improvements
2019-10-28 20:59:56 +03:00
Matthias
4ff035537b Simplify precision_filter code 2019-10-28 16:21:00 +01:00
Matthias
466a3b87fc Enhance tests to cover precision_filter correctly 2019-10-28 16:19:38 +01:00
Matthias
b947f3c2a5 Merge pull request #2417 from freqtrade/whitelist_docs
DynamicPairlist - pair_whitelist
2019-10-28 15:25:17 +01:00
Matthias
069da224bc Add test to verify this is correct 2019-10-28 14:30:01 +01:00
Matthias
e82460bde6 Fix create_cum_profit to work with trades that don't open on candle
opens
2019-10-28 14:24:12 +01:00
Matthias
61c037f2cf Fix some typos and comment mistakes 2019-10-28 13:05:54 +01:00
Matthias
f98290ba6e Merge pull request #2436 from freqtrade/dependabot/pip/develop/pytest-5.2.2
Bump pytest from 5.2.1 to 5.2.2
2019-10-28 13:04:05 +01:00
Matthias
73343b3387 Address feedback 2019-10-28 12:53:12 +01:00
Matthias
3a6020dcd7 small improvements to stoploss doc 2019-10-28 12:43:35 +01:00
dependabot-preview[bot]
596a269dfd Bump pytest from 5.2.1 to 5.2.2
Bumps [pytest](https://github.com/pytest-dev/pytest) from 5.2.1 to 5.2.2.
- [Release notes](https://github.com/pytest-dev/pytest/releases)
- [Changelog](https://github.com/pytest-dev/pytest/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest/compare/5.2.1...5.2.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-10-28 11:41:44 +00:00
Matthias
7329fce87c Merge pull request #2437 from freqtrade/dependabot/pip/develop/ccxt-1.18.1346
Bump ccxt from 1.18.1306 to 1.18.1346
2019-10-28 12:41:03 +01:00
Matthias
4059116787 Merge pull request #2434 from freqtrade/dependabot/pip/develop/pytest-mock-1.11.2
Bump pytest-mock from 1.11.1 to 1.11.2
2019-10-28 12:40:46 +01:00
Matthias
1561322af2 Merge pull request #2435 from freqtrade/dependabot/pip/develop/nbconvert-5.6.1
Bump nbconvert from 5.6.0 to 5.6.1
2019-10-28 12:40:19 +01:00
dependabot-preview[bot]
44d0a6f2b8 Bump ccxt from 1.18.1306 to 1.18.1346
Bumps [ccxt](https://github.com/ccxt/ccxt) from 1.18.1306 to 1.18.1346.
- [Release notes](https://github.com/ccxt/ccxt/releases)
- [Changelog](https://github.com/ccxt/ccxt/blob/master/CHANGELOG.md)
- [Commits](https://github.com/ccxt/ccxt/compare/1.18.1306...1.18.1346)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-10-28 07:42:58 +00:00
dependabot-preview[bot]
60b99469b9 Bump nbconvert from 5.6.0 to 5.6.1
Bumps [nbconvert](https://github.com/jupyter/nbconvert) from 5.6.0 to 5.6.1.
- [Release notes](https://github.com/jupyter/nbconvert/releases)
- [Commits](https://github.com/jupyter/nbconvert/compare/5.6.0...5.6.1)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-10-28 07:40:57 +00:00
dependabot-preview[bot]
46b975a491 Bump pytest-mock from 1.11.1 to 1.11.2
Bumps [pytest-mock](https://github.com/pytest-dev/pytest-mock) from 1.11.1 to 1.11.2.
- [Release notes](https://github.com/pytest-dev/pytest-mock/releases)
- [Changelog](https://github.com/pytest-dev/pytest-mock/blob/master/CHANGELOG.rst)
- [Commits](https://github.com/pytest-dev/pytest-mock/compare/v1.11.1...v1.11.2)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2019-10-28 07:40:15 +00:00
Matthias
70ad909b16 change samples to python code, and simplify a few things 2019-10-27 19:46:05 +01:00
Matthias
2af3ce3ecc Improve stoploss documentation - split out offset_is_reached 2019-10-27 19:36:00 +01:00
Matthias
132a4da7cf Small style fixes and adjusted tests 2019-10-27 10:56:38 +01:00
Matthias
73f5bff9c5 Add validation to make sure strategies work on that exchange 2019-10-27 10:38:21 +01:00
Matthias
223f0cd4d3 Apply startup_period to edge as well 2019-10-27 10:26:21 +01:00
Matthias
c4cb098d14 Update documentation with indicator_startup_period 2019-10-27 10:26:17 +01:00
Matthias
2bc74882e9 Add test for startup_candles 2019-10-27 10:01:13 +01:00
Matthias
2ba388074e Fix small bugs 2019-10-27 09:44:56 +01:00
Matthias
33164ac78e Refactor loading of bt data to backtesting ... 2019-10-27 09:44:56 +01:00
Matthias
86624411c6 Test trim_dataframe 2019-10-27 09:44:56 +01:00
Matthias
5cdae17d19 Add tests for timerange modifications 2019-10-27 09:44:56 +01:00
Matthias
bd4a23beeb Refactor start-adjust logic to timerange 2019-10-27 09:44:56 +01:00
Matthias
5c2682e2c9 Add startup_candle_count to sample strategy 2019-10-27 09:44:56 +01:00
Matthias
6382a4cd04 Implement startup-period to default-strategy 2019-10-27 09:44:56 +01:00
Matthias
704121c197 Move most logic to history 2019-10-27 09:44:56 +01:00
Matthias
9c7696a8ce Add required_startup to backtesting 2019-10-27 09:44:56 +01:00
Matthias
9e7e051eb4 add trim-dataframe method 2019-10-27 09:44:56 +01:00
Matthias
616fe08bce Add subtract_start to timerange object 2019-10-27 09:44:56 +01:00
Matthias
141c454187 Add startup-candles-argument for strategy 2019-10-27 09:44:56 +01:00
hroff-1902
17fce00a5e Merge pull request #2427 from freqtrade/docs_windows
Improve windows Install documentation with hints
2019-10-27 10:01:25 +03:00
Matthias
0b8d04d75e Merge pull request #2429 from hroff-1902/minor-typos-2
minor: Fix typo in docs
2019-10-27 06:09:38 +01:00
Matthias
e5487441ba Fix typos 2019-10-27 06:08:55 +01:00
hroff-1902
48d83715a5 Fix typo in docs (thanks to Escaliert@Slack) 2019-10-27 03:44:49 +03:00
hroff-1902
8b4fea4b71 Update installation.md 2019-10-27 02:06:10 +03:00
hroff-1902
4c1f0c3c59 Merge remote-tracking branch 'origin/develop' into logging-syslog 2019-10-27 02:03:03 +03:00
Matthias
13ae339a2e Improve windows Install documentation with hints 2019-10-26 16:34:13 +02:00
Matthias
73a03565e5 Merge pull request #2426 from hroff-1902/docs-advanced-setup
docs: Create Advanced Post-installation Tasks section
2019-10-26 16:26:59 +02:00
hroff-1902
bf20f3b7d8 Remove part which is related to #2418 2019-10-26 15:41:31 +03:00
Matthias
20dabd9c41 Merge branch 'develop' into whitelist_docs 2019-10-26 13:36:39 +02:00
Matthias
32df73c056 flake 2019-10-26 13:28:04 +02:00
Matthias
ef1885c38b Fix more tests 2019-10-26 13:24:40 +02:00
Matthias
f5351e60e7 Adjust markets mock 2019-10-26 13:23:37 +02:00
hroff-1902
bfec9d974b docs: Create Advanced Post-installation Tasks section; move systemd stuff there 2019-10-26 13:26:22 +03:00
hroff-1902
3a7553eef6 Adjust option helpstring 2019-10-26 12:45:05 +03:00
Matthias
d0521d33ce Refactor whitelist handling
fixes #2413
2019-10-26 11:36:02 +02:00
hroff-1902
9155598ca4 Merge pull request #2425 from freqtrade/hroff-1902-patch-1
docs: add a tip for The Ocean exchange
2019-10-26 12:08:58 +03:00
hroff-1902
ea6b94fd0c docs: add a tip for The Ocean exchange 2019-10-26 11:54:04 +03:00
Matthias
2e896462c1 Fix wrong volumepairlist message 2019-10-25 19:49:23 +02:00
Matthias
e63377980e Improve pairlist documentation 2019-10-25 19:47:37 +02:00
hroff-1902
41f97a73c9 Add logging to syslog and journald 2019-10-25 17:31:57 +03:00
Matthias
45b83cc544 Don't require pair_whitelist for dynamicPairlist usecases 2019-10-25 07:07:01 +02:00
Matthias
b3e028e853 Improve dynamic pairlist documentation 2019-10-25 07:06:29 +02:00
Matthias
13255b370c Allow non-config to parse config 2019-10-24 06:30:07 +02:00
Matthias
e1edf36307 Fix test failures 2019-10-24 06:22:05 +02:00
hroff-1902
4ce278a06e Merge branch 'develop' into feat/new_args_system 2019-10-23 22:45:06 +03:00
Matthias
1c503f39b2 Handle some merge aftermaths 2019-10-21 06:38:30 +02:00
Matthias
2d34c0f52d Update helpstring exports 2019-10-20 19:35:38 +02:00
Matthias
f3cfe147b5 Merge branch 'develop' into feat/new_args_system 2019-10-20 19:32:34 +02:00
Matthias
df43b1f533 Merge pull request #2264 from freqtrade/args_aftersubcommand2
Allow all arguments after subcommand
2019-10-20 08:50:14 +02:00
hroff-1902
cb4d6efb29 Merge pull request #2377 from freqtrade/aligncustomoptions
Rename --custom-hyperopt to --hyperopt
2019-10-15 14:18:05 +03:00
hroff-1902
f1cddfdc62 Merge pull request #2380 from freqtrade/dry_run_cli
Add --dry-run to trade command
2019-10-15 14:17:17 +03:00
Matthias
6fb96183c0 Reword help string 2019-10-15 12:26:06 +02:00
Matthias
a5c83b66df Add --dry-run to trade command 2019-10-15 06:53:16 +02:00
Matthias
89283ef486 Rename --custom-hyperopt to --hyperopt 2019-10-14 19:42:28 +02:00
Matthias
2c200873c1 Merge pull request #2360 from hroff-1902/no-default-hyperopt
Disable defaulting to DefaultHyperOpts and DefaultHyperOptLoss
2019-10-13 09:42:48 +02:00
hroff-1902
ff1fa17dc3 No default value for the config parameter 2019-10-13 03:41:25 +03:00
hroff-1902
08e6d8a780 Rollback defaulting to DefaultHyperOptLoss 2019-10-11 23:33:22 +03:00
hroff-1902
c4105436eb Disable defaulting to DefaultHyperOpts and DefaultHyperOptLoss 2019-10-10 04:37:32 +03:00
Matthias
95299d94c4 Remove unused test line 2019-10-04 06:39:24 +02:00
hroff-1902
543b19b376 Merge pull request #2286 from freqtrade/no_defaultstrategy
Disable Defaulting to DefaultStrategy
2019-10-01 19:59:08 +03:00
Matthias
b73426b91f Disable Defaulting to DefaultStrategy 2019-10-01 07:02:30 +02:00
Matthias
52ff391c8a Default dockerfile to "freqtrade trade" 2019-09-29 19:48:37 +02:00
Matthias
344a0a094f Update remaining documentations 2019-09-29 19:21:18 +02:00
Matthias
2710226326 Update documentation to use subcommands 2019-09-29 19:18:52 +02:00
Matthias
381b0d3d07 Fix typo with new parser 2019-09-29 19:18:52 +02:00
Matthias
52523bcd8b Use strategy child parser 2019-09-29 19:18:52 +02:00
Matthias
0d13e2cb2e Update travis to run new methods 2019-09-29 19:18:52 +02:00
Matthias
014881e550 Allow query version without subcommand 2019-09-29 16:17:20 +02:00
Matthias
67b82638db Move test without command to test_main 2019-09-29 16:17:20 +02:00
Matthias
09f18d07b0 Adjust some hyperopt tests 2019-09-29 16:17:20 +02:00
Matthias
9ef874e979 Add Custom message during transition period 2019-09-29 16:17:20 +02:00
Matthias
0aa73d5b35 Add test for failing case 2019-09-29 16:17:20 +02:00
Matthias
ad2fa61765 Fix utils test 2019-09-29 16:17:20 +02:00
Matthias
e8106f3792 Fix most tests to have trade as default argument 2019-09-29 16:17:20 +02:00
Matthias
db3b974479 Fix calling sequence 2019-09-29 16:17:20 +02:00
Matthias
d62a4d3566 Fix some minor problems 2019-09-29 16:17:20 +02:00
Matthias
1b25b5f590 Remove duplicate short-form -s 2019-09-29 16:17:20 +02:00
Matthias
03add90c94 Adjust some tests to new call-method 2019-09-29 16:17:20 +02:00
Matthias
0f2e277f80 Rename subparser variable to command 2019-09-29 16:17:20 +02:00
Matthias
8664e7f7d3 Have main.py support only subcommand mode 2019-09-29 16:17:20 +02:00
Matthias
cb37f43277 Add trade subparser (and make subparser a requirement) 2019-09-29 16:17:20 +02:00
Matthias
2a535b72ff Parser should not have default 2019-09-29 16:17:20 +02:00
Matthias
cd2336887c Add first version with shared parent parsers 2019-09-29 16:09:59 +02:00
182 changed files with 10967 additions and 5232 deletions

View File

@@ -1,6 +1,7 @@
[run] [run]
omit = omit =
scripts/* scripts/*
freqtrade/templates/*
freqtrade/vendor/* freqtrade/vendor/*
freqtrade/__main__.py freqtrade/__main__.py
tests/* tests/*

233
.github/workflows/ci.yml vendored Normal file
View File

@@ -0,0 +1,233 @@
name: Freqtrade CI
on:
push:
branches:
- master
- develop
- github_actions_tests
tags:
pull_request:
schedule:
- cron: '0 5 * * 4'
jobs:
build:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ ubuntu-18.04, macos-latest ]
python-version: [3.7]
steps:
- uses: actions/checkout@v1
- name: Set up Python
uses: actions/setup-python@v1
with:
python-version: ${{ matrix.python-version }}
- name: Cache_dependencies
uses: actions/cache@v1
id: cache
with:
path: ~/dependencies/
key: ${{ runner.os }}-dependencies
- name: pip cache (linux)
uses: actions/cache@preview
if: startsWith(matrix.os, 'ubuntu')
with:
path: ~/.cache/pip
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
- name: pip cache (macOS)
uses: actions/cache@preview
if: startsWith(matrix.os, 'macOS')
with:
path: ~/Library/Caches/pip
key: test-${{ matrix.os }}-${{ matrix.python-version }}-pip
- name: TA binary *nix
if: steps.cache.outputs.cache-hit != 'true'
run: |
cd build_helpers && ./install_ta-lib.sh ${HOME}/dependencies/; cd ..
- name: Installation - *nix
run: |
python -m pip install --upgrade pip
export LD_LIBRARY_PATH=${HOME}/dependencies/lib:$LD_LIBRARY_PATH
export TA_LIBRARY_PATH=${HOME}/dependencies/lib
export TA_INCLUDE_PATH=${HOME}/dependencies/include
pip install -r requirements-dev.txt
pip install -e .
- name: Tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc
- name: Coveralls
if: startsWith(matrix.os, 'ubuntu')
env:
# Coveralls token. Not used as secret due to github not providing secrets to forked repositories
COVERALLS_REPO_TOKEN: 6D1m0xupS3FgutfuGao8keFf9Hc0FpIXu
run: |
# Allow failure for coveralls
coveralls -v || true
- name: Backtesting
run: |
cp config.json.example config.json
freqtrade create-userdir --userdir user_data
freqtrade backtesting --datadir tests/testdata --strategy SampleStrategy
- name: Hyperopt
run: |
cp config.json.example config.json
freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt SampleHyperOpt
- name: Flake8
run: |
flake8
- name: Mypy
run: |
mypy freqtrade scripts
- name: Slack Notification
uses: homoluctus/slatify@v1.8.0
if: always() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
with:
type: ${{ job.status }}
job_name: '*Freqtrade CI ${{ matrix.os }}*'
mention: 'here'
mention_if: 'failure'
channel: '#notifications'
url: ${{ secrets.SLACK_WEBHOOK }}
build_windows:
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ windows-latest ]
python-version: [3.7]
steps:
- uses: actions/checkout@v1
- name: Set up Python
uses: actions/setup-python@v1
with:
python-version: ${{ matrix.python-version }}
- name: Pip cache (Windows)
uses: actions/cache@preview
if: startsWith(runner.os, 'Windows')
with:
path: ~\AppData\Local\pip\Cache
key: ${{ runner.os }}-pip
restore-keys: ${{ runner.os }}-pip
- name: Installation
run: |
./build_helpers/install_windows.ps1
- name: Tests
run: |
pytest --random-order --cov=freqtrade --cov-config=.coveragerc
- name: Backtesting
run: |
cp config.json.example config.json
freqtrade create-userdir --userdir user_data
freqtrade backtesting --datadir tests/testdata --strategy SampleStrategy
- name: Hyperopt
run: |
cp config.json.example config.json
freqtrade create-userdir --userdir user_data
freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt SampleHyperOpt
- name: Flake8
run: |
flake8
- name: Mypy
run: |
mypy freqtrade scripts
- name: Slack Notification
uses: homoluctus/slatify@v1.8.0
if: always() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
with:
type: ${{ job.status }}
job_name: '*Freqtrade CI windows*'
mention: 'here'
mention_if: 'failure'
channel: '#notifications'
url: ${{ secrets.SLACK_WEBHOOK }}
docs_check:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Documentation syntax
run: |
./tests/test_docs.sh
- name: Slack Notification
uses: homoluctus/slatify@v1.8.0
if: failure() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
with:
type: ${{ job.status }}
job_name: '*Freqtrade Docs*'
channel: '#notifications'
url: ${{ secrets.SLACK_WEBHOOK }}
deploy:
needs: [ build, build_windows, docs_check ]
runs-on: ubuntu-18.04
if: (github.event_name == 'push' || github.event_name == 'schedule') && github.repository == 'freqtrade/freqtrade'
steps:
- uses: actions/checkout@v1
- name: Extract branch name
shell: bash
run: echo "##[set-output name=branch;]$(echo ${GITHUB_REF#refs/heads/})"
id: extract_branch
- name: Build and test and push docker image
env:
IMAGE_NAME: freqtradeorg/freqtrade
DOCKER_USERNAME: ${{ secrets.DOCKER_USERNAME }}
DOCKER_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}
BRANCH_NAME: ${{ steps.extract_branch.outputs.branch }}
run: |
build_helpers/publish_docker.sh
- name: Build raspberry image for ${{ steps.extract_branch.outputs.branch }}_pi
uses: elgohr/Publish-Docker-Github-Action@2.7
with:
name: freqtradeorg/freqtrade:${{ steps.extract_branch.outputs.branch }}_pi
username: ${{ secrets.DOCKER_USERNAME }}
password: ${{ secrets.DOCKER_PASSWORD }}
dockerfile: Dockerfile.pi
# cache: true
cache: ${{ github.event_name != 'schedule' }}
tag_names: true
- name: Slack Notification
uses: homoluctus/slatify@v1.8.0
if: always() && ( github.event_name != 'pull_request' || github.event.pull_request.head.repo.fork == false)
with:
type: ${{ job.status }}
job_name: '*Freqtrade CI Deploy*'
mention: 'here'
mention_if: 'failure'
channel: '#notifications'
url: ${{ secrets.SLACK_WEBHOOK }}

View File

@@ -0,0 +1,18 @@
name: Update Docker Hub Description
on:
push:
branches:
- master
jobs:
dockerHubDescription:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Docker Hub Description
uses: peter-evans/dockerhub-description@v2.1.0
env:
DOCKERHUB_USERNAME: ${{ secrets.DOCKER_USERNAME }}
DOCKERHUB_PASSWORD: ${{ secrets.DOCKER_PASSWORD }}
DOCKERHUB_REPOSITORY: freqtradeorg/freqtrade

View File

@@ -24,31 +24,34 @@ jobs:
script: script:
- pytest --random-order --cov=freqtrade --cov-config=.coveragerc - pytest --random-order --cov=freqtrade --cov-config=.coveragerc
# Allow failure for coveralls # Allow failure for coveralls
- coveralls || true # - coveralls || true
name: pytest name: pytest
- script: - script:
- cp config.json.example config.json - cp config.json.example config.json
- freqtrade --datadir tests/testdata backtesting - freqtrade create-userdir --userdir user_data
- freqtrade backtesting --datadir tests/testdata --strategy SampleStrategy
name: backtest name: backtest
- script: - script:
- cp config.json.example config.json - cp config.json.example config.json
- freqtrade --datadir tests/testdata hyperopt -e 5 - freqtrade create-userdir --userdir user_data
- freqtrade hyperopt --datadir tests/testdata -e 5 --strategy SampleStrategy --hyperopt SampleHyperOpt
name: hyperopt name: hyperopt
- script: flake8 - script: flake8
name: flake8 name: flake8
- script: - script:
# Test Documentation boxes - # Test Documentation boxes -
# !!! <TYPE>: is not allowed! # !!! <TYPE>: is not allowed!
- grep -Er '^!{3}\s\S+:' docs/*; test $? -ne 0 # !!! <TYPE> "title" - Title needs to be quoted!
- grep -Er '^!{3}\s\S+:|^!{3}\s\S+\s[^"]' docs/*; test $? -ne 0
name: doc syntax name: doc syntax
- script: mypy freqtrade scripts - script: mypy freqtrade scripts
name: mypy name: mypy
- stage: docker # - stage: docker
if: branch in (master, develop, feat/improve_travis) AND (type in (push, cron)) # if: branch in (master, develop, feat/improve_travis) AND (type in (push, cron))
script: # script:
- build_helpers/publish_docker.sh # - build_helpers/publish_docker.sh
name: "Build and test and push docker image" # name: "Build and test and push docker image"
notifications: notifications:
slack: slack:

View File

@@ -1,4 +1,4 @@
FROM python:3.7.5-slim-stretch FROM python:3.7.6-slim-stretch
RUN apt-get update \ RUN apt-get update \
&& apt-get -y install curl build-essential libssl-dev \ && apt-get -y install curl build-essential libssl-dev \
@@ -24,3 +24,5 @@ RUN pip install numpy --no-cache-dir \
COPY . /freqtrade/ COPY . /freqtrade/
RUN pip install -e . --no-cache-dir RUN pip install -e . --no-cache-dir
ENTRYPOINT ["freqtrade"] ENTRYPOINT ["freqtrade"]
# Default to trade mode
CMD [ "trade" ]

View File

@@ -38,3 +38,4 @@ RUN ~/berryconda3/bin/pip install -e . --no-cache-dir
RUN [ "cross-build-end" ] RUN [ "cross-build-end" ]
ENTRYPOINT ["/root/berryconda3/bin/python","./freqtrade/main.py"] ENTRYPOINT ["/root/berryconda3/bin/python","./freqtrade/main.py"]
CMD [ "trade" ]

View File

@@ -62,7 +62,6 @@ git checkout develop
For any other type of installation please refer to [Installation doc](https://www.freqtrade.io/en/latest/installation/). For any other type of installation please refer to [Installation doc](https://www.freqtrade.io/en/latest/installation/).
## Basic Usage ## Basic Usage
### Bot commands ### Bot commands
@@ -106,7 +105,7 @@ optional arguments:
### Telegram RPC commands ### Telegram RPC commands
Telegram is not mandatory. However, this is a great way to control your bot. More details on our [documentation](https://www.freqtrade.io/en/latest/telegram-usage/) Telegram is not mandatory. However, this is a great way to control your bot. More details and the full command list on our [documentation](https://www.freqtrade.io/en/latest/telegram-usage/)
- `/start`: Starts the trader - `/start`: Starts the trader
- `/stop`: Stops the trader - `/stop`: Stops the trader
@@ -129,11 +128,6 @@ The project is currently setup in two main branches:
- `master` - This branch contains the latest stable release. The bot 'should' be stable on this branch, and is generally well tested. - `master` - This branch contains the latest stable release. The bot 'should' be stable on this branch, and is generally well tested.
- `feat/*` - These are feature branches, which are being worked on heavily. Please don't use these unless you want to test a specific feature. - `feat/*` - These are feature branches, which are being worked on heavily. Please don't use these unless you want to test a specific feature.
## A note on Binance
For Binance, please add `"BNB/<STAKE>"` to your blacklist to avoid issues.
Accounts having BNB accounts use this to pay for fees - if your first trade happens to be on `BNB`, further trades will consume this position and make the initial BNB order unsellable as the expected amount is not there anymore.
## Support ## Support
### Help / Slack ### Help / Slack

Binary file not shown.

View File

@@ -0,0 +1,9 @@
# Downloads don't work automatically, since the URL is regenerated via javascript.
# Downloaded from https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
# Invoke-WebRequest -Uri "https://download.lfd.uci.edu/pythonlibs/xxxxxxx/TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl" -OutFile "TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl"
python -m pip install --upgrade pip
pip install build_helpers\TA_Lib-0.4.17-cp37-cp37m-win_amd64.whl
pip install -r requirements-dev.txt
pip install -e .

View File

@@ -1,17 +1,17 @@
#!/bin/sh #!/bin/sh
# - export TAG=`if [ "$TRAVIS_BRANCH" == "develop" ]; then echo "latest"; else echo $TRAVIS_BRANCH ; fi`
# Replace / with _ to create a valid tag
TAG=$(echo "${TRAVIS_BRANCH}" | sed -e "s/\//_/")
# Replace / with _ to create a valid tag
TAG=$(echo "${BRANCH_NAME}" | sed -e "s/\//_/g")
echo "Running for ${TAG}"
# Add commit and commit_message to docker container # Add commit and commit_message to docker container
echo "${TRAVIS_COMMIT} ${TRAVIS_COMMIT_MESSAGE}" > freqtrade_commit echo "${GITHUB_SHA}" > freqtrade_commit
if [ "${TRAVIS_EVENT_TYPE}" = "cron" ]; then if [ "${GITHUB_EVENT_NAME}" = "schedule" ]; then
echo "event ${TRAVIS_EVENT_TYPE}: full rebuild - skipping cache" echo "event ${GITHUB_EVENT_NAME}: full rebuild - skipping cache"
docker build -t freqtrade:${TAG} . docker build -t freqtrade:${TAG} .
else else
echo "event ${TRAVIS_EVENT_TYPE}: building with cache" echo "event ${GITHUB_EVENT_NAME}: building with cache"
# Pull last build to avoid rebuilding the whole image # Pull last build to avoid rebuilding the whole image
docker pull ${IMAGE_NAME}:${TAG} docker pull ${IMAGE_NAME}:${TAG}
docker build --cache-from ${IMAGE_NAME}:${TAG} -t freqtrade:${TAG} . docker build --cache-from ${IMAGE_NAME}:${TAG} -t freqtrade:${TAG} .
@@ -23,7 +23,7 @@ if [ $? -ne 0 ]; then
fi fi
# Run backtest # Run backtest
docker run --rm -it -v $(pwd)/config.json.example:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} --datadir /tests/testdata backtesting docker run --rm -v $(pwd)/config.json.example:/freqtrade/config.json:ro -v $(pwd)/tests:/tests freqtrade:${TAG} backtesting --datadir /tests/testdata --strategy DefaultStrategy
if [ $? -ne 0 ]; then if [ $? -ne 0 ]; then
echo "failed running backtest" echo "failed running backtest"
@@ -38,12 +38,12 @@ if [ $? -ne 0 ]; then
fi fi
# Tag as latest for develop builds # Tag as latest for develop builds
if [ "${TRAVIS_BRANCH}" = "develop" ]; then if [ "${TAG}" = "develop" ]; then
docker tag freqtrade:$TAG ${IMAGE_NAME}:latest docker tag freqtrade:$TAG ${IMAGE_NAME}:latest
fi fi
# Login # Login
echo "$DOCKER_PASS" | docker login -u $DOCKER_USER --password-stdin docker login -u $DOCKER_USERNAME -p $DOCKER_PASSWORD
if [ $? -ne 0 ]; then if [ $? -ne 0 ]; then
echo "failed login" echo "failed login"

View File

@@ -2,6 +2,7 @@
"max_open_trades": 3, "max_open_trades": 3,
"stake_currency": "BTC", "stake_currency": "BTC",
"stake_amount": 0.05, "stake_amount": 0.05,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD", "fiat_display_currency": "USD",
"ticker_interval" : "5m", "ticker_interval" : "5m",
"dry_run": false, "dry_run": false,
@@ -52,11 +53,13 @@
"DOGE/BTC" "DOGE/BTC"
] ]
}, },
"pairlists": [
{"method": "StaticPairList"}
],
"edge": { "edge": {
"enabled": false, "enabled": false,
"process_throttle_secs": 3600, "process_throttle_secs": 3600,
"calculate_since_number_of_days": 7, "calculate_since_number_of_days": 7,
"capital_available_percentage": 0.5,
"allowed_risk": 0.01, "allowed_risk": 0.01,
"stoploss_range_min": -0.01, "stoploss_range_min": -0.01,
"stoploss_range_max": -0.1, "stoploss_range_max": -0.1,
@@ -68,7 +71,7 @@
"remove_pumps": false "remove_pumps": false
}, },
"telegram": { "telegram": {
"enabled": true, "enabled": false,
"token": "your_telegram_token", "token": "your_telegram_token",
"chat_id": "your_telegram_chat_id" "chat_id": "your_telegram_chat_id"
}, },

View File

@@ -2,6 +2,7 @@
"max_open_trades": 3, "max_open_trades": 3,
"stake_currency": "BTC", "stake_currency": "BTC",
"stake_amount": 0.05, "stake_amount": 0.05,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD", "fiat_display_currency": "USD",
"ticker_interval" : "5m", "ticker_interval" : "5m",
"dry_run": true, "dry_run": true,
@@ -37,28 +38,33 @@
"rateLimit": 200 "rateLimit": 200
}, },
"pair_whitelist": [ "pair_whitelist": [
"AST/BTC", "ALGO/BTC",
"ETC/BTC", "ATOM/BTC",
"ETH/BTC", "BAT/BTC",
"BCH/BTC",
"BRD/BTC",
"EOS/BTC", "EOS/BTC",
"ETH/BTC",
"IOTA/BTC", "IOTA/BTC",
"LINK/BTC",
"LTC/BTC", "LTC/BTC",
"MTH/BTC", "NEO/BTC",
"NCASH/BTC", "NXS/BTC",
"TNT/BTC",
"XMR/BTC", "XMR/BTC",
"XLM/BTC", "XRP/BTC",
"XRP/BTC" "XTZ/BTC"
], ],
"pair_blacklist": [ "pair_blacklist": [
"BNB/BTC" "BNB/BTC"
] ]
}, },
"pairlists": [
{"method": "StaticPairList"}
],
"edge": { "edge": {
"enabled": false, "enabled": false,
"process_throttle_secs": 3600, "process_throttle_secs": 3600,
"calculate_since_number_of_days": 7, "calculate_since_number_of_days": 7,
"capital_available_percentage": 0.5,
"allowed_risk": 0.01, "allowed_risk": 0.01,
"stoploss_range_min": -0.01, "stoploss_range_min": -0.01,
"stoploss_range_max": -0.1, "stoploss_range_max": -0.1,

View File

@@ -2,8 +2,11 @@
"max_open_trades": 3, "max_open_trades": 3,
"stake_currency": "BTC", "stake_currency": "BTC",
"stake_amount": 0.05, "stake_amount": 0.05,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "USD", "fiat_display_currency": "USD",
"amount_reserve_percent" : 0.05, "amount_reserve_percent" : 0.05,
"amend_last_stake_amount": false,
"last_stake_amount_min_ratio": 0.5,
"dry_run": false, "dry_run": false,
"ticker_interval": "5m", "ticker_interval": "5m",
"trailing_stop": false, "trailing_stop": false,
@@ -50,14 +53,18 @@
"buy": "gtc", "buy": "gtc",
"sell": "gtc" "sell": "gtc"
}, },
"pairlist": { "pairlists": [
"method": "VolumePairList", {"method": "StaticPairList"},
"config": { {
"method": "VolumePairList",
"number_assets": 20, "number_assets": 20,
"sort_key": "quoteVolume", "sort_key": "quoteVolume",
"precision_filter": false "refresh_period": 1800
},
{"method": "PrecisionFilter"},
{"method": "PriceFilter", "low_price_ratio": 0.01
} }
}, ],
"exchange": { "exchange": {
"name": "bittrex", "name": "bittrex",
"sandbox": false, "sandbox": false,
@@ -92,7 +99,6 @@
"enabled": false, "enabled": false,
"process_throttle_secs": 3600, "process_throttle_secs": 3600,
"calculate_since_number_of_days": 7, "calculate_since_number_of_days": 7,
"capital_available_percentage": 0.5,
"allowed_risk": 0.01, "allowed_risk": 0.01,
"stoploss_range_min": -0.01, "stoploss_range_min": -0.01,
"stoploss_range_max": -0.1, "stoploss_range_max": -0.1,

View File

@@ -2,6 +2,7 @@
"max_open_trades": 5, "max_open_trades": 5,
"stake_currency": "EUR", "stake_currency": "EUR",
"stake_amount": 10, "stake_amount": 10,
"tradable_balance_ratio": 0.99,
"fiat_display_currency": "EUR", "fiat_display_currency": "EUR",
"ticker_interval" : "5m", "ticker_interval" : "5m",
"dry_run": true, "dry_run": true,
@@ -38,19 +39,38 @@
"rateLimit": 1000 "rateLimit": 1000
}, },
"pair_whitelist": [ "pair_whitelist": [
"ETH/EUR", "ADA/EUR",
"ATOM/EUR",
"BAT/EUR",
"BCH/EUR",
"BTC/EUR", "BTC/EUR",
"BCH/EUR" "DAI/EUR",
"DASH/EUR",
"EOS/EUR",
"ETC/EUR",
"ETH/EUR",
"LINK/EUR",
"LTC/EUR",
"QTUM/EUR",
"REP/EUR",
"WAVES/EUR",
"XLM/EUR",
"XMR/EUR",
"XRP/EUR",
"XTZ/EUR",
"ZEC/EUR"
], ],
"pair_blacklist": [ "pair_blacklist": [
] ]
}, },
"pairlists": [
{"method": "StaticPairList"}
],
"edge": { "edge": {
"enabled": false, "enabled": false,
"process_throttle_secs": 3600, "process_throttle_secs": 3600,
"calculate_since_number_of_days": 7, "calculate_since_number_of_days": 7,
"capital_available_percentage": 0.5,
"allowed_risk": 0.01, "allowed_risk": 0.01,
"stoploss_range_min": -0.01, "stoploss_range_min": -0.01,
"stoploss_range_max": -0.1, "stoploss_range_max": -0.1,

63
docs/advanced-hyperopt.md Normal file
View File

@@ -0,0 +1,63 @@
# Advanced Hyperopt
This page explains some advanced Hyperopt topics that may require higher
coding skills and Python knowledge than creation of an ordinal hyperoptimization
class.
## Creating and using a custom loss function
To use a custom loss function class, make sure that the function `hyperopt_loss_function` is defined in your custom hyperopt loss class.
For the sample below, you then need to add the command line parameter `--hyperopt-loss SuperDuperHyperOptLoss` to your hyperopt call so this function is being used.
A sample of this can be found below, which is identical to the Default Hyperopt loss implementation. A full sample can be found in [userdata/hyperopts](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_loss.py).
``` python
from freqtrade.optimize.hyperopt import IHyperOptLoss
TARGET_TRADES = 600
EXPECTED_MAX_PROFIT = 3.0
MAX_ACCEPTED_TRADE_DURATION = 300
class SuperDuperHyperOptLoss(IHyperOptLoss):
"""
Defines the default loss function for hyperopt
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for better results
This is the legacy algorithm (used until now in freqtrade).
Weights are distributed as follows:
* 0.4 to trade duration
* 0.25: Avoiding trade loss
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
"""
total_profit = results.profit_percent.sum()
trade_duration = results.trade_duration.mean()
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
result = trade_loss + profit_loss + duration_loss
return result
```
Currently, the arguments are:
* `results`: DataFrame containing the result
The following columns are available in results (corresponds to the output-file of backtesting when used with `--export trades`):
`pair, profit_percent, profit_abs, open_time, close_time, open_index, close_index, trade_duration, open_at_end, open_rate, close_rate, sell_reason`
* `trade_count`: Amount of trades (identical to `len(results)`)
* `min_date`: Start date of the hyperopting TimeFrame
* `min_date`: End date of the hyperopting TimeFrame
This function needs to return a floating point number (`float`). Smaller numbers will be interpreted as better results. The parameters and balancing for this is up to you.
!!! Note
This function is called once per iteration - so please make sure to have this as optimized as possible to not slow hyperopt down unnecessarily.
!!! Note
Please keep the arguments `*args` and `**kwargs` in the interface to allow us to extend this interface later.

92
docs/advanced-setup.md Normal file
View File

@@ -0,0 +1,92 @@
# Advanced Post-installation Tasks
This page explains some advanced tasks and configuration options that can be performed after the bot installation and may be uselful in some environments.
If you do not know what things mentioned here mean, you probably do not need it.
## Configure the bot running as a systemd service
Copy the `freqtrade.service` file to your systemd user directory (usually `~/.config/systemd/user`) and update `WorkingDirectory` and `ExecStart` to match your setup.
!!! Note
Certain systems (like Raspbian) don't load service unit files from the user directory. In this case, copy `freqtrade.service` into `/etc/systemd/user/` (requires superuser permissions).
After that you can start the daemon with:
```bash
systemctl --user start freqtrade
```
For this to be persistent (run when user is logged out) you'll need to enable `linger` for your freqtrade user.
```bash
sudo loginctl enable-linger "$USER"
```
If you run the bot as a service, you can use systemd service manager as a software watchdog monitoring freqtrade bot
state and restarting it in the case of failures. If the `internals.sd_notify` parameter is set to true in the
configuration or the `--sd-notify` command line option is used, the bot will send keep-alive ping messages to systemd
using the sd_notify (systemd notifications) protocol and will also tell systemd its current state (Running or Stopped)
when it changes.
The `freqtrade.service.watchdog` file contains an example of the service unit configuration file which uses systemd
as the watchdog.
!!! Note
The sd_notify communication between the bot and the systemd service manager will not work if the bot runs in a Docker container.
## Advanced Logging
On many Linux systems the bot can be configured to send its log messages to `syslog` or `journald` system services. Logging to a remote `syslog` server is also available on Windows. The special values for the `--logfilename` command line option can be used for this.
### Logging to syslog
To send Freqtrade log messages to a local or remote `syslog` service use the `--logfilename` command line option with the value in the following format:
* `--logfilename syslog:<syslog_address>` -- send log messages to `syslog` service using the `<syslog_address>` as the syslog address.
The syslog address can be either a Unix domain socket (socket filename) or a UDP socket specification, consisting of IP address and UDP port, separated by the `:` character.
So, the following are the examples of possible usages:
* `--logfilename syslog:/dev/log` -- log to syslog (rsyslog) using the `/dev/log` socket, suitable for most systems.
* `--logfilename syslog` -- same as above, the shortcut for `/dev/log`.
* `--logfilename syslog:/var/run/syslog` -- log to syslog (rsyslog) using the `/var/run/syslog` socket. Use this on MacOS.
* `--logfilename syslog:localhost:514` -- log to local syslog using UDP socket, if it listens on port 514.
* `--logfilename syslog:<ip>:514` -- log to remote syslog at IP address and port 514. This may be used on Windows for remote logging to an external syslog server.
Log messages are send to `syslog` with the `user` facility. So you can see them with the following commands:
* `tail -f /var/log/user`, or
* install a comprehensive graphical viewer (for instance, 'Log File Viewer' for Ubuntu).
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfilename syslog` or `--logfilename journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.
For `rsyslog` the messages from the bot can be redirected into a separate dedicated log file. To achieve this, add
```
if $programname startswith "freqtrade" then -/var/log/freqtrade.log
```
to one of the rsyslog configuration files, for example at the end of the `/etc/rsyslog.d/50-default.conf`.
For `syslog` (`rsyslog`), the reduction mode can be switched on. This will reduce the number of repeating messages. For instance, multiple bot Heartbeat messages will be reduced to a single message when nothing else happens with the bot. To achieve this, set in `/etc/rsyslog.conf`:
```
# Filter duplicated messages
$RepeatedMsgReduction on
```
### Logging to journald
This needs the `systemd` python package installed as the dependency, which is not available on Windows. Hence, the whole journald logging functionality is not available for a bot running on Windows.
To send Freqtrade log messages to `journald` system service use the `--logfilename` command line option with the value in the following format:
* `--logfilename journald` -- send log messages to `journald`.
Log messages are send to `journald` with the `user` facility. So you can see them with the following commands:
* `journalctl -f` -- shows Freqtrade log messages sent to `journald` along with other log messages fetched by `journald`.
* `journalctl -f -u freqtrade.service` -- this command can be used when the bot is run as a `systemd` service.
There are many other options in the `journalctl` utility to filter the messages, see manual pages for this utility.
On many systems `syslog` (`rsyslog`) fetches data from `journald` (and vice versa), so both `--logfilename syslog` or `--logfilename journald` can be used and the messages be viewed with both `journalctl` and a syslog viewer utility. You can combine this in any way which suites you better.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 173 KiB

After

Width:  |  Height:  |  Size: 211 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 190 KiB

View File

@@ -11,14 +11,15 @@ Now you have good Buy and Sell strategies and some historic data, you want to te
real data. This is what we call real data. This is what we call
[backtesting](https://en.wikipedia.org/wiki/Backtesting). [backtesting](https://en.wikipedia.org/wiki/Backtesting).
Backtesting will use the crypto-currencies (pairs) from your config file Backtesting will use the crypto-currencies (pairs) from your config file and load ticker data from `user_data/data/<exchange>` by default.
and load ticker data from `user_data/data/<exchange>` by default. If no data is available for the exchange / pair / ticker interval combination, backtesting will ask you to download them first using `freqtrade download-data`.
If no data is available for the exchange / pair / ticker interval combination, backtesting will
ask you to download them first using `freqtrade download-data`.
For details on downloading, please refer to the [Data Downloading](data-download.md) section in the documentation. For details on downloading, please refer to the [Data Downloading](data-download.md) section in the documentation.
The result of backtesting will confirm if your bot has better odds of making a profit than a loss. The result of backtesting will confirm if your bot has better odds of making a profit than a loss.
!!! Tip "Using dynamic pairlists for backtesting"
While using dynamic pairlists during backtesting is not possible, a dynamic pairlist using current data can be generated via the [`test-pairlist`](utils.md#test-pairlist) command, and needs to be specified as `"pair_whitelist"` attribute in the configuration.
### Run a backtesting against the currencies listed in your config file ### Run a backtesting against the currencies listed in your config file
#### With 5 min tickers (Per default) #### With 5 min tickers (Per default)
@@ -45,7 +46,7 @@ freqtrade --datadir user_data/data/bittrex-20180101 backtesting
#### With a (custom) strategy file #### With a (custom) strategy file
```bash ```bash
freqtrade -s SampleStrategy backtesting freqtrade backtesting -s SampleStrategy
``` ```
Where `-s SampleStrategy` refers to the class name within the strategy file `sample_strategy.py` found in the `freqtrade/user_data/strategies` directory. Where `-s SampleStrategy` refers to the class name within the strategy file `sample_strategy.py` found in the `freqtrade/user_data/strategies` directory.
@@ -72,16 +73,22 @@ The exported trades can be used for [further analysis](#further-backtest-result-
freqtrade backtesting --export trades --export-filename=backtest_samplestrategy.json freqtrade backtesting --export trades --export-filename=backtest_samplestrategy.json
``` ```
Please also read about the [strategy startup period](strategy-customization.md#strategy-startup-period).
#### Supplying custom fee value #### Supplying custom fee value
Sometimes your account has certain fee rebates (fee reductions starting with a certain account size or monthly volume), which are not visible to ccxt. Sometimes your account has certain fee rebates (fee reductions starting with a certain account size or monthly volume), which are not visible to ccxt.
To account for this in backtesting, you can use `--fee 0.001` to supply this value to backtesting. To account for this in backtesting, you can use the `--fee` command line option to supply this value to backtesting.
This fee must be a percentage, and will be applied twice (once for trade entry, and once for trade exit). This fee must be a ratio, and will be applied twice (once for trade entry, and once for trade exit).
For example, if the buying and selling commission fee is 0.1% (i.e., 0.001 written as ratio), then you would run backtesting as the following:
```bash ```bash
freqtrade backtesting --fee 0.001 freqtrade backtesting --fee 0.001
``` ```
!!! Note
Only supply this option (or the corresponding configuration parameter) if you want to experiment with different fee values. By default, Backtesting fetches the default fee from the exchange pair/market info.
#### Running backtest with smaller testset by using timerange #### Running backtest with smaller testset by using timerange
@@ -134,12 +141,12 @@ A backtesting result will look like that:
| ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 | 15 | | ZEC/BTC | 22 | -0.46 | -10.18 | -0.00050971 | -5.09 | 2:22:00 | 7 | 15 |
| TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 243 | | TOTAL | 429 | 0.36 | 152.41 | 0.00762792 | 76.20 | 4:12:00 | 186 | 243 |
========================================================= SELL REASON STATS ========================================================= ========================================================= SELL REASON STATS =========================================================
| Sell Reason | Count | | Sell Reason | Count | Profit | Loss |
|:-------------------|--------:| |:-------------------|--------:|---------:|-------:|
| trailing_stop_loss | 205 | | trailing_stop_loss | 205 | 150 | 55 |
| stop_loss | 166 | | stop_loss | 166 | 0 | 166 |
| sell_signal | 56 | | sell_signal | 56 | 36 | 20 |
| force_sell | 2 | | force_sell | 2 | 0 | 2 |
====================================================== LEFT OPEN TRADES REPORT ====================================================== ====================================================== LEFT OPEN TRADES REPORT ======================================================
| pair | buy count | avg profit % | cum profit % | tot profit BTC | tot profit % | avg duration | profit | loss | | pair | buy count | avg profit % | cum profit % | tot profit BTC | tot profit % | avg duration | profit | loss |
|:---------|------------:|---------------:|---------------:|-----------------:|---------------:|:---------------|---------:|-------:| |:---------|------------:|---------------:|---------------:|-----------------:|---------------:|:---------------|---------:|-------:|
@@ -151,6 +158,7 @@ A backtesting result will look like that:
The 1st table contains all trades the bot made, including "left open trades". The 1st table contains all trades the bot made, including "left open trades".
The 2nd table contains a recap of sell reasons. The 2nd table contains a recap of sell reasons.
This table can tell you which area needs some additional work (i.e. all `sell_signal` trades are losses, so we should disable the sell-signal or work on improving that).
The 3rd table contains all trades the bot had to `forcesell` at the end of the backtest period to present a full picture. The 3rd table contains all trades the bot had to `forcesell` at the end of the backtest period to present a full picture.
This is necessary to simulate realistic behaviour, since the backtest period has to end at some point, while realistically, you could leave the bot running forever. This is necessary to simulate realistic behaviour, since the backtest period has to end at some point, while realistically, you could leave the bot running forever.
@@ -191,7 +199,10 @@ Since backtesting lacks some detailed information about what happens within a ca
- Buys happen at open-price - Buys happen at open-price
- Sell signal sells happen at open-price of the following candle - Sell signal sells happen at open-price of the following candle
- Low happens before high for stoploss, protecting capital first. - Low happens before high for stoploss, protecting capital first.
- ROI sells are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the sell will be at 2%) - ROI
- sells are compared to high - but the ROI value is used (e.g. ROI = 2%, high=5% - so the sell will be at 2%)
- sells are never "below the candle", so a ROI of 2% may result in a sell at 2.4% if low was at 2.4% profit
- Forcesells caused by `<N>=-1` ROI entries use low as sell value, unless N falls on the candle open (e.g. `120: -1` for 1h candles)
- Stoploss sells happen exactly at stoploss price, even if low was lower - Stoploss sells happen exactly at stoploss price, even if low was lower
- Trailing stoploss - Trailing stoploss
- High happens first - adjusting stoploss - High happens first - adjusting stoploss

View File

@@ -5,20 +5,18 @@ This page explains the different parameters of the bot and how to run it.
!!! Note !!! Note
If you've used `setup.sh`, don't forget to activate your virtual environment (`source .env/bin/activate`) before running freqtrade commands. If you've used `setup.sh`, don't forget to activate your virtual environment (`source .env/bin/activate`) before running freqtrade commands.
## Bot commands ## Bot commands
``` ```
usage: freqtrade [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] usage: freqtrade [-h] [-V]
[--userdir PATH] [-s NAME] [--strategy-path PATH] {trade,backtesting,edge,hyperopt,create-userdir,list-exchanges,list-timeframes,download-data,plot-dataframe,plot-profit}
[--db-url PATH] [--sd-notify]
{backtesting,edge,hyperopt,create-userdir,list-exchanges,list-timeframes,download-data,plot-dataframe,plot-profit}
... ...
Free, open source crypto trading bot Free, open source crypto trading bot
positional arguments: positional arguments:
{backtesting,edge,hyperopt,create-userdir,list-exchanges,list-timeframes,download-data,plot-dataframe,plot-profit} {trade,backtesting,edge,hyperopt,create-userdir,list-exchanges,list-timeframes,download-data,plot-dataframe,plot-profit}
trade Trade module.
backtesting Backtesting module. backtesting Backtesting module.
edge Edge module. edge Edge module.
hyperopt Hyperopt module. hyperopt Hyperopt module.
@@ -32,8 +30,32 @@ positional arguments:
optional arguments: optional arguments:
-h, --help show this help message and exit -h, --help show this help message and exit
-V, --version show program's version number and exit
```
### Bot trading commands
```
usage: freqtrade trade [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--userdir PATH] [-s NAME] [--strategy-path PATH]
[--db-url PATH] [--sd-notify] [--dry-run]
optional arguments:
-h, --help show this help message and exit
--db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for
Dry Run).
--sd-notify Notify systemd service manager.
--dry-run Enforce dry-run for trading (removes Exchange secrets
and simulates trades).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages). -v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. --logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit -V, --version show program's version number and exit
-c PATH, --config PATH -c PATH, --config PATH
Specify configuration file (default: `config.json`). Specify configuration file (default: `config.json`).
@@ -43,14 +65,12 @@ optional arguments:
Path to directory with historical backtesting data. Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH --userdir PATH, --user-data-dir PATH
Path to userdata directory. Path to userdata directory.
Strategy arguments:
-s NAME, --strategy NAME -s NAME, --strategy NAME
Specify strategy class name (default: Specify strategy class name which will be used by the
`DefaultStrategy`). bot.
--strategy-path PATH Specify additional strategy lookup path. --strategy-path PATH Specify additional strategy lookup path.
--db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite://` for Dry Run).
--sd-notify Notify systemd service manager.
``` ```
@@ -60,7 +80,7 @@ The bot allows you to select which configuration file you want to use by means o
the `-c/--config` command line option: the `-c/--config` command line option:
```bash ```bash
freqtrade -c path/far/far/away/config.json freqtrade trade -c path/far/far/away/config.json
``` ```
Per default, the bot loads the `config.json` configuration file from the current Per default, the bot loads the `config.json` configuration file from the current
@@ -73,22 +93,22 @@ The bot allows you to use multiple configuration files by specifying multiple
defined in the latter configuration files override parameters with the same name defined in the latter configuration files override parameters with the same name
defined in the previous configuration files specified in the command line earlier. defined in the previous configuration files specified in the command line earlier.
For example, you can make a separate configuration file with your key and secrete For example, you can make a separate configuration file with your key and secret
for the Exchange you use for trading, specify default configuration file with for the Exchange you use for trading, specify default configuration file with
empty key and secrete values while running in the Dry Mode (which does not actually empty key and secret values while running in the Dry Mode (which does not actually
require them): require them):
```bash ```bash
freqtrade -c ./config.json freqtrade trade -c ./config.json
``` ```
and specify both configuration files when running in the normal Live Trade Mode: and specify both configuration files when running in the normal Live Trade Mode:
```bash ```bash
freqtrade -c ./config.json -c path/to/secrets/keys.config.json freqtrade trade -c ./config.json -c path/to/secrets/keys.config.json
``` ```
This could help you hide your private Exchange key and Exchange secrete on you local machine This could help you hide your private Exchange key and Exchange secret on you local machine
by setting appropriate file permissions for the file which contains actual secrets and, additionally, by setting appropriate file permissions for the file which contains actual secrets and, additionally,
prevent unintended disclosure of sensitive private data when you publish examples prevent unintended disclosure of sensitive private data when you publish examples
of your configuration in the project issues or in the Internet. of your configuration in the project issues or in the Internet.
@@ -134,7 +154,7 @@ In `user_data/strategies` you have a file `my_awesome_strategy.py` which has
a strategy class called `AwesomeStrategy` to load it: a strategy class called `AwesomeStrategy` to load it:
```bash ```bash
freqtrade --strategy AwesomeStrategy freqtrade trade --strategy AwesomeStrategy
``` ```
If the bot does not find your strategy file, it will display in an error If the bot does not find your strategy file, it will display in an error
@@ -149,7 +169,7 @@ This parameter allows you to add an additional strategy lookup path, which gets
checked before the default locations (The passed path must be a directory!): checked before the default locations (The passed path must be a directory!):
```bash ```bash
freqtrade --strategy AwesomeStrategy --strategy-path /some/directory freqtrade trade --strategy AwesomeStrategy --strategy-path /some/directory
``` ```
#### How to install a strategy? #### How to install a strategy?
@@ -165,7 +185,7 @@ using `--db-url`. This can also be used to specify a custom database
in production mode. Example command: in production mode. Example command:
```bash ```bash
freqtrade -c config.json --db-url sqlite:///tradesv3.dry_run.sqlite freqtrade trade -c config.json --db-url sqlite:///tradesv3.dry_run.sqlite
``` ```
## Backtesting commands ## Backtesting commands
@@ -173,9 +193,11 @@ freqtrade -c config.json --db-url sqlite:///tradesv3.dry_run.sqlite
Backtesting also uses the config specified via `-c/--config`. Backtesting also uses the config specified via `-c/--config`.
``` ```
usage: freqtrade backtesting [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE] usage: freqtrade backtesting [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[--max_open_trades INT] [-d PATH] [--userdir PATH] [-s NAME]
[--stake_amount STAKE_AMOUNT] [--fee FLOAT] [--strategy-path PATH] [-i TICKER_INTERVAL]
[--timerange TIMERANGE] [--max-open-trades INT]
[--stake-amount STAKE_AMOUNT] [--fee FLOAT]
[--eps] [--dmmp] [--eps] [--dmmp]
[--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]] [--strategy-list STRATEGY_LIST [STRATEGY_LIST ...]]
[--export EXPORT] [--export-filename PATH] [--export EXPORT] [--export-filename PATH]
@@ -187,10 +209,12 @@ optional arguments:
`1d`). `1d`).
--timerange TIMERANGE --timerange TIMERANGE
Specify what timerange of data to use. Specify what timerange of data to use.
--max_open_trades INT --max-open-trades INT
Specify max_open_trades to use. Override the value of the `max_open_trades`
--stake_amount STAKE_AMOUNT configuration setting.
Specify stake_amount. --stake-amount STAKE_AMOUNT
Override the value of the `stake_amount` configuration
setting.
--fee FLOAT Specify fee ratio. Will be applied twice (on trade --fee FLOAT Specify fee ratio. Will be applied twice (on trade
entry and exit). entry and exit).
--eps, --enable-position-stacking --eps, --enable-position-stacking
@@ -211,11 +235,29 @@ optional arguments:
--export EXPORT Export backtest results, argument are: trades. --export EXPORT Export backtest results, argument are: trades.
Example: `--export=trades` Example: `--export=trades`
--export-filename PATH --export-filename PATH
Save backtest results to the file with this filename Save backtest results to the file with this filename.
(default: `user_data/backtest_results/backtest- Requires `--export` to be set as well. Example:
result.json`). Requires `--export` to be set as well. `--export-filename=user_data/backtest_results/backtest
Example: `--export-filename=user_data/backtest_results _today.json`
/backtest_today.json`
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
Strategy arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
``` ```
@@ -223,7 +265,7 @@ optional arguments:
The first time your run Backtesting, you will need to download some historic data first. The first time your run Backtesting, you will need to download some historic data first.
This can be accomplished by using `freqtrade download-data`. This can be accomplished by using `freqtrade download-data`.
Check the corresponding [help page section](backtesting.md#Getting-data-for-backtesting-and-hyperopt) for more details Check the corresponding [Data Downloading](data-download.md) section for more details
## Hyperopt commands ## Hyperopt commands
@@ -231,12 +273,14 @@ To optimize your strategy, you can use hyperopt parameter hyperoptimization
to find optimal parameter values for your stategy. to find optimal parameter values for your stategy.
``` ```
usage: freqtrade hyperopt [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE] usage: freqtrade hyperopt [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--max_open_trades INT] [--userdir PATH] [-s NAME] [--strategy-path PATH]
[--stake_amount STAKE_AMOUNT] [--fee FLOAT] [-i TICKER_INTERVAL] [--timerange TIMERANGE]
[--customhyperopt NAME] [--hyperopt-path PATH] [--max-open-trades INT]
[--eps] [-e INT] [--stake-amount STAKE_AMOUNT] [--fee FLOAT]
[-s {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]] [--hyperopt NAME] [--hyperopt-path PATH] [--eps]
[-e INT]
[--spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]]
[--dmmp] [--print-all] [--no-color] [--print-json] [--dmmp] [--print-all] [--no-color] [--print-json]
[-j JOBS] [--random-state INT] [--min-trades INT] [-j JOBS] [--random-state INT] [--min-trades INT]
[--continue] [--hyperopt-loss NAME] [--continue] [--hyperopt-loss NAME]
@@ -248,22 +292,23 @@ optional arguments:
`1d`). `1d`).
--timerange TIMERANGE --timerange TIMERANGE
Specify what timerange of data to use. Specify what timerange of data to use.
--max_open_trades INT --max-open-trades INT
Specify max_open_trades to use. Override the value of the `max_open_trades`
--stake_amount STAKE_AMOUNT configuration setting.
Specify stake_amount. --stake-amount STAKE_AMOUNT
Override the value of the `stake_amount` configuration
setting.
--fee FLOAT Specify fee ratio. Will be applied twice (on trade --fee FLOAT Specify fee ratio. Will be applied twice (on trade
entry and exit). entry and exit).
--customhyperopt NAME --hyperopt NAME Specify hyperopt class name which will be used by the
Specify hyperopt class name (default: bot.
`DefaultHyperOpt`). --hyperopt-path PATH Specify additional lookup path for Hyperopt and
--hyperopt-path PATH Specify additional lookup path for Hyperopts and
Hyperopt Loss functions. Hyperopt Loss functions.
--eps, --enable-position-stacking --eps, --enable-position-stacking
Allow buying the same pair multiple times (position Allow buying the same pair multiple times (position
stacking). stacking).
-e INT, --epochs INT Specify number of epochs (default: 100). -e INT, --epochs INT Specify number of epochs (default: 100).
-s {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...], --spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...] --spaces {all,buy,sell,roi,stoploss} [{all,buy,sell,roi,stoploss} ...]
Specify which parameters to hyperopt. Space-separated Specify which parameters to hyperopt. Space-separated
list. Default: `all`. list. Default: `all`.
--dmmp, --disable-max-market-positions --dmmp, --disable-max-market-positions
@@ -292,8 +337,27 @@ optional arguments:
generate completely different results, since the generate completely different results, since the
target for optimization is different. Built-in target for optimization is different. Built-in
Hyperopt-loss-functions are: DefaultHyperOptLoss, Hyperopt-loss-functions are: DefaultHyperOptLoss,
OnlyProfitHyperOptLoss, SharpeHyperOptLoss.(default: OnlyProfitHyperOptLoss, SharpeHyperOptLoss (default:
`DefaultHyperOptLoss`). `DefaultHyperOptLoss`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
Strategy arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
``` ```
## Edge commands ## Edge commands
@@ -301,8 +365,10 @@ optional arguments:
To know your trade expectancy and winrate against historical data, you can use Edge. To know your trade expectancy and winrate against historical data, you can use Edge.
``` ```
usage: freqtrade edge [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE] usage: freqtrade edge [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH]
[--max_open_trades INT] [--stake_amount STAKE_AMOUNT] [--userdir PATH] [-s NAME] [--strategy-path PATH]
[-i TICKER_INTERVAL] [--timerange TIMERANGE]
[--max-open-trades INT] [--stake-amount STAKE_AMOUNT]
[--fee FLOAT] [--stoplosses STOPLOSS_RANGE] [--fee FLOAT] [--stoplosses STOPLOSS_RANGE]
optional arguments: optional arguments:
@@ -312,10 +378,12 @@ optional arguments:
`1d`). `1d`).
--timerange TIMERANGE --timerange TIMERANGE
Specify what timerange of data to use. Specify what timerange of data to use.
--max_open_trades INT --max-open-trades INT
Specify max_open_trades to use. Override the value of the `max_open_trades`
--stake_amount STAKE_AMOUNT configuration setting.
Specify stake_amount. --stake-amount STAKE_AMOUNT
Override the value of the `stake_amount` configuration
setting.
--fee FLOAT Specify fee ratio. Will be applied twice (on trade --fee FLOAT Specify fee ratio. Will be applied twice (on trade
entry and exit). entry and exit).
--stoplosses STOPLOSS_RANGE --stoplosses STOPLOSS_RANGE
@@ -324,6 +392,24 @@ optional arguments:
(without any space). Example: (without any space). Example:
`--stoplosses=-0.01,-0.1,-0.001` `--stoplosses=-0.01,-0.1,-0.001`
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
Strategy arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the
bot.
--strategy-path PATH Specify additional strategy lookup path.
``` ```
To understand edge and how to read the results, please read the [edge documentation](edge.md). To understand edge and how to read the results, please read the [edge documentation](edge.md).

View File

@@ -38,105 +38,171 @@ The prevelance for all Options is as follows:
Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways. Mandatory parameters are marked as **Required**, which means that they are required to be set in one of the possible ways.
| Command | Default | Description | | Parameter | Description |
|----------|---------|-------------| |------------|-------------|
| `max_open_trades` | 3 | **Required.** Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades) | `max_open_trades` | **Required.** Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades). [More information below](#configuring-amount-per-trade).<br> ***Datatype:*** *Positive integer or -1.*
| `stake_currency` | BTC | **Required.** Crypto-currency used for trading. | `stake_currency` | **Required.** Crypto-currency used for trading. [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *String*
| `stake_amount` | 0.05 | **Required.** Amount of crypto-currency your bot will use for each trade. Per default, the bot will use (0.05 BTC x 3) = 0.15 BTC in total will be always engaged. Set it to `"unlimited"` to allow the bot to use all available balance. | `stake_amount` | **Required.** Amount of crypto-currency your bot will use for each trade. Set it to `"unlimited"` to allow the bot to use all available balance. [More information below](#configuring-amount-per-trade). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Positive float or `"unlimited"`.*
| `amount_reserve_percent` | 0.05 | Reserve some amount in min pair stake amount. Default is 5%. The bot will reserve `amount_reserve_percent` + stop-loss value when calculating min pair stake amount in order to avoid possible trade refusals. | `tradable_balance_ratio` | Ratio of the total account balance the bot is allowed to trade. [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.99` 99%).*<br> ***Datatype:*** *Positive float between `0.1` and `1.0`.*
| `ticker_interval` | [1m, 5m, 15m, 30m, 1h, 1d, ...] | The ticker interval to use (1min, 5 min, 15 min, 30 min, 1 hour or 1 day). Default is 5 minutes. [Strategy Override](#parameters-in-the-strategy). | `amend_last_stake_amount` | Use reduced last stake amount if necessary. [More information below](#configuring-amount-per-trade). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `fiat_display_currency` | USD | **Required.** Fiat currency used to show your profits. More information below. | `last_stake_amount_min_ratio` | Defines minimum stake amount that has to be left and executed. Applies only to the last stake amount when it's amended to a reduced value (i.e. if `amend_last_stake_amount` is set to `true`). [More information below](#configuring-amount-per-trade). <br>*Defaults to `0.5`.* <br> ***Datatype:*** *Float (as ratio)*
| `dry_run` | true | **Required.** Define if the bot must be in Dry-run or production mode. | `amount_reserve_percent` | Reserve some amount in min pair stake amount. The bot will reserve `amount_reserve_percent` + stoploss value when calculating min pair stake amount in order to avoid possible trade refusals. <br>*Defaults to `0.05` (5%).* <br> ***Datatype:*** *Positive Float as ratio.*
| `dry_run_wallet` | 999.9 | Overrides the default amount of 999.9 stake currency units in the wallet used by the bot running in the Dry Run mode if you need it for any reason. | `ticker_interval` | The ticker interval to use (e.g `1m`, `5m`, `15m`, `30m`, `1h` ...). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *String*
| `process_only_new_candles` | false | If set to true indicators are processed only once a new candle arrives. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). | `fiat_display_currency` | Fiat currency used to show your profits. [More information below](#what-values-can-be-used-for-fiat_display_currency). <br> ***Datatype:*** *String*
| `minimal_roi` | See below | Set the threshold in percent the bot will use to sell a trade. More information below. [Strategy Override](#parameters-in-the-strategy). | `dry_run` | **Required.** Define if the bot must be in Dry Run or production mode. <br>*Defaults to `true`.* <br> ***Datatype:*** *Boolean*
| `stoploss` | -0.10 | Value of the stoploss in percent used by the bot. More information below. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). | `dry_run_wallet` | Define the starting amount in stake currency for the simulated wallet used by the bot running in the Dry Run mode.<br>*Defaults to `1000`.* <br> ***Datatype:*** *Float*
| `trailing_stop` | false | Enables trailing stop-loss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). | `process_only_new_candles` | Enable processing of indicators only when new candles arrive. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `trailing_stop_positive` | 0 | Changes stop-loss once profit has been reached. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). | `minimal_roi` | **Required.** Set the threshold in percent the bot will use to sell a trade. [More information below](#understand-minimal_roi). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Dict*
| `trailing_stop_positive_offset` | 0 | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). | `stoploss` | **Required.** Value of the stoploss in percent used by the bot. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Float (as ratio)*
| `trailing_only_offset_is_reached` | false | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). | `trailing_stop` | Enables trailing stoploss (based on `stoploss` in either configuration or strategy file). More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Boolean*
| `unfilledtimeout.buy` | 10 | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled. | `trailing_stop_positive` | Changes stoploss once profit has been reached. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Float*
| `unfilledtimeout.sell` | 10 | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled. | `trailing_stop_positive_offset` | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive. More details in the [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `0.0` (no offset).* <br> ***Datatype:*** *Float*
| `bid_strategy.ask_last_balance` | 0.0 | **Required.** Set the bidding price. More information [below](#understand-ask_last_balance). | `trailing_only_offset_is_reached` | Only apply trailing stoploss when the offset is reached. [stoploss documentation](stoploss.md). [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `bid_strategy.use_order_book` | false | Allows buying of pair using the rates in Order Book Bids. | `unfilledtimeout.buy` | **Required.** How long (in minutes) the bot will wait for an unfilled buy order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> ***Datatype:*** *Integer*
| `bid_strategy.order_book_top` | 0 | Bot will use the top N rate in Order Book Bids. I.e. a value of 2 will allow the bot to pick the 2nd bid rate in Order Book Bids. | `unfilledtimeout.sell` | **Required.** How long (in minutes) the bot will wait for an unfilled sell order to complete, after which the order will be cancelled. [Strategy Override](#parameters-in-the-strategy).<br> ***Datatype:*** *Integer*
| `bid_strategy. check_depth_of_market.enabled` | false | Does not buy if the % difference of buy orders and sell orders is met in Order Book. | `bid_strategy.ask_last_balance` | **Required.** Set the bidding price. More information [below](#buy-price-without-orderbook).
| `bid_strategy. check_depth_of_market.bids_to_ask_delta` | 0 | The % difference of buy orders and sell orders found in Order Book. A value lesser than 1 means sell orders is greater, while value greater than 1 means buy orders is higher. | `bid_strategy.use_order_book` | Enable buying using the rates in [Order Book Bids](#buy-price-with-orderbook-enabled). <br> ***Datatype:*** *Boolean*
| `ask_strategy.use_order_book` | false | Allows selling of open traded pair using the rates in Order Book Asks. | `bid_strategy.order_book_top` | Bot will use the top N rate in Order Book Bids to buy. I.e. a value of 2 will allow the bot to pick the 2nd bid rate in [Order Book Bids](#buy-price-with-orderbook-enabled). <br>*Defaults to `1`.* <br> ***Datatype:*** *Positive Integer*
| `ask_strategy.order_book_min` | 0 | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. | `bid_strategy. check_depth_of_market.enabled` | Do not buy if the difference of buy orders and sell orders is met in Order Book. [Check market depth](#check-depth-of-market). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `ask_strategy.order_book_max` | 0 | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. | `bid_strategy. check_depth_of_market.bids_to_ask_delta` | The difference ratio of buy orders and sell orders found in Order Book. A value below 1 means sell order size is greater, while value greater than 1 means buy order size is higher. [Check market depth](#check-depth-of-market) <br> *Defaults to `0`.* <br> ***Datatype:*** *Float (as ratio)*
| `ask_strategy.use_sell_signal` | true | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). | `ask_strategy.use_order_book` | Enable selling of open trades using [Order Book Asks](#sell-price-with-orderbook-enabled). <br> ***Datatype:*** *Boolean*
| `ask_strategy.sell_profit_only` | false | Wait until the bot makes a positive profit before taking a sell decision. [Strategy Override](#parameters-in-the-strategy). | `ask_strategy.order_book_min` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> ***Datatype:*** *Positive Integer*
| `ask_strategy.ignore_roi_if_buy_signal` | false | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy). | `ask_strategy.order_book_max` | Bot will scan from the top min to max Order Book Asks searching for a profitable rate. <br>*Defaults to `1`.* <br> ***Datatype:*** *Positive Integer*
| `order_types` | None | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy). | `ask_strategy.use_sell_signal` | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `true`.* <br> ***Datatype:*** *Boolean*
| `order_time_in_force` | None | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). | `ask_strategy.sell_profit_only` | Wait until the bot makes a positive profit before taking a sell decision. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `exchange.name` | | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). | `ask_strategy.ignore_roi_if_buy_signal` | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy). <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
| `exchange.sandbox` | false | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details. | `order_types` | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).<br> ***Datatype:*** *Dict*
| `exchange.key` | '' | API key to use for the exchange. Only required when you are in production mode. ***Keep it in secrete, do not disclose publicly.*** | `order_time_in_force` | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy). <br> ***Datatype:*** *Dict*
| `exchange.secret` | '' | API secret to use for the exchange. Only required when you are in production mode. ***Keep it in secrete, do not disclose publicly.*** | `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename). <br> ***Datatype:*** *String*
| `exchange.password` | '' | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests. ***Keep it in secrete, do not disclose publicly.*** | `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.<br> ***Datatype:*** *Boolean*
| `exchange.pair_whitelist` | [] | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Can be overriden by dynamic pairlists (see [below](#dynamic-pairlists)). | `exchange.key` | API key to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `exchange.pair_blacklist` | [] | List of pairs the bot must absolutely avoid for trading and backtesting. Can be overriden by dynamic pairlists (see [below](#dynamic-pairlists)). | `exchange.secret` | API secret to use for the exchange. Only required when you are in production mode.<br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `exchange.ccxt_config` | None | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) | `exchange.password` | API password to use for the exchange. Only required when you are in production mode and for exchanges that use password for API requests.<br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `exchange.ccxt_async_config` | None | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) | `exchange.pair_whitelist` | List of pairs to use by the bot for trading and to check for potential trades during backtesting. Not used by VolumePairList (see [below](#dynamic-pairlists)). <br> ***Datatype:*** *List*
| `exchange.markets_refresh_interval` | 60 | The interval in minutes in which markets are reloaded. | `exchange.pair_blacklist` | List of pairs the bot must absolutely avoid for trading and backtesting (see [below](#dynamic-pairlists)). <br> ***Datatype:*** *List*
| `edge` | false | Please refer to [edge configuration document](edge.md) for detailed explanation. | `exchange.ccxt_config` | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> ***Datatype:*** *Dict*
| `experimental.block_bad_exchanges` | true | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. | `exchange.ccxt_async_config` | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation) <br> ***Datatype:*** *Dict*
| `pairlist.method` | StaticPairList | Use static or dynamic volume-based pairlist. [More information below](#dynamic-pairlists). | `exchange.markets_refresh_interval` | The interval in minutes in which markets are reloaded. <br>*Defaults to `60` minutes.* <br> ***Datatype:*** *Positive Integer*
| `pairlist.config` | None | Additional configuration for dynamic pairlists. [More information below](#dynamic-pairlists). | `edge.*` | Please refer to [edge configuration document](edge.md) for detailed explanation.
| `telegram.enabled` | true | **Required.** Enable or not the usage of Telegram. | `experimental.block_bad_exchanges` | Block exchanges known to not work with freqtrade. Leave on default unless you want to test if that exchange works now. <br>*Defaults to `true`.* <br> ***Datatype:*** *Boolean*
| `telegram.token` | token | Your Telegram bot token. Only required if `telegram.enabled` is `true`. ***Keep it in secrete, do not disclose publicly.*** | `pairlists` | Define one or more pairlists to be used. [More information below](#dynamic-pairlists). <br>*Defaults to `StaticPairList`.* <br> ***Datatype:*** *List of Dicts*
| `telegram.chat_id` | chat_id | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. ***Keep it in secrete, do not disclose publicly.*** | `telegram.enabled` | Enable the usage of Telegram. <br> ***Datatype:*** *Boolean*
| `webhook.enabled` | false | Enable usage of Webhook notifications | `telegram.token` | Your Telegram bot token. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `webhook.url` | false | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. | `telegram.chat_id` | Your personal Telegram account id. Only required if `telegram.enabled` is `true`. <br>**Keep it in secret, do not disclose publicly.** <br> ***Datatype:*** *String*
| `webhook.webhookbuy` | false | Payload to send on buy. Only required if `webhook.enabled` is `true`. See the [webhook documentationV](webhook-config.md) for more details. | `webhook.enabled` | Enable usage of Webhook notifications <br> ***Datatype:*** *Boolean*
| `webhook.webhooksell` | false | Payload to send on sell. Only required if `webhook.enabled` is `true`. See the [webhook documentationV](webhook-config.md) for more details. | `webhook.url` | URL for the webhook. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> ***Datatype:*** *String*
| `webhook.webhookstatus` | false | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentationV](webhook-config.md) for more details. | `webhook.webhookbuy` | Payload to send on buy. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> ***Datatype:*** *String*
| `db_url` | `sqlite:///tradesv3.sqlite`| Declares database URL to use. NOTE: This defaults to `sqlite://` if `dry_run` is `True`. | `webhook.webhooksell` | Payload to send on sell. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> ***Datatype:*** *String*
| `initial_state` | running | Defines the initial application state. More information below. | `webhook.webhookstatus` | Payload to send on status calls. Only required if `webhook.enabled` is `true`. See the [webhook documentation](webhook-config.md) for more details. <br> ***Datatype:*** *String*
| `forcebuy_enable` | false | Enables the RPC Commands to force a buy. More information below. | `api_server.enabled` | Enable usage of API Server. See the [API Server documentation](rest-api.md) for more details. <br> ***Datatype:*** *Boolean*
| `strategy` | DefaultStrategy | Defines Strategy class to use. | `api_server.listen_ip_address` | Bind IP address. See the [API Server documentation](rest-api.md) for more details. <br> ***Datatype:*** *IPv4*
| `strategy_path` | null | Adds an additional strategy lookup path (must be a directory). | `api_server.listen_port` | Bind Port. See the [API Server documentation](rest-api.md) for more details. <br>***Datatype:*** *Integer between 1024 and 65535*
| `internals.process_throttle_secs` | 5 | **Required.** Set the process throttle. Value in second. | `api_server.username` | Username for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> ***Datatype:*** *String*
| `internals.heartbeat_interval` | 60 | Print heartbeat message every X seconds. Set to 0 to disable heartbeat messages. | `api_server.password` | Password for API server. See the [API Server documentation](rest-api.md) for more details. <br>**Keep it in secret, do not disclose publicly.**<br> ***Datatype:*** *String*
| `internals.sd_notify` | false | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. | `db_url` | Declares database URL to use. NOTE: This defaults to `sqlite:///tradesv3.dryrun.sqlite` if `dry_run` is `true`, and to `sqlite:///tradesv3.sqlite` for production instances. <br> ***Datatype:*** *String, SQLAlchemy connect string*
| `logfile` | | Specify Logfile. Uses a rolling strategy of 10 files, with 1Mb per file. | `initial_state` | Defines the initial application state. More information below. <br>*Defaults to `stopped`.* <br> ***Datatype:*** *Enum, either `stopped` or `running`*
| `user_data_dir` | cwd()/user_data | Directory containing user data. Defaults to `./user_data/`. | `forcebuy_enable` | Enables the RPC Commands to force a buy. More information below. <br> ***Datatype:*** *Boolean*
| `strategy` | **Required** Defines Strategy class to use. Recommended to be set via `--strategy NAME`. <br> ***Datatype:*** *ClassName*
| `strategy_path` | Adds an additional strategy lookup path (must be a directory). <br> ***Datatype:*** *String*
| `internals.process_throttle_secs` | Set the process throttle. Value in second. <br>*Defaults to `5` seconds.* <br> ***Datatype:*** *Positive Integer*
| `internals.heartbeat_interval` | Print heartbeat message every N seconds. Set to 0 to disable heartbeat messages. <br>*Defaults to `60` seconds.* <br> ***Datatype:*** *Positive Integer or 0*
| `internals.sd_notify` | Enables use of the sd_notify protocol to tell systemd service manager about changes in the bot state and issue keep-alive pings. See [here](installation.md#7-optional-configure-freqtrade-as-a-systemd-service) for more details. <br> ***Datatype:*** *Boolean*
| `logfile` | Specifies logfile name. Uses a rolling strategy for log file rotation for 10 files with the 1MB limit per file. <br> ***Datatype:*** *String*
| `user_data_dir` | Directory containing user data. <br> *Defaults to `./user_data/`*. <br> ***Datatype:*** *String*
### Parameters in the strategy ### Parameters in the strategy
The following parameters can be set in either configuration file or strategy. The following parameters can be set in either configuration file or strategy.
Values set in the configuration file always overwrite values set in the strategy. Values set in the configuration file always overwrite values set in the strategy.
* `ticker_interval`
* `minimal_roi` * `minimal_roi`
* `ticker_interval`
* `stoploss` * `stoploss`
* `trailing_stop` * `trailing_stop`
* `trailing_stop_positive` * `trailing_stop_positive`
* `trailing_stop_positive_offset` * `trailing_stop_positive_offset`
* `trailing_only_offset_is_reached`
* `process_only_new_candles` * `process_only_new_candles`
* `order_types` * `order_types`
* `order_time_in_force` * `order_time_in_force`
* `stake_currency`
* `stake_amount`
* `unfilledtimeout`
* `use_sell_signal` (ask_strategy) * `use_sell_signal` (ask_strategy)
* `sell_profit_only` (ask_strategy) * `sell_profit_only` (ask_strategy)
* `ignore_roi_if_buy_signal` (ask_strategy) * `ignore_roi_if_buy_signal` (ask_strategy)
### Understand stake_amount ### Configuring amount per trade
The `stake_amount` configuration parameter is an amount of crypto-currency your bot will use for each trade. There are several methods to configure how much of the stake currency the bot will use to enter a trade. All methods respect the [available balance configuration](#available-balance) as explained below.
The minimal value is 0.0005. If there is not enough crypto-currency in
the account an exception is generated. #### Available balance
To allow the bot to trade all the available `stake_currency` in your account set
By default, the bot assumes that the `complete amount - 1%` is at it's disposal, and when using [dynamic stake amount](#dynamic-stake-amount), it will split the complete balance into `max_open_trades` buckets per trade.
Freqtrade will reserve 1% for eventual fees when entering a trade and will therefore not touch that by default.
You can configure the "untouched" amount by using the `tradable_balance_ratio` setting.
For example, if you have 10 ETH available in your wallet on the exchange and `tradable_balance_ratio=0.5` (which is 50%), then the bot will use a maximum amount of 5 ETH for trading and considers this as available balance. The rest of the wallet is untouched by the trades.
!!! Warning
The `tradable_balance_ratio` setting applies to the current balance (free balance + tied up in trades). Therefore, assuming the starting balance of 1000, a configuration with `tradable_balance_ratio=0.99` will not guarantee that 10 currency units will always remain available on the exchange. For example, the free amount may reduce to 5 units if the total balance is reduced to 500 (either by a losing streak, or by withdrawing balance).
#### Amend last stake amount
Assuming we have the tradable balance of 1000 USDT, `stake_amount=400`, and `max_open_trades=3`.
The bot would open 2 trades, and will be unable to fill the last trading slot, since the requested 400 USDT are no longer available, since 800 USDT are already tied in other trades.
To overcome this, the option `amend_last_stake_amount` can be set to `True`, which will enable the bot to reduce stake_amount to the available balance in order to fill the last trade slot.
In the example above this would mean:
- Trade1: 400 USDT
- Trade2: 400 USDT
- Trade3: 200 USDT
!!! Note
This option only applies with [Static stake amount](#static-stake-amount) - since [Dynamic stake amount](#dynamic-stake-amount) divides the balances evenly.
!!! Note
The minimum last stake amount can be configured using `amend_last_stake_amount` - which defaults to 0.5 (50%). This means that the minimum stake amount that's ever used is `stake_amount * 0.5`. This avoids very low stake amounts, that are close to the minimum tradable amount for the pair and can be refused by the exchange.
#### Static stake amount
The `stake_amount` configuration statically configures the amount of stake-currency your bot will use for each trade.
The minimal configuration value is 0.0001, however, please check your exchange's trading minimums for the stake currency you're using to avoid problems.
This setting works in combination with `max_open_trades`. The maximum capital engaged in trades is `stake_amount * max_open_trades`.
For example, the bot will at most use (0.05 BTC x 3) = 0.15 BTC, assuming a configuration of `max_open_trades=3` and `stake_amount=0.05`.
!!! Note
This setting respects the [available balance configuration](#available-balance).
#### Dynamic stake amount
Alternatively, you can use a dynamic stake amount, which will use the available balance on the exchange, and divide that equally by the amount of allowed trades (`max_open_trades`).
To configure this, set `stake_amount="unlimited"`. We also recommend to set `tradable_balance_ratio=0.99` (99%) - to keep a minimum balance for eventual fees.
In this case a trade amount is calculated as:
```python
currency_balance / (max_open_trades - current_open_trades)
```
To allow the bot to trade all the available `stake_currency` in your account (minus `tradable_balance_ratio`) set
```json ```json
"stake_amount" : "unlimited", "stake_amount" : "unlimited",
"tradable_balance_ratio": 0.99,
``` ```
In this case a trade amount is calclulated as: !!! Note
This configuration will allow increasing / decreasing stakes depending on the performance of the bot (lower stake if bot is loosing, higher stakes if the bot has a winning record, since higher balances are available).
```python !!! Note "When using Dry-Run Mode"
currency_balanse / (max_open_trades - current_open_trades) When using `"stake_amount" : "unlimited",` in combination with Dry-Run, the balance will be simulated starting with a stake of `dry_run_wallet` which will evolve over time. It is therefore important to set `dry_run_wallet` to a sensible value (like 0.05 or 0.01 for BTC and 1000 or 100 for USDT, for example), otherwise it may simulate trades with 100 BTC (or more) or 0.05 USDT (or less) at once - which may not correspond to your real available balance or is less than the exchange minimal limit for the order amount for the stake currency.
```
### Understand minimal_roi ### Understand minimal_roi
@@ -158,6 +224,9 @@ This parameter can be set in either Strategy or Configuration file. If you use i
`minimal_roi` value from the strategy file. `minimal_roi` value from the strategy file.
If it is not set in either Strategy or Configuration, a default of 1000% `{"0": 10}` is used, and minimal roi is disabled unless your trade generates 1000% profit. If it is not set in either Strategy or Configuration, a default of 1000% `{"0": 10}` is used, and minimal roi is disabled unless your trade generates 1000% profit.
!!! Note "Special case to forcesell after a specific time"
A special case presents using `"<N>": -1` as ROI. This forces the bot to sell a trade after N Minutes, no matter if it's positive or negative, so represents a time-limited force-sell.
### Understand stoploss ### Understand stoploss
Go to the [stoploss documentation](stoploss.md) for more details. Go to the [stoploss documentation](stoploss.md) for more details.
@@ -190,13 +259,6 @@ before asking the strategy if we should buy or a sell an asset. After each wait
every opened trade wether or not we should sell, and for all the remaining pairs (either the dynamic list of pairs or every opened trade wether or not we should sell, and for all the remaining pairs (either the dynamic list of pairs or
the static list of pairs) if we should buy. the static list of pairs) if we should buy.
### Understand ask_last_balance
The `ask_last_balance` configuration parameter sets the bidding price. Value `0.0` will use `ask` price, `1.0` will
use the `last` price and values between those interpolate between ask and last
price. Using `ask` price will guarantee quick success in bid, but bot will also
end up paying more then would probably have been necessary.
### Understand order_types ### Understand order_types
The `order_types` configuration parameter maps actions (`buy`, `sell`, `stoploss`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds. The `order_types` configuration parameter maps actions (`buy`, `sell`, `stoploss`) to order-types (`market`, `limit`, ...) as well as configures stoploss to be on the exchange and defines stoploss on exchange update interval in seconds.
@@ -215,6 +277,11 @@ If this is configured, the following 4 values (`buy`, `sell`, `stoploss` and
`emergencysell` is an optional value, which defaults to `market` and is used when creating stoploss on exchange orders fails. `emergencysell` is an optional value, which defaults to `market` and is used when creating stoploss on exchange orders fails.
The below is the default which is used if this is not configured in either strategy or configuration file. The below is the default which is used if this is not configured in either strategy or configuration file.
Since `stoploss_on_exchange` uses limit orders, the exchange needs 2 prices, the stoploss_price and the Limit price.
`stoploss` defines the stop-price - and limit should be slightly below this. This defaults to 0.99 / 1%.
Calculation example: we bought the asset at 100$.
Stop-price is 95$, then limit would be `95 * 0.99 = 94.05$` - so the stoploss will happen between 95$ and 94.05$.
Syntax for Strategy: Syntax for Strategy:
```python ```python
@@ -224,7 +291,8 @@ order_types = {
"emergencysell": "market", "emergencysell": "market",
"stoploss": "market", "stoploss": "market",
"stoploss_on_exchange": False, "stoploss_on_exchange": False,
"stoploss_on_exchange_interval": 60 "stoploss_on_exchange_interval": 60,
"stoploss_on_exchange_limit_ratio": 0.99,
} }
``` ```
@@ -254,7 +322,7 @@ Configuration:
!!! Note !!! Note
If `stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new order. If `stoploss_on_exchange` is enabled and the stoploss is cancelled manually on the exchange, then the bot will create a new order.
!!! Warning stoploss_on_exchange failures !!! Warning "Warning: stoploss_on_exchange failures"
If stoploss on exchange creation fails for some reason, then an "emergency sell" is initiated. By default, this will sell the asset using a market order. The order-type for the emergency-sell can be changed by setting the `emergencysell` value in the `order_types` dictionary - however this is not advised. If stoploss on exchange creation fails for some reason, then an "emergency sell" is initiated. By default, this will sell the asset using a market order. The order-type for the emergency-sell can be changed by setting the `emergencysell` value in the `order_types` dictionary - however this is not advised.
### Understand order_time_in_force ### Understand order_time_in_force
@@ -331,7 +399,7 @@ This configuration enables binance, as well as rate limiting to avoid bans from
Optimal settings for rate limiting depend on the exchange and the size of the whitelist, so an ideal parameter will vary on many other settings. Optimal settings for rate limiting depend on the exchange and the size of the whitelist, so an ideal parameter will vary on many other settings.
We try to provide sensible defaults per exchange where possible, if you encounter bans please make sure that `"enableRateLimit"` is enabled and increase the `"rateLimit"` parameter step by step. We try to provide sensible defaults per exchange where possible, if you encounter bans please make sure that `"enableRateLimit"` is enabled and increase the `"rateLimit"` parameter step by step.
#### Advanced FreqTrade Exchange configuration #### Advanced Freqtrade Exchange configuration
Advanced options can be configured using the `_ft_has_params` setting, which will override Defaults and exchange-specific behaviours. Advanced options can be configured using the `_ft_has_params` setting, which will override Defaults and exchange-specific behaviours.
@@ -370,6 +438,139 @@ The valid values are:
"BTC", "ETH", "XRP", "LTC", "BCH", "USDT" "BTC", "ETH", "XRP", "LTC", "BCH", "USDT"
``` ```
## Prices used for orders
Prices for regular orders can be controlled via the parameter structures `bid_strategy` for buying and `ask_strategy` for selling.
Prices are always retrieved right before an order is placed, either by querying the exchange tickers or by using the orderbook data.
!!! Note
Orderbook data used by Freqtrade are the data retrieved from exchange by the ccxt's function `fetch_order_book()`, i.e. are usually data from the L2-aggregated orderbook, while the ticker data are the structures returned by the ccxt's `fetch_ticker()`/`fetch_tickers()` functions. Refer to the ccxt library [documentation](https://github.com/ccxt/ccxt/wiki/Manual#market-data) for more details.
### Buy price
#### Check depth of market
When check depth of market is enabled (`bid_strategy.check_depth_of_market.enabled=True`), the buy signals are filtered based on the orderbook depth (sum of all amounts) for each orderbook side.
Orderbook `bid` (buy) side depth is then divided by the orderbook `ask` (sell) side depth and the resulting delta is compared to the value of the `bid_strategy.check_depth_of_market.bids_to_ask_delta` parameter. The buy order is only executed if the orderbook delta is greater than or equal to the configured delta value.
!!! Note
A delta value below 1 means that `ask` (sell) orderbook side depth is greater than the depth of the `bid` (buy) orderbook side, while a value greater than 1 means opposite (depth of the buy side is higher than the depth of the sell side).
#### Buy price with Orderbook enabled
When buying with the orderbook enabled (`bid_strategy.use_order_book=True`), Freqtrade fetches the `bid_strategy.order_book_top` entries from the orderbook and then uses the entry specified as `bid_strategy.order_book_top` on the `bid` (buy) side of the orderbook. 1 specifies the topmost entry in the orderbook, while 2 would use the 2nd entry in the orderbook, and so on.
#### Buy price without Orderbook enabled
When not using orderbook (`bid_strategy.use_order_book=False`), Freqtrade uses the best `ask` (sell) price from the ticker if it's below the `last` traded price from the ticker. Otherwise (when the `ask` price is not below the `last` price), it calculates a rate between `ask` and `last` price.
The `bid_strategy.ask_last_balance` configuration parameter controls this. A value of `0.0` will use `ask` price, while `1.0` will use the `last` price and values between those interpolate between ask and last price.
Using `ask` price often guarantees quicker success in the bid, but the bot can also end up paying more than what would have been necessary.
### Sell price
#### Sell price with Orderbook enabled
When selling with the orderbook enabled (`ask_strategy.use_order_book=True`), Freqtrade fetches the `ask_strategy.order_book_max` entries in the orderbook. Then each of the orderbook steps between `ask_strategy.order_book_min` and `ask_strategy.order_book_max` on the `ask` orderbook side are validated for a profitable sell-possibility based on the strategy configuration and the sell order is placed at the first profitable spot.
The idea here is to place the sell order early, to be ahead in the queue.
A fixed slot (mirroring `bid_strategy.order_book_top`) can be defined by setting `ask_strategy.order_book_min` and `ask_strategy.order_book_max` to the same number.
!!! Warning "Orderbook and stoploss_on_exchange"
Using `ask_strategy.order_book_max` higher than 1 may increase the risk, since an eventual [stoploss on exchange](#understand-order_types) will be needed to be cancelled as soon as the order is placed.
#### Sell price without Orderbook enabled
When not using orderbook (`ask_strategy.use_order_book=False`), the `bid` price from the ticker will be used as the sell price.
## Pairlists
Pairlists define the list of pairs that the bot should trade.
There are [`StaticPairList`](#static-pair-list) and dynamic Whitelists available.
[`PrecisionFilter`](#precision-filter) and [`PriceFilter`](#price-pair-filter) act as filters, removing low-value pairs.
All pairlists can be chained, and a combination of all pairlists will become your new whitelist. Pairlists are executed in the sequence they are configured. You should always configure either `StaticPairList` or `DynamicPairList` as starting pairlists.
Inactive markets and blacklisted pairs are always removed from the resulting `pair_whitelist`.
### Available Pairlists
* [`StaticPairList`](#static-pair-list) (default, if not configured differently)
* [`VolumePairList`](#volume-pair-list)
* [`PrecisionFilter`](#precision-filter)
* [`PriceFilter`](#price-pair-filter)
!!! Tip "Testing pairlists"
Pairlist configurations can be quite tricky to get right. Best use the [`test-pairlist`](utils.md#test-pairlist) subcommand to test your configuration quickly.
#### Static Pair List
By default, the `StaticPairList` method is used, which uses a statically defined pair whitelist from the configuration.
It uses configuration from `exchange.pair_whitelist` and `exchange.pair_blacklist`.
```json
"pairlists": [
{"method": "StaticPairList"}
],
```
#### Volume Pair List
`VolumePairList` selects `number_assets` top pairs based on `sort_key`, which can be one of `askVolume`, `bidVolume` and `quoteVolume` and defaults to `quoteVolume`.
`VolumePairList` considers outputs of previous pairlists unless it's the first configured pairlist, it does not consider `pair_whitelist`, but selects the top assets from all available markets (with matching stake-currency) on the exchange.
`refresh_period` allows setting the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes).
```json
"pairlists": [{
"method": "VolumePairList",
"number_assets": 20,
"sort_key": "quoteVolume",
"refresh_period": 1800,
],
```
#### Precision Filter
Filters low-value coins which would not allow setting a stoploss.
#### Price Pair Filter
The `PriceFilter` allows filtering of pairs by price.
Currently, only `low_price_ratio` is implemented, where a raise of 1 price unit (pip) is below the `low_price_ratio` ratio.
This option is disabled by default, and will only apply if set to <> 0.
Calculation example:
Min price precision is 8 decimals. If price is 0.00000011 - one step would be 0.00000012 - which is almost 10% higher than the previous value.
These pairs are dangerous since it may be impossible to place the desired stoploss - and often result in high losses.
### Full Pairlist example
The below example blacklists `BNB/BTC`, uses `VolumePairList` with `20` assets, sorting by `quoteVolume` and applies both [`PrecisionFilter`](#precision-filter) and [`PriceFilter`](#price-pair-filter), filtering all assets where 1 priceunit is > 1%.
```json
"exchange": {
"pair_whitelist": [],
"pair_blacklist": ["BNB/BTC"]
},
"pairlists": [
{
"method": "VolumePairList",
"number_assets": 20,
"sort_key": "quoteVolume",
},
{"method": "PrecisionFilter"},
{"method": "PriceFilter", "low_price_ratio": 0.01}
],
```
## Switch to Dry-run mode ## Switch to Dry-run mode
We recommend starting the bot in the Dry-run mode to see how your bot will We recommend starting the bot in the Dry-run mode to see how your bot will
@@ -385,7 +586,7 @@ creating trades on the exchange.
"db_url": "sqlite:///tradesv3.dryrun.sqlite", "db_url": "sqlite:///tradesv3.dryrun.sqlite",
``` ```
3. Remove your Exchange API key and secrete (change them by empty values or fake credentials): 3. Remove your Exchange API key and secret (change them by empty values or fake credentials):
```json ```json
"exchange": { "exchange": {
@@ -396,41 +597,10 @@ creating trades on the exchange.
} }
``` ```
Once you will be happy with your bot performance running in the Dry-run mode, Once you will be happy with your bot performance running in the Dry-run mode, you can switch it to production mode.
you can switch it to production mode.
### Dynamic Pairlists !!! Note
A simulated wallet is available during dry-run mode, and will assume a starting capital of `dry_run_wallet` (defaults to 1000).
Dynamic pairlists select pairs for you based on the logic configured.
The bot runs against all pairs (with that stake) on the exchange, and a number of assets
(`number_assets`) is selected based on the selected criteria.
By default, the `StaticPairList` method is used.
The Pairlist method is configured as `pair_whitelist` parameter under the `exchange`
section of the configuration.
**Available Pairlist methods:**
* `StaticPairList`
* It uses configuration from `exchange.pair_whitelist` and `exchange.pair_blacklist`.
* `VolumePairList`
* It selects `number_assets` top pairs based on `sort_key`, which can be one of
`askVolume`, `bidVolume` and `quoteVolume`, defaults to `quoteVolume`.
* There is a possibility to filter low-value coins that would not allow setting a stop loss
(set `precision_filter` parameter to `true` for this).
Example:
```json
"pairlist": {
"method": "VolumePairList",
"config": {
"number_assets": 20,
"sort_key": "quoteVolume",
"precision_filter": false
}
},
```
## Switch to production mode ## Switch to production mode
@@ -457,12 +627,14 @@ you run it in production mode.
"secret": "08a9dc6db3d7b53e1acebd9275677f4b0a04f1a5", "secret": "08a9dc6db3d7b53e1acebd9275677f4b0a04f1a5",
... ...
} }
``` ```
!!! Note
If you have an exchange API key yet, [see our tutorial](/pre-requisite).
### Using proxy with FreqTrade !!! Note
If you have an exchange API key yet, [see our tutorial](installation.md#setup-your-exchange-account).
You should also make sure to read the [Exchanges](exchanges.md) section of the documentation to be aware of potential configuration details specific to your exchange.
### Using proxy with Freqtrade
To use a proxy with freqtrade, add the kwarg `"aiohttp_trust_env"=true` to the `"ccxt_async_kwargs"` dict in the exchange section of the configuration. To use a proxy with freqtrade, add the kwarg `"aiohttp_trust_env"=true` to the `"ccxt_async_kwargs"` dict in the exchange section of the configuration.
@@ -482,14 +654,13 @@ export HTTPS_PROXY="http://addr:port"
freqtrade freqtrade
``` ```
## Embedding Strategies
### Embedding Strategies
FreqTrade provides you with with an easy way to embed the strategy into your configuration file. FreqTrade provides you with with an easy way to embed the strategy into your configuration file.
This is done by utilizing BASE64 encoding and providing this string at the strategy configuration field, This is done by utilizing BASE64 encoding and providing this string at the strategy configuration field,
in your chosen config file. in your chosen config file.
#### Encoding a string as BASE64 ### Encoding a string as BASE64
This is a quick example, how to generate the BASE64 string in python This is a quick example, how to generate the BASE64 string in python

View File

@@ -8,6 +8,27 @@ You can analyze the results of backtests and trading history easily using Jupyte
* Don't forget to start a Jupyter notebook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)* * Don't forget to start a Jupyter notebook server from within your conda or venv environment or use [nb_conda_kernels](https://github.com/Anaconda-Platform/nb_conda_kernels)*
* Copy the example notebook before use so your changes don't get clobbered with the next freqtrade update. * Copy the example notebook before use so your changes don't get clobbered with the next freqtrade update.
### Using virtual environment with system-wide Jupyter installation
Sometimes it can be desired to use a system-wide installation of Jupyter notebook, and use a jupyter kernel from the virtual environment.
This prevents you from installing the full jupyter suite multiple times per system, and provides an easy way to switch between tasks (freqtrade / other analytics tasks).
For this to work, first activate your virtual environment and run the following commands:
``` bash
# Activate virtual environment
source .env/bin/activate
pip install ipykernel
ipython kernel install --user --name=freqtrade
# Restart jupyter (lab / notebook)
# select kernel "freqtrade" in the notebook
```
!!! Note
This section is provided for completeness, the Freqtrade Team won't provide full support for problems with this setup and will recommend to install Jupyter in the virtual environment directly, as that is the easiest way to get jupyter notebooks up and running. For help with this setup please refer to the [Project Jupyter](https://jupyter.org/) [documentation](https://jupyter.org/documentation) or [help channels](https://jupyter.org/community).
## Fine print ## Fine print
Some tasks don't work especially well in notebooks. For example, anything using asynchronous execution is a problem for Jupyter. Also, freqtrade's primary entry point is the shell cli, so using pure python in a notebook bypasses arguments that provide required objects and parameters to helper functions. You may need to set those values or create expected objects manually. Some tasks don't work especially well in notebooks. For example, anything using asynchronous execution is a problem for Jupyter. Also, freqtrade's primary entry point is the shell cli, so using pure python in a notebook bypasses arguments that provide required objects and parameters to helper functions. You may need to set those values or create expected objects manually.

View File

@@ -8,7 +8,7 @@ If no additional parameter is specified, freqtrade will download data for `"1m"`
Exchange and pairs will come from `config.json` (if specified using `-c/--config`). Exchange and pairs will come from `config.json` (if specified using `-c/--config`).
Otherwise `--exchange` becomes mandatory. Otherwise `--exchange` becomes mandatory.
!!! Tip Updating existing data !!! Tip "Tip: Updating existing data"
If you already have backtesting data available in your data-directory and would like to refresh this data up to today, use `--days xx` with a number slightly higher than the missing number of days. Freqtrade will keep the available data and only download the missing data. If you already have backtesting data available in your data-directory and would like to refresh this data up to today, use `--days xx` with a number slightly higher than the missing number of days. Freqtrade will keep the available data and only download the missing data.
Be carefull though: If the number is too small (which would result in a few missing days), the whole dataset will be removed and only xx days will be downloaded. Be carefull though: If the number is too small (which would result in a few missing days), the whole dataset will be removed and only xx days will be downloaded.
@@ -78,10 +78,8 @@ freqtrade download-data --exchange binance --pairs XRP/ETH ETH/BTC --days 20 --d
!!! Warning !!! Warning
The historic trades are not available during Freqtrade dry-run and live trade modes because all exchanges tested provide this data with a delay of few 100 candles, so it's not suitable for real-time trading. The historic trades are not available during Freqtrade dry-run and live trade modes because all exchanges tested provide this data with a delay of few 100 candles, so it's not suitable for real-time trading.
### Historic Kraken data !!! Note "Kraken user"
Kraken users should read [this](exchanges.md#historic-kraken-data) before starting to download data.
The Kraken API does only provide 720 historic candles, which is sufficient for FreqTrade dry-run and live trade modes, but is a problem for backtesting.
To download data for the Kraken exchange, using `--dl-trades` is mandatory, otherwise the bot will download the same 720 candles over and over, and you'll not have enough backtest data.
## Next step ## Next step

View File

@@ -46,15 +46,18 @@ def test_method_to_test(caplog):
The fastest and easiest way to start up is to use docker-compose.develop which gives developers the ability to start the bot up with all the required dependencies, *without* needing to install any freqtrade specific dependencies on your local machine. The fastest and easiest way to start up is to use docker-compose.develop which gives developers the ability to start the bot up with all the required dependencies, *without* needing to install any freqtrade specific dependencies on your local machine.
#### Install #### Install
* [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git) * [git](https://git-scm.com/book/en/v2/Getting-Started-Installing-Git)
* [docker](https://docs.docker.com/install/) * [docker](https://docs.docker.com/install/)
* [docker-compose](https://docs.docker.com/compose/install/) * [docker-compose](https://docs.docker.com/compose/install/)
#### Starting the bot #### Starting the bot
##### Use the develop dockerfile ##### Use the develop dockerfile
``` bash ``` bash
rm docker-compose.yml && mv docker-compose.develop.yml docker-compose.yml rm docker-compose.yml && mv docker-compose.develop.yml docker-compose.yml
``` ```
#### Docker Compose #### Docker Compose
##### Starting ##### Starting
@@ -62,9 +65,11 @@ rm docker-compose.yml && mv docker-compose.develop.yml docker-compose.yml
``` bash ``` bash
docker-compose up docker-compose up
``` ```
![Docker compose up](https://user-images.githubusercontent.com/419355/65456322-47f63a80-de06-11e9-90c6-3c74d1bad0b8.png) ![Docker compose up](https://user-images.githubusercontent.com/419355/65456322-47f63a80-de06-11e9-90c6-3c74d1bad0b8.png)
##### Rebuilding ##### Rebuilding
``` bash ``` bash
docker-compose build docker-compose build
``` ```
@@ -77,8 +82,8 @@ that can be effected by `docker-compose up` or `docker-compose run freqtrade_dev
``` bash ``` bash
docker-compose exec freqtrade_develop /bin/bash docker-compose exec freqtrade_develop /bin/bash
``` ```
![image](https://user-images.githubusercontent.com/419355/65456522-ba671a80-de06-11e9-9598-df9ca0d8dcac.png)
![image](https://user-images.githubusercontent.com/419355/65456522-ba671a80-de06-11e9-9598-df9ca0d8dcac.png)
## Modules ## Modules
@@ -95,22 +100,22 @@ This is a simple provider, which however serves as a good example on how to star
Next, modify the classname of the provider (ideally align this with the Filename). Next, modify the classname of the provider (ideally align this with the Filename).
The base-class provides the an instance of the bot (`self._freqtrade`), as well as the configuration (`self._config`), and initiates both `_blacklist` and `_whitelist`. The base-class provides an instance of the exchange (`self._exchange`) the pairlist manager (`self._pairlistmanager`), as well as the main configuration (`self._config`), the pairlist dedicated configuration (`self._pairlistconfig`) and the absolute position within the list of pairlists.
```python ```python
self._freqtrade = freqtrade self._exchange = exchange
self._pairlistmanager = pairlistmanager
self._config = config self._config = config
self._whitelist = self._config['exchange']['pair_whitelist'] self._pairlistconfig = pairlistconfig
self._blacklist = self._config['exchange'].get('pair_blacklist', []) self._pairlist_pos = pairlist_pos
``` ```
Now, let's step through the methods which require actions: Now, let's step through the methods which require actions:
#### configuration #### Pairlist configuration
Configuration for PairListProvider is done in the bot configuration file in the element `"pairlist"`. Configuration for PairListProvider is done in the bot configuration file in the element `"pairlist"`.
This Pairlist-object may contain a `"config"` dict with additional configurations for the configured pairlist. This Pairlist-object may contain configurations with additional configurations for the configured pairlist.
By convention, `"number_assets"` is used to specify the maximum number of pairs to keep in the whitelist. Please follow this to ensure a consistent user experience. By convention, `"number_assets"` is used to specify the maximum number of pairs to keep in the whitelist. Please follow this to ensure a consistent user experience.
Additional elements can be configured as needed. `VolumePairList` uses `"sort_key"` to specify the sorting value - however feel free to specify whatever is necessary for your great algorithm to be successfull and dynamic. Additional elements can be configured as needed. `VolumePairList` uses `"sort_key"` to specify the sorting value - however feel free to specify whatever is necessary for your great algorithm to be successfull and dynamic.
@@ -120,29 +125,30 @@ Additional elements can be configured as needed. `VolumePairList` uses `"sort_ke
Returns a description used for Telegram messages. Returns a description used for Telegram messages.
This should contain the name of the Provider, as well as a short description containing the number of assets. Please follow the format `"PairlistName - top/bottom X pairs"`. This should contain the name of the Provider, as well as a short description containing the number of assets. Please follow the format `"PairlistName - top/bottom X pairs"`.
#### refresh_pairlist #### filter_pairlist
Override this method and run all calculations needed in this method. Override this method and run all calculations needed in this method.
This is called with each iteration of the bot - so consider implementing caching for compute/network heavy calculations. This is called with each iteration of the bot - so consider implementing caching for compute/network heavy calculations.
Assign the resulting whiteslist to `self._whitelist` and `self._blacklist` respectively. These will then be used to run the bot in this iteration. Pairs with open trades will be added to the whitelist to have the sell-methods run correctly. It get's passed a pairlist (which can be the result of previous pairlists) as well as `tickers`, a pre-fetched version of `get_tickers()`.
Please also run `self._validate_whitelist(pairs)` and to check and remove pairs with inactive markets. This function is available in the Parent class (`StaticPairList`) and should ideally not be overwritten. It must return the resulting pairlist (which may then be passed into the next pairlist filter).
Validations are optional, the parent class exposes a `_verify_blacklist(pairlist)` and `_whitelist_for_active_markets(pairlist)` to do default filters. Use this if you limit your result to a certain number of pairs - so the endresult is not shorter than expected.
##### sample ##### sample
``` python ``` python
def refresh_pairlist(self) -> None: def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
# Generate dynamic whitelist # Generate dynamic whitelist
pairs = self._gen_pair_whitelist(self._config['stake_currency'], self._sort_key) pairs = self._calculate_pairlist(pairlist, tickers)
# Validate whitelist to only have active market pairs return pairs
self._whitelist = self._validate_whitelist(pairs)[:self._number_pairs]
``` ```
#### _gen_pair_whitelist #### _gen_pair_whitelist
This is a simple method used by `VolumePairList` - however serves as a good example. This is a simple method used by `VolumePairList` - however serves as a good example.
It implements caching (`@cached(TTLCache(maxsize=1, ttl=1800))`) as well as a configuration option to allow different (but similar) strategies to work with the same PairListProvider. In VolumePairList, this implements different methods of sorting, does early validation so only the expected number of pairs is returned.
## Implement a new Exchange (WIP) ## Implement a new Exchange (WIP)
@@ -177,41 +183,57 @@ raw = ct.fetch_ohlcv(pair, timeframe=timeframe)
# convert to dataframe # convert to dataframe
df1 = parse_ticker_dataframe(raw, timeframe, pair=pair, drop_incomplete=False) df1 = parse_ticker_dataframe(raw, timeframe, pair=pair, drop_incomplete=False)
print(df1["date"].tail(1)) print(df1.tail(1))
print(datetime.utcnow()) print(datetime.utcnow())
``` ```
``` output ``` output
19 2019-06-08 00:00:00+00:00 date open high low close volume
499 2019-06-08 00:00:00+00:00 0.000007 0.000007 0.000007 0.000007 26264344.0
2019-06-09 12:30:27.873327 2019-06-09 12:30:27.873327
``` ```
The output will show the last entry from the Exchange as well as the current UTC date. The output will show the last entry from the Exchange as well as the current UTC date.
If the day shows the same day, then the last candle can be assumed as incomplete and should be dropped (leave the setting `"ohlcv_partial_candle"` from the exchange-class untouched / True). Otherwise, set `"ohlcv_partial_candle"` to `False` to not drop Candles (shown in the example above). If the day shows the same day, then the last candle can be assumed as incomplete and should be dropped (leave the setting `"ohlcv_partial_candle"` from the exchange-class untouched / True). Otherwise, set `"ohlcv_partial_candle"` to `False` to not drop Candles (shown in the example above).
Another way is to run this command multiple times in a row and observe if the volume is changing (while the date remains the same).
## Updating example notebooks ## Updating example notebooks
To keep the jupyter notebooks aligned with the documentation, the following should be ran after updating a example notebook. To keep the jupyter notebooks aligned with the documentation, the following should be ran after updating a example notebook.
``` bash ``` bash
jupyter nbconvert --ClearOutputPreprocessor.enabled=True --inplace user_data/notebooks/strategy_analysis_example.ipynb jupyter nbconvert --ClearOutputPreprocessor.enabled=True --inplace freqtrade/templates/strategy_analysis_example.ipynb
jupyter nbconvert --ClearOutputPreprocessor.enabled=True --to markdown user_data/notebooks/strategy_analysis_example.ipynb --stdout > docs/strategy_analysis_example.md jupyter nbconvert --ClearOutputPreprocessor.enabled=True --to markdown freqtrade/templates/strategy_analysis_example.ipynb --stdout > docs/strategy_analysis_example.md
``` ```
## Continuous integration
This documents some decisions taken for the CI Pipeline.
* CI runs on all OS variants, Linux (ubuntu), macOS and Windows.
* Docker images are build for the branches `master` and `develop`.
* Raspberry PI Docker images are postfixed with `_pi` - so tags will be `:master_pi` and `develop_pi`.
* Docker images contain a file, `/freqtrade/freqtrade_commit` containing the commit this image is based of.
* Full docker image rebuilds are run once a week via schedule.
* Deployments run on ubuntu.
* ta-lib binaries are contained in the build_helpers directory to avoid fails related to external unavailability.
* All tests must pass for a PR to be merged to `master` or `develop`.
## Creating a release ## Creating a release
This part of the documentation is aimed at maintainers, and shows how to create a release. This part of the documentation is aimed at maintainers, and shows how to create a release.
### Create release branch ### Create release branch
``` bash First, pick a commit that's about one week old (to not include latest additions to releases).
# make sure you're in develop branch
git checkout develop
``` bash
# create new branch # create new branch
git checkout -b new_release git checkout -b new_release <commitid>
``` ```
Determine if crucial bugfixes have been made between this commit and the current state, and eventually cherry-pick these.
* Edit `freqtrade/__init__.py` and add the version matching the current date (for example `2019.7` for July 2019). Minor versions can be `2019.7-1` should we need to do a second release that month. * Edit `freqtrade/__init__.py` and add the version matching the current date (for example `2019.7` for July 2019). Minor versions can be `2019.7-1` should we need to do a second release that month.
* Commit this part * Commit this part
* push that branch to the remote and create a PR against the master branch * push that branch to the remote and create a PR against the master branch
@@ -219,18 +241,29 @@ git checkout -b new_release
### Create changelog from git commits ### Create changelog from git commits
!!! Note !!! Note
Make sure that both master and develop are up-todate!. Make sure that the master branch is uptodate!
``` bash ``` bash
# Needs to be done before merging / pulling that branch. # Needs to be done before merging / pulling that branch.
git log --oneline --no-decorate --no-merges master..develop git log --oneline --no-decorate --no-merges master..new_release
```
To keep the release-log short, best wrap the full git changelog into a collapsible details secction.
```markdown
<details>
<summary>Expand full changelog</summary>
... Full git changelog
</details>
``` ```
### Create github release / tag ### Create github release / tag
Once the PR against master is merged (best right after merging): Once the PR against master is merged (best right after merging):
* Use the button "Draft a new release" in the Github UI (subsection releases) * Use the button "Draft a new release" in the Github UI (subsection releases).
* Use the version-number specified as tag. * Use the version-number specified as tag.
* Use "master" as reference (this step comes after the above PR is merged). * Use "master" as reference (this step comes after the above PR is merged).
* Use the above changelog as release comment (as codeblock) * Use the above changelog as release comment (as codeblock)
@@ -239,3 +272,23 @@ Once the PR against master is merged (best right after merging):
* Update version in develop by postfixing that with `-dev` (`2019.6 -> 2019.6-dev`). * Update version in develop by postfixing that with `-dev` (`2019.6 -> 2019.6-dev`).
* Create a PR against develop to update that branch. * Create a PR against develop to update that branch.
## Releases
### pypi
To create a pypi release, please run the following commands:
Additional requirement: `wheel`, `twine` (for uploading), account on pypi with proper permissions.
``` bash
python setup.py sdist bdist_wheel
# For pypi test (to check if some change to the installation did work)
twine upload --repository-url https://test.pypi.org/legacy/ dist/*
# For production:
twine upload dist/*
```
Please don't push non-releases to the productive / real pypi instance.

View File

@@ -26,7 +26,7 @@ To update the image, simply run the above commands again and restart your runnin
Should you require additional libraries, please [build the image yourself](#build-your-own-docker-image). Should you require additional libraries, please [build the image yourself](#build-your-own-docker-image).
!!! Note Docker image update frequency !!! Note "Docker image update frequency"
The official docker images with tags `master`, `develop` and `latest` are automatically rebuild once a week to keep the base image uptodate. The official docker images with tags `master`, `develop` and `latest` are automatically rebuild once a week to keep the base image uptodate.
In addition to that, every merge to `develop` will trigger a rebuild for `develop` and `latest`. In addition to that, every merge to `develop` will trigger a rebuild for `develop` and `latest`.
@@ -160,16 +160,18 @@ docker run -d \
-v ~/.freqtrade/config.json:/freqtrade/config.json \ -v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/user_data/:/freqtrade/user_data \ -v ~/.freqtrade/user_data/:/freqtrade/user_data \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \ -v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
freqtrade --db-url sqlite:///tradesv3.sqlite --strategy MyAwesomeStrategy freqtrade trade --db-url sqlite:///tradesv3.sqlite --strategy MyAwesomeStrategy
``` ```
!!! Note !!! Note
db-url defaults to `sqlite:///tradesv3.sqlite` but it defaults to `sqlite://` if `dry_run=True` is being used. When using docker, it's best to specify `--db-url` explicitly to ensure that the database URL and the mounted database file match.
To override this behaviour use a custom db-url value: i.e.: `--db-url sqlite:///tradesv3.dryrun.sqlite`
!!! Note !!! Note
All available bot command line parameters can be added to the end of the `docker run` command. All available bot command line parameters can be added to the end of the `docker run` command.
!!! Note
You can define a [restart policy](https://docs.docker.com/config/containers/start-containers-automatically/) in docker. It can be useful in some cases to use the `--restart unless-stopped` flag (crash of freqtrade or reboot of your system).
### Monitor your Docker instance ### Monitor your Docker instance
You can use the following commands to monitor and manage your container: You can use the following commands to monitor and manage your container:
@@ -199,7 +201,7 @@ docker run -d \
-v ~/.freqtrade/config.json:/freqtrade/config.json \ -v ~/.freqtrade/config.json:/freqtrade/config.json \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \ -v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
-v ~/.freqtrade/user_data/:/freqtrade/user_data/ \ -v ~/.freqtrade/user_data/:/freqtrade/user_data/ \
freqtrade --strategy AwsomelyProfitableStrategy backtesting freqtrade backtesting --strategy AwsomelyProfitableStrategy
``` ```
Head over to the [Backtesting Documentation](backtesting.md) for more details. Head over to the [Backtesting Documentation](backtesting.md) for more details.

View File

@@ -1,4 +1,4 @@
# Edge positioning # Edge positioning
This page explains how to use Edge Positioning module in your bot in order to enter into a trade only if the trade has a reasonable win rate and risk reward ratio, and consequently adjust your position size and stoploss. This page explains how to use Edge Positioning module in your bot in order to enter into a trade only if the trade has a reasonable win rate and risk reward ratio, and consequently adjust your position size and stoploss.
@@ -9,6 +9,7 @@ This page explains how to use Edge Positioning module in your bot in order to en
Edge does not consider anything else than buy/sell/stoploss signals. So trailing stoploss, ROI, and everything else are ignored in its calculation. Edge does not consider anything else than buy/sell/stoploss signals. So trailing stoploss, ROI, and everything else are ignored in its calculation.
## Introduction ## Introduction
Trading is all about probability. No one can claim that he has a strategy working all the time. You have to assume that sometimes you lose. Trading is all about probability. No one can claim that he has a strategy working all the time. You have to assume that sometimes you lose.
But it doesn't mean there is no rule, it only means rules should work "most of the time". Let's play a game: we toss a coin, heads: I give you 10$, tails: you give me 10$. Is it an interesting game? No, it's quite boring, isn't it? But it doesn't mean there is no rule, it only means rules should work "most of the time". Let's play a game: we toss a coin, heads: I give you 10$, tails: you give me 10$. Is it an interesting game? No, it's quite boring, isn't it?
@@ -22,43 +23,61 @@ Let's complicate it more: you win 80% of the time but only 2$, I win 20% of the
The question is: How do you calculate that? How do you know if you wanna play? The question is: How do you calculate that? How do you know if you wanna play?
The answer comes to two factors: The answer comes to two factors:
- Win Rate - Win Rate
- Risk Reward Ratio - Risk Reward Ratio
### Win Rate ### Win Rate
Win Rate (*W*) is is the mean over some amount of trades (*N*) what is the percentage of winning trades to total number of trades (note that we don't consider how much you gained but only if you won or not). Win Rate (*W*) is is the mean over some amount of trades (*N*) what is the percentage of winning trades to total number of trades (note that we don't consider how much you gained but only if you won or not).
W = (Number of winning trades) / (Total number of trades) = (Number of winning trades) / N ```
W = (Number of winning trades) / (Total number of trades) = (Number of winning trades) / N
```
Complementary Loss Rate (*L*) is defined as Complementary Loss Rate (*L*) is defined as
L = (Number of losing trades) / (Total number of trades) = (Number of losing trades) / N ```
L = (Number of losing trades) / (Total number of trades) = (Number of losing trades) / N
```
or, which is the same, as or, which is the same, as
L = 1 W ```
L = 1 W
```
### Risk Reward Ratio ### Risk Reward Ratio
Risk Reward Ratio (*R*) is a formula used to measure the expected gains of a given investment against the risk of loss. It is basically what you potentially win divided by what you potentially lose: Risk Reward Ratio (*R*) is a formula used to measure the expected gains of a given investment against the risk of loss. It is basically what you potentially win divided by what you potentially lose:
R = Profit / Loss ```
R = Profit / Loss
```
Over time, on many trades, you can calculate your risk reward by dividing your average profit on winning trades by your average loss on losing trades: Over time, on many trades, you can calculate your risk reward by dividing your average profit on winning trades by your average loss on losing trades:
Average profit = (Sum of profits) / (Number of winning trades) ```
Average profit = (Sum of profits) / (Number of winning trades)
Average loss = (Sum of losses) / (Number of losing trades) Average loss = (Sum of losses) / (Number of losing trades)
R = (Average profit) / (Average loss) R = (Average profit) / (Average loss)
```
### Expectancy ### Expectancy
At this point we can combine *W* and *R* to create an expectancy ratio. This is a simple process of multiplying the risk reward ratio by the percentage of winning trades and subtracting the percentage of losing trades, which is calculated as follows: At this point we can combine *W* and *R* to create an expectancy ratio. This is a simple process of multiplying the risk reward ratio by the percentage of winning trades and subtracting the percentage of losing trades, which is calculated as follows:
Expectancy Ratio = (Risk Reward Ratio X Win Rate) Loss Rate = (R X W) L ```
Expectancy Ratio = (Risk Reward Ratio X Win Rate) Loss Rate = (R X W) L
```
So lets say your Win rate is 28% and your Risk Reward Ratio is 5: So lets say your Win rate is 28% and your Risk Reward Ratio is 5:
Expectancy = (5 X 0.28) 0.72 = 0.68 ```
Expectancy = (5 X 0.28) 0.72 = 0.68
```
Superficially, this means that on average you expect this strategys trades to return .68 times the size of your loses. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ. Superficially, this means that on average you expect this strategys trades to return .68 times the size of your loses. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
@@ -69,6 +88,7 @@ You can also use this value to evaluate the effectiveness of modifications to th
**NOTICE:** It's important to keep in mind that Edge is testing your expectancy using historical data, there's no guarantee that you will have a similar edge in the future. It's still vital to do this testing in order to build confidence in your methodology, but be wary of "curve-fitting" your approach to the historical data as things are unlikely to play out the exact same way for future trades. **NOTICE:** It's important to keep in mind that Edge is testing your expectancy using historical data, there's no guarantee that you will have a similar edge in the future. It's still vital to do this testing in order to build confidence in your methodology, but be wary of "curve-fitting" your approach to the historical data as things are unlikely to play out the exact same way for future trades.
## How does it work? ## How does it work?
If enabled in config, Edge will go through historical data with a range of stoplosses in order to find buy and sell/stoploss signals. It then calculates win rate and expectancy over *N* trades for each stoploss. Here is an example: If enabled in config, Edge will go through historical data with a range of stoplosses in order to find buy and sell/stoploss signals. It then calculates win rate and expectancy over *N* trades for each stoploss. Here is an example:
| Pair | Stoploss | Win Rate | Risk Reward Ratio | Expectancy | | Pair | Stoploss | Win Rate | Risk Reward Ratio | Expectancy |
@@ -83,6 +103,7 @@ The goal here is to find the best stoploss for the strategy in order to have the
Edge module then forces stoploss value it evaluated to your strategy dynamically. Edge module then forces stoploss value it evaluated to your strategy dynamically.
### Position size ### Position size
Edge also dictates the stake amount for each trade to the bot according to the following factors: Edge also dictates the stake amount for each trade to the bot according to the following factors:
- Allowed capital at risk - Allowed capital at risk
@@ -90,13 +111,17 @@ Edge also dictates the stake amount for each trade to the bot according to the f
Allowed capital at risk is calculated as follows: Allowed capital at risk is calculated as follows:
Allowed capital at risk = (Capital available_percentage) X (Allowed risk per trade) ```
Allowed capital at risk = (Capital available_percentage) X (Allowed risk per trade)
```
Stoploss is calculated as described above against historical data. Stoploss is calculated as described above against historical data.
Your position size then will be: Your position size then will be:
Position size = (Allowed capital at risk) / Stoploss ```
Position size = (Allowed capital at risk) / Stoploss
```
Example: Example:
@@ -115,100 +140,30 @@ Available capital doesnt change before a position is sold. Lets assume tha
So the Bot receives another buy signal for trade 4 with a stoploss at 2% then your position size would be **0.055 / 0.02 = 2.75 ETH**. So the Bot receives another buy signal for trade 4 with a stoploss at 2% then your position size would be **0.055 / 0.02 = 2.75 ETH**.
## Configurations ## Configurations
Edge module has following configuration options: Edge module has following configuration options:
#### enabled | Parameter | Description |
If true, then Edge will run periodically. |------------|-------------|
| `enabled` | If true, then Edge will run periodically. <br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
(defaults to false) | `process_throttle_secs` | How often should Edge run in seconds. <br>*Defaults to `3600` (once per hour).* <br> ***Datatype:*** *Integer*
| `calculate_since_number_of_days` | Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy. <br> **Note** that it downloads historical data so increasing this number would lead to slowing down the bot. <br>*Defaults to `7`.* <br> ***Datatype:*** *Integer*
#### process_throttle_secs | `capital_available_percentage` | **DEPRECATED - [replaced with `tradable_balance_ratio`](configuration.md#Available balance)** This is the percentage of the total capital on exchange in stake currency. <br>As an example if you have 10 ETH available in your wallet on the exchange and this value is 0.5 (which is 50%), then the bot will use a maximum amount of 5 ETH for trading and considers it as available capital. <br>*Defaults to `0.5`.* <br> ***Datatype:*** *Float*
How often should Edge run in seconds? | `allowed_risk` | Ratio of allowed risk per trade. <br>*Defaults to `0.01` (1%)).* <br> ***Datatype:*** *Float*
| `stoploss_range_min` | Minimum stoploss. <br>*Defaults to `-0.01`.* <br> ***Datatype:*** *Float*
(defaults to 3600 so one hour) | `stoploss_range_max` | Maximum stoploss. <br>*Defaults to `-0.10`.* <br> ***Datatype:*** *Float*
| `stoploss_range_step` | As an example if this is set to -0.01 then Edge will test the strategy for `[-0.01, -0,02, -0,03 ..., -0.09, -0.10]` ranges. <br> **Note** than having a smaller step means having a bigger range which could lead to slow calculation. <br> If you set this parameter to -0.001, you then slow down the Edge calculation by a factor of 10. <br>*Defaults to `-0.001`.* <br> ***Datatype:*** *Float*
#### calculate_since_number_of_days | `minimum_winrate` | It filters out pairs which don't have at least minimum_winrate. <br>This comes handy if you want to be conservative and don't comprise win rate in favour of risk reward ratio. <br>*Defaults to `0.60`.* <br> ***Datatype:*** *Float*
Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy | `minimum_expectancy` | It filters out pairs which have the expectancy lower than this number. <br>Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return. <br>*Defaults to `0.20`.* <br> ***Datatype:*** *Float*
Note that it downloads historical data so increasing this number would lead to slowing down the bot. | `min_trade_number` | When calculating *W*, *R* and *E* (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable. <br>Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something. <br>*Defaults to `10` (it is highly recommended not to decrease this number).* <br> ***Datatype:*** *Integer*
| `max_trade_duration_minute` | Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br>**NOTICE:** While configuring this value, you should take into consideration your ticker interval. As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).<br>*Defaults to `1440` (one day).* <br> ***Datatype:*** *Integer*
(defaults to 7) | `remove_pumps` | Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.<br>*Defaults to `false`.* <br> ***Datatype:*** *Boolean*
#### capital_available_percentage
This is the percentage of the total capital on exchange in stake currency.
As an example if you have 10 ETH available in your wallet on the exchange and this value is 0.5 (which is 50%), then the bot will use a maximum amount of 5 ETH for trading and considers it as available capital.
(defaults to 0.5)
#### allowed_risk
Percentage of allowed risk per trade.
(defaults to 0.01 so 1%)
#### stoploss_range_min
Minimum stoploss.
(defaults to -0.01)
#### stoploss_range_max
Maximum stoploss.
(defaults to -0.10)
#### stoploss_range_step
As an example if this is set to -0.01 then Edge will test the strategy for \[-0.01, -0,02, -0,03 ..., -0.09, -0.10\] ranges.
Note than having a smaller step means having a bigger range which could lead to slow calculation.
If you set this parameter to -0.001, you then slow down the Edge calculation by a factor of 10.
(defaults to -0.01)
#### minimum_winrate
It filters out pairs which don't have at least minimum_winrate.
This comes handy if you want to be conservative and don't comprise win rate in favour of risk reward ratio.
(defaults to 0.60)
#### minimum_expectancy
It filters out pairs which have the expectancy lower than this number.
Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return.
(defaults to 0.20)
#### min_trade_number
When calculating *W*, *R* and *E* (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable.
Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something.
(defaults to 10, it is highly recommended not to decrease this number)
#### max_trade_duration_minute
Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.
**NOTICE:** While configuring this value, you should take into consideration your ticker interval. As an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. Default value is set assuming your strategy interval is relatively small (1m or 5m, etc.).
(defaults to 1 day, i.e. to 60 * 24 = 1440 minutes)
#### remove_pumps
Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.
(defaults to false)
## Running Edge independently ## Running Edge independently
You can run Edge independently in order to see in details the result. Here is an example: You can run Edge independently in order to see in details the result. Here is an example:
```bash ``` bash
freqtrade edge freqtrade edge
``` ```
@@ -235,7 +190,7 @@ An example of its output:
### Update cached pairs with the latest data ### Update cached pairs with the latest data
Edge requires historic data the same way as backtesting does. Edge requires historic data the same way as backtesting does.
Please refer to the [download section](backtesting.md#Getting-data-for-backtesting-and-hyperopt) of the documentation for details. Please refer to the [Data Downloading](data-download.md) section of the documentation for details.
### Precising stoploss range ### Precising stoploss range

84
docs/exchanges.md Normal file
View File

@@ -0,0 +1,84 @@
# Exchange-specific Notes
This page combines common gotchas and informations which are exchange-specific and most likely don't apply to other exchanges.
## Binance
!!! Tip "Stoploss on Exchange"
Binance is currently the only exchange supporting `stoploss_on_exchange`. It provides great advantages, so we recommend to benefit from it.
### Blacklists
For Binance, please add `"BNB/<STAKE>"` to your blacklist to avoid issues.
Accounts having BNB accounts use this to pay for fees - if your first trade happens to be on `BNB`, further trades will consume this position and make the initial BNB order unsellable as the expected amount is not there anymore.
### Binance sites
Binance has been split into 3, and users must use the correct ccxt exchange ID for their exchange, otherwise API keys are not recognized.
* [binance.com](https://www.binance.com/) - International users. Use exchange id: `binance`.
* [binance.us](https://www.binance.us/) - US based users. Use exchange id: `binanceus`.
* [binance.je](https://www.binance.je/) - Binance Jersey, trading fiat currencies. Use exchange id: `binanceje`.
## Kraken
### Historic Kraken data
The Kraken API does only provide 720 historic candles, which is sufficient for Freqtrade dry-run and live trade modes, but is a problem for backtesting.
To download data for the Kraken exchange, using `--dl-trades` is mandatory, otherwise the bot will download the same 720 candles over and over, and you'll not have enough backtest data.
## Bittrex
### Restricted markets
Bittrex split its exchange into US and International versions.
The International version has more pairs available, however the API always returns all pairs, so there is currently no automated way to detect if you're affected by the restriction.
If you have restricted pairs in your whitelist, you'll get a warning message in the log on Freqtrade startup for each restricted pair.
The warning message will look similar to the following:
``` output
[...] Message: bittrex {"success":false,"message":"RESTRICTED_MARKET","result":null,"explanation":null}"
```
If you're an "International" customer on the Bittrex exchange, then this warning will probably not impact you.
If you're a US customer, the bot will fail to create orders for these pairs, and you should remove them from your whitelist.
You can get a list of restricted markets by using the following snippet:
``` python
import ccxt
ct = ccxt.bittrex()
_ = ct.load_markets()
res = [ f"{x['MarketCurrency']}/{x['BaseCurrency']}" for x in ct.publicGetMarkets()['result'] if x['IsRestricted']]
print(res)
```
## Random notes for other exchanges
* The Ocean (exchange id: `theocean`) exchange uses Web3 functionality and requires `web3` python package to be installed:
```shell
$ pip3 install web3
```
### Send incomplete candles to the strategy
Most exchanges return incomplete candles via their ohlcv / klines interface.
By default, Freqtrade assumes that incomplete candles are returned and removes the last candle assuming it's an incomplete candle.
Whether your exchange returns incomplete candles or not can be checked using [the helper script](developer.md#Incomplete-candles) from the Contributor documentation.
If the exchange does return incomplete candles and you would like to have incomplete candles in your strategy, you can set the following parameter in the configuration file.
``` json
{
"exchange": {
"_ft_has_params": {"ohlcv_partial_candle": false}
}
}
```
!!! Warning "Danger of repainting"
Changing this parameter makes the strategy responsible to avoid repainting and handle this accordingly. Doing this is therefore not recommended, and should only be performed by experienced users who are fully aware of the impact this setting has.

View File

@@ -4,7 +4,7 @@
### The bot does not start ### The bot does not start
Running the bot with `freqtrade --config config.json` does show the output `freqtrade: command not found`. Running the bot with `freqtrade trade --config config.json` does show the output `freqtrade: command not found`.
This could have the following reasons: This could have the following reasons:
@@ -48,12 +48,46 @@ You can use the `/forcesell all` command from Telegram.
### I get the message "RESTRICTED_MARKET" ### I get the message "RESTRICTED_MARKET"
Currently known to happen for US Bittrex users. Currently known to happen for US Bittrex users.
Bittrex split its exchange into US and International versions.
The International version has more pairs available, however the API always returns all pairs, so there is currently no automated way to detect if you're affected by the restriction.
If you have restricted pairs in your whitelist, you'll get a warning message in the log on FreqTrade startup for each restricted pair. Read [the Bittrex section about restricted markets](exchanges.md#restricted-markets) for more information.
If you're an "International" Customer on the Bittrex exchange, then this warning will probably not impact you.
If you're a US customer, the bot will fail to create orders for these pairs, and you should remove them from your Whitelist. ### How do I search the bot logs for something?
By default, the bot writes its log into stderr stream. This is implemented this way so that you can easily separate the bot's diagnostics messages from Backtesting, Edge and Hyperopt results, output from other various Freqtrade utility subcommands, as well as from the output of your custom `print()`'s you may have inserted into your strategy. So if you need to search the log messages with the grep utility, you need to redirect stderr to stdout and disregard stdout.
* In unix shells, this normally can be done as simple as:
```shell
$ freqtrade --some-options 2>&1 >/dev/null | grep 'something'
```
(note, `2>&1` and `>/dev/null` should be written in this order)
* Bash interpreter also supports so called process substitution syntax, you can grep the log for a string with it as:
```shell
$ freqtrade --some-options 2> >(grep 'something') >/dev/null
```
or
```shell
$ freqtrade --some-options 2> >(grep -v 'something' 1>&2)
```
* You can also write the copy of Freqtrade log messages to a file with the `--logfile` option:
```shell
$ freqtrade --logfile /path/to/mylogfile.log --some-options
```
and then grep it as:
```shell
$ cat /path/to/mylogfile.log | grep 'something'
```
or even on the fly, as the bot works and the logfile grows:
```shell
$ tail -f /path/to/mylogfile.log | grep 'something'
```
from a separate terminal window.
On Windows, the `--logfilename` option is also supported by Freqtrade and you can use the `findstr` command to search the log for the string of interest:
```
> type \path\to\mylogfile.log | findstr "something"
```
## Hyperopt module ## Hyperopt module

View File

@@ -6,8 +6,12 @@ algorithms included in the `scikit-optimize` package to accomplish this. The
search will burn all your CPU cores, make your laptop sound like a fighter jet search will burn all your CPU cores, make your laptop sound like a fighter jet
and still take a long time. and still take a long time.
In general, the search for best parameters starts with a few random combinations and then uses Bayesian search with a
ML regressor algorithm (currently ExtraTreesRegressor) to quickly find a combination of parameters in the search hyperspace
that minimizes the value of the [loss function](#loss-functions).
Hyperopt requires historic data to be available, just as backtesting does. Hyperopt requires historic data to be available, just as backtesting does.
To learn how to get data for the pairs and exchange you're interrested in, head over to the [Data Downloading](data-download.md) section of the documentation. To learn how to get data for the pairs and exchange you're interested in, head over to the [Data Downloading](data-download.md) section of the documentation.
!!! Bug !!! Bug
Hyperopt can crash when used with only 1 CPU Core as found out in [Issue #1133](https://github.com/freqtrade/freqtrade/issues/1133) Hyperopt can crash when used with only 1 CPU Core as found out in [Issue #1133](https://github.com/freqtrade/freqtrade/issues/1133)
@@ -15,30 +19,50 @@ To learn how to get data for the pairs and exchange you're interrested in, head
## Prepare Hyperopting ## Prepare Hyperopting
Before we start digging into Hyperopt, we recommend you to take a look at Before we start digging into Hyperopt, we recommend you to take a look at
the sample hyperopt file located in [user_data/hyperopts/](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt.py). the sample hyperopt file located in [user_data/hyperopts/](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt.py).
Configuring hyperopt is similar to writing your own strategy, and many tasks will be similar and a lot of code can be copied across from the strategy. Configuring hyperopt is similar to writing your own strategy, and many tasks will be similar and a lot of code can be copied across from the strategy.
The simplest way to get started is to use `freqtrade new-hyperopt --hyperopt AwesomeHyperopt`.
This will create a new hyperopt file from a template, which will be located under `user_data/hyperopts/AwesomeHyperopt.py`.
### Checklist on all tasks / possibilities in hyperopt ### Checklist on all tasks / possibilities in hyperopt
Depending on the space you want to optimize, only some of the below are required: Depending on the space you want to optimize, only some of the below are required:
* fill `populate_indicators` - probably a copy from your strategy
* fill `buy_strategy_generator` - for buy signal optimization * fill `buy_strategy_generator` - for buy signal optimization
* fill `indicator_space` - for buy signal optimzation * fill `indicator_space` - for buy signal optimzation
* fill `sell_strategy_generator` - for sell signal optimization * fill `sell_strategy_generator` - for sell signal optimization
* fill `sell_indicator_space` - for sell signal optimzation * fill `sell_indicator_space` - for sell signal optimzation
Optional, but recommended: !!! Note
`populate_indicators` needs to create all indicators any of thee spaces may use, otherwise hyperopt will not work.
Optional - can also be loaded from a strategy:
* copy `populate_indicators` from your strategy - otherwise default-strategy will be used
* copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used * copy `populate_buy_trend` from your strategy - otherwise default-strategy will be used
* copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used * copy `populate_sell_trend` from your strategy - otherwise default-strategy will be used
!!! Note
Assuming the optional methods are not in your hyperopt file, please use `--strategy AweSomeStrategy` which contains these methods so hyperopt can use these methods instead.
Rarely you may also need to override: Rarely you may also need to override:
* `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default) * `roi_space` - for custom ROI optimization (if you need the ranges for the ROI parameters in the optimization hyperspace that differ from default)
* `generate_roi_table` - for custom ROI optimization (if you need more than 4 entries in the ROI table) * `generate_roi_table` - for custom ROI optimization (if you need the ranges for the values in the ROI table that differ from default or the number of entries (steps) in the ROI table which differs from the default 4 steps)
* `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default) * `stoploss_space` - for custom stoploss optimization (if you need the range for the stoploss parameter in the optimization hyperspace that differs from default)
* `trailing_space` - for custom trailing stop optimization (if you need the ranges for the trailing stop parameters in the optimization hyperspace that differ from default)
!!! Tip "Quickly optimize ROI, stoploss and trailing stoploss"
You can quickly optimize the spaces `roi`, `stoploss` and `trailing` without changing anything (i.e. without creation of a "complete" Hyperopt class with dimensions, parameters, triggers and guards, as described in this document) from the default hyperopt template by relying on your strategy to do most of the calculations.
``` python
# Have a working strategy at hand.
freqtrade new-hyperopt --hyperopt EmptyHyperopt
freqtrade hyperopt --hyperopt EmptyHyperopt --spaces roi stoploss trailing --strategy MyWorkingStrategy --config config.json -e 100
```
### 1. Install a Custom Hyperopt File ### 1. Install a Custom Hyperopt File
@@ -150,13 +174,9 @@ with different value combinations. It will then use the given historical data an
buys based on the buy signals generated with the above function and based on the results buys based on the buy signals generated with the above function and based on the results
it will end with telling you which paramter combination produced the best profits. it will end with telling you which paramter combination produced the best profits.
The search for best parameters starts with a few random combinations and then uses a
regressor algorithm (currently ExtraTreesRegressor) to quickly find a parameter combination
that minimizes the value of the [loss function](#loss-functions).
The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators. The above setup expects to find ADX, RSI and Bollinger Bands in the populated indicators.
When you want to test an indicator that isn't used by the bot currently, remember to When you want to test an indicator that isn't used by the bot currently, remember to
add it to the `populate_indicators()` method in `hyperopt.py`. add it to the `populate_indicators()` method in your custom hyperopt file.
## Loss-functions ## Loss-functions
@@ -173,63 +193,7 @@ Currently, the following loss functions are builtin:
* `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration) * `OnlyProfitHyperOptLoss` (which takes only amount of profit into consideration)
* `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns) * `SharpeHyperOptLoss` (optimizes Sharpe Ratio calculated on the trade returns)
### Creating and using a custom loss function Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
To use a custom loss function class, make sure that the function `hyperopt_loss_function` is defined in your custom hyperopt loss class.
For the sample below, you then need to add the command line parameter `--hyperopt-loss SuperDuperHyperOptLoss` to your hyperopt call so this fuction is being used.
A sample of this can be found below, which is identical to the Default Hyperopt loss implementation. A full sample can be found [user_data/hyperopts/](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_loss.py)
``` python
from freqtrade.optimize.hyperopt import IHyperOptLoss
TARGET_TRADES = 600
EXPECTED_MAX_PROFIT = 3.0
MAX_ACCEPTED_TRADE_DURATION = 300
class SuperDuperHyperOptLoss(IHyperOptLoss):
"""
Defines the default loss function for hyperopt
"""
@staticmethod
def hyperopt_loss_function(results: DataFrame, trade_count: int,
min_date: datetime, max_date: datetime,
*args, **kwargs) -> float:
"""
Objective function, returns smaller number for better results
This is the legacy algorithm (used until now in freqtrade).
Weights are distributed as follows:
* 0.4 to trade duration
* 0.25: Avoiding trade loss
* 1.0 to total profit, compared to the expected value (`EXPECTED_MAX_PROFIT`) defined above
"""
total_profit = results.profit_percent.sum()
trade_duration = results.trade_duration.mean()
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
result = trade_loss + profit_loss + duration_loss
return result
```
Currently, the arguments are:
* `results`: DataFrame containing the result
The following columns are available in results (corresponds to the output-file of backtesting when used with `--export trades`):
`pair, profit_percent, profit_abs, open_time, close_time, open_index, close_index, trade_duration, open_at_end, open_rate, close_rate, sell_reason`
* `trade_count`: Amount of trades (identical to `len(results)`)
* `min_date`: Start date of the hyperopting TimeFrame
* `min_date`: End date of the hyperopting TimeFrame
This function needs to return a floating point number (`float`). Smaller numbers will be interpreted as better results. The parameters and balancing for this is up to you.
!!! Note
This function is called once per iteration - so please make sure to have this as optimized as possible to not slow hyperopt down unnecessarily.
!!! Note
Please keep the arguments `*args` and `**kwargs` in the interface to allow us to extend this interface later.
## Execute Hyperopt ## Execute Hyperopt
@@ -239,15 +203,15 @@ Because hyperopt tries a lot of combinations to find the best parameters it will
We strongly recommend to use `screen` or `tmux` to prevent any connection loss. We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
```bash ```bash
freqtrade -c config.json hyperopt --customhyperopt <hyperoptname> -e 5000 --spaces all freqtrade hyperopt --config config.json --hyperopt <hyperoptname> -e 5000 --spaces all
``` ```
Use `<hyperoptname>` as the name of the custom hyperopt used. Use `<hyperoptname>` as the name of the custom hyperopt used.
The `-e` flag will set how many evaluations hyperopt will do. We recommend The `-e` option will set how many evaluations hyperopt will do. We recommend
running at least several thousand evaluations. running at least several thousand evaluations.
The `--spaces all` flag determines that all possible parameters should be optimized. Possibilities are listed below. The `--spaces all` option determines that all possible parameters should be optimized. Possibilities are listed below.
!!! Note !!! Note
By default, hyperopt will erase previous results and start from scratch. Continuation can be archived by using `--continue`. By default, hyperopt will erase previous results and start from scratch. Continuation can be archived by using `--continue`.
@@ -270,9 +234,17 @@ For example, to use one month of data, pass the following parameter to the hyper
freqtrade hyperopt --timerange 20180401-20180501 freqtrade hyperopt --timerange 20180401-20180501
``` ```
### Running Hyperopt using methods from a strategy
Hyperopt can reuse `populate_indicators`, `populate_buy_trend`, `populate_sell_trend` from your strategy, assuming these methods are **not** in your custom hyperopt file, and a strategy is provided.
```bash
freqtrade hyperopt --strategy SampleStrategy --customhyperopt SampleHyperopt
```
### Running Hyperopt with Smaller Search Space ### Running Hyperopt with Smaller Search Space
Use the `--spaces` argument to limit the search space used by hyperopt. Use the `--spaces` option to limit the search space used by hyperopt.
Letting Hyperopt optimize everything is a huuuuge search space. Often it Letting Hyperopt optimize everything is a huuuuge search space. Often it
might make more sense to start by just searching for initial buy algorithm. might make more sense to start by just searching for initial buy algorithm.
Or maybe you just want to optimize your stoploss or roi table for that awesome Or maybe you just want to optimize your stoploss or roi table for that awesome
@@ -285,8 +257,12 @@ Legal values are:
* `sell`: just search for a new sell strategy * `sell`: just search for a new sell strategy
* `roi`: just optimize the minimal profit table for your strategy * `roi`: just optimize the minimal profit table for your strategy
* `stoploss`: search for the best stoploss value * `stoploss`: search for the best stoploss value
* `trailing`: search for the best trailing stop values
* `default`: `all` except `trailing`
* space-separated list of any of the above values for example `--spaces roi stoploss` * space-separated list of any of the above values for example `--spaces roi stoploss`
The default Hyperopt Search Space, used when no `--space` command line option is specified, does not include the `trailing` hyperspace. We recommend you to run optimization for the `trailing` hyperspace separately, when the best parameters for other hyperspaces were found, validated and pasted into your custom strategy.
### Position stacking and disabling max market positions ### Position stacking and disabling max market positions
In some situations, you may need to run Hyperopt (and Backtesting) with the In some situations, you may need to run Hyperopt (and Backtesting) with the
@@ -308,6 +284,16 @@ number).
You can also enable position stacking in the configuration file by explicitly setting You can also enable position stacking in the configuration file by explicitly setting
`"position_stacking"=true`. `"position_stacking"=true`.
### Reproducible results
The search for optimal parameters starts with a few (currently 30) random combinations in the hyperspace of parameters, random Hyperopt epochs. These random epochs are marked with a leading asterisk sign at the Hyperopt output.
The initial state for generation of these random values (random state) is controlled by the value of the `--random-state` command line option. You can set it to some arbitrary value of your choice to obtain reproducible results.
If you have not set this value explicitly in the command line options, Hyperopt seeds the random state with some random value for you. The random state value for each Hyperopt run is shown in the log, so you can copy and paste it into the `--random-state` command line option to repeat the set of the initial random epochs used.
If you have not changed anything in the command line options, configuration, timerange, Strategy and Hyperopt classes, historical data and the Loss Function -- you should obtain same hyperoptimization results with same random state value used.
## Understand the Hyperopt Result ## Understand the Hyperopt Result
Once Hyperopt is completed you can use the result to create a new strategy. Once Hyperopt is completed you can use the result to create a new strategy.
@@ -341,8 +327,7 @@ So for example you had `rsi-value: 29.0` so we would look at `rsi`-block, that t
(dataframe['rsi'] < 29.0) (dataframe['rsi'] < 29.0)
``` ```
Translating your whole hyperopt result as the new buy-signal Translating your whole hyperopt result as the new buy-signal would then look like:
would then look like:
```python ```python
def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame: def populate_buy_trend(self, dataframe: DataFrame) -> DataFrame:
@@ -361,19 +346,13 @@ You can use the `--print-all` command line option if you would like to see all r
### Understand Hyperopt ROI results ### Understand Hyperopt ROI results
If you are optimizing ROI (i.e. if optimization search-space contains 'all' or 'roi'), your result will look as follows and include a ROI table: If you are optimizing ROI (i.e. if optimization search-space contains 'all', 'default' or 'roi'), your result will look as follows and include a ROI table:
``` ```
Best result: Best result:
44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367 44/100: 135 trades. Avg profit 0.57%. Total profit 0.03871918 BTC (0.7722Σ%). Avg duration 180.4 mins. Objective: 1.94367
Buy hyperspace params:
{ 'adx-value': 44,
'rsi-value': 29,
'adx-enabled': False,
'rsi-enabled': True,
'trigger': 'bb_lower'}
ROI table: ROI table:
{ 0: 0.10674, { 0: 0.10674,
21: 0.09158, 21: 0.09158,
@@ -397,7 +376,7 @@ As stated in the comment, you can also use it as the value of the `minimal_roi`
#### Default ROI Search Space #### Default ROI Search Space
If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the ticker_interval used. By default the values can vary in the following ranges (for some of the most used ticker intervals, values are rounded to 5 digits after the decimal point): If you are optimizing ROI, Freqtrade creates the 'roi' optimization hyperspace for you -- it's the hyperspace of components for the ROI tables. By default, each ROI table generated by the Freqtrade consists of 4 rows (steps). Hyperopt implements adaptive ranges for ROI tables with ranges for values in the ROI steps that depend on the ticker_interval used. By default the values vary in the following ranges (for some of the most used ticker intervals, values are rounded to 5 digits after the decimal point):
| # step | 1m | | 5m | | 1h | | 1d | | | # step | 1m | | 5m | | 1h | | 1d | |
|---|---|---|---|---|---|---|---|---| |---|---|---|---|---|---|---|---|---|
@@ -410,11 +389,11 @@ These ranges should be sufficient in most cases. The minutes in the steps (ROI d
If you have the `generate_roi_table()` and `roi_space()` methods in your custom hyperopt file, remove them in order to utilize these adaptive ROI tables and the ROI hyperoptimization space generated by Freqtrade by default. If you have the `generate_roi_table()` and `roi_space()` methods in your custom hyperopt file, remove them in order to utilize these adaptive ROI tables and the ROI hyperoptimization space generated by Freqtrade by default.
Override the `roi_space()` method if you need components of the ROI tables to vary in other ranges. Override the `generate_roi_table()` and `roi_space()` methods and implement your own custom approach for generation of the ROI tables during hyperoptimization if you need a different structure of the ROI tables or other amount of rows (steps). A sample for these methods can be found in [user_data/hyperopts/sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py). Override the `roi_space()` method if you need components of the ROI tables to vary in other ranges. Override the `generate_roi_table()` and `roi_space()` methods and implement your own custom approach for generation of the ROI tables during hyperoptimization if you need a different structure of the ROI tables or other amount of rows (steps). A sample for these methods can be found in [user_data/hyperopts/sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py).
### Understand Hyperopt Stoploss results ### Understand Hyperopt Stoploss results
If you are optimizing stoploss values (i.e. if optimization search-space contains 'all' or 'stoploss'), your result will look as follows and include stoploss: If you are optimizing stoploss values (i.e. if optimization search-space contains 'all', 'default' or 'stoploss'), your result will look as follows and include stoploss:
``` ```
Best result: Best result:
@@ -441,13 +420,51 @@ As stated in the comment, you can also use it as the value of the `stoploss` set
#### Default Stoploss Search Space #### Default Stoploss Search Space
If you are optimizing stoploss values, Freqtrade creates the 'stoploss' optimization hyperspace for you. By default, the stoploss values in that hyperspace can vary in the range -0.35...-0.02, which is sufficient in most cases. If you are optimizing stoploss values, Freqtrade creates the 'stoploss' optimization hyperspace for you. By default, the stoploss values in that hyperspace vary in the range -0.35...-0.02, which is sufficient in most cases.
If you have the `stoploss_space()` method in your custom hyperopt file, remove it in order to utilize Stoploss hyperoptimization space generated by Freqtrade by default. If you have the `stoploss_space()` method in your custom hyperopt file, remove it in order to utilize Stoploss hyperoptimization space generated by Freqtrade by default.
Override the `stoploss_space()` method and define the desired range in it if you need stoploss values to vary in other range during hyperoptimization. A sample for this method can be found in [user_data/hyperopts/sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py). Override the `stoploss_space()` method and define the desired range in it if you need stoploss values to vary in other range during hyperoptimization. A sample for this method can be found in [user_data/hyperopts/sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_hyperopt_advanced.py).
### Validate backtesting results ### Understand Hyperopt Trailing Stop results
If you are optimizing trailing stop values (i.e. if optimization search-space contains 'all' or 'trailing'), your result will look as follows and include trailing stop parameters:
```
Best result:
45/100: 606 trades. Avg profit 1.04%. Total profit 0.31555614 BTC ( 630.48Σ%). Avg duration 150.3 mins. Objective: -1.10161
Trailing stop:
{ 'trailing_only_offset_is_reached': True,
'trailing_stop': True,
'trailing_stop_positive': 0.02001,
'trailing_stop_positive_offset': 0.06038}
```
In order to use these best trailing stop parameters found by Hyperopt in backtesting and for live trades/dry-run, copy-paste them as the values of the corresponding attributes of your custom strategy:
```
# Trailing stop
# These attributes will be overridden if the config file contains corresponding values.
trailing_stop = True
trailing_stop_positive = 0.02001
trailing_stop_positive_offset = 0.06038
trailing_only_offset_is_reached = True
```
As stated in the comment, you can also use it as the values of the corresponding settings in the configuration file.
#### Default Trailing Stop Search Space
If you are optimizing trailing stop values, Freqtrade creates the 'trailing' optimization hyperspace for you. By default, the `trailing_stop` parameter is always set to True in that hyperspace, the value of the `trailing_only_offset_is_reached` vary between True and False, the values of the `trailing_stop_positive` and `trailing_stop_positive_offset` parameters vary in the ranges 0.02...0.35 and 0.01...0.1 correspondingly, which is sufficient in most cases.
Override the `trailing_space()` method and define the desired range in it if you need values of the trailing stop parameters to vary in other ranges during hyperoptimization. A sample for this method can be found in [user_data/hyperopts/sample_hyperopt_advanced.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/sample_hyperopt_advanced.py).
## Show details of Hyperopt results
After you run Hyperopt for the desired amount of epochs, you can later list all results for analysis, select only best or profitable once, and show the details for any of the epochs previously evaluated. This can be done with the `hyperopt-list` and `hyperopt-show` subcommands. The usage of these subcommands is described in the [Utils](utils.md#list-hyperopt-results) chapter.
## Validate backtesting results
Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected. Once the optimized strategy has been implemented into your strategy, you should backtest this strategy to make sure everything is working as expected.

View File

@@ -11,8 +11,10 @@
<a class="github-button" href="https://github.com/freqtrade/freqtrade/archive/master.zip" data-icon="octicon-cloud-download" data-size="large" aria-label="Download freqtrade/freqtrade on GitHub">Download</a> <a class="github-button" href="https://github.com/freqtrade/freqtrade/archive/master.zip" data-icon="octicon-cloud-download" data-size="large" aria-label="Download freqtrade/freqtrade on GitHub">Download</a>
<!-- Place this tag where you want the button to render. --> <!-- Place this tag where you want the button to render. -->
<a class="github-button" href="https://github.com/freqtrade" data-size="large" aria-label="Follow @freqtrade on GitHub">Follow @freqtrade</a> <a class="github-button" href="https://github.com/freqtrade" data-size="large" aria-label="Follow @freqtrade on GitHub">Follow @freqtrade</a>
## Introduction ## Introduction
Freqtrade is a cryptocurrency trading bot written in Python.
Freqtrade is a crypto-currency algorithmic trading software developed in python (3.6+) and supported on Windows, macOS and Linux.
!!! Danger "DISCLAIMER" !!! Danger "DISCLAIMER"
This software is for educational purposes only. Do not risk money which you are afraid to lose. USE THE SOFTWARE AT YOUR OWN RISK. THE AUTHORS AND ALL AFFILIATES ASSUME NO RESPONSIBILITY FOR YOUR TRADING RESULTS. This software is for educational purposes only. Do not risk money which you are afraid to lose. USE THE SOFTWARE AT YOUR OWN RISK. THE AUTHORS AND ALL AFFILIATES ASSUME NO RESPONSIBILITY FOR YOUR TRADING RESULTS.
@@ -23,18 +25,15 @@ Freqtrade is a cryptocurrency trading bot written in Python.
## Features ## Features
- Based on Python 3.6+: For botting on any operating system — Windows, macOS and Linux. - Develop your Strategy: Write your strategy in python, using [pandas](https://pandas.pydata.org/). Example strategies to inspire you are available in the [strategy repository](https://github.com/freqtrade/freqtrade-strategies).
- Persistence: Persistence is achieved through sqlite database. - Download market data: Download historical data of the exchange and the markets your may want to trade with.
- Dry-run mode: Run the bot without playing money. - Backtest: Test your strategy on downloaded historical data.
- Backtesting: Run a simulation of your buy/sell strategy with historical data. - Optimize: Find the best parameters for your strategy using hyperoptimization which employs machining learning methods. You can optimize buy, sell, take profit (ROI), stop-loss and trailing stop-loss parameters for your strategy.
- Strategy Optimization by machine learning: Use machine learning to optimize your buy/sell strategy parameters with real exchange data. - Select markets: Create your static list or use an automatic one based on top traded volumes and/or prices (not available during backtesting). You can also explicitly blacklist markets you don't want to trade.
- Edge position sizing: Calculate your win rate, risk reward ratio, the best stoploss and adjust your position size before taking a position for each specific market. - Run: Test your strategy with simulated money (Dry-Run mode) or deploy it with real money (Live-Trade mode).
- Whitelist crypto-currencies: Select which crypto-currency you want to trade or use dynamic whitelists based on market (pair) trade volume. - Run using Edge (optional module): The concept is to find the best historical [trade expectancy](edge.md#expectancy) by markets based on variation of the stop-loss and then allow/reject markets to trade. The sizing of the trade is based on a risk of a percentage of your capital.
- Blacklist crypto-currencies: Select which crypto-currency you want to avoid. - Control/Monitor: Use Telegram or a REST API (start/stop the bot, show profit/loss, daily summary, current open trades results, etc.).
- Manageable via Telegram or REST APi: Manage the bot with Telegram or via the builtin REST API. - Analyse: Further analysis can be performed on either Backtesting data or Freqtrade trading history (SQL database), including automated standard plots, and methods to load the data into [interactive environments](data-analysis.md).
- Display profit/loss in fiat: Display your profit/loss in any of 33 fiat currencies supported.
- Daily summary of profit/loss: Receive the daily summary of your profit/loss.
- Performance status report: Receive the performance status of your current trades.
## Requirements ## Requirements
@@ -61,10 +60,10 @@ To run this bot we recommend you a cloud instance with a minimum of:
## Support ## Support
Help / Slack ### Help / Slack
For any questions not covered by the documentation or for further information about the bot, we encourage you to join our Slack channel. For any questions not covered by the documentation or for further information about the bot, we encourage you to join our passionate Slack community.
Click [here](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LTU1MTgxMjkzNmYxNWE1MDEzYzQ3YmU4N2MwZjUyNjJjODRkMDVkNjg4YTAyZGYzYzlhOTZiMTE4ZjQ4YzM0OGE) to join Slack channel. Click [here](https://join.slack.com/t/highfrequencybot/shared_invite/enQtNjU5ODcwNjI1MDU3LTU1MTgxMjkzNmYxNWE1MDEzYzQ3YmU4N2MwZjUyNjJjODRkMDVkNjg4YTAyZGYzYzlhOTZiMTE4ZjQ4YzM0OGE) to join the Freqtrade Slack channel.
## Ready to try? ## Ready to try?

View File

@@ -26,24 +26,32 @@ You will need to create API Keys (Usually you get `key` and `secret`) from the E
## Quick start ## Quick start
Freqtrade provides a Linux/MacOS script to install all dependencies and help you to configure the bot. Freqtrade provides the Linux/MacOS Easy Installation script to install all dependencies and help you configure the bot.
!!! Note
Python3.6 or higher and the corresponding pip are assumed to be available. The install-script will warn and stop if that's not the case.
```bash
git clone git@github.com:freqtrade/freqtrade.git
cd freqtrade
git checkout develop
./setup.sh --install
```
!!! Note !!! Note
Windows installation is explained [here](#windows). Windows installation is explained [here](#windows).
## Easy Installation - Linux Script The easiest way to install and run Freqtrade is to clone the bot GitHub repository and then run the Easy Installation script, if it's available for your platform.
If you are on Debian, Ubuntu or MacOS freqtrade provides a script to Install, Update, Configure, and Reset your bot. !!! Note "Version considerations"
When cloning the repository the default working branch has the name `develop`. This branch contains all last features (can be considered as relatively stable, thanks to automated tests). The `master` branch contains the code of the last release (done usually once per month on an approximately one week old snapshot of the `develop` branch to prevent packaging bugs, so potentially it's more stable).
!!! Note
Python3.6 or higher and the corresponding `pip` are assumed to be available. The install-script will warn you and stop if that's not the case. `git` is also needed to clone the Freqtrade repository.
This can be achieved with the following commands:
```bash
git clone git@github.com:freqtrade/freqtrade.git
cd freqtrade
git checkout master # Optional, see (1)
./setup.sh --install
```
(1) This command switches the cloned repository to the use of the `master` branch. It's not needed if you wish to stay on the `develop` branch. You may later switch between branches at any time with the `git checkout master`/`git checkout develop` commands.
## Easy Installation Script (Linux/MacOS)
If you are on Debian, Ubuntu or MacOS Freqtrade provides the script to install, update, configure and reset the codebase of your bot.
```bash ```bash
$ ./setup.sh $ ./setup.sh
@@ -56,25 +64,25 @@ usage:
** --install ** ** --install **
This script will install everything you need to run the bot: With this option, the script will install everything you need to run the bot:
* Mandatory software as: `ta-lib` * Mandatory software as: `ta-lib`
* Setup your virtualenv * Setup your virtualenv
* Configure your `config.json` file * Configure your `config.json` file
This script is a combination of `install script` `--reset`, `--config` This option is a combination of installation tasks, `--reset` and `--config`.
** --update ** ** --update **
Update parameter will pull the last version of your current branch and update your virtualenv. This option will pull the last version of your current branch and update your virtualenv. Run the script with this option periodically to update your bot.
** --reset ** ** --reset **
Reset parameter will hard reset your branch (only if you are on `master` or `develop`) and recreate your virtualenv. This option will hard reset your branch (only if you are on either `master` or `develop`) and recreate your virtualenv.
** --config ** ** --config **
Config parameter is a `config.json` configurator. This script will ask you questions to setup your bot and create your `config.json`. Use this option to configure the `config.json` configuration file. The script will interactively ask you questions to setup your bot and create your `config.json`.
------ ------
@@ -95,29 +103,26 @@ sudo apt-get update
sudo apt-get install build-essential git sudo apt-get install build-essential git
``` ```
#### Raspberry Pi / Raspbian ### Raspberry Pi / Raspbian
Before installing FreqTrade on a Raspberry Pi running the official Raspbian Image, make sure you have at least Python 3.6 installed. The default image only provides Python 3.5. Probably the easiest way to get a recent version of python is [miniconda](https://repo.continuum.io/miniconda/). The following assumes the latest [Raspbian Buster lite image](https://www.raspberrypi.org/downloads/raspbian/) from at least September 2019.
This image comes with python3.7 preinstalled, making it easy to get freqtrade up and running.
The following assumes that miniconda3 is installed and available in your environment. Since the last miniconda3 installation file uses python 3.4, we will update to python 3.6 on this installation. Tested using a Raspberry Pi 3 with the Raspbian Buster lite image, all updates applied.
It's recommended to use (mini)conda for this as installation/compilation of `numpy` and `pandas` takes a long time.
Additional package to install on your Raspbian, `libffi-dev` required by cryptography (from python-telegram-bot).
``` bash ``` bash
conda config --add channels rpi sudo apt-get install python3-venv libatlas-base-dev
conda install python=3.6 git clone https://github.com/freqtrade/freqtrade.git
conda create -n freqtrade python=3.6 cd freqtrade
conda activate freqtrade
conda install pandas numpy
sudo apt install libffi-dev bash setup.sh -i
python3 -m pip install -r requirements-common.txt
python3 -m pip install -e .
``` ```
!!! Note "Installation duration"
Depending on your internet speed and the Raspberry Pi version, installation can take multiple hours to complete.
!!! Note !!! Note
This does not install hyperopt dependencies. To install these, please use `python3 -m pip install -e .[hyperopt]`. The above does not install hyperopt dependencies. To install these, please use `python3 -m pip install -e .[hyperopt]`.
We do not advise to run hyperopt on a Raspberry Pi, since this is a very resource-heavy operation, which should be done on powerful machine. We do not advise to run hyperopt on a Raspberry Pi, since this is a very resource-heavy operation, which should be done on powerful machine.
### Common ### Common
@@ -151,13 +156,13 @@ python3 -m venv .env
source .env/bin/activate source .env/bin/activate
``` ```
#### 3. Install FreqTrade #### 3. Install Freqtrade
Clone the git repository: Clone the git repository:
```bash ```bash
git clone https://github.com/freqtrade/freqtrade.git git clone https://github.com/freqtrade/freqtrade.git
cd freqtrade
``` ```
Optionally checkout the master branch to get the latest stable release: Optionally checkout the master branch to get the latest stable release:
@@ -166,59 +171,37 @@ Optionally checkout the master branch to get the latest stable release:
git checkout master git checkout master
``` ```
#### 4. Initialize the configuration #### 4. Install python dependencies
```bash
cd freqtrade
cp config.json.example config.json
```
> *To edit the config please refer to [Bot Configuration](configuration.md).*
#### 5. Install python dependencies
``` bash ``` bash
python3 -m pip install --upgrade pip python3 -m pip install --upgrade pip
python3 -m pip install -e . python3 -m pip install -e .
``` ```
#### 5. Initialize the configuration
```bash
# Initialize the user_directory
freqtrade create-userdir --userdir user_data/
cp config.json.example config.json
```
> *To edit the config please refer to [Bot Configuration](configuration.md).*
#### 6. Run the Bot #### 6. Run the Bot
If this is the first time you run the bot, ensure you are running it in Dry-run `"dry_run": true,` otherwise it will start to buy and sell coins. If this is the first time you run the bot, ensure you are running it in Dry-run `"dry_run": true,` otherwise it will start to buy and sell coins.
```bash ```bash
freqtrade -c config.json freqtrade trade -c config.json
``` ```
*Note*: If you run the bot on a server, you should consider using [Docker](docker.md) or a terminal multiplexer like `screen` or [`tmux`](https://en.wikipedia.org/wiki/Tmux) to avoid that the bot is stopped on logout. *Note*: If you run the bot on a server, you should consider using [Docker](docker.md) or a terminal multiplexer like `screen` or [`tmux`](https://en.wikipedia.org/wiki/Tmux) to avoid that the bot is stopped on logout.
#### 7. [Optional] Configure `freqtrade` as a `systemd` service #### 7. (Optional) Post-installation Tasks
From the freqtrade repo... copy `freqtrade.service` to your systemd user directory (usually `~/.config/systemd/user`) and update `WorkingDirectory` and `ExecStart` to match your setup. On Linux, as an optional post-installation task, you may wish to setup the bot to run as a `systemd` service or configure it to send the log messages to the `syslog`/`rsyslog` or `journald` daemons. See [Advanced Logging](advanced-setup.md#advanced-logging) for details.
After that you can start the daemon with:
```bash
systemctl --user start freqtrade
```
For this to be persistent (run when user is logged out) you'll need to enable `linger` for your freqtrade user.
```bash
sudo loginctl enable-linger "$USER"
```
If you run the bot as a service, you can use systemd service manager as a software watchdog monitoring freqtrade bot
state and restarting it in the case of failures. If the `internals.sd_notify` parameter is set to true in the
configuration or the `--sd-notify` command line option is used, the bot will send keep-alive ping messages to systemd
using the sd_notify (systemd notifications) protocol and will also tell systemd its current state (Running or Stopped)
when it changes.
The `freqtrade.service.watchdog` file contains an example of the service unit configuration file which uses systemd
as the watchdog.
!!! Note
The sd_notify communication between the bot and the systemd service manager will not work if the bot runs in a Docker container.
------ ------
@@ -242,6 +225,12 @@ If that is not available on your system, feel free to try the instructions below
### Install freqtrade manually ### Install freqtrade manually
!!! Note
Make sure to use 64bit Windows and 64bit Python to avoid problems with backtesting or hyperopt due to the memory constraints 32bit applications have under Windows.
!!! Hint
Using the [Anaconda Distribution](https://www.anaconda.com/distribution/) under Windows can greatly help with installation problems. Check out the [Conda section](#using-conda) in this document for more information.
#### Clone the git repository #### Clone the git repository
```bash ```bash
@@ -281,3 +270,18 @@ The easiest way is to download install Microsoft Visual Studio Community [here](
Now you have an environment ready, the next step is Now you have an environment ready, the next step is
[Bot Configuration](configuration.md). [Bot Configuration](configuration.md).
## Troubleshooting
### MacOS installation error
Newer versions of MacOS may have installation failed with errors like `error: command 'g++' failed with exit status 1`.
This error will require explicit installation of the SDK Headers, which are not installed by default in this version of MacOS.
For MacOS 10.14, this can be accomplished with the below command.
``` bash
open /Library/Developer/CommandLineTools/Packages/macOS_SDK_headers_for_macOS_10.14.pkg
```
If this file is inexistant, then you're probably on a different version of MacOS, so you may need to consult the internet for specific resolution details.

View File

@@ -23,45 +23,53 @@ The `freqtrade plot-dataframe` subcommand shows an interactive graph with three
Possible arguments: Possible arguments:
``` ```
usage: freqtrade plot-dataframe [-h] [-p PAIRS [PAIRS ...]] usage: freqtrade plot-dataframe [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [-s NAME]
[--indicators1 INDICATORS1 [INDICATORS1 ...]] [--strategy-path PATH] [-p PAIRS [PAIRS ...]] [--indicators1 INDICATORS1 [INDICATORS1 ...]]
[--indicators2 INDICATORS2 [INDICATORS2 ...]] [--indicators2 INDICATORS2 [INDICATORS2 ...]] [--plot-limit INT] [--db-url PATH]
[--plot-limit INT] [--db-url PATH] [--trade-source {DB,file}] [--export EXPORT] [--export-filename PATH] [--timerange TIMERANGE]
[--trade-source {DB,file}] [--export EXPORT] [-i TICKER_INTERVAL]
[--export-filename PATH]
[--timerange TIMERANGE]
optional arguments: optional arguments:
-h, --help show this help message and exit -h, --help show this help message and exit
-p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...] -p PAIRS [PAIRS ...], --pairs PAIRS [PAIRS ...]
Show profits for only these pairs. Pairs are space- Show profits for only these pairs. Pairs are space-separated.
separated.
--indicators1 INDICATORS1 [INDICATORS1 ...] --indicators1 INDICATORS1 [INDICATORS1 ...]
Set indicators from your strategy you want in the Set indicators from your strategy you want in the first row of the graph. Space-separated list. Example:
first row of the graph. Space-separated list. Example:
`ema3 ema5`. Default: `['sma', 'ema3', 'ema5']`. `ema3 ema5`. Default: `['sma', 'ema3', 'ema5']`.
--indicators2 INDICATORS2 [INDICATORS2 ...] --indicators2 INDICATORS2 [INDICATORS2 ...]
Set indicators from your strategy you want in the Set indicators from your strategy you want in the third row of the graph. Space-separated list. Example:
third row of the graph. Space-separated list. Example:
`fastd fastk`. Default: `['macd', 'macdsignal']`. `fastd fastk`. Default: `['macd', 'macdsignal']`.
--plot-limit INT Specify tick limit for plotting. Notice: too high --plot-limit INT Specify tick limit for plotting. Notice: too high values cause huge files. Default: 750.
values cause huge files. Default: 750. --db-url PATH Override trades database URL, this is useful in custom deployments (default: `sqlite:///tradesv3.sqlite`
--db-url PATH Override trades database URL, this is useful in custom for Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for Dry Run).
deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite://` for Dry Run).
--trade-source {DB,file} --trade-source {DB,file}
Specify the source for trades (Can be DB or file Specify the source for trades (Can be DB or file (backtest file)) Default: file
(backtest file)) Default: file --export EXPORT Export backtest results, argument are: trades. Example: `--export=trades`
--export EXPORT Export backtest results, argument are: trades.
Example: `--export=trades`
--export-filename PATH --export-filename PATH
Save backtest results to the file with this filename Save backtest results to the file with this filename. Requires `--export` to be set as well. Example:
(default: `user_data/backtest_results/backtest- `--export-filename=user_data/backtest_results/backtest_today.json`
result.json`). Requires `--export` to be set as well.
Example: `--export-filename=user_data/backtest_results
/backtest_today.json`
--timerange TIMERANGE --timerange TIMERANGE
Specify what timerange of data to use. Specify what timerange of data to use.
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
Specify ticker interval (`1m`, `5m`, `30m`, `1h`, `1d`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
Strategy arguments:
-s NAME, --strategy NAME
Specify strategy class name which will be used by the bot.
--strategy-path PATH Specify additional strategy lookup path.
``` ```
@@ -79,11 +87,11 @@ The `-p/--pairs` argument can be used to specify pairs you would like to plot.
Specify custom indicators. Specify custom indicators.
Use `--indicators1` for the main plot and `--indicators2` for the subplot below (if values are in a different range than prices). Use `--indicators1` for the main plot and `--indicators2` for the subplot below (if values are in a different range than prices).
!!! tip !!! Tip
You will almost certainly want to specify a custom strategy! This can be done by adding `-s Classname` / `--strategy ClassName` to the command. You will almost certainly want to specify a custom strategy! This can be done by adding `-s Classname` / `--strategy ClassName` to the command.
``` bash ``` bash
freqtrade --strategy AwesomeStrategy plot-dataframe -p BTC/ETH --indicators1 sma ema --indicators2 macd freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --indicators1 sma ema --indicators2 macd
``` ```
### Further usage examples ### Further usage examples
@@ -91,37 +99,98 @@ freqtrade --strategy AwesomeStrategy plot-dataframe -p BTC/ETH --indicators1 sma
To plot multiple pairs, separate them with a space: To plot multiple pairs, separate them with a space:
``` bash ``` bash
freqtrade --strategy AwesomeStrategy plot-dataframe -p BTC/ETH XRP/ETH freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH XRP/ETH
``` ```
To plot a timerange (to zoom in) To plot a timerange (to zoom in)
``` bash ``` bash
freqtrade --strategy AwesomeStrategy plot-dataframe -p BTC/ETH --timerange=20180801-20180805 freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
``` ```
To plot trades stored in a database use `--db-url` in combination with `--trade-source DB`: To plot trades stored in a database use `--db-url` in combination with `--trade-source DB`:
``` bash ``` bash
freqtrade --strategy AwesomeStrategy plot-dataframe --db-url sqlite:///tradesv3.dry_run.sqlite -p BTC/ETH --trade-source DB freqtrade plot-dataframe --strategy AwesomeStrategy --db-url sqlite:///tradesv3.dry_run.sqlite -p BTC/ETH --trade-source DB
``` ```
To plot trades from a backtesting result, use `--export-filename <filename>` To plot trades from a backtesting result, use `--export-filename <filename>`
``` bash ``` bash
freqtrade --strategy AwesomeStrategy plot-dataframe --export-filename user_data/backtest_results/backtest-result.json -p BTC/ETH freqtrade plot-dataframe --strategy AwesomeStrategy --export-filename user_data/backtest_results/backtest-result.json -p BTC/ETH
``` ```
### Plot dataframe basics
![plot-dataframe2](assets/plot-dataframe2.png)
The `plot-dataframe` subcommand requires backtesting data, a strategy and either a backtesting-results file or a database, containing trades corresponding to the strategy.
The resulting plot will have the following elements:
* Green triangles: Buy signals from the strategy. (Note: not every buy signal generates a trade, compare to cyan circles.)
* Red triangles: Sell signals from the strategy. (Also, not every sell signal terminates a trade, compare to red and green squares.)
* Cyan circles: Trade entry points.
* Red squares: Trade exit points for trades with loss or 0% profit.
* Green squares: Trade exit points for profitable trades.
* Indicators with values corresponding to the candle scale (e.g. SMA/EMA), as specified with `--indicators1`.
* Volume (bar chart at the bottom of the main chart).
* Indicators with values in different scales (e.g. MACD, RSI) below the volume bars, as specified with `--indicators2`.
!!! Note "Bollinger Bands"
Bollinger bands are automatically added to the plot if the columns `bb_lowerband` and `bb_upperband` exist, and are painted as a light blue area spanning from the lower band to the upper band.
#### Advanced plot configuration
An advanced plot configuration can be specified in the strategy in the `plot_config` parameter.
Additional features when using plot_config include:
* Specify colors per indicator
* Specify additional subplots
The sample plot configuration below specifies fixed colors for the indicators. Otherwise consecutive plots may produce different colorschemes each time, making comparisons difficult.
It also allows multiple subplots to display both MACD and RSI at the same time.
Sample configuration with inline comments explaining the process:
``` python
plot_config = {
'main_plot': {
# Configuration for main plot indicators.
# Specifies `ema10` to be red, and `ema50` to be a shade of gray
'ema10': {'color': 'red'},
'ema50': {'color': '#CCCCCC'},
# By omitting color, a random color is selected.
'sar': {},
},
'subplots': {
# Create subplot MACD
"MACD": {
'macd': {'color': 'blue'},
'macdsignal': {'color': 'orange'},
},
# Additional subplot RSI
"RSI": {
'rsi': {'color': 'red'},
}
}
}
```
!!! Note
The above configuration assumes that `ema10`, `ema50`, `macd`, `macdsignal` and `rsi` are columns in the DataFrame created by the strategy.
## Plot profit ## Plot profit
![plot-profit](assets/plot-profit.png) ![plot-profit](assets/plot-profit.png)
The `freqtrade plot-profit` subcommand shows an interactive graph with three plots: The `plot-profit` subcommand shows an interactive graph with three plots:
1) Average closing price for all pairs * Average closing price for all pairs.
2) The summarized profit made by backtesting. * The summarized profit made by backtesting.
Note that this is not the real-world profit, but more of an estimate. Note that this is not the real-world profit, but more of an estimate.
3) Profit for each individual pair * Profit for each individual pair.
The first graph is good to get a grip of how the overall market progresses. The first graph is good to get a grip of how the overall market progresses.
@@ -133,10 +202,11 @@ The third graph can be useful to spot outliers, events in pairs that cause profi
Possible options for the `freqtrade plot-profit` subcommand: Possible options for the `freqtrade plot-profit` subcommand:
``` ```
usage: freqtrade plot-profit [-h] [-p PAIRS [PAIRS ...]] usage: freqtrade plot-profit [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [-p PAIRS [PAIRS ...]]
[--timerange TIMERANGE] [--export EXPORT] [--timerange TIMERANGE] [--export EXPORT]
[--export-filename PATH] [--db-url PATH] [--export-filename PATH] [--db-url PATH]
[--trade-source {DB,file}] [--trade-source {DB,file}] [-i TICKER_INTERVAL]
optional arguments: optional arguments:
-h, --help show this help message and exit -h, --help show this help message and exit
@@ -148,17 +218,35 @@ optional arguments:
--export EXPORT Export backtest results, argument are: trades. --export EXPORT Export backtest results, argument are: trades.
Example: `--export=trades` Example: `--export=trades`
--export-filename PATH --export-filename PATH
Save backtest results to the file with this filename Save backtest results to the file with this filename.
(default: `user_data/backtest_results/backtest- Requires `--export` to be set as well. Example:
result.json`). Requires `--export` to be set as well. `--export-filename=user_data/backtest_results/backtest
Example: `--export-filename=user_data/backtest_results _today.json`
/backtest_today.json`
--db-url PATH Override trades database URL, this is useful in custom --db-url PATH Override trades database URL, this is useful in custom
deployments (default: `sqlite:///tradesv3.sqlite` for deployments (default: `sqlite:///tradesv3.sqlite` for
Live Run mode, `sqlite://` for Dry Run). Live Run mode, `sqlite:///tradesv3.dryrun.sqlite` for
Dry Run).
--trade-source {DB,file} --trade-source {DB,file}
Specify the source for trades (Can be DB or file Specify the source for trades (Can be DB or file
(backtest file)) Default: file (backtest file)) Default: file
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
Specify ticker interval (`1m`, `5m`, `30m`, `1h`,
`1d`).
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are:
'syslog', 'journald'. See the documentation for more
details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
``` ```

View File

@@ -1,2 +1,2 @@
mkdocs-material==4.4.3 mkdocs-material==4.6.0
mdx_truly_sane_lists==1.2 mdx_truly_sane_lists==1.2

View File

@@ -16,13 +16,20 @@ Sample configuration:
}, },
``` ```
!!! Danger Security warning !!! Danger "Security warning"
By default, the configuration listens on localhost only (so it's not reachable from other systems). We strongly recommend to not expose this API to the internet and choose a strong, unique password, since others will potentially be able to control your bot. By default, the configuration listens on localhost only (so it's not reachable from other systems). We strongly recommend to not expose this API to the internet and choose a strong, unique password, since others will potentially be able to control your bot.
!!! Danger Password selection !!! Danger "Password selection"
Please make sure to select a very strong, unique password to protect your bot from unauthorized access. Please make sure to select a very strong, unique password to protect your bot from unauthorized access.
You can then access the API by going to `http://127.0.0.1:8080/api/v1/version` to check if the API is running correctly. You can then access the API by going to `http://127.0.0.1:8080/api/v1/ping` in a browser to check if the API is running correctly.
This should return the response:
``` output
{"status":"pong"}
```
All other endpoints return sensitive info and require authentication, so are not available through a web browser.
To generate a secure password, either use a password manager, or use the below code snipped. To generate a secure password, either use a password manager, or use the below code snipped.
@@ -58,7 +65,7 @@ docker run -d \
-v ~/.freqtrade/user_data/:/freqtrade/user_data \ -v ~/.freqtrade/user_data/:/freqtrade/user_data \
-v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \ -v ~/.freqtrade/tradesv3.sqlite:/freqtrade/tradesv3.sqlite \
-p 127.0.0.1:8080:8080 \ -p 127.0.0.1:8080:8080 \
freqtrade --db-url sqlite:///tradesv3.sqlite --strategy MyAwesomeStrategy freqtrade trade --db-url sqlite:///tradesv3.sqlite --strategy MyAwesomeStrategy
``` ```
!!! Danger "Security warning" !!! Danger "Security warning"
@@ -99,6 +106,7 @@ python3 scripts/rest_client.py --config rest_config.json <command> [optional par
| `stop` | | Stops the trader | `stop` | | Stops the trader
| `stopbuy` | | Stops the trader from opening new trades. Gracefully closes open trades according to their rules. | `stopbuy` | | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
| `reload_conf` | | Reloads the configuration file | `reload_conf` | | Reloads the configuration file
| `show_config` | | Shows part of the current configuration with relevant settings to operation
| `status` | | Lists all open trades | `status` | | Lists all open trades
| `count` | | Displays number of trades used and available | `count` | | Displays number of trades used and available
| `profit` | | Display a summary of your profit/loss from close trades and some stats about your performance | `profit` | | Display a summary of your profit/loss from close trades and some stats about your performance
@@ -165,6 +173,10 @@ reload_conf
Reload configuration Reload configuration
:returns: json object :returns: json object
show_config
Returns part of the configuration, relevant for trading operations.
:return: json object containing the version
start start
Start the bot if it's in stopped state. Start the bot if it's in stopped state.
:returns: json object :returns: json object

View File

@@ -3,74 +3,101 @@
The `stoploss` configuration parameter is loss in percentage that should trigger a sale. The `stoploss` configuration parameter is loss in percentage that should trigger a sale.
For example, value `-0.10` will cause immediate sell if the profit dips below -10% for a given trade. This parameter is optional. For example, value `-0.10` will cause immediate sell if the profit dips below -10% for a given trade. This parameter is optional.
Most of the strategy files already include the optimal `stoploss` Most of the strategy files already include the optimal `stoploss` value.
value. This parameter is optional. If you use it in the configuration file, it will take over the
`stoploss` value from the strategy file.
## Stop Loss support !!! Info
All stoploss properties mentioned in this file can be set in the Strategy, or in the configuration. Configuration values will override the strategy values.
## Stop Loss Types
At this stage the bot contains the following stoploss support modes: At this stage the bot contains the following stoploss support modes:
1. static stop loss, defined in either the strategy or configuration. 1. Static stop loss.
2. trailing stop loss, defined in the configuration. 2. Trailing stop loss.
3. trailing stop loss, custom positive loss, defined in configuration. 3. Trailing stop loss, custom positive loss.
4. Trailing stop loss only once the trade has reached a certain offset.
!!! Note Those stoploss modes can be *on exchange* or *off exchange*. If the stoploss is *on exchange* it means a stoploss limit order is placed on the exchange immediately after buy order happens successfully. This will protect you against sudden crashes in market as the order will be in the queue immediately and if market goes down then the order has more chance of being fulfilled.
All stoploss properties can be configured in either Strategy or configuration. Configuration values override strategy values.
Those stoploss modes can be *on exchange* or *off exchange*. If the stoploss is *on exchange* it means a stoploss limit order is placed on the exchange immediately after buy order happens successfuly. This will protect you against sudden crashes in market as the order will be in the queue immediately and if market goes down then the order has more chance of being fulfilled. In case of stoploss on exchange there is another parameter called `stoploss_on_exchange_interval`. This configures the interval in seconds at which the bot will check the stoploss and update it if necessary.
In case of stoploss on exchange there is another parameter called `stoploss_on_exchange_interval`. This configures the interval in seconds at which the bot will check the stoploss and update it if necessary. As an example in case of trailing stoploss if the order is on the exchange and the market is going up then the bot automatically cancels the previous stoploss order and put a new one with a stop value higher than previous one. It is clear that the bot cannot do it every 5 seconds otherwise it gets banned. So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute). For example, assuming the stoploss is on exchange, and trailing stoploss is enabled, and the market is going up, then the bot automatically cancels the previous stoploss order and puts a new one with a stop value higher than the previous stoploss order.
The bot cannot do this every 5 seconds (at each iteration), otherwise it would get banned by the exchange.
So this parameter will tell the bot how often it should update the stoploss order. The default value is 60 (1 minute).
This same logic will reapply a stoploss order on the exchange should you cancel it accidentally.
!!! Note !!! Note
Stoploss on exchange is only supported for Binance as of now. Stoploss on exchange is only supported for Binance as of now.
## Static Stop Loss ## Static Stop Loss
This is very simple, basically you define a stop loss of x in your strategy file or alternative in the configuration, which This is very simple, you define a stop loss of x (as a ratio of price, i.e. x * 100% of price). This will try to sell the asset once the loss exceeds the defined loss.
will overwrite the strategy definition. This will basically try to sell your asset, the second the loss exceeds the defined loss.
## Trailing Stop Loss ## Trailing Stop Loss
The initial value for this stop loss, is defined in your strategy or configuration. Just as you would define your Stop Loss normally. The initial value for this is `stoploss`, just as you would define your static Stop loss.
To enable this Feauture all you have to do is to define the configuration element: To enable trailing stoploss:
``` json ``` python
"trailing_stop" : True trailing_stop = True
``` ```
This will now activate an algorithm, which automatically moves your stop loss up every time the price of your asset increases. This will now activate an algorithm, which automatically moves the stop loss up every time the price of your asset increases.
For example, simplified math, For example, simplified math:
* you buy an asset at a price of 100$ * the bot buys an asset at a price of 100$
* your stop loss is defined at 2% * the stop loss is defined at 2%
* which means your stop loss, gets triggered once your asset dropped below 98$ * the stop loss would get triggered once the asset dropps below 98$
* assuming your asset now increases to 102$ * assuming the asset now increases to 102$
* your stop loss, will now be 2% of 102$ or 99.96$ * the stop loss will now be 2% of 102$ or 99.96$
* now your asset drops in value to 101$, your stop loss, will still be 99.96$ * now the asset drops in value to 101$, the stop loss will still be 99.96$ and would trigger at 99.96$.
basically what this means is that your stop loss will be adjusted to be always be 2% of the highest observed price In summary: The stoploss will be adjusted to be always be 2% of the highest observed price.
### Custom positive loss ### Custom positive stoploss
Due to demand, it is possible to have a default stop loss, when you are in the red with your buy, but once your profit surpasses a certain percentage, It is also possible to have a default stop loss, when you are in the red with your buy, but once your profit surpasses a certain percentage, the system will utilize a new stop loss, which can have a different value.
the system will utilize a new stop loss, which can be a different value. For example your default stop loss is 5%, but once you have 1.1% profit, For example your default stop loss is 5%, but once you have 1.1% profit, it will be changed to be only a 1% stop loss, which trails the green candles until it goes below them.
it will be changed to be only a 1% stop loss, which trails the green candles until it goes below them.
Both values can be configured in the main configuration file and requires `"trailing_stop": true` to be set to true. Both values require `trailing_stop` to be set to true.
``` json ``` python
"trailing_stop_positive": 0.01, trailing_stop_positive = 0.01
"trailing_stop_positive_offset": 0.011, trailing_stop_positive_offset = 0.011
"trailing_only_offset_is_reached": false
``` ```
The 0.01 would translate to a 1% stop loss, once you hit 1.1% profit. The 0.01 would translate to a 1% stop loss, once you hit 1.1% profit.
Before this, `stoploss` is used for the trailing stoploss.
You should also make sure to have this value (`trailing_stop_positive_offset`) lower than your minimal ROI, otherwise minimal ROI will apply first and sell your trade. Read the [next section](#trailing-only-once-offset-is-reached) to keep stoploss at 5% of the entry point.
If `"trailing_only_offset_is_reached": true` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured`stoploss`. !!! Tip
Make sure to have this value (`trailing_stop_positive_offset`) lower than minimal ROI, otherwise minimal ROI will apply first and sell the trade.
### Trailing only once offset is reached
It is also possible to use a static stoploss until the offset is reached, and then trail the trade to take profits once the market turns.
If `"trailing_only_offset_is_reached": true` then the trailing stoploss is only activated once the offset is reached. Until then, the stoploss remains at the configured `stoploss`.
This option can be used with or without `trailing_stop_positive`, but uses `trailing_stop_positive_offset` as offset.
``` python
trailing_stop_positive_offset = 0.011
trailing_only_offset_is_reached = true
```
Simplified example:
``` python
stoploss = 0.05
trailing_stop_positive_offset = 0.03
trailing_only_offset_is_reached = True
```
* the bot buys an asset at a price of 100$
* the stop loss is defined at 5%
* the stop loss will remain at 95% until profit reaches +3%
## Changing stoploss on open trades ## Changing stoploss on open trades

View File

@@ -1,4 +1,4 @@
# Optimization # Strategy Customization
This page explains where to customize your strategies, and add new This page explains where to customize your strategies, and add new
indicators. indicators.
@@ -7,24 +7,28 @@ indicators.
This is very simple. Copy paste your strategy file into the directory `user_data/strategies`. This is very simple. Copy paste your strategy file into the directory `user_data/strategies`.
Let assume you have a class called `AwesomeStrategy` in the file `awesome-strategy.py`: Let assume you have a class called `AwesomeStrategy` in the file `AwesomeStrategy.py`:
1. Move your file into `user_data/strategies` (you should have `user_data/strategies/awesome-strategy.py` 1. Move your file into `user_data/strategies` (you should have `user_data/strategies/AwesomeStrategy.py`
2. Start the bot with the param `--strategy AwesomeStrategy` (the parameter is the class name) 2. Start the bot with the param `--strategy AwesomeStrategy` (the parameter is the class name)
```bash ```bash
freqtrade --strategy AwesomeStrategy freqtrade trade --strategy AwesomeStrategy
``` ```
## Change your strategy ## Develop your own strategy
The bot includes a default strategy file. However, we recommend you to The bot includes a default strategy file.
use your own file to not have to lose your parameters every time the default Also, several other strategies are available in the [strategy repository](https://github.com/freqtrade/freqtrade-strategies).
strategy file will be updated on Github. Put your custom strategy file
into the directory `user_data/strategies`.
Best copy the test-strategy and modify this copy to avoid having bot-updates override your changes. You will however most likely have your own idea for a strategy.
`cp user_data/strategies/sample_strategy.py user_data/strategies/awesome-strategy.py` This document intends to help you develop one for yourself.
To get started, use `freqtrade new-strategy --strategy AwesomeStrategy`.
This will create a new strategy file from a template, which will be located under `user_data/strategies/AwesomeStrategy.py`.
!!! Note
This is just a template file, which will most likely not be profitable out of the box.
### Anatomy of a strategy ### Anatomy of a strategy
@@ -45,19 +49,19 @@ The current version is 2 - which is also the default when it's not set explicitl
Future versions will require this to be set. Future versions will require this to be set.
```bash ```bash
freqtrade --strategy AwesomeStrategy freqtrade trade --strategy AwesomeStrategy
``` ```
**For the following section we will use the [user_data/strategies/sample_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/sample_strategy.py) **For the following section we will use the [user_data/strategies/sample_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_strategy.py)
file as reference.** file as reference.**
!!! Note Strategies and Backtesting !!! Note "Strategies and Backtesting"
To avoid problems and unexpected differences between Backtesting and dry/live modes, please be aware To avoid problems and unexpected differences between Backtesting and dry/live modes, please be aware
that during backtesting the full time-interval is passed to the `populate_*()` methods at once. that during backtesting the full time-interval is passed to the `populate_*()` methods at once.
It is therefore best to use vectorized operations (across the whole dataframe, not loops) and It is therefore best to use vectorized operations (across the whole dataframe, not loops) and
avoid index referencing (`df.iloc[-1]`), but instead use `df.shift()` to get to the previous candle. avoid index referencing (`df.iloc[-1]`), but instead use `df.shift()` to get to the previous candle.
!!! Warning Using future data !!! Warning "Warning: Using future data"
Since backtesting passes the full time interval to the `populate_*()` methods, the strategy author Since backtesting passes the full time interval to the `populate_*()` methods, the strategy author
needs to take care to avoid having the strategy utilize data from the future. needs to take care to avoid having the strategy utilize data from the future.
Some common patterns for this are listed in the [Common Mistakes](#common-mistakes-when-developing-strategies) section of this document. Some common patterns for this are listed in the [Common Mistakes](#common-mistakes-when-developing-strategies) section of this document.
@@ -114,9 +118,40 @@ def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame
``` ```
!!! Note "Want more indicator examples?" !!! Note "Want more indicator examples?"
Look into the [user_data/strategies/sample_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/sample_strategy.py). Look into the [user_data/strategies/sample_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/templates/sample_strategy.py).
Then uncomment indicators you need. Then uncomment indicators you need.
### Strategy startup period
Most indicators have an instable startup period, in which they are either not available, or the calculation is incorrect. This can lead to inconsistencies, since Freqtrade does not know how long this instable period should be.
To account for this, the strategy can be assigned the `startup_candle_count` attribute.
This should be set to the maximum number of candles that the strategy requires to calculate stable indicators.
In this example strategy, this should be set to 100 (`startup_candle_count = 100`), since the longest needed history is 100 candles.
``` python
dataframe['ema100'] = ta.EMA(dataframe, timeperiod=100)
```
By letting the bot know how much history is needed, backtest trades can start at the specified timerange during backtesting and hyperopt.
!!! Warning
`startup_candle_count` should be below `ohlcv_candle_limit` (which is 500 for most exchanges) - since only this amount of candles will be available during Dry-Run/Live Trade operations.
#### Example
Let's try to backtest 1 month (January 2019) of 5m candles using the an example strategy with EMA100, as above.
``` bash
freqtrade backtesting --timerange 20190101-20190201 --ticker-interval 5m
```
Assuming `startup_candle_count` is set to 100, backtesting knows it needs 100 candles to generate valid buy signals. It will load data from `20190101 - (100 * 5m)` - which is ~2019-12-31 15:30:00.
If this data is available, indicators will be calculated with this extended timerange. The instable startup period (up to 2019-01-01 00:00:00) will then be removed before starting backtesting.
!!! Note
If data for the startup period is not available, then the timerange will be adjusted to account for this startup period - so Backtesting would start at 2019-01-01 08:30:00.
### Buy signal rules ### Buy signal rules
Edit the method `populate_buy_trend()` in your strategy file to update your buy strategy. Edit the method `populate_buy_trend()` in your strategy file to update your buy strategy.
@@ -267,10 +302,10 @@ class Awesomestrategy(IStrategy):
``` ```
!!! Warning !!! Warning
The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash. The data is not persisted after a bot-restart (or config-reload). Also, the amount of data should be kept smallish (no DataFrames and such), otherwise the bot will start to consume a lot of memory and eventually run out of memory and crash.
!!! Note !!! Note
If the data is pair-specific, make sure to use pair as one of the keys in the dictionary. If the data is pair-specific, make sure to use pair as one of the keys in the dictionary.
### Additional data (DataProvider) ### Additional data (DataProvider)
@@ -283,9 +318,9 @@ Please always check the mode of operation to select the correct method to get da
#### Possible options for DataProvider #### Possible options for DataProvider
- `available_pairs` - Property with tuples listing cached pairs with their intervals (pair, interval). - `available_pairs` - Property with tuples listing cached pairs with their intervals (pair, interval).
- `ohlcv(pair, ticker_interval)` - Currently cached ticker data for the pair, returns DataFrame or empty DataFrame. - `ohlcv(pair, timeframe)` - Currently cached ticker data for the pair, returns DataFrame or empty DataFrame.
- `historic_ohlcv(pair, ticker_interval)` - Returns historical data stored on disk. - `historic_ohlcv(pair, timeframe)` - Returns historical data stored on disk.
- `get_pair_dataframe(pair, ticker_interval)` - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes). - `get_pair_dataframe(pair, timeframe)` - This is a universal method, which returns either historical data (for backtesting) or cached live data (for the Dry-Run and Live-Run modes).
- `orderbook(pair, maximum)` - Returns latest orderbook data for the pair, a dict with bids/asks with a total of `maximum` entries. - `orderbook(pair, maximum)` - Returns latest orderbook data for the pair, a dict with bids/asks with a total of `maximum` entries.
- `market(pair)` - Returns market data for the pair: fees, limits, precisions, activity flag, etc. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#markets) for more details on Market data structure. - `market(pair)` - Returns market data for the pair: fees, limits, precisions, activity flag, etc. See [ccxt documentation](https://github.com/ccxt/ccxt/wiki/Manual#markets) for more details on Market data structure.
- `runmode` - Property containing the current runmode. - `runmode` - Property containing the current runmode.
@@ -296,15 +331,15 @@ Please always check the mode of operation to select the correct method to get da
if self.dp: if self.dp:
inf_pair, inf_timeframe = self.informative_pairs()[0] inf_pair, inf_timeframe = self.informative_pairs()[0]
informative = self.dp.get_pair_dataframe(pair=inf_pair, informative = self.dp.get_pair_dataframe(pair=inf_pair,
ticker_interval=inf_timeframe) timeframe=inf_timeframe)
``` ```
!!! Warning Warning about backtesting !!! Warning "Warning about backtesting"
Be carefull when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()` Be carefull when using dataprovider in backtesting. `historic_ohlcv()` (and `get_pair_dataframe()`
for the backtesting runmode) provides the full time-range in one go, for the backtesting runmode) provides the full time-range in one go,
so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode). so please be aware of it and make sure to not "look into the future" to avoid surprises when running in dry/live mode).
!!! Warning Warning in hyperopt !!! Warning "Warning in hyperopt"
This option cannot currently be used during hyperopt. This option cannot currently be used during hyperopt.
#### Orderbook #### Orderbook
@@ -374,6 +409,97 @@ if self.wallets:
- `get_used(asset)` - currently tied up balance (open orders) - `get_used(asset)` - currently tied up balance (open orders)
- `get_total(asset)` - total available balance - sum of the 2 above - `get_total(asset)` - total available balance - sum of the 2 above
### Additional data (Trades)
A history of Trades can be retrieved in the strategy by querying the database.
At the top of the file, import Trade.
```python
from freqtrade.persistence import Trade
```
The following example queries for the current pair and trades from today, however other filters can easily be added.
``` python
if self.config['runmode'] in ('live', 'dry_run'):
trades = Trade.get_trades([Trade.pair == metadata['pair'],
Trade.open_date > datetime.utcnow() - timedelta(days=1),
Trade.is_open == False,
]).order_by(Trade.close_date).all()
# Summarize profit for this pair.
curdayprofit = sum(trade.close_profit for trade in trades)
```
Get amount of stake_currency currently invested in Trades:
``` python
if self.config['runmode'] in ('live', 'dry_run'):
total_stakes = Trade.total_open_trades_stakes()
```
Retrieve performance per pair.
Returns a List of dicts per pair.
``` python
if self.config['runmode'] in ('live', 'dry_run'):
performance = Trade.get_overall_performance()
```
Sample return value: ETH/BTC had 5 trades, with a total profit of 1.5% (ratio of 0.015).
``` json
{'pair': "ETH/BTC", 'profit': 0.015, 'count': 5}
```
!!! Warning
Trade history is not available during backtesting or hyperopt.
### Prevent trades from happening for a specific pair
Freqtrade locks pairs automatically for the current candle (until that candle is over) when a pair is sold, preventing an immediate re-buy of that pair.
Locked pairs will show the message `Pair <pair> is currently locked.`.
#### Locking pairs from within the strategy
Sometimes it may be desired to lock a pair after certain events happen (e.g. multiple losing trades in a row).
Freqtrade has an easy method to do this from within the strategy, by calling `self.lock_pair(pair, until)`.
`until` must be a datetime object in the future, after which trading will be reenabled for that pair.
Locks can also be lifted manually, by calling `self.unlock_pair(pair)`.
To verify if a pair is currently locked, use `self.is_pair_locked(pair)`.
!!! Note
Locked pairs are not persisted, so a restart of the bot, or calling `/reload_conf` will reset locked pairs.
!!! Warning
Locking pairs is not functioning during backtesting.
##### Pair locking example
``` python
from freqtrade.persistence import Trade
from datetime import timedelta, datetime, timezone
# Put the above lines a the top of the strategy file, next to all the other imports
# --------
# Within populate indicators (or populate_buy):
if self.config['runmode'] in ('live', 'dry_run'):
# fetch closed trades for the last 2 days
trades = Trade.get_trades([Trade.pair == metadata['pair'],
Trade.open_date > datetime.utcnow() - timedelta(days=2),
Trade.is_open == False,
]).all()
# Analyze the conditions you'd like to lock the pair .... will probably be different for every strategy
sumprofit = sum(trade.close_profit for trade in trades)
if sumprofit < 0:
# Lock pair for 12 hours
self.lock_pair(metadata['pair'], until=datetime.now(timezone.utc) + timedelta(hours=12))
```
### Print created dataframe ### Print created dataframe
To inspect the created dataframe, you can issue a print-statement in either `populate_buy_trend()` or `populate_sell_trend()`. To inspect the created dataframe, you can issue a print-statement in either `populate_buy_trend()` or `populate_sell_trend()`.
@@ -398,17 +524,12 @@ def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
Printing more than a few rows is also possible (simply use `print(dataframe)` instead of `print(dataframe.tail())`), however not recommended, as that will be very verbose (~500 lines per pair every 5 seconds). Printing more than a few rows is also possible (simply use `print(dataframe)` instead of `print(dataframe.tail())`), however not recommended, as that will be very verbose (~500 lines per pair every 5 seconds).
### Where can i find a strategy template?
The strategy template is located in the file
[user_data/strategies/sample_strategy.py](https://github.com/freqtrade/freqtrade/blob/develop/user_data/strategies/sample_strategy.py).
### Specify custom strategy location ### Specify custom strategy location
If you want to use a strategy from a different directory you can pass `--strategy-path` If you want to use a strategy from a different directory you can pass `--strategy-path`
```bash ```bash
freqtrade --strategy AwesomeStrategy --strategy-path /some/directory freqtrade trade --strategy AwesomeStrategy --strategy-path /some/directory
``` ```
### Common mistakes when developing strategies ### Common mistakes when developing strategies

View File

@@ -10,7 +10,7 @@ from pathlib import Path
# Customize these according to your needs. # Customize these according to your needs.
# Define some constants # Define some constants
ticker_interval = "5m" timeframe = "5m"
# Name of the strategy class # Name of the strategy class
strategy_name = 'SampleStrategy' strategy_name = 'SampleStrategy'
# Path to user data # Path to user data
@@ -29,7 +29,7 @@ pair = "BTC_USDT"
from freqtrade.data.history import load_pair_history from freqtrade.data.history import load_pair_history
candles = load_pair_history(datadir=data_location, candles = load_pair_history(datadir=data_location,
ticker_interval=ticker_interval, timeframe=timeframe,
pair=pair) pair=pair)
# Confirm success # Confirm success
@@ -44,9 +44,9 @@ candles.head()
```python ```python
# Load strategy using values set above # Load strategy using values set above
from freqtrade.resolvers import StrategyResolver from freqtrade.resolvers import StrategyResolver
strategy = StrategyResolver({'strategy': strategy_name, strategy = StrategyResolver.load_strategy({'strategy': strategy_name,
'user_data_dir': user_data_dir, 'user_data_dir': user_data_dir,
'strategy_path': strategy_location}).strategy 'strategy_path': strategy_location})
# Generate buy/sell signals using strategy # Generate buy/sell signals using strategy
df = strategy.analyze_ticker(candles, {'pair': pair}) df = strategy.analyze_ticker(candles, {'pair': pair})
@@ -107,6 +107,22 @@ trades = load_trades_from_db("sqlite:///tradesv3.sqlite")
trades.groupby("pair")["sell_reason"].value_counts() trades.groupby("pair")["sell_reason"].value_counts()
``` ```
## Analyze the loaded trades for trade parallelism
This can be useful to find the best `max_open_trades` parameter, when used with backtesting in conjunction with `--disable-max-market-positions`.
`analyze_trade_parallelism()` returns a timeseries dataframe with an "open_trades" column, specifying the number of open trades for each candle.
```python
from freqtrade.data.btanalysis import analyze_trade_parallelism
# Analyze the above
parallel_trades = analyze_trade_parallelism(trades, '5m')
parallel_trades.plot()
```
## Plot results ## Plot results
Freqtrade offers interactive plotting capabilities based on plotly. Freqtrade offers interactive plotting capabilities based on plotly.

View File

@@ -53,6 +53,7 @@ official commands. You can ask at any moment for help with `/help`.
| `/stop` | | Stops the trader | `/stop` | | Stops the trader
| `/stopbuy` | | Stops the trader from opening new trades. Gracefully closes open trades according to their rules. | `/stopbuy` | | Stops the trader from opening new trades. Gracefully closes open trades according to their rules.
| `/reload_conf` | | Reloads the configuration file | `/reload_conf` | | Reloads the configuration file
| `/show_config` | | Shows part of the current configuration with relevant settings to operation
| `/status` | | Lists all open trades | `/status` | | Lists all open trades
| `/status table` | | List all open trades in a table format | `/status table` | | List all open trades in a table format
| `/count` | | Displays number of trades used and available | `/count` | | Displays number of trades used and available
@@ -93,7 +94,7 @@ Once all positions are sold, run `/stop` to completely stop the bot.
`/reload_conf` resets "max_open_trades" to the value set in the configuration and resets this command. `/reload_conf` resets "max_open_trades" to the value set in the configuration and resets this command.
!!! warning !!! Warning
The stop-buy signal is ONLY active while the bot is running, and is not persisted anyway, so restarting the bot will cause this to reset. The stop-buy signal is ONLY active while the bot is running, and is not persisted anyway, so restarting the bot will cause this to reset.
### /status ### /status

View File

@@ -2,6 +2,153 @@
Besides the Live-Trade and Dry-Run run modes, the `backtesting`, `edge` and `hyperopt` optimization subcommands, and the `download-data` subcommand which prepares historical data, the bot contains a number of utility subcommands. They are described in this section. Besides the Live-Trade and Dry-Run run modes, the `backtesting`, `edge` and `hyperopt` optimization subcommands, and the `download-data` subcommand which prepares historical data, the bot contains a number of utility subcommands. They are described in this section.
## Create userdir
Creates the directory structure to hold your files for freqtrade.
Will also create strategy and hyperopt examples for you to get started.
Can be used multiple times - using `--reset` will reset the sample strategy and hyperopt files to their default state.
```
usage: freqtrade create-userdir [-h] [--userdir PATH] [--reset]
optional arguments:
-h, --help show this help message and exit
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
--reset Reset sample files to their original state.
```
!!! Warning
Using `--reset` may result in loss of data, since this will overwrite all sample files without asking again.
```
├── backtest_results
├── data
├── hyperopt_results
├── hyperopts
│   ├── sample_hyperopt_advanced.py
│   ├── sample_hyperopt_loss.py
│   └── sample_hyperopt.py
├── notebooks
│   └── strategy_analysis_example.ipynb
├── plot
└── strategies
└── sample_strategy.py
```
## Create new strategy
Creates a new strategy from a template similar to SampleStrategy.
The file will be named inline with your class name, and will not overwrite existing files.
Results will be located in `user_data/strategies/<strategyclassname>.py`.
``` output
usage: freqtrade new-strategy [-h] [--userdir PATH] [-s NAME]
[--template {full,minimal}]
optional arguments:
-h, --help show this help message and exit
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
-s NAME, --strategy NAME
Specify strategy class name which will be used by the
bot.
--template {full,minimal}
Use a template which is either `minimal` or `full`
(containing multiple sample indicators). Default:
`full`.
```
### Sample usage of new-strategy
```bash
freqtrade new-strategy --strategy AwesomeStrategy
```
With custom user directory
```bash
freqtrade new-strategy --userdir ~/.freqtrade/ --strategy AwesomeStrategy
```
## Create new hyperopt
Creates a new hyperopt from a template similar to SampleHyperopt.
The file will be named inline with your class name, and will not overwrite existing files.
Results will be located in `user_data/hyperopts/<classname>.py`.
``` output
usage: freqtrade new-hyperopt [-h] [--userdir PATH] [--hyperopt NAME]
[--template {full,minimal}]
optional arguments:
-h, --help show this help message and exit
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
--hyperopt NAME Specify hyperopt class name which will be used by the
bot.
--template {full,minimal}
Use a template which is either `minimal` or `full`
(containing multiple sample indicators). Default:
`full`.
```
### Sample usage of new-hyperopt
```bash
freqtrade new-hyperopt --hyperopt AwesomeHyperopt
```
With custom user directory
```bash
freqtrade new-hyperopt --userdir ~/.freqtrade/ --hyperopt AwesomeHyperopt
```
## List Strategies
Use the `list-strategies` subcommand to see all strategies in one particular directory.
```
freqtrade list-strategies --help
usage: freqtrade list-strategies [-h] [-v] [--logfile FILE] [-V] [-c PATH] [-d PATH] [--userdir PATH] [--strategy-path PATH] [-1]
optional arguments:
-h, --help show this help message and exit
--strategy-path PATH Specify additional strategy lookup path.
-1, --one-column Print output in one column.
Common arguments:
-v, --verbose Verbose mode (-vv for more, -vvv to get all messages).
--logfile FILE Log to the file specified. Special values are: 'syslog', 'journald'. See the documentation for more details.
-V, --version show program's version number and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`). Multiple --config options may be used. Can be set to `-`
to read config from stdin.
-d PATH, --datadir PATH
Path to directory with historical backtesting data.
--userdir PATH, --user-data-dir PATH
Path to userdata directory.
```
!!! Warning
Using this command will try to load all python files from a directory. This can be a security risk if untrusted files reside in this directory, since all module-level code is executed.
Example: search default strategy directory within userdir
``` bash
freqtrade list-strategies --userdir ~/.freqtrade/
```
Example: search dedicated strategy path
``` bash
freqtrade list-strategies --strategy-path ~/.freqtrade/strategies/
```
## List Exchanges ## List Exchanges
Use the `list-exchanges` subcommand to see the exchanges available for the bot. Use the `list-exchanges` subcommand to see the exchanges available for the bot.
@@ -124,3 +271,100 @@ $ freqtrade -c config_binance.json list-pairs --all --base BTC ETH --quote USDT
``` ```
$ freqtrade list-markets --exchange kraken --all $ freqtrade list-markets --exchange kraken --all
``` ```
## Test pairlist
Use the `test-pairlist` subcommand to test the configuration of [dynamic pairlists](configuration.md#pairlists).
Requires a configuration with specified `pairlists` attribute.
Can be used to generate static pairlists to be used during backtesting / hyperopt.
```
usage: freqtrade test-pairlist [-h] [-c PATH]
[--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]]
[-1] [--print-json]
optional arguments:
-h, --help show this help message and exit
-c PATH, --config PATH
Specify configuration file (default: `config.json`).
Multiple --config options may be used. Can be set to
`-` to read config from stdin.
--quote QUOTE_CURRENCY [QUOTE_CURRENCY ...]
Specify quote currency(-ies). Space-separated list.
-1, --one-column Print output in one column.
--print-json Print list of pairs or market symbols in JSON format.
```
### Examples
Show whitelist when using a [dynamic pairlist](configuration.md#pairlists).
```
freqtrade test-pairlist --config config.json --quote USDT BTC
```
## List Hyperopt results
You can list the hyperoptimization epochs the Hyperopt module evaluated previously with the `hyperopt-list` subcommand.
```
usage: freqtrade hyperopt-list [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [--best]
[--profitable] [--no-color] [--print-json]
[--no-details]
optional arguments:
-h, --help show this help message and exit
--best Select only best epochs.
--profitable Select only profitable epochs.
--no-color Disable colorization of hyperopt results. May be
useful if you are redirecting output to a file.
--print-json Print best result detailization in JSON format.
--no-details Do not print best epoch details.
```
### Examples
List all results, print details of the best result at the end:
```
freqtrade hyperopt-list
```
List only epochs with positive profit. Do not print the details of the best epoch, so that the list can be iterated in a script:
```
freqtrade hyperopt-list --profitable --no-details
```
## Show details of Hyperopt results
You can show the details of any hyperoptimization epoch previously evaluated by the Hyperopt module with the `hyperopt-show` subcommand.
```
usage: freqtrade hyperopt-show [-h] [-v] [--logfile FILE] [-V] [-c PATH]
[-d PATH] [--userdir PATH] [--best]
[--profitable] [-n INT] [--print-json]
[--no-header]
optional arguments:
-h, --help show this help message and exit
--best Select only best epochs.
--profitable Select only profitable epochs.
-n INT, --index INT Specify the index of the epoch to print details for.
--print-json Print best result detailization in JSON format.
--no-header Do not print epoch details header.
```
### Examples
Print details for the epoch 168 (the number of the epoch is shown by the `hyperopt-list` subcommand or by Hyperopt itself during hyperoptimization run):
```
freqtrade hyperopt-show -n 168
```
Prints JSON data with details for the last best epoch (i.e., the best of all epochs):
```
freqtrade hyperopt-show --best -n -1 --print-json --no-header
```

View File

@@ -63,6 +63,8 @@ Possible parameters are:
* `fiat_currency` * `fiat_currency`
* `sell_reason` * `sell_reason`
* `order_type` * `order_type`
* `open_date`
* `close_date`
### Webhookstatus ### Webhookstatus

View File

@@ -6,7 +6,7 @@ After=network.target
# Set WorkingDirectory and ExecStart to your file paths accordingly # Set WorkingDirectory and ExecStart to your file paths accordingly
# NOTE: %h will be resolved to /home/<username> # NOTE: %h will be resolved to /home/<username>
WorkingDirectory=%h/freqtrade WorkingDirectory=%h/freqtrade
ExecStart=/usr/bin/freqtrade ExecStart=/usr/bin/freqtrade trade
Restart=on-failure Restart=on-failure
[Install] [Install]

View File

@@ -6,7 +6,7 @@ After=network.target
# Set WorkingDirectory and ExecStart to your file paths accordingly # Set WorkingDirectory and ExecStart to your file paths accordingly
# NOTE: %h will be resolved to /home/<username> # NOTE: %h will be resolved to /home/<username>
WorkingDirectory=%h/freqtrade WorkingDirectory=%h/freqtrade
ExecStart=/usr/bin/freqtrade --sd-notify ExecStart=/usr/bin/freqtrade trade --sd-notify
Restart=always Restart=always
#Restart=on-failure #Restart=on-failure

View File

@@ -1,5 +1,5 @@
""" FreqTrade bot """ """ FreqTrade bot """
__version__ = '2019.10' __version__ = '2020.01'
if __version__ == 'develop': if __version__ == 'develop':
@@ -11,34 +11,3 @@ if __version__ == 'develop':
except Exception: except Exception:
# git not available, ignore # git not available, ignore
pass pass
class DependencyException(Exception):
"""
Indicates that an assumed dependency is not met.
This could happen when there is currently not enough money on the account.
"""
class OperationalException(Exception):
"""
Requires manual intervention and will usually stop the bot.
This happens when an exchange returns an unexpected error during runtime
or given configuration is invalid.
"""
class InvalidOrderException(Exception):
"""
This is returned when the order is not valid. Example:
If stoploss on exchange order is hit, then trying to cancel the order
should return this exception.
"""
class TemporaryError(Exception):
"""
Temporary network or exchange related error.
This could happen when an exchange is congested, unavailable, or the user
has networking problems. Usually resolves itself after a time.
"""

View File

@@ -0,0 +1,25 @@
# flake8: noqa: F401
"""
Commands module.
Contains all start-commands, subcommands and CLI Interface creation.
Note: Be careful with file-scoped imports in these subfiles.
as they are parsed on startup, nothing containing optional modules should be loaded.
"""
from freqtrade.commands.arguments import Arguments
from freqtrade.commands.data_commands import start_download_data
from freqtrade.commands.deploy_commands import (start_create_userdir,
start_new_hyperopt,
start_new_strategy)
from freqtrade.commands.hyperopt_commands import (start_hyperopt_list,
start_hyperopt_show)
from freqtrade.commands.list_commands import (start_list_exchanges,
start_list_markets,
start_list_strategies,
start_list_timeframes)
from freqtrade.commands.optimize_commands import (start_backtesting,
start_edge, start_hyperopt)
from freqtrade.commands.pairlist_commands import start_test_pairlist
from freqtrade.commands.plot_commands import (start_plot_dataframe,
start_plot_profit)
from freqtrade.commands.trade_commands import start_trading

View File

@@ -0,0 +1,288 @@
"""
This module contains the argument manager class
"""
import argparse
from functools import partial
from pathlib import Path
from typing import Any, Dict, List, Optional
from freqtrade import constants
from freqtrade.commands.cli_options import AVAILABLE_CLI_OPTIONS
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
ARGS_STRATEGY = ["strategy", "strategy_path"]
ARGS_TRADE = ["db_url", "sd_notify", "dry_run"]
ARGS_COMMON_OPTIMIZE = ["ticker_interval", "timerange",
"max_open_trades", "stake_amount", "fee"]
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_positions",
"strategy_list", "export", "exportfilename"]
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
"position_stacking", "epochs", "spaces",
"use_max_market_positions", "print_all",
"print_colorized", "print_json", "hyperopt_jobs",
"hyperopt_random_state", "hyperopt_min_trades",
"hyperopt_continue", "hyperopt_loss"]
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_STRATEGIES = ["strategy_path", "print_one_column"]
ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"]
ARGS_LIST_TIMEFRAMES = ["exchange", "print_one_column"]
ARGS_LIST_PAIRS = ["exchange", "print_list", "list_pairs_print_json", "print_one_column",
"print_csv", "base_currencies", "quote_currencies", "list_pairs_all"]
ARGS_TEST_PAIRLIST = ["config", "quote_currencies", "print_one_column", "list_pairs_print_json"]
ARGS_CREATE_USERDIR = ["user_data_dir", "reset"]
ARGS_BUILD_STRATEGY = ["user_data_dir", "strategy", "template"]
ARGS_BUILD_HYPEROPT = ["user_data_dir", "hyperopt", "template"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
"timeframes", "erase"]
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit",
"db_url", "trade_source", "export", "exportfilename",
"timerange", "ticker_interval"]
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "ticker_interval"]
ARGS_HYPEROPT_LIST = ["hyperopt_list_best", "hyperopt_list_profitable", "print_colorized",
"print_json", "hyperopt_list_no_details"]
ARGS_HYPEROPT_SHOW = ["hyperopt_list_best", "hyperopt_list_profitable", "hyperopt_show_index",
"print_json", "hyperopt_show_no_header"]
NO_CONF_REQURIED = ["download-data", "list-timeframes", "list-markets", "list-pairs",
"list-strategies", "hyperopt-list", "hyperopt-show", "plot-dataframe",
"plot-profit"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-hyperopt", "new-strategy"]
class Arguments:
"""
Arguments Class. Manage the arguments received by the cli
"""
def __init__(self, args: Optional[List[str]]) -> None:
self.args = args
self._parsed_arg: Optional[argparse.Namespace] = None
def get_parsed_arg(self) -> Dict[str, Any]:
"""
Return the list of arguments
:return: List[str] List of arguments
"""
if self._parsed_arg is None:
self._build_subcommands()
self._parsed_arg = self._parse_args()
return vars(self._parsed_arg)
def _parse_args(self) -> argparse.Namespace:
"""
Parses given arguments and returns an argparse Namespace instance.
"""
parsed_arg = self.parser.parse_args(self.args)
# Workaround issue in argparse with action='append' and default value
# (see https://bugs.python.org/issue16399)
# Allow no-config for certain commands (like downloading / plotting)
if ('config' in parsed_arg and parsed_arg.config is None and
((Path.cwd() / constants.DEFAULT_CONFIG).is_file() or
not ('command' in parsed_arg and parsed_arg.command in NO_CONF_REQURIED))):
parsed_arg.config = [constants.DEFAULT_CONFIG]
return parsed_arg
def _build_args(self, optionlist, parser):
for val in optionlist:
opt = AVAILABLE_CLI_OPTIONS[val]
parser.add_argument(*opt.cli, dest=val, **opt.kwargs)
def _build_subcommands(self) -> None:
"""
Builds and attaches all subcommands.
:return: None
"""
# Build shared arguments (as group Common Options)
_common_parser = argparse.ArgumentParser(add_help=False)
group = _common_parser.add_argument_group("Common arguments")
self._build_args(optionlist=ARGS_COMMON, parser=group)
_strategy_parser = argparse.ArgumentParser(add_help=False)
strategy_group = _strategy_parser.add_argument_group("Strategy arguments")
self._build_args(optionlist=ARGS_STRATEGY, parser=strategy_group)
# Build main command
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
self._build_args(optionlist=['version'], parser=self.parser)
from freqtrade.commands import (start_create_userdir, start_download_data,
start_hyperopt_list, start_hyperopt_show,
start_list_exchanges, start_list_markets,
start_list_strategies, start_new_hyperopt,
start_new_strategy, start_list_timeframes,
start_plot_dataframe, start_plot_profit,
start_backtesting, start_hyperopt, start_edge,
start_test_pairlist, start_trading)
subparsers = self.parser.add_subparsers(dest='command',
# Use custom message when no subhandler is added
# shown from `main.py`
# required=True
)
# Add trade subcommand
trade_cmd = subparsers.add_parser('trade', help='Trade module.',
parents=[_common_parser, _strategy_parser])
trade_cmd.set_defaults(func=start_trading)
self._build_args(optionlist=ARGS_TRADE, parser=trade_cmd)
# Add backtesting subcommand
backtesting_cmd = subparsers.add_parser('backtesting', help='Backtesting module.',
parents=[_common_parser, _strategy_parser])
backtesting_cmd.set_defaults(func=start_backtesting)
self._build_args(optionlist=ARGS_BACKTEST, parser=backtesting_cmd)
# Add edge subcommand
edge_cmd = subparsers.add_parser('edge', help='Edge module.',
parents=[_common_parser, _strategy_parser])
edge_cmd.set_defaults(func=start_edge)
self._build_args(optionlist=ARGS_EDGE, parser=edge_cmd)
# Add hyperopt subcommand
hyperopt_cmd = subparsers.add_parser('hyperopt', help='Hyperopt module.',
parents=[_common_parser, _strategy_parser],
)
hyperopt_cmd.set_defaults(func=start_hyperopt)
self._build_args(optionlist=ARGS_HYPEROPT, parser=hyperopt_cmd)
# add create-userdir subcommand
create_userdir_cmd = subparsers.add_parser('create-userdir',
help="Create user-data directory.",
)
create_userdir_cmd.set_defaults(func=start_create_userdir)
self._build_args(optionlist=ARGS_CREATE_USERDIR, parser=create_userdir_cmd)
# add new-strategy subcommand
build_strategy_cmd = subparsers.add_parser('new-strategy',
help="Create new strategy")
build_strategy_cmd.set_defaults(func=start_new_strategy)
self._build_args(optionlist=ARGS_BUILD_STRATEGY, parser=build_strategy_cmd)
# add new-hyperopt subcommand
build_hyperopt_cmd = subparsers.add_parser('new-hyperopt',
help="Create new hyperopt")
build_hyperopt_cmd.set_defaults(func=start_new_hyperopt)
self._build_args(optionlist=ARGS_BUILD_HYPEROPT, parser=build_hyperopt_cmd)
# Add list-strategies subcommand
list_strategies_cmd = subparsers.add_parser(
'list-strategies',
help='Print available strategies.',
parents=[_common_parser],
)
list_strategies_cmd.set_defaults(func=start_list_strategies)
self._build_args(optionlist=ARGS_LIST_STRATEGIES, parser=list_strategies_cmd)
# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',
help='Print available exchanges.',
parents=[_common_parser],
)
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
self._build_args(optionlist=ARGS_LIST_EXCHANGES, parser=list_exchanges_cmd)
# Add list-timeframes subcommand
list_timeframes_cmd = subparsers.add_parser(
'list-timeframes',
help='Print available ticker intervals (timeframes) for the exchange.',
parents=[_common_parser],
)
list_timeframes_cmd.set_defaults(func=start_list_timeframes)
self._build_args(optionlist=ARGS_LIST_TIMEFRAMES, parser=list_timeframes_cmd)
# Add list-markets subcommand
list_markets_cmd = subparsers.add_parser(
'list-markets',
help='Print markets on exchange.',
parents=[_common_parser],
)
list_markets_cmd.set_defaults(func=partial(start_list_markets, pairs_only=False))
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_markets_cmd)
# Add list-pairs subcommand
list_pairs_cmd = subparsers.add_parser(
'list-pairs',
help='Print pairs on exchange.',
parents=[_common_parser],
)
list_pairs_cmd.set_defaults(func=partial(start_list_markets, pairs_only=True))
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_pairs_cmd)
# Add test-pairlist subcommand
test_pairlist_cmd = subparsers.add_parser(
'test-pairlist',
help='Test your pairlist configuration.',
)
test_pairlist_cmd.set_defaults(func=start_test_pairlist)
self._build_args(optionlist=ARGS_TEST_PAIRLIST, parser=test_pairlist_cmd)
# Add download-data subcommand
download_data_cmd = subparsers.add_parser(
'download-data',
help='Download backtesting data.',
parents=[_common_parser],
)
download_data_cmd.set_defaults(func=start_download_data)
self._build_args(optionlist=ARGS_DOWNLOAD_DATA, parser=download_data_cmd)
# Add Plotting subcommand
plot_dataframe_cmd = subparsers.add_parser(
'plot-dataframe',
help='Plot candles with indicators.',
parents=[_common_parser, _strategy_parser],
)
plot_dataframe_cmd.set_defaults(func=start_plot_dataframe)
self._build_args(optionlist=ARGS_PLOT_DATAFRAME, parser=plot_dataframe_cmd)
# Plot profit
plot_profit_cmd = subparsers.add_parser(
'plot-profit',
help='Generate plot showing profits.',
parents=[_common_parser],
)
plot_profit_cmd.set_defaults(func=start_plot_profit)
self._build_args(optionlist=ARGS_PLOT_PROFIT, parser=plot_profit_cmd)
# Add hyperopt-list subcommand
hyperopt_list_cmd = subparsers.add_parser(
'hyperopt-list',
help='List Hyperopt results',
parents=[_common_parser],
)
hyperopt_list_cmd.set_defaults(func=start_hyperopt_list)
self._build_args(optionlist=ARGS_HYPEROPT_LIST, parser=hyperopt_list_cmd)
# Add hyperopt-show subcommand
hyperopt_show_cmd = subparsers.add_parser(
'hyperopt-show',
help='Show details of Hyperopt results',
parents=[_common_parser],
)
hyperopt_show_cmd.set_defaults(func=start_hyperopt_show)
self._build_args(optionlist=ARGS_HYPEROPT_SHOW, parser=hyperopt_show_cmd)

View File

@@ -1,7 +1,7 @@
""" """
Definition of cli arguments used in arguments.py Definition of cli arguments used in arguments.py
""" """
import argparse from argparse import ArgumentTypeError
from freqtrade import __version__, constants from freqtrade import __version__, constants
@@ -12,12 +12,24 @@ def check_int_positive(value: str) -> int:
if uint <= 0: if uint <= 0:
raise ValueError raise ValueError
except ValueError: except ValueError:
raise argparse.ArgumentTypeError( raise ArgumentTypeError(
f"{value} is invalid for this parameter, should be a positive integer value" f"{value} is invalid for this parameter, should be a positive integer value"
) )
return uint return uint
def check_int_nonzero(value: str) -> int:
try:
uint = int(value)
if uint == 0:
raise ValueError
except ValueError:
raise ArgumentTypeError(
f"{value} is invalid for this parameter, should be a non-zero integer value"
)
return uint
class Arg: class Arg:
# Optional CLI arguments # Optional CLI arguments
def __init__(self, *args, **kwargs): def __init__(self, *args, **kwargs):
@@ -36,7 +48,8 @@ AVAILABLE_CLI_OPTIONS = {
), ),
"logfile": Arg( "logfile": Arg(
'--logfile', '--logfile',
help='Log to the file specified.', help="Log to the file specified. Special values are: 'syslog', 'journald'. "
"See the documentation for more details.",
metavar='FILE', metavar='FILE',
), ),
"version": Arg( "version": Arg(
@@ -62,12 +75,16 @@ AVAILABLE_CLI_OPTIONS = {
help='Path to userdata directory.', help='Path to userdata directory.',
metavar='PATH', metavar='PATH',
), ),
"reset": Arg(
'--reset',
help='Reset sample files to their original state.',
action='store_true',
),
# Main options # Main options
"strategy": Arg( "strategy": Arg(
'-s', '--strategy', '-s', '--strategy',
help='Specify strategy class name (default: `%(default)s`).', help='Specify strategy class name which will be used by the bot.',
metavar='NAME', metavar='NAME',
default='DefaultStrategy',
), ),
"strategy_path": Arg( "strategy_path": Arg(
'--strategy-path', '--strategy-path',
@@ -86,6 +103,11 @@ AVAILABLE_CLI_OPTIONS = {
help='Notify systemd service manager.', help='Notify systemd service manager.',
action='store_true', action='store_true',
), ),
"dry_run": Arg(
'--dry-run',
help='Enforce dry-run for trading (removes Exchange secrets and simulates trades).',
action='store_true',
),
# Optimize common # Optimize common
"ticker_interval": Arg( "ticker_interval": Arg(
'-i', '--ticker-interval', '-i', '--ticker-interval',
@@ -96,14 +118,14 @@ AVAILABLE_CLI_OPTIONS = {
help='Specify what timerange of data to use.', help='Specify what timerange of data to use.',
), ),
"max_open_trades": Arg( "max_open_trades": Arg(
'--max_open_trades', '--max-open-trades',
help='Specify max_open_trades to use.', help='Override the value of the `max_open_trades` configuration setting.',
type=int, type=int,
metavar='INT', metavar='INT',
), ),
"stake_amount": Arg( "stake_amount": Arg(
'--stake_amount', '--stake-amount',
help='Specify stake_amount.', help='Override the value of the `stake_amount` configuration setting.',
type=float, type=float,
), ),
# Backtesting # Backtesting
@@ -136,7 +158,7 @@ AVAILABLE_CLI_OPTIONS = {
), ),
"exportfilename": Arg( "exportfilename": Arg(
'--export-filename', '--export-filename',
help='Save backtest results to the file with this filename (default: `%(default)s`). ' help='Save backtest results to the file with this filename. '
'Requires `--export` to be set as well. ' 'Requires `--export` to be set as well. '
'Example: `--export-filename=user_data/backtest_results/backtest_today.json`', 'Example: `--export-filename=user_data/backtest_results/backtest_today.json`',
metavar='PATH', metavar='PATH',
@@ -156,14 +178,13 @@ AVAILABLE_CLI_OPTIONS = {
), ),
# Hyperopt # Hyperopt
"hyperopt": Arg( "hyperopt": Arg(
'--customhyperopt', '--hyperopt',
help='Specify hyperopt class name (default: `%(default)s`).', help='Specify hyperopt class name which will be used by the bot.',
metavar='NAME', metavar='NAME',
default=constants.DEFAULT_HYPEROPT,
), ),
"hyperopt_path": Arg( "hyperopt_path": Arg(
'--hyperopt-path', '--hyperopt-path',
help='Specify additional lookup path for Hyperopts and Hyperopt Loss functions.', help='Specify additional lookup path for Hyperopt and Hyperopt Loss functions.',
metavar='PATH', metavar='PATH',
), ),
"epochs": Arg( "epochs": Arg(
@@ -174,12 +195,11 @@ AVAILABLE_CLI_OPTIONS = {
default=constants.HYPEROPT_EPOCH, default=constants.HYPEROPT_EPOCH,
), ),
"spaces": Arg( "spaces": Arg(
'-s', '--spaces', '--spaces',
help='Specify which parameters to hyperopt. Space-separated list. ' help='Specify which parameters to hyperopt. Space-separated list.',
'Default: `%(default)s`.', choices=['all', 'buy', 'sell', 'roi', 'stoploss', 'trailing', 'default'],
choices=['all', 'buy', 'sell', 'roi', 'stoploss'],
nargs='+', nargs='+',
default='all', default='default',
), ),
"print_all": Arg( "print_all": Arg(
'--print-all', '--print-all',
@@ -331,19 +351,25 @@ AVAILABLE_CLI_OPTIONS = {
help='Clean all existing data for the selected exchange/pairs/timeframes.', help='Clean all existing data for the selected exchange/pairs/timeframes.',
action='store_true', action='store_true',
), ),
# Templating options
"template": Arg(
'--template',
help='Use a template which is either `minimal` or '
'`full` (containing multiple sample indicators). Default: `%(default)s`.',
choices=['full', 'minimal'],
default='full',
),
# Plot dataframe # Plot dataframe
"indicators1": Arg( "indicators1": Arg(
'--indicators1', '--indicators1',
help='Set indicators from your strategy you want in the first row of the graph. ' help='Set indicators from your strategy you want in the first row of the graph. '
'Space-separated list. Example: `ema3 ema5`. Default: `%(default)s`.', "Space-separated list. Example: `ema3 ema5`. Default: `['sma', 'ema3', 'ema5']`.",
default=['sma', 'ema3', 'ema5'],
nargs='+', nargs='+',
), ),
"indicators2": Arg( "indicators2": Arg(
'--indicators2', '--indicators2',
help='Set indicators from your strategy you want in the third row of the graph. ' help='Set indicators from your strategy you want in the third row of the graph. '
'Space-separated list. Example: `fastd fastk`. Default: `%(default)s`.', "Space-separated list. Example: `fastd fastk`. Default: `['macd', 'macdsignal']`.",
default=['macd', 'macdsignal'],
nargs='+', nargs='+',
), ),
"plot_limit": Arg( "plot_limit": Arg(
@@ -361,4 +387,31 @@ AVAILABLE_CLI_OPTIONS = {
choices=["DB", "file"], choices=["DB", "file"],
default="file", default="file",
), ),
# hyperopt-list, hyperopt-show
"hyperopt_list_profitable": Arg(
'--profitable',
help='Select only profitable epochs.',
action='store_true',
),
"hyperopt_list_best": Arg(
'--best',
help='Select only best epochs.',
action='store_true',
),
"hyperopt_list_no_details": Arg(
'--no-details',
help='Do not print best epoch details.',
action='store_true',
),
"hyperopt_show_index": Arg(
'-n', '--index',
help='Specify the index of the epoch to print details for.',
type=check_int_nonzero,
metavar='INT',
),
"hyperopt_show_no_header": Arg(
'--no-header',
help='Do not print epoch details header.',
action='store_true',
),
} }

View File

@@ -0,0 +1,63 @@
import logging
import sys
from typing import Any, Dict, List
import arrow
from freqtrade.configuration import TimeRange, setup_utils_configuration
from freqtrade.data.history import (convert_trades_to_ohlcv,
refresh_backtest_ohlcv_data,
refresh_backtest_trades_data)
from freqtrade.exceptions import OperationalException
from freqtrade.resolvers import ExchangeResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def start_download_data(args: Dict[str, Any]) -> None:
"""
Download data (former download_backtest_data.py script)
"""
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
timerange = TimeRange()
if 'days' in config:
time_since = arrow.utcnow().shift(days=-config['days']).strftime("%Y%m%d")
timerange = TimeRange.parse_timerange(f'{time_since}-')
if 'pairs' not in config:
raise OperationalException(
"Downloading data requires a list of pairs. "
"Please check the documentation on how to configure this.")
logger.info(f'About to download pairs: {config["pairs"]}, '
f'intervals: {config["timeframes"]} to {config["datadir"]}')
pairs_not_available: List[str] = []
# Init exchange
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config)
try:
if config.get('download_trades'):
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=config["pairs"], datadir=config['datadir'],
timerange=timerange, erase=config.get("erase"))
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange, erase=config.get("erase"))
else:
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=config["pairs"], timeframes=config["timeframes"],
datadir=config['datadir'], timerange=timerange, erase=config.get("erase"))
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
finally:
if pairs_not_available:
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}.")

View File

@@ -0,0 +1,112 @@
import logging
import sys
from pathlib import Path
from typing import Any, Dict
from freqtrade.configuration import setup_utils_configuration
from freqtrade.configuration.directory_operations import (copy_sample_files,
create_userdata_dir)
from freqtrade.constants import USERPATH_HYPEROPTS, USERPATH_STRATEGY
from freqtrade.exceptions import OperationalException
from freqtrade.misc import render_template
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def start_create_userdir(args: Dict[str, Any]) -> None:
"""
Create "user_data" directory to contain user data strategies, hyperopt, ...)
:param args: Cli args from Arguments()
:return: None
"""
if "user_data_dir" in args and args["user_data_dir"]:
userdir = create_userdata_dir(args["user_data_dir"], create_dir=True)
copy_sample_files(userdir, overwrite=args["reset"])
else:
logger.warning("`create-userdir` requires --userdir to be set.")
sys.exit(1)
def deploy_new_strategy(strategy_name, strategy_path: Path, subtemplate: str):
"""
Deploy new strategy from template to strategy_path
"""
indicators = render_template(templatefile=f"subtemplates/indicators_{subtemplate}.j2",)
buy_trend = render_template(templatefile=f"subtemplates/buy_trend_{subtemplate}.j2",)
sell_trend = render_template(templatefile=f"subtemplates/sell_trend_{subtemplate}.j2",)
plot_config = render_template(templatefile=f"subtemplates/plot_config_{subtemplate}.j2",)
strategy_text = render_template(templatefile='base_strategy.py.j2',
arguments={"strategy": strategy_name,
"indicators": indicators,
"buy_trend": buy_trend,
"sell_trend": sell_trend,
"plot_config": plot_config,
})
logger.info(f"Writing strategy to `{strategy_path}`.")
strategy_path.write_text(strategy_text)
def start_new_strategy(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "strategy" in args and args["strategy"]:
if args["strategy"] == "DefaultStrategy":
raise OperationalException("DefaultStrategy is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_STRATEGY / (args["strategy"] + ".py")
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Strategy Name.")
deploy_new_strategy(args['strategy'], new_path, args['template'])
else:
raise OperationalException("`new-strategy` requires --strategy to be set.")
def deploy_new_hyperopt(hyperopt_name, hyperopt_path: Path, subtemplate: str):
"""
Deploys a new hyperopt template to hyperopt_path
"""
buy_guards = render_template(
templatefile=f"subtemplates/hyperopt_buy_guards_{subtemplate}.j2",)
sell_guards = render_template(
templatefile=f"subtemplates/hyperopt_sell_guards_{subtemplate}.j2",)
buy_space = render_template(
templatefile=f"subtemplates/hyperopt_buy_space_{subtemplate}.j2",)
sell_space = render_template(
templatefile=f"subtemplates/hyperopt_sell_space_{subtemplate}.j2",)
strategy_text = render_template(templatefile='base_hyperopt.py.j2',
arguments={"hyperopt": hyperopt_name,
"buy_guards": buy_guards,
"sell_guards": sell_guards,
"buy_space": buy_space,
"sell_space": sell_space,
})
logger.info(f"Writing hyperopt to `{hyperopt_path}`.")
hyperopt_path.write_text(strategy_text)
def start_new_hyperopt(args: Dict[str, Any]) -> None:
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if "hyperopt" in args and args["hyperopt"]:
if args["hyperopt"] == "DefaultHyperopt":
raise OperationalException("DefaultHyperopt is not allowed as name.")
new_path = config['user_data_dir'] / USERPATH_HYPEROPTS / (args["hyperopt"] + ".py")
if new_path.exists():
raise OperationalException(f"`{new_path}` already exists. "
"Please choose another Strategy Name.")
deploy_new_hyperopt(args['hyperopt'], new_path, args['template'])
else:
raise OperationalException("`new-hyperopt` requires --hyperopt to be set.")

View File

@@ -0,0 +1,114 @@
import logging
from operator import itemgetter
from typing import Any, Dict, List
from colorama import init as colorama_init
from freqtrade.configuration import setup_utils_configuration
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def start_hyperopt_list(args: Dict[str, Any]) -> None:
"""
List hyperopt epochs previously evaluated
"""
from freqtrade.optimize.hyperopt import Hyperopt
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
only_best = config.get('hyperopt_list_best', False)
only_profitable = config.get('hyperopt_list_profitable', False)
print_colorized = config.get('print_colorized', False)
print_json = config.get('print_json', False)
no_details = config.get('hyperopt_list_no_details', False)
no_header = False
trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
# Previous evaluations
trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials)
trials = _hyperopt_filter_trials(trials, only_best, only_profitable)
# TODO: fetch the interval for epochs to print from the cli option
epoch_start, epoch_stop = 0, None
if print_colorized:
colorama_init(autoreset=True)
try:
# Human-friendly indexes used here (starting from 1)
for val in trials[epoch_start:epoch_stop]:
Hyperopt.print_results_explanation(val, total_epochs, not only_best, print_colorized)
except KeyboardInterrupt:
print('User interrupted..')
if trials and not no_details:
sorted_trials = sorted(trials, key=itemgetter('loss'))
results = sorted_trials[0]
Hyperopt.print_epoch_details(results, total_epochs, print_json, no_header)
def start_hyperopt_show(args: Dict[str, Any]) -> None:
"""
Show details of a hyperopt epoch previously evaluated
"""
from freqtrade.optimize.hyperopt import Hyperopt
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
only_best = config.get('hyperopt_list_best', False)
only_profitable = config.get('hyperopt_list_profitable', False)
no_header = config.get('hyperopt_show_no_header', False)
trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
# Previous evaluations
trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials)
trials = _hyperopt_filter_trials(trials, only_best, only_profitable)
trials_epochs = len(trials)
n = config.get('hyperopt_show_index', -1)
if n > trials_epochs:
raise OperationalException(
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
if n < -trials_epochs:
raise OperationalException(
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
# Translate epoch index from human-readable format to pythonic
if n > 0:
n -= 1
print_json = config.get('print_json', False)
if trials:
val = trials[n]
Hyperopt.print_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")
def _hyperopt_filter_trials(trials: List, only_best: bool, only_profitable: bool) -> List:
"""
Filter our items from the list of hyperopt results
"""
if only_best:
trials = [x for x in trials if x['is_best']]
if only_profitable:
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
logger.info(f"{len(trials)} " +
("best " if only_best else "") +
("profitable " if only_profitable else "") +
"epochs found.")
return trials

View File

@@ -1,46 +1,25 @@
import csv
import logging import logging
import sys import sys
from collections import OrderedDict from collections import OrderedDict
from pathlib import Path from pathlib import Path
from typing import Any, Dict, List from typing import Any, Dict
import arrow
import csv
import rapidjson import rapidjson
from tabulate import tabulate from tabulate import tabulate
from freqtrade import OperationalException from freqtrade.configuration import setup_utils_configuration
from freqtrade.configuration import Configuration, TimeRange from freqtrade.constants import USERPATH_STRATEGY
from freqtrade.configuration.directory_operations import create_userdata_dir from freqtrade.exceptions import OperationalException
from freqtrade.data.history import (convert_trades_to_ohlcv, from freqtrade.exchange import (available_exchanges, ccxt_exchanges,
refresh_backtest_ohlcv_data, market_is_active, symbol_is_pair)
refresh_backtest_trades_data)
from freqtrade.exchange import (available_exchanges, ccxt_exchanges, market_is_active,
symbol_is_pair)
from freqtrade.misc import plural from freqtrade.misc import plural
from freqtrade.resolvers import ExchangeResolver from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode from freqtrade.state import RunMode
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def setup_utils_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
"""
Prepare the configuration for utils subcommands
:param args: Cli args from Arguments()
:return: Configuration
"""
configuration = Configuration(args, method)
config = configuration.get_config()
config['exchange']['dry_run'] = True
# Ensure we do not use Exchange credentials
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
return config
def start_list_exchanges(args: Dict[str, Any]) -> None: def start_list_exchanges(args: Dict[str, Any]) -> None:
""" """
Print available exchanges Print available exchanges
@@ -57,78 +36,34 @@ def start_list_exchanges(args: Dict[str, Any]) -> None:
print(f"Exchanges available for Freqtrade: {', '.join(exchanges)}") print(f"Exchanges available for Freqtrade: {', '.join(exchanges)}")
def start_create_userdir(args: Dict[str, Any]) -> None: def start_list_strategies(args: Dict[str, Any]) -> None:
""" """
Create "user_data" directory to contain user data strategies, hyperopts, ...) Print Strategies available in a directory
:param args: Cli args from Arguments()
:return: None
""" """
if "user_data_dir" in args and args["user_data_dir"]: config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
create_userdata_dir(args["user_data_dir"], create_dir=True)
directory = Path(config.get('strategy_path', config['user_data_dir'] / USERPATH_STRATEGY))
strategies = StrategyResolver.search_all_objects(directory)
# Sort alphabetically
strategies = sorted(strategies, key=lambda x: x['name'])
strats_to_print = [{'name': s['name'], 'location': s['location'].name} for s in strategies]
if args['print_one_column']:
print('\n'.join([s['name'] for s in strategies]))
else: else:
logger.warning("`create-userdir` requires --userdir to be set.") print(tabulate(strats_to_print, headers='keys', tablefmt='pipe'))
sys.exit(1)
def start_download_data(args: Dict[str, Any]) -> None:
"""
Download data (former download_backtest_data.py script)
"""
config = setup_utils_configuration(args, RunMode.OTHER)
timerange = TimeRange()
if 'days' in config:
time_since = arrow.utcnow().shift(days=-config['days']).strftime("%Y%m%d")
timerange = TimeRange.parse_timerange(f'{time_since}-')
if 'pairs' not in config:
raise OperationalException(
"Downloading data requires a list of pairs. "
"Please check the documentation on how to configure this.")
dl_path = Path(config['datadir'])
logger.info(f'About to download pairs: {config["pairs"]}, '
f'intervals: {config["timeframes"]} to {dl_path}')
pairs_not_available: List[str] = []
# Init exchange
exchange = ExchangeResolver(config['exchange']['name'], config).exchange
try:
if config.get('download_trades'):
pairs_not_available = refresh_backtest_trades_data(
exchange, pairs=config["pairs"], datadir=Path(config['datadir']),
timerange=timerange, erase=config.get("erase"))
# Convert downloaded trade data to different timeframes
convert_trades_to_ohlcv(
pairs=config["pairs"], timeframes=config["timeframes"],
datadir=Path(config['datadir']), timerange=timerange, erase=config.get("erase"))
else:
pairs_not_available = refresh_backtest_ohlcv_data(
exchange, pairs=config["pairs"], timeframes=config["timeframes"],
dl_path=Path(config['datadir']), timerange=timerange, erase=config.get("erase"))
except KeyboardInterrupt:
sys.exit("SIGINT received, aborting ...")
finally:
if pairs_not_available:
logger.info(f"Pairs [{','.join(pairs_not_available)}] not available "
f"on exchange {exchange.name}.")
def start_list_timeframes(args: Dict[str, Any]) -> None: def start_list_timeframes(args: Dict[str, Any]) -> None:
""" """
Print ticker intervals (timeframes) available on Exchange Print ticker intervals (timeframes) available on Exchange
""" """
config = setup_utils_configuration(args, RunMode.OTHER) config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
# Do not use ticker_interval set in the config # Do not use ticker_interval set in the config
config['ticker_interval'] = None config['ticker_interval'] = None
# Init exchange # Init exchange
exchange = ExchangeResolver(config['exchange']['name'], config, validate=False).exchange exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
if args['print_one_column']: if args['print_one_column']:
print('\n'.join(exchange.timeframes)) print('\n'.join(exchange.timeframes))
@@ -144,10 +79,10 @@ def start_list_markets(args: Dict[str, Any], pairs_only: bool = False) -> None:
:param pairs_only: if True print only pairs, otherwise print all instruments (markets) :param pairs_only: if True print only pairs, otherwise print all instruments (markets)
:return: None :return: None
""" """
config = setup_utils_configuration(args, RunMode.OTHER) config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
# Init exchange # Init exchange
exchange = ExchangeResolver(config['exchange']['name'], config, validate=False).exchange exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
# By default only active pairs/markets are to be shown # By default only active pairs/markets are to be shown
active_only = not args.get('list_pairs_all', False) active_only = not args.get('list_pairs_all', False)

View File

@@ -0,0 +1,102 @@
import logging
from typing import Any, Dict
from freqtrade import constants
from freqtrade.configuration import setup_utils_configuration
from freqtrade.exceptions import DependencyException, OperationalException
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def setup_optimize_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
"""
Prepare the configuration for the Hyperopt module
:param args: Cli args from Arguments()
:return: Configuration
"""
config = setup_utils_configuration(args, method)
if method == RunMode.BACKTEST:
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
raise DependencyException('stake amount could not be "%s" for backtesting' %
constants.UNLIMITED_STAKE_AMOUNT)
return config
def start_backtesting(args: Dict[str, Any]) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading backtesting module when it's not used
from freqtrade.optimize.backtesting import Backtesting
# Initialize configuration
config = setup_optimize_configuration(args, RunMode.BACKTEST)
logger.info('Starting freqtrade in Backtesting mode')
# Initialize backtesting object
backtesting = Backtesting(config)
backtesting.start()
def start_hyperopt(args: Dict[str, Any]) -> None:
"""
Start hyperopt script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading hyperopt module when it's not used
try:
from filelock import FileLock, Timeout
from freqtrade.optimize.hyperopt import Hyperopt
except ImportError as e:
raise OperationalException(
f"{e}. Please ensure that the hyperopt dependencies are installed.") from e
# Initialize configuration
config = setup_optimize_configuration(args, RunMode.HYPEROPT)
logger.info('Starting freqtrade in Hyperopt mode')
lock = FileLock(Hyperopt.get_lock_filename(config))
try:
with lock.acquire(timeout=1):
# Remove noisy log messages
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
logging.getLogger('filelock').setLevel(logging.WARNING)
# Initialize backtesting object
hyperopt = Hyperopt(config)
hyperopt.start()
except Timeout:
logger.info("Another running instance of freqtrade Hyperopt detected.")
logger.info("Simultaneous execution of multiple Hyperopt commands is not supported. "
"Hyperopt module is resource hungry. Please run your Hyperopt sequentially "
"or on separate machines.")
logger.info("Quitting now.")
# TODO: return False here in order to help freqtrade to exit
# with non-zero exit code...
# Same in Edge and Backtesting start() functions.
def start_edge(args: Dict[str, Any]) -> None:
"""
Start Edge script
:param args: Cli args from Arguments()
:return: None
"""
from freqtrade.optimize.edge_cli import EdgeCli
# Initialize configuration
config = setup_optimize_configuration(args, RunMode.EDGE)
logger.info('Starting freqtrade in Edge mode')
# Initialize Edge object
edge_cli = EdgeCli(config)
edge_cli.start()

View File

@@ -0,0 +1,42 @@
import logging
from typing import Any, Dict
import rapidjson
from freqtrade.configuration import setup_utils_configuration
from freqtrade.resolvers import ExchangeResolver
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def start_test_pairlist(args: Dict[str, Any]) -> None:
"""
Test Pairlist configuration
"""
from freqtrade.pairlist.pairlistmanager import PairListManager
config = setup_utils_configuration(args, RunMode.UTIL_EXCHANGE)
exchange = ExchangeResolver.load_exchange(config['exchange']['name'], config, validate=False)
quote_currencies = args.get('quote_currencies')
if not quote_currencies:
quote_currencies = [config.get('stake_currency')]
results = {}
for curr in quote_currencies:
config['stake_currency'] = curr
# Do not use ticker_interval set in the config
pairlists = PairListManager(exchange, config)
pairlists.refresh_pairlist()
results[curr] = pairlists.whitelist
for curr, pairlist in results.items():
if not args.get('print_one_column', False):
print(f"Pairs for {curr}: ")
if args.get('print_one_column', False):
print('\n'.join(pairlist))
elif args.get('list_pairs_print_json', False):
print(rapidjson.dumps(list(pairlist), default=str))
else:
print(pairlist)

View File

@@ -1,8 +1,8 @@
from typing import Any, Dict from typing import Any, Dict
from freqtrade import OperationalException from freqtrade.configuration import setup_utils_configuration
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode from freqtrade.state import RunMode
from freqtrade.utils import setup_utils_configuration
def validate_plot_args(args: Dict[str, Any]): def validate_plot_args(args: Dict[str, Any]):

View File

@@ -0,0 +1,27 @@
import logging
from typing import Any, Dict
logger = logging.getLogger(__name__)
def start_trading(args: Dict[str, Any]) -> int:
"""
Main entry point for trading mode
"""
# Import here to avoid loading worker module when it's not used
from freqtrade.worker import Worker
# Create and run worker
worker = None
try:
worker = Worker(args)
worker.run()
except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...')
finally:
if worker:
logger.info("worker found ... calling exit")
worker.exit()
return 0

View File

@@ -1,4 +1,7 @@
from freqtrade.configuration.arguments import Arguments # noqa: F401 # flake8: noqa: F401
from freqtrade.configuration.timerange import TimeRange # noqa: F401
from freqtrade.configuration.configuration import Configuration # noqa: F401 from freqtrade.configuration.config_setup import setup_utils_configuration
from freqtrade.configuration.config_validation import validate_config_consistency # noqa: F401 from freqtrade.configuration.check_exchange import check_exchange, remove_credentials
from freqtrade.configuration.timerange import TimeRange
from freqtrade.configuration.configuration import Configuration
from freqtrade.configuration.config_validation import validate_config_consistency

View File

@@ -1,196 +0,0 @@
"""
This module contains the argument manager class
"""
import argparse
from functools import partial
from pathlib import Path
from typing import Any, Dict, List, Optional
from freqtrade import constants
from freqtrade.configuration.cli_options import AVAILABLE_CLI_OPTIONS
ARGS_COMMON = ["verbosity", "logfile", "version", "config", "datadir", "user_data_dir"]
ARGS_STRATEGY = ["strategy", "strategy_path"]
ARGS_MAIN = ARGS_COMMON + ARGS_STRATEGY + ["db_url", "sd_notify"]
ARGS_COMMON_OPTIMIZE = ["ticker_interval", "timerange",
"max_open_trades", "stake_amount", "fee"]
ARGS_BACKTEST = ARGS_COMMON_OPTIMIZE + ["position_stacking", "use_max_market_positions",
"strategy_list", "export", "exportfilename"]
ARGS_HYPEROPT = ARGS_COMMON_OPTIMIZE + ["hyperopt", "hyperopt_path",
"position_stacking", "epochs", "spaces",
"use_max_market_positions", "print_all",
"print_colorized", "print_json", "hyperopt_jobs",
"hyperopt_random_state", "hyperopt_min_trades",
"hyperopt_continue", "hyperopt_loss"]
ARGS_EDGE = ARGS_COMMON_OPTIMIZE + ["stoploss_range"]
ARGS_LIST_EXCHANGES = ["print_one_column", "list_exchanges_all"]
ARGS_LIST_TIMEFRAMES = ["exchange", "print_one_column"]
ARGS_LIST_PAIRS = ["exchange", "print_list", "list_pairs_print_json", "print_one_column",
"print_csv", "base_currencies", "quote_currencies", "list_pairs_all"]
ARGS_CREATE_USERDIR = ["user_data_dir"]
ARGS_DOWNLOAD_DATA = ["pairs", "pairs_file", "days", "download_trades", "exchange",
"timeframes", "erase"]
ARGS_PLOT_DATAFRAME = ["pairs", "indicators1", "indicators2", "plot_limit", "db_url",
"trade_source", "export", "exportfilename", "timerange", "ticker_interval"]
ARGS_PLOT_PROFIT = ["pairs", "timerange", "export", "exportfilename", "db_url",
"trade_source", "ticker_interval"]
NO_CONF_REQURIED = ["download-data", "list-timeframes", "list-markets", "list-pairs",
"plot-dataframe", "plot-profit"]
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges"]
class Arguments:
"""
Arguments Class. Manage the arguments received by the cli
"""
def __init__(self, args: Optional[List[str]]) -> None:
self.args = args
self._parsed_arg: Optional[argparse.Namespace] = None
self.parser = argparse.ArgumentParser(description='Free, open source crypto trading bot')
def _load_args(self) -> None:
self._build_args(optionlist=ARGS_MAIN)
self._build_subcommands()
def get_parsed_arg(self) -> Dict[str, Any]:
"""
Return the list of arguments
:return: List[str] List of arguments
"""
if self._parsed_arg is None:
self._load_args()
self._parsed_arg = self._parse_args()
return vars(self._parsed_arg)
def _parse_args(self) -> argparse.Namespace:
"""
Parses given arguments and returns an argparse Namespace instance.
"""
parsed_arg = self.parser.parse_args(self.args)
# When no config is provided, but a config exists, use that configuration!
subparser = parsed_arg.subparser if 'subparser' in parsed_arg else None
# Workaround issue in argparse with action='append' and default value
# (see https://bugs.python.org/issue16399)
# Allow no-config for certain commands (like downloading / plotting)
if (parsed_arg.config is None
and subparser not in NO_CONF_ALLOWED
and ((Path.cwd() / constants.DEFAULT_CONFIG).is_file()
or (subparser not in NO_CONF_REQURIED))):
parsed_arg.config = [constants.DEFAULT_CONFIG]
return parsed_arg
def _build_args(self, optionlist, parser=None):
parser = parser or self.parser
for val in optionlist:
opt = AVAILABLE_CLI_OPTIONS[val]
parser.add_argument(*opt.cli, dest=val, **opt.kwargs)
def _build_subcommands(self) -> None:
"""
Builds and attaches all subcommands.
:return: None
"""
from freqtrade.optimize import start_backtesting, start_hyperopt, start_edge
from freqtrade.utils import (start_create_userdir, start_download_data,
start_list_exchanges, start_list_timeframes,
start_list_markets)
subparsers = self.parser.add_subparsers(dest='subparser')
# Add backtesting subcommand
backtesting_cmd = subparsers.add_parser('backtesting', help='Backtesting module.')
backtesting_cmd.set_defaults(func=start_backtesting)
self._build_args(optionlist=ARGS_BACKTEST, parser=backtesting_cmd)
# Add edge subcommand
edge_cmd = subparsers.add_parser('edge', help='Edge module.')
edge_cmd.set_defaults(func=start_edge)
self._build_args(optionlist=ARGS_EDGE, parser=edge_cmd)
# Add hyperopt subcommand
hyperopt_cmd = subparsers.add_parser('hyperopt', help='Hyperopt module.')
hyperopt_cmd.set_defaults(func=start_hyperopt)
self._build_args(optionlist=ARGS_HYPEROPT, parser=hyperopt_cmd)
# add create-userdir subcommand
create_userdir_cmd = subparsers.add_parser('create-userdir',
help="Create user-data directory.")
create_userdir_cmd.set_defaults(func=start_create_userdir)
self._build_args(optionlist=ARGS_CREATE_USERDIR, parser=create_userdir_cmd)
# Add list-exchanges subcommand
list_exchanges_cmd = subparsers.add_parser(
'list-exchanges',
help='Print available exchanges.'
)
list_exchanges_cmd.set_defaults(func=start_list_exchanges)
self._build_args(optionlist=ARGS_LIST_EXCHANGES, parser=list_exchanges_cmd)
# Add list-timeframes subcommand
list_timeframes_cmd = subparsers.add_parser(
'list-timeframes',
help='Print available ticker intervals (timeframes) for the exchange.'
)
list_timeframes_cmd.set_defaults(func=start_list_timeframes)
self._build_args(optionlist=ARGS_LIST_TIMEFRAMES, parser=list_timeframes_cmd)
# Add list-markets subcommand
list_markets_cmd = subparsers.add_parser(
'list-markets',
help='Print markets on exchange.'
)
list_markets_cmd.set_defaults(func=partial(start_list_markets, pairs_only=False))
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_markets_cmd)
# Add list-pairs subcommand
list_pairs_cmd = subparsers.add_parser(
'list-pairs',
help='Print pairs on exchange.'
)
list_pairs_cmd.set_defaults(func=partial(start_list_markets, pairs_only=True))
self._build_args(optionlist=ARGS_LIST_PAIRS, parser=list_pairs_cmd)
# Add download-data subcommand
download_data_cmd = subparsers.add_parser(
'download-data',
help='Download backtesting data.'
)
download_data_cmd.set_defaults(func=start_download_data)
self._build_args(optionlist=ARGS_DOWNLOAD_DATA, parser=download_data_cmd)
# Add Plotting subcommand
from freqtrade.plot.plot_utils import start_plot_dataframe, start_plot_profit
plot_dataframe_cmd = subparsers.add_parser(
'plot-dataframe',
help='Plot candles with indicators.'
)
plot_dataframe_cmd.set_defaults(func=start_plot_dataframe)
self._build_args(optionlist=ARGS_PLOT_DATAFRAME, parser=plot_dataframe_cmd)
# Plot profit
plot_profit_cmd = subparsers.add_parser(
'plot-profit',
help='Generate plot showing profits.'
)
plot_profit_cmd.set_defaults(func=start_plot_profit)
self._build_args(optionlist=ARGS_PLOT_PROFIT, parser=plot_profit_cmd)

View File

@@ -1,15 +1,28 @@
import logging import logging
from typing import Any, Dict from typing import Any, Dict
from freqtrade import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (available_exchanges, get_exchange_bad_reason, from freqtrade.exchange import (available_exchanges, get_exchange_bad_reason,
is_exchange_known_ccxt, is_exchange_bad, is_exchange_bad, is_exchange_known_ccxt,
is_exchange_officially_supported) is_exchange_officially_supported)
from freqtrade.state import RunMode from freqtrade.state import RunMode
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def remove_credentials(config: Dict[str, Any]):
"""
Removes exchange keys from the configuration and specifies dry-run
Used for backtesting / hyperopt / edge and utils.
Modifies the input dict!
"""
config['exchange']['key'] = ''
config['exchange']['secret'] = ''
config['exchange']['password'] = ''
config['exchange']['uid'] = ''
config['dry_run'] = True
def check_exchange(config: Dict[str, Any], check_for_bad: bool = True) -> bool: def check_exchange(config: Dict[str, Any], check_for_bad: bool = True) -> bool:
""" """
Check if the exchange name in the config file is supported by Freqtrade Check if the exchange name in the config file is supported by Freqtrade
@@ -21,7 +34,8 @@ def check_exchange(config: Dict[str, Any], check_for_bad: bool = True) -> bool:
and thus is not known for the Freqtrade at all. and thus is not known for the Freqtrade at all.
""" """
if config['runmode'] in [RunMode.PLOT] and not config.get('exchange', {}).get('name'): if (config['runmode'] in [RunMode.PLOT, RunMode.UTIL_NO_EXCHANGE, RunMode.OTHER]
and not config.get('exchange', {}).get('name')):
# Skip checking exchange in plot mode, since it requires no exchange # Skip checking exchange in plot mode, since it requires no exchange
return True return True
logger.info("Checking exchange...") logger.info("Checking exchange...")

View File

@@ -0,0 +1,25 @@
import logging
from typing import Any, Dict
from .config_validation import validate_config_consistency
from .configuration import Configuration
from .check_exchange import remove_credentials
from freqtrade.state import RunMode
logger = logging.getLogger(__name__)
def setup_utils_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
"""
Prepare the configuration for utils subcommands
:param args: Cli args from Arguments()
:return: Configuration
"""
configuration = Configuration(args, method)
config = configuration.get_config()
# Ensure we do not use Exchange credentials
remove_credentials(config)
validate_config_consistency(config)
return config

View File

@@ -1,11 +1,13 @@
import logging import logging
from copy import deepcopy
from typing import Any, Dict from typing import Any, Dict
from jsonschema import Draft4Validator, validators from jsonschema import Draft4Validator, validators
from jsonschema.exceptions import ValidationError, best_match from jsonschema.exceptions import ValidationError, best_match
from freqtrade import constants, OperationalException from freqtrade import constants
from freqtrade.exceptions import OperationalException
from freqtrade.state import RunMode
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -41,15 +43,20 @@ def validate_config_schema(conf: Dict[str, Any]) -> Dict[str, Any]:
:param conf: Config in JSON format :param conf: Config in JSON format
:return: Returns the config if valid, otherwise throw an exception :return: Returns the config if valid, otherwise throw an exception
""" """
conf_schema = deepcopy(constants.CONF_SCHEMA)
if conf.get('runmode', RunMode.OTHER) in (RunMode.DRY_RUN, RunMode.LIVE):
conf_schema['required'] = constants.SCHEMA_TRADE_REQUIRED
else:
conf_schema['required'] = constants.SCHEMA_MINIMAL_REQUIRED
try: try:
FreqtradeValidator(constants.CONF_SCHEMA).validate(conf) FreqtradeValidator(conf_schema).validate(conf)
return conf return conf
except ValidationError as e: except ValidationError as e:
logger.critical( logger.critical(
f"Invalid configuration. See config.json.example. Reason: {e}" f"Invalid configuration. See config.json.example. Reason: {e}"
) )
raise ValidationError( raise ValidationError(
best_match(Draft4Validator(constants.CONF_SCHEMA).iter_errors(conf)).message best_match(Draft4Validator(conf_schema).iter_errors(conf)).message
) )
@@ -61,9 +68,27 @@ def validate_config_consistency(conf: Dict[str, Any]) -> None:
:param conf: Config in JSON format :param conf: Config in JSON format
:return: Returns None if everything is ok, otherwise throw an OperationalException :return: Returns None if everything is ok, otherwise throw an OperationalException
""" """
# validating trailing stoploss # validating trailing stoploss
_validate_trailing_stoploss(conf) _validate_trailing_stoploss(conf)
_validate_edge(conf) _validate_edge(conf)
_validate_whitelist(conf)
_validate_unlimited_amount(conf)
# validate configuration before returning
logger.info('Validating configuration ...')
validate_config_schema(conf)
def _validate_unlimited_amount(conf: Dict[str, Any]) -> None:
"""
If edge is disabled, either max_open_trades or stake_amount need to be set.
:raise: OperationalException if config validation failed
"""
if (not conf.get('edge', {}).get('enabled')
and conf.get('max_open_trades') == float('inf')
and conf.get('stake_amount') == constants.UNLIMITED_STAKE_AMOUNT):
raise OperationalException("`max_open_trades` and `stake_amount` cannot both be unlimited.")
def _validate_trailing_stoploss(conf: Dict[str, Any]) -> None: def _validate_trailing_stoploss(conf: Dict[str, Any]) -> None:
@@ -111,3 +136,29 @@ def _validate_edge(conf: Dict[str, Any]) -> None:
"Edge and VolumePairList are incompatible, " "Edge and VolumePairList are incompatible, "
"Edge will override whatever pairs VolumePairlist selects." "Edge will override whatever pairs VolumePairlist selects."
) )
def _validate_whitelist(conf: Dict[str, Any]) -> None:
"""
Dynamic whitelist does not require pair_whitelist to be set - however StaticWhitelist does.
"""
if conf.get('runmode', RunMode.OTHER) in [RunMode.OTHER, RunMode.PLOT,
RunMode.UTIL_NO_EXCHANGE, RunMode.UTIL_EXCHANGE]:
return
for pl in conf.get('pairlists', [{'method': 'StaticPairList'}]):
if (pl.get('method') == 'StaticPairList'
and not conf.get('exchange', {}).get('pair_whitelist')):
raise OperationalException("StaticPairList requires pair_whitelist to be set.")
if pl.get('method') == 'StaticPairList':
stake = conf['stake_currency']
invalid_pairs = []
for pair in conf['exchange'].get('pair_whitelist'):
if not pair.endswith(f'/{stake}'):
invalid_pairs.append(pair)
if invalid_pairs:
raise OperationalException(
f"Stake-currency '{stake}' not compatible with pair-whitelist. "
f"Please remove the following pairs: {invalid_pairs}")

View File

@@ -7,17 +7,16 @@ from copy import deepcopy
from pathlib import Path from pathlib import Path
from typing import Any, Callable, Dict, List, Optional from typing import Any, Callable, Dict, List, Optional
from freqtrade import OperationalException, constants from freqtrade import constants
from freqtrade.configuration.check_exchange import check_exchange from freqtrade.configuration.check_exchange import check_exchange
from freqtrade.configuration.config_validation import (validate_config_consistency,
validate_config_schema)
from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings from freqtrade.configuration.deprecated_settings import process_temporary_deprecated_settings
from freqtrade.configuration.directory_operations import (create_datadir, from freqtrade.configuration.directory_operations import (create_datadir,
create_userdata_dir) create_userdata_dir)
from freqtrade.configuration.load_config import load_config_file from freqtrade.configuration.load_config import load_config_file
from freqtrade.exceptions import OperationalException
from freqtrade.loggers import setup_logging from freqtrade.loggers import setup_logging
from freqtrade.misc import deep_merge_dicts, json_load from freqtrade.misc import deep_merge_dicts, json_load
from freqtrade.state import RunMode from freqtrade.state import NON_UTIL_MODES, TRADING_MODES, RunMode
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -81,9 +80,8 @@ class Configuration:
if 'ask_strategy' not in config: if 'ask_strategy' not in config:
config['ask_strategy'] = {} config['ask_strategy'] = {}
# validate configuration before returning if 'pairlists' not in config:
logger.info('Validating configuration ...') config['pairlists'] = []
validate_config_schema(config)
return config return config
@@ -93,19 +91,21 @@ class Configuration:
:return: Configuration dictionary :return: Configuration dictionary
""" """
# Load all configs # Load all configs
config: Dict[str, Any] = self.load_from_files(self.args["config"]) config: Dict[str, Any] = self.load_from_files(self.args.get("config", []))
# Keep a copy of the original configuration file # Keep a copy of the original configuration file
config['original_config'] = deepcopy(config) config['original_config'] = deepcopy(config)
self._process_runmode(config)
self._process_common_options(config) self._process_common_options(config)
self._process_trading_options(config)
self._process_optimize_options(config) self._process_optimize_options(config)
self._process_plot_options(config) self._process_plot_options(config)
self._process_runmode(config)
# Check if the exchange set by the user is supported # Check if the exchange set by the user is supported
check_exchange(config, config.get('experimental', {}).get('block_bad_exchanges', True)) check_exchange(config, config.get('experimental', {}).get('block_bad_exchanges', True))
@@ -113,8 +113,6 @@ class Configuration:
process_temporary_deprecated_settings(config) process_temporary_deprecated_settings(config)
validate_config_consistency(config)
return config return config
def _process_logging_options(self, config: Dict[str, Any]) -> None: def _process_logging_options(self, config: Dict[str, Any]) -> None:
@@ -130,21 +128,9 @@ class Configuration:
setup_logging(config) setup_logging(config)
def _process_common_options(self, config: Dict[str, Any]) -> None: def _process_trading_options(self, config: Dict[str, Any]) -> None:
if config['runmode'] not in TRADING_MODES:
self._process_logging_options(config) return
# Set strategy if not specified in config and or if it's non default
if self.args.get("strategy") != constants.DEFAULT_STRATEGY or not config.get('strategy'):
config.update({'strategy': self.args.get("strategy")})
self._args_to_config(config, argname='strategy_path',
logstring='Using additional Strategy lookup path: {}')
if ('db_url' in self.args and self.args["db_url"] and
self.args["db_url"] != constants.DEFAULT_DB_PROD_URL):
config.update({'db_url': self.args["db_url"]})
logger.info('Parameter --db-url detected ...')
if config.get('dry_run', False): if config.get('dry_run', False):
logger.info('Dry run is enabled') logger.info('Dry run is enabled')
@@ -158,17 +144,33 @@ class Configuration:
logger.info(f'Using DB: "{config["db_url"]}"') logger.info(f'Using DB: "{config["db_url"]}"')
def _process_common_options(self, config: Dict[str, Any]) -> None:
self._process_logging_options(config)
# Set strategy if not specified in config and or if it's non default
if self.args.get("strategy") or not config.get('strategy'):
config.update({'strategy': self.args.get("strategy")})
self._args_to_config(config, argname='strategy_path',
logstring='Using additional Strategy lookup path: {}')
if ('db_url' in self.args and self.args["db_url"] and
self.args["db_url"] != constants.DEFAULT_DB_PROD_URL):
config.update({'db_url': self.args["db_url"]})
logger.info('Parameter --db-url detected ...')
if config.get('forcebuy_enable', False): if config.get('forcebuy_enable', False):
logger.warning('`forcebuy` RPC message enabled.') logger.warning('`forcebuy` RPC message enabled.')
# Setting max_open_trades to infinite if -1
if config.get('max_open_trades') == -1:
config['max_open_trades'] = float('inf')
# Support for sd_notify # Support for sd_notify
if 'sd_notify' in self.args and self.args["sd_notify"]: if 'sd_notify' in self.args and self.args["sd_notify"]:
config['internals'].update({'sd_notify': True}) config['internals'].update({'sd_notify': True})
self._args_to_config(config, argname='dry_run',
logstring='Parameter --dry-run detected, '
'overriding dry_run to: {} ...')
def _process_datadir_options(self, config: Dict[str, Any]) -> None: def _process_datadir_options(self, config: Dict[str, Any]) -> None:
""" """
Extract information for sys.argv and load directory configurations Extract information for sys.argv and load directory configurations
@@ -179,6 +181,9 @@ class Configuration:
config['exchange']['name'] = self.args["exchange"] config['exchange']['name'] = self.args["exchange"]
logger.info(f"Using exchange {config['exchange']['name']}") logger.info(f"Using exchange {config['exchange']['name']}")
if 'pair_whitelist' not in config['exchange']:
config['exchange']['pair_whitelist'] = []
if 'user_data_dir' in self.args and self.args["user_data_dir"]: if 'user_data_dir' in self.args and self.args["user_data_dir"]:
config.update({'user_data_dir': self.args["user_data_dir"]}) config.update({'user_data_dir': self.args["user_data_dir"]})
elif 'user_data_dir' not in config: elif 'user_data_dir' not in config:
@@ -209,19 +214,23 @@ class Configuration:
self._args_to_config(config, argname='position_stacking', self._args_to_config(config, argname='position_stacking',
logstring='Parameter --enable-position-stacking detected ...') logstring='Parameter --enable-position-stacking detected ...')
# Setting max_open_trades to infinite if -1
if config.get('max_open_trades') == -1:
config['max_open_trades'] = float('inf')
if 'use_max_market_positions' in self.args and not self.args["use_max_market_positions"]: if 'use_max_market_positions' in self.args and not self.args["use_max_market_positions"]:
config.update({'use_max_market_positions': False}) config.update({'use_max_market_positions': False})
logger.info('Parameter --disable-max-market-positions detected ...') logger.info('Parameter --disable-max-market-positions detected ...')
logger.info('max_open_trades set to unlimited ...') logger.info('max_open_trades set to unlimited ...')
elif 'max_open_trades' in self.args and self.args["max_open_trades"]: elif 'max_open_trades' in self.args and self.args["max_open_trades"]:
config.update({'max_open_trades': self.args["max_open_trades"]}) config.update({'max_open_trades': self.args["max_open_trades"]})
logger.info('Parameter --max_open_trades detected, ' logger.info('Parameter --max-open-trades detected, '
'overriding max_open_trades to: %s ...', config.get('max_open_trades')) 'overriding max_open_trades to: %s ...', config.get('max_open_trades'))
else: elif config['runmode'] in NON_UTIL_MODES:
logger.info('Using max_open_trades: %s ...', config.get('max_open_trades')) logger.info('Using max_open_trades: %s ...', config.get('max_open_trades'))
self._args_to_config(config, argname='stake_amount', self._args_to_config(config, argname='stake_amount',
logstring='Parameter --stake_amount detected, ' logstring='Parameter --stake-amount detected, '
'overriding stake_amount to: {} ...') 'overriding stake_amount to: {} ...')
self._args_to_config(config, argname='fee', self._args_to_config(config, argname='fee',
@@ -292,6 +301,21 @@ class Configuration:
self._args_to_config(config, argname='hyperopt_loss', self._args_to_config(config, argname='hyperopt_loss',
logstring='Using Hyperopt loss class name: {}') logstring='Using Hyperopt loss class name: {}')
self._args_to_config(config, argname='hyperopt_show_index',
logstring='Parameter -n/--index detected: {}')
self._args_to_config(config, argname='hyperopt_list_best',
logstring='Parameter --best detected: {}')
self._args_to_config(config, argname='hyperopt_list_profitable',
logstring='Parameter --profitable detected: {}')
self._args_to_config(config, argname='hyperopt_list_no_details',
logstring='Parameter --no-details detected: {}')
self._args_to_config(config, argname='hyperopt_show_no_header',
logstring='Parameter --no-header detected: {}')
def _process_plot_options(self, config: Dict[str, Any]) -> None: def _process_plot_options(self, config: Dict[str, Any]) -> None:
self._args_to_config(config, argname='pairs', self._args_to_config(config, argname='pairs',
@@ -380,7 +404,7 @@ class Configuration:
config['pairs'] = config.get('exchange', {}).get('pair_whitelist') config['pairs'] = config.get('exchange', {}).get('pair_whitelist')
else: else:
# Fall back to /dl_path/pairs.json # Fall back to /dl_path/pairs.json
pairs_file = Path(config['datadir']) / "pairs.json" pairs_file = config['datadir'] / "pairs.json"
if pairs_file.exists(): if pairs_file.exists():
with pairs_file.open('r') as f: with pairs_file.open('r') as f:
config['pairs'] = json_load(f) config['pairs'] = json_load(f)

View File

@@ -5,7 +5,7 @@ Functions to handle deprecated settings
import logging import logging
from typing import Any, Dict from typing import Any, Dict
from freqtrade import OperationalException from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -57,3 +57,36 @@ def process_temporary_deprecated_settings(config: Dict[str, Any]) -> None:
'experimental', 'sell_profit_only') 'experimental', 'sell_profit_only')
process_deprecated_setting(config, 'ask_strategy', 'ignore_roi_if_buy_signal', process_deprecated_setting(config, 'ask_strategy', 'ignore_roi_if_buy_signal',
'experimental', 'ignore_roi_if_buy_signal') 'experimental', 'ignore_roi_if_buy_signal')
if not config.get('pairlists') and not config.get('pairlists'):
config['pairlists'] = [{'method': 'StaticPairList'}]
logger.warning(
"DEPRECATED: "
"Pairlists must be defined explicitly in the future."
"Defaulting to StaticPairList for now.")
if config.get('pairlist', {}).get("method") == 'VolumePairList':
logger.warning(
"DEPRECATED: "
f"Using VolumePairList in pairlist is deprecated and must be moved to pairlists. "
"Please refer to the docs on configuration details")
pl = {'method': 'VolumePairList'}
pl.update(config.get('pairlist', {}).get('config'))
config['pairlists'].append(pl)
if config.get('pairlist', {}).get('config', {}).get('precision_filter'):
logger.warning(
"DEPRECATED: "
f"Using precision_filter setting is deprecated and has been replaced by"
"PrecisionFilter. Please refer to the docs on configuration details")
config['pairlists'].append({'method': 'PrecisionFilter'})
if (config.get('edge', {}).get('enabled', False)
and 'capital_available_percentage' in config.get('edge', {})):
logger.warning(
"DEPRECATED: "
"Using 'edge.capital_available_percentage' has been deprecated in favor of "
"'tradable_balance_ratio'. Please migrate your configuration to "
"'tradable_balance_ratio' and remove 'capital_available_percentage' "
"from the edge configuration."
)

View File

@@ -1,13 +1,15 @@
import logging import logging
from typing import Any, Dict, Optional import shutil
from pathlib import Path from pathlib import Path
from typing import Any, Dict, Optional
from freqtrade import OperationalException from freqtrade.exceptions import OperationalException
from freqtrade.constants import USER_DATA_FILES
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> str: def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> Path:
folder = Path(datadir) if datadir else Path(f"{config['user_data_dir']}/data") folder = Path(datadir) if datadir else Path(f"{config['user_data_dir']}/data")
if not datadir: if not datadir:
@@ -18,7 +20,7 @@ def create_datadir(config: Dict[str, Any], datadir: Optional[str] = None) -> str
if not folder.is_dir(): if not folder.is_dir():
folder.mkdir(parents=True) folder.mkdir(parents=True)
logger.info(f'Created data directory: {datadir}') logger.info(f'Created data directory: {datadir}')
return str(folder) return folder
def create_userdata_dir(directory: str, create_dir=False) -> Path: def create_userdata_dir(directory: str, create_dir=False) -> Path:
@@ -31,7 +33,8 @@ def create_userdata_dir(directory: str, create_dir=False) -> Path:
:param create_dir: Create directory if it does not exist. :param create_dir: Create directory if it does not exist.
:return: Path object containing the directory :return: Path object containing the directory
""" """
sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "plot", "strategies", ] sub_dirs = ["backtest_results", "data", "hyperopts", "hyperopt_results", "notebooks",
"plot", "strategies", ]
folder = Path(directory) folder = Path(directory)
if not folder.is_dir(): if not folder.is_dir():
if create_dir: if create_dir:
@@ -48,3 +51,26 @@ def create_userdata_dir(directory: str, create_dir=False) -> Path:
if not subfolder.is_dir(): if not subfolder.is_dir():
subfolder.mkdir(parents=False) subfolder.mkdir(parents=False)
return folder return folder
def copy_sample_files(directory: Path, overwrite: bool = False) -> None:
"""
Copy files from templates to User data directory.
:param directory: Directory to copy data to
:param overwrite: Overwrite existing sample files
"""
if not directory.is_dir():
raise OperationalException(f"Directory `{directory}` does not exist.")
sourcedir = Path(__file__).parents[1] / "templates"
for source, target in USER_DATA_FILES.items():
targetdir = directory / target
if not targetdir.is_dir():
raise OperationalException(f"Directory `{targetdir}` does not exist.")
targetfile = targetdir / source
if targetfile.exists():
if not overwrite:
logger.warning(f"File `{targetfile}` exists already, not deploying sample file.")
continue
else:
logger.warning(f"File `{targetfile}` exists already, overwriting.")
shutil.copy(str(sourcedir / source), str(targetfile))

View File

@@ -6,7 +6,7 @@ import logging
import sys import sys
from typing import Any, Dict from typing import Any, Dict
from freqtrade import OperationalException from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)

View File

@@ -1,11 +1,14 @@
""" """
This module contains the argument manager class This module contains the argument manager class
""" """
import logging
import re import re
from typing import Optional from typing import Optional
import arrow import arrow
logger = logging.getLogger(__name__)
class TimeRange: class TimeRange:
""" """
@@ -27,6 +30,34 @@ class TimeRange:
return (self.starttype == other.starttype and self.stoptype == other.stoptype return (self.starttype == other.starttype and self.stoptype == other.stoptype
and self.startts == other.startts and self.stopts == other.stopts) and self.startts == other.startts and self.stopts == other.stopts)
def subtract_start(self, seconds) -> None:
"""
Subtracts <seconds> from startts if startts is set.
:param seconds: Seconds to subtract from starttime
:return: None (Modifies the object in place)
"""
if self.startts:
self.startts = self.startts - seconds
def adjust_start_if_necessary(self, timeframe_secs: int, startup_candles: int,
min_date: arrow.Arrow) -> None:
"""
Adjust startts by <startup_candles> candles.
Applies only if no startup-candles have been available.
:param timeframe_secs: Ticker timeframe in seconds e.g. `timeframe_to_seconds('5m')`
:param startup_candles: Number of candles to move start-date forward
:param min_date: Minimum data date loaded. Key kriterium to decide if start-time
has to be moved
:return: None (Modifies the object in place)
"""
if (not self.starttype or (startup_candles
and min_date.timestamp >= self.startts)):
# If no startts was defined, or backtest-data starts at the defined backtest-date
logger.warning("Moving start-date by %s candles to account for startup time.",
startup_candles)
self.startts = (min_date.timestamp + timeframe_secs * startup_candles)
self.starttype = 'date'
@staticmethod @staticmethod
def parse_timerange(text: Optional[str]): def parse_timerange(text: Optional[str]):
""" """

View File

@@ -6,29 +6,32 @@ bot constants
DEFAULT_CONFIG = 'config.json' DEFAULT_CONFIG = 'config.json'
DEFAULT_EXCHANGE = 'bittrex' DEFAULT_EXCHANGE = 'bittrex'
PROCESS_THROTTLE_SECS = 5 # sec PROCESS_THROTTLE_SECS = 5 # sec
DEFAULT_TICKER_INTERVAL = 5 # min
HYPEROPT_EPOCH = 100 # epochs HYPEROPT_EPOCH = 100 # epochs
RETRY_TIMEOUT = 30 # sec RETRY_TIMEOUT = 30 # sec
DEFAULT_STRATEGY = 'DefaultStrategy'
DEFAULT_HYPEROPT = 'DefaultHyperOpt'
DEFAULT_HYPEROPT_LOSS = 'DefaultHyperOptLoss' DEFAULT_HYPEROPT_LOSS = 'DefaultHyperOptLoss'
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite' DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
DEFAULT_DB_DRYRUN_URL = 'sqlite://' DEFAULT_DB_DRYRUN_URL = 'sqlite:///tradesv3.dryrun.sqlite'
UNLIMITED_STAKE_AMOUNT = 'unlimited' UNLIMITED_STAKE_AMOUNT = 'unlimited'
DEFAULT_AMOUNT_RESERVE_PERCENT = 0.05 DEFAULT_AMOUNT_RESERVE_PERCENT = 0.05
REQUIRED_ORDERTIF = ['buy', 'sell'] REQUIRED_ORDERTIF = ['buy', 'sell']
REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss', 'stoploss_on_exchange'] REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss', 'stoploss_on_exchange']
ORDERTYPE_POSSIBILITIES = ['limit', 'market'] ORDERTYPE_POSSIBILITIES = ['limit', 'market']
ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc'] ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList'] AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList', 'PrecisionFilter', 'PriceFilter']
DRY_RUN_WALLET = 999.9 DRY_RUN_WALLET = 1000
MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons MATH_CLOSE_PREC = 1e-14 # Precision used for float comparisons
TICKER_INTERVALS = [ USERPATH_HYPEROPTS = 'hyperopts'
'1m', '3m', '5m', '15m', '30m', USERPATH_STRATEGY = 'strategies'
'1h', '2h', '4h', '6h', '8h', '12h',
'1d', '3d', '1w', # Soure files with destination directories within user-directory
] USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGY,
'sample_hyperopt_advanced.py': USERPATH_HYPEROPTS,
'sample_hyperopt_loss.py': USERPATH_HYPEROPTS,
'sample_hyperopt.py': USERPATH_HYPEROPTS,
'strategy_analysis_example.ipynb': 'notebooks',
}
SUPPORTED_FIAT = [ SUPPORTED_FIAT = [
"AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK", "AUD", "BRL", "CAD", "CHF", "CLP", "CNY", "CZK", "DKK",
@@ -56,17 +59,27 @@ MINIMAL_CONFIG = {
CONF_SCHEMA = { CONF_SCHEMA = {
'type': 'object', 'type': 'object',
'properties': { 'properties': {
'max_open_trades': {'type': 'integer', 'minimum': -1}, 'max_open_trades': {'type': ['integer', 'number'], 'minimum': -1},
'ticker_interval': {'type': 'string', 'enum': TICKER_INTERVALS}, 'ticker_interval': {'type': 'string'},
'stake_currency': {'type': 'string', 'enum': ['BTC', 'XBT', 'ETH', 'USDT', 'EUR', 'USD']}, 'stake_currency': {'type': 'string'},
'stake_amount': { 'stake_amount': {
"type": ["number", "string"], 'type': ['number', 'string'],
"minimum": 0.0005, 'minimum': 0.0001,
"pattern": UNLIMITED_STAKE_AMOUNT 'pattern': UNLIMITED_STAKE_AMOUNT
}, },
'tradable_balance_ratio': {
'type': 'number',
'minimum': 0.1,
'maximum': 1,
'default': 0.99
},
'amend_last_stake_amount': {'type': 'boolean', 'default': False},
'last_stake_amount_min_ratio': {
'type': 'number', 'minimum': 0.0, 'maximum': 1.0, 'default': 0.5
},
'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT}, 'fiat_display_currency': {'type': 'string', 'enum': SUPPORTED_FIAT},
'dry_run': {'type': 'boolean'}, 'dry_run': {'type': 'boolean'},
'dry_run_wallet': {'type': 'number'}, 'dry_run_wallet': {'type': 'number', 'default': DRY_RUN_WALLET},
'process_only_new_candles': {'type': 'boolean'}, 'process_only_new_candles': {'type': 'boolean'},
'minimal_roi': { 'minimal_roi': {
'type': 'object', 'type': 'object',
@@ -84,8 +97,8 @@ CONF_SCHEMA = {
'unfilledtimeout': { 'unfilledtimeout': {
'type': 'object', 'type': 'object',
'properties': { 'properties': {
'buy': {'type': 'number', 'minimum': 3}, 'buy': {'type': 'number', 'minimum': 1},
'sell': {'type': 'number', 'minimum': 10} 'sell': {'type': 'number', 'minimum': 1}
} }
}, },
'bid_strategy': { 'bid_strategy': {
@@ -97,7 +110,7 @@ CONF_SCHEMA = {
'maximum': 1, 'maximum': 1,
'exclusiveMaximum': False, 'exclusiveMaximum': False,
'use_order_book': {'type': 'boolean'}, 'use_order_book': {'type': 'boolean'},
'order_book_top': {'type': 'number', 'maximum': 20, 'minimum': 1}, 'order_book_top': {'type': 'integer', 'maximum': 20, 'minimum': 1},
'check_depth_of_market': { 'check_depth_of_market': {
'type': 'object', 'type': 'object',
'properties': { 'properties': {
@@ -113,8 +126,8 @@ CONF_SCHEMA = {
'type': 'object', 'type': 'object',
'properties': { 'properties': {
'use_order_book': {'type': 'boolean'}, 'use_order_book': {'type': 'boolean'},
'order_book_min': {'type': 'number', 'minimum': 1}, 'order_book_min': {'type': 'integer', 'minimum': 1},
'order_book_max': {'type': 'number', 'minimum': 1, 'maximum': 50}, 'order_book_max': {'type': 'integer', 'minimum': 1, 'maximum': 50},
'use_sell_signal': {'type': 'boolean'}, 'use_sell_signal': {'type': 'boolean'},
'sell_profit_only': {'type': 'boolean'}, 'sell_profit_only': {'type': 'boolean'},
'ignore_roi_if_buy_signal': {'type': 'boolean'} 'ignore_roi_if_buy_signal': {'type': 'boolean'}
@@ -151,13 +164,16 @@ CONF_SCHEMA = {
'block_bad_exchanges': {'type': 'boolean'} 'block_bad_exchanges': {'type': 'boolean'}
} }
}, },
'pairlist': { 'pairlists': {
'type': 'object', 'type': 'array',
'properties': { 'items': {
'method': {'type': 'string', 'enum': AVAILABLE_PAIRLISTS}, 'type': 'object',
'config': {'type': 'object'} 'properties': {
}, 'method': {'type': 'string', 'enum': AVAILABLE_PAIRLISTS},
'required': ['method'] 'config': {'type': 'object'}
},
'required': ['method'],
}
}, },
'telegram': { 'telegram': {
'type': 'object', 'type': 'object',
@@ -184,8 +200,8 @@ CONF_SCHEMA = {
'listen_ip_address': {'format': 'ipv4'}, 'listen_ip_address': {'format': 'ipv4'},
'listen_port': { 'listen_port': {
'type': 'integer', 'type': 'integer',
"minimum": 1024, 'minimum': 1024,
"maximum": 65535 'maximum': 65535
}, },
'username': {'type': 'string'}, 'username': {'type': 'string'},
'password': {'type': 'string'}, 'password': {'type': 'string'},
@@ -198,7 +214,7 @@ CONF_SCHEMA = {
'internals': { 'internals': {
'type': 'object', 'type': 'object',
'properties': { 'properties': {
'process_throttle_secs': {'type': 'number'}, 'process_throttle_secs': {'type': 'integer'},
'interval': {'type': 'integer'}, 'interval': {'type': 'integer'},
'sd_notify': {'type': 'boolean'}, 'sd_notify': {'type': 'boolean'},
} }
@@ -235,37 +251,46 @@ CONF_SCHEMA = {
'ccxt_config': {'type': 'object'}, 'ccxt_config': {'type': 'object'},
'ccxt_async_config': {'type': 'object'} 'ccxt_async_config': {'type': 'object'}
}, },
'required': ['name', 'pair_whitelist'] 'required': ['name']
}, },
'edge': { 'edge': {
'type': 'object', 'type': 'object',
'properties': { 'properties': {
"enabled": {'type': 'boolean'}, 'enabled': {'type': 'boolean'},
"process_throttle_secs": {'type': 'integer', 'minimum': 600}, 'process_throttle_secs': {'type': 'integer', 'minimum': 600},
"calculate_since_number_of_days": {'type': 'integer'}, 'calculate_since_number_of_days': {'type': 'integer'},
"allowed_risk": {'type': 'number'}, 'allowed_risk': {'type': 'number'},
"capital_available_percentage": {'type': 'number'}, 'capital_available_percentage': {'type': 'number'},
"stoploss_range_min": {'type': 'number'}, 'stoploss_range_min': {'type': 'number'},
"stoploss_range_max": {'type': 'number'}, 'stoploss_range_max': {'type': 'number'},
"stoploss_range_step": {'type': 'number'}, 'stoploss_range_step': {'type': 'number'},
"minimum_winrate": {'type': 'number'}, 'minimum_winrate': {'type': 'number'},
"minimum_expectancy": {'type': 'number'}, 'minimum_expectancy': {'type': 'number'},
"min_trade_number": {'type': 'number'}, 'min_trade_number': {'type': 'number'},
"max_trade_duration_minute": {'type': 'integer'}, 'max_trade_duration_minute': {'type': 'integer'},
"remove_pumps": {'type': 'boolean'} 'remove_pumps': {'type': 'boolean'}
}, },
'required': ['process_throttle_secs', 'allowed_risk', 'capital_available_percentage'] 'required': ['process_throttle_secs', 'allowed_risk']
} }
}, },
'anyOf': [
{'required': ['exchange']}
],
'required': [
'max_open_trades',
'stake_currency',
'stake_amount',
'dry_run',
'bid_strategy',
'unfilledtimeout',
]
} }
SCHEMA_TRADE_REQUIRED = [
'exchange',
'max_open_trades',
'stake_currency',
'stake_amount',
'tradable_balance_ratio',
'last_stake_amount_min_ratio',
'dry_run',
'dry_run_wallet',
'bid_strategy',
'unfilledtimeout',
'stoploss',
'minimal_roi',
]
SCHEMA_MINIMAL_REQUIRED = [
'exchange',
'dry_run',
]

View File

@@ -7,7 +7,7 @@ from typing import Dict
import numpy as np import numpy as np
import pandas as pd import pandas as pd
import pytz from datetime import timezone
from freqtrade import persistence from freqtrade import persistence
from freqtrade.misc import json_load from freqtrade.misc import json_load
@@ -47,21 +47,23 @@ def load_backtest_data(filename) -> pd.DataFrame:
utc=True, utc=True,
infer_datetime_format=True infer_datetime_format=True
) )
df['profitabs'] = df['close_rate'] - df['open_rate'] df['profit'] = df['close_rate'] - df['open_rate']
df = df.sort_values("open_time").reset_index(drop=True) df = df.sort_values("open_time").reset_index(drop=True)
return df return df
def evaluate_result_multi(results: pd.DataFrame, freq: str, max_open_trades: int) -> pd.DataFrame: def analyze_trade_parallelism(results: pd.DataFrame, timeframe: str) -> pd.DataFrame:
""" """
Find overlapping trades by expanding each trade once per period it was open Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps and then counting overlaps.
:param results: Results Dataframe - can be loaded :param results: Results Dataframe - can be loaded
:param freq: Frequency used for the backtest :param timeframe: Timeframe used for backtest
:param max_open_trades: parameter max_open_trades used during backtest run :return: dataframe with open-counts per time-period in timeframe
:return: dataframe with open-counts per time-period in freq
""" """
dates = [pd.Series(pd.date_range(row[1].open_time, row[1].close_time, freq=freq)) from freqtrade.exchange import timeframe_to_minutes
timeframe_min = timeframe_to_minutes(timeframe)
dates = [pd.Series(pd.date_range(row[1].open_time, row[1].close_time,
freq=f"{timeframe_min}min"))
for row in results[['open_time', 'close_time']].iterrows()] for row in results[['open_time', 'close_time']].iterrows()]
deltas = [len(x) for x in dates] deltas = [len(x) for x in dates]
dates = pd.Series(pd.concat(dates).values, name='date') dates = pd.Series(pd.concat(dates).values, name='date')
@@ -69,8 +71,23 @@ def evaluate_result_multi(results: pd.DataFrame, freq: str, max_open_trades: int
df2 = pd.concat([dates, df2], axis=1) df2 = pd.concat([dates, df2], axis=1)
df2 = df2.set_index('date') df2 = df2.set_index('date')
df_final = df2.resample(freq)[['pair']].count() df_final = df2.resample(f"{timeframe_min}min")[['pair']].count()
return df_final[df_final['pair'] > max_open_trades] df_final = df_final.rename({'pair': 'open_trades'}, axis=1)
return df_final
def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
max_open_trades: int) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps
:param results: Results Dataframe - can be loaded
:param timeframe: Frequency used for the backtest
:param max_open_trades: parameter max_open_trades used during backtest run
:return: dataframe with open-counts per time-period in freq
"""
df_final = analyze_trade_parallelism(results, timeframe)
return df_final[df_final['open_trades'] > max_open_trades]
def load_trades_from_db(db_url: str) -> pd.DataFrame: def load_trades_from_db(db_url: str) -> pd.DataFrame:
@@ -89,9 +106,9 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
"stop_loss", "initial_stop_loss", "strategy", "ticker_interval"] "stop_loss", "initial_stop_loss", "strategy", "ticker_interval"]
trades = pd.DataFrame([(t.pair, trades = pd.DataFrame([(t.pair,
t.open_date.replace(tzinfo=pytz.UTC), t.open_date.replace(tzinfo=timezone.utc),
t.close_date.replace(tzinfo=pytz.UTC) if t.close_date else None, t.close_date.replace(tzinfo=timezone.utc) if t.close_date else None,
t.calc_profit(), t.calc_profit_percent(), t.calc_profit(), t.calc_profit_ratio(),
t.open_rate, t.close_rate, t.amount, t.open_rate, t.close_rate, t.amount,
(round((t.close_date.timestamp() - t.open_date.timestamp()) / 60, 2) (round((t.close_date.timestamp() - t.open_date.timestamp()) / 60, 2)
if t.close_date else None), if t.close_date else None),
@@ -106,7 +123,7 @@ def load_trades_from_db(db_url: str) -> pd.DataFrame:
t.stop_loss, t.initial_stop_loss, t.stop_loss, t.initial_stop_loss,
t.strategy, t.ticker_interval t.strategy, t.ticker_interval
) )
for t in Trade.query.all()], for t in Trade.get_trades().all()],
columns=columns) columns=columns)
return trades return trades
@@ -161,9 +178,9 @@ def create_cum_profit(df: pd.DataFrame, trades: pd.DataFrame, col_name: str,
:return: Returns df with one additional column, col_name, containing the cumulative profit. :return: Returns df with one additional column, col_name, containing the cumulative profit.
""" """
from freqtrade.exchange import timeframe_to_minutes from freqtrade.exchange import timeframe_to_minutes
ticker_minutes = timeframe_to_minutes(timeframe) timeframe_minutes = timeframe_to_minutes(timeframe)
# Resample to ticker_interval to make sure trades match candles # Resample to timeframe to make sure trades match candles
_trades_sum = trades.resample(f'{ticker_minutes}min', on='close_time')[['profitperc']].sum() _trades_sum = trades.resample(f'{timeframe_minutes}min', on='close_time')[['profitperc']].sum()
df.loc[:, col_name] = _trades_sum.cumsum() df.loc[:, col_name] = _trades_sum.cumsum()
# Set first value to 0 # Set first value to 0
df.loc[df.iloc[0].name, col_name] = 0 df.loc[df.iloc[0].name, col_name] = 0

View File

@@ -10,13 +10,13 @@ from pandas import DataFrame, to_datetime
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
def parse_ticker_dataframe(ticker: list, ticker_interval: str, pair: str, *, def parse_ticker_dataframe(ticker: list, timeframe: str, pair: str, *,
fill_missing: bool = True, fill_missing: bool = True,
drop_incomplete: bool = True) -> DataFrame: drop_incomplete: bool = True) -> DataFrame:
""" """
Converts a ticker-list (format ccxt.fetch_ohlcv) to a Dataframe Converts a ticker-list (format ccxt.fetch_ohlcv) to a Dataframe
:param ticker: ticker list, as returned by exchange.async_get_candle_history :param ticker: ticker list, as returned by exchange.async_get_candle_history
:param ticker_interval: ticker_interval (e.g. 5m). Used to fill up eventual missing data :param timeframe: timeframe (e.g. 5m). Used to fill up eventual missing data
:param pair: Pair this data is for (used to warn if fillup was necessary) :param pair: Pair this data is for (used to warn if fillup was necessary)
:param fill_missing: fill up missing candles with 0 candles :param fill_missing: fill up missing candles with 0 candles
(see ohlcv_fill_up_missing_data for details) (see ohlcv_fill_up_missing_data for details)
@@ -52,12 +52,12 @@ def parse_ticker_dataframe(ticker: list, ticker_interval: str, pair: str, *,
logger.debug('Dropping last candle') logger.debug('Dropping last candle')
if fill_missing: if fill_missing:
return ohlcv_fill_up_missing_data(frame, ticker_interval, pair) return ohlcv_fill_up_missing_data(frame, timeframe, pair)
else: else:
return frame return frame
def ohlcv_fill_up_missing_data(dataframe: DataFrame, ticker_interval: str, pair: str) -> DataFrame: def ohlcv_fill_up_missing_data(dataframe: DataFrame, timeframe: str, pair: str) -> DataFrame:
""" """
Fills up missing data with 0 volume rows, Fills up missing data with 0 volume rows,
using the previous close as price for "open", "high" "low" and "close", volume is set to 0 using the previous close as price for "open", "high" "low" and "close", volume is set to 0
@@ -72,7 +72,7 @@ def ohlcv_fill_up_missing_data(dataframe: DataFrame, ticker_interval: str, pair:
'close': 'last', 'close': 'last',
'volume': 'sum' 'volume': 'sum'
} }
ticker_minutes = timeframe_to_minutes(ticker_interval) ticker_minutes = timeframe_to_minutes(timeframe)
# Resample to create "NAN" values # Resample to create "NAN" values
df = dataframe.resample(f'{ticker_minutes}min', on='date').agg(ohlc_dict) df = dataframe.resample(f'{ticker_minutes}min', on='date').agg(ohlc_dict)

View File

@@ -5,7 +5,6 @@ including Klines, tickers, historic data
Common Interface for bot and strategy to access data. Common Interface for bot and strategy to access data.
""" """
import logging import logging
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple from typing import Any, Dict, List, Optional, Tuple
from pandas import DataFrame from pandas import DataFrame
@@ -37,52 +36,53 @@ class DataProvider:
@property @property
def available_pairs(self) -> List[Tuple[str, str]]: def available_pairs(self) -> List[Tuple[str, str]]:
""" """
Return a list of tuples containing pair, ticker_interval for which data is currently cached. Return a list of tuples containing (pair, timeframe) for which data is currently cached.
Should be whitelist + open trades. Should be whitelist + open trades.
""" """
return list(self._exchange._klines.keys()) return list(self._exchange._klines.keys())
def ohlcv(self, pair: str, ticker_interval: str = None, copy: bool = True) -> DataFrame: def ohlcv(self, pair: str, timeframe: str = None, copy: bool = True) -> DataFrame:
""" """
Get ohlcv data for the given pair as DataFrame Get ohlcv data for the given pair as DataFrame
Please use the `available_pairs` method to verify which pairs are currently cached. Please use the `available_pairs` method to verify which pairs are currently cached.
:param pair: pair to get the data for :param pair: pair to get the data for
:param ticker_interval: ticker interval to get data for :param timeframe: Ticker timeframe to get data for
:param copy: copy dataframe before returning if True. :param copy: copy dataframe before returning if True.
Use False only for read-only operations (where the dataframe is not modified) Use False only for read-only operations (where the dataframe is not modified)
""" """
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE): if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
return self._exchange.klines((pair, ticker_interval or self._config['ticker_interval']), return self._exchange.klines((pair, timeframe or self._config['ticker_interval']),
copy=copy) copy=copy)
else: else:
return DataFrame() return DataFrame()
def historic_ohlcv(self, pair: str, ticker_interval: str = None) -> DataFrame: def historic_ohlcv(self, pair: str, timeframe: str = None) -> DataFrame:
""" """
Get stored historic ohlcv data Get stored historic ohlcv data
:param pair: pair to get the data for :param pair: pair to get the data for
:param ticker_interval: ticker interval to get data for :param timeframe: timeframe to get data for
""" """
return load_pair_history(pair=pair, return load_pair_history(pair=pair,
ticker_interval=ticker_interval or self._config['ticker_interval'], timeframe=timeframe or self._config['ticker_interval'],
datadir=Path(self._config['datadir']) datadir=self._config['datadir']
) )
def get_pair_dataframe(self, pair: str, ticker_interval: str = None) -> DataFrame: def get_pair_dataframe(self, pair: str, timeframe: str = None) -> DataFrame:
""" """
Return pair ohlcv data, either live or cached historical -- depending Return pair ohlcv data, either live or cached historical -- depending
on the runmode. on the runmode.
:param pair: pair to get the data for :param pair: pair to get the data for
:param ticker_interval: ticker interval to get data for :param timeframe: timeframe to get data for
:return: Dataframe for this pair
""" """
if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE): if self.runmode in (RunMode.DRY_RUN, RunMode.LIVE):
# Get live ohlcv data. # Get live ohlcv data.
data = self.ohlcv(pair=pair, ticker_interval=ticker_interval) data = self.ohlcv(pair=pair, timeframe=timeframe)
else: else:
# Get historic ohlcv data (cached on disk). # Get historic ohlcv data (cached on disk).
data = self.historic_ohlcv(pair=pair, ticker_interval=ticker_interval) data = self.historic_ohlcv(pair=pair, timeframe=timeframe)
if len(data) == 0: if len(data) == 0:
logger.warning(f"No data found for ({pair}, {ticker_interval}).") logger.warning(f"No data found for ({pair}, {timeframe}).")
return data return data
def market(self, pair: str) -> Optional[Dict[str, Any]]: def market(self, pair: str) -> Optional[Dict[str, Any]]:

View File

@@ -8,17 +8,20 @@ Includes:
import logging import logging
import operator import operator
from datetime import datetime from copy import deepcopy
from datetime import datetime, timezone
from pathlib import Path from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple from typing import Any, Dict, List, Optional, Tuple
import arrow import arrow
from pandas import DataFrame from pandas import DataFrame
from freqtrade import OperationalException, misc from freqtrade import misc
from freqtrade.configuration import TimeRange from freqtrade.configuration import TimeRange
from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv from freqtrade.data.converter import parse_ticker_dataframe, trades_to_ohlcv
from freqtrade.exchange import Exchange, timeframe_to_minutes from freqtrade.exceptions import OperationalException
from freqtrade.exchange import (Exchange, timeframe_to_minutes,
timeframe_to_seconds)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -49,13 +52,30 @@ def trim_tickerlist(tickerlist: List[Dict], timerange: TimeRange) -> List[Dict]:
return tickerlist[start_index:stop_index] return tickerlist[start_index:stop_index]
def load_tickerdata_file(datadir: Path, pair: str, ticker_interval: str, def trim_dataframe(df: DataFrame, timerange: TimeRange, df_date_col: str = 'date') -> DataFrame:
timerange: Optional[TimeRange] = None) -> Optional[list]: """
Trim dataframe based on given timerange
:param df: Dataframe to trim
:param timerange: timerange (use start and end date if available)
:param: df_date_col: Column in the dataframe to use as Date column
:return: trimmed dataframe
"""
if timerange.starttype == 'date':
start = datetime.fromtimestamp(timerange.startts, tz=timezone.utc)
df = df.loc[df[df_date_col] >= start, :]
if timerange.stoptype == 'date':
stop = datetime.fromtimestamp(timerange.stopts, tz=timezone.utc)
df = df.loc[df[df_date_col] <= stop, :]
return df
def load_tickerdata_file(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange] = None) -> List[Dict]:
""" """
Load a pair from file, either .json.gz or .json Load a pair from file, either .json.gz or .json
:return: tickerlist or None if unsuccessful :return: tickerlist or None if unsuccessful
""" """
filename = pair_data_filename(datadir, pair, ticker_interval) filename = pair_data_filename(datadir, pair, timeframe)
pairdata = misc.file_load_json(filename) pairdata = misc.file_load_json(filename)
if not pairdata: if not pairdata:
return [] return []
@@ -66,11 +86,11 @@ def load_tickerdata_file(datadir: Path, pair: str, ticker_interval: str,
def store_tickerdata_file(datadir: Path, pair: str, def store_tickerdata_file(datadir: Path, pair: str,
ticker_interval: str, data: list, is_zip: bool = False): timeframe: str, data: list, is_zip: bool = False):
""" """
Stores tickerdata to file Stores tickerdata to file
""" """
filename = pair_data_filename(datadir, pair, ticker_interval) filename = pair_data_filename(datadir, pair, timeframe)
misc.file_dump_json(filename, data, is_zip=is_zip) misc.file_dump_json(filename, data, is_zip=is_zip)
@@ -107,84 +127,106 @@ def _validate_pairdata(pair, pairdata, timerange: TimeRange):
def load_pair_history(pair: str, def load_pair_history(pair: str,
ticker_interval: str, timeframe: str,
datadir: Path, datadir: Path,
timerange: Optional[TimeRange] = None, timerange: Optional[TimeRange] = None,
refresh_pairs: bool = False,
exchange: Optional[Exchange] = None,
fill_up_missing: bool = True, fill_up_missing: bool = True,
drop_incomplete: bool = True drop_incomplete: bool = True,
startup_candles: int = 0,
) -> DataFrame: ) -> DataFrame:
""" """
Loads cached ticker history for the given pair. Load cached ticker history for the given pair.
:param pair: Pair to load data for :param pair: Pair to load data for
:param ticker_interval: Ticker-interval (e.g. "5m") :param timeframe: Ticker timeframe (e.g. "5m")
:param datadir: Path to the data storage location. :param datadir: Path to the data storage location.
:param timerange: Limit data to be loaded to this timerange :param timerange: Limit data to be loaded to this timerange
:param refresh_pairs: Refresh pairs from exchange.
(Note: Requires exchange to be passed as well.)
:param exchange: Exchange object (needed when using "refresh_pairs")
:param fill_up_missing: Fill missing values with "No action"-candles :param fill_up_missing: Fill missing values with "No action"-candles
:param drop_incomplete: Drop last candle assuming it may be incomplete. :param drop_incomplete: Drop last candle assuming it may be incomplete.
:return: DataFrame with ohlcv data :param startup_candles: Additional candles to load at the start of the period
:return: DataFrame with ohlcv data, or empty DataFrame
""" """
timerange_startup = deepcopy(timerange)
if startup_candles > 0 and timerange_startup:
timerange_startup.subtract_start(timeframe_to_seconds(timeframe) * startup_candles)
# The user forced the refresh of pairs pairdata = load_tickerdata_file(datadir, pair, timeframe, timerange=timerange_startup)
if refresh_pairs:
download_pair_history(datadir=datadir,
exchange=exchange,
pair=pair,
ticker_interval=ticker_interval,
timerange=timerange)
pairdata = load_tickerdata_file(datadir, pair, ticker_interval, timerange=timerange)
if pairdata: if pairdata:
if timerange: if timerange_startup:
_validate_pairdata(pair, pairdata, timerange) _validate_pairdata(pair, pairdata, timerange_startup)
return parse_ticker_dataframe(pairdata, ticker_interval, pair=pair, return parse_ticker_dataframe(pairdata, timeframe, pair=pair,
fill_missing=fill_up_missing, fill_missing=fill_up_missing,
drop_incomplete=drop_incomplete) drop_incomplete=drop_incomplete)
else: else:
logger.warning( logger.warning(
f'No history data for pair: "{pair}", interval: {ticker_interval}. ' f'No history data for pair: "{pair}", timeframe: {timeframe}. '
'Use `freqtrade download-data` to download the data' 'Use `freqtrade download-data` to download the data'
) )
return None return DataFrame()
def load_data(datadir: Path, def load_data(datadir: Path,
ticker_interval: str, timeframe: str,
pairs: List[str], pairs: List[str],
refresh_pairs: bool = False,
exchange: Optional[Exchange] = None,
timerange: Optional[TimeRange] = None, timerange: Optional[TimeRange] = None,
fill_up_missing: bool = True, fill_up_missing: bool = True,
startup_candles: int = 0,
fail_without_data: bool = False
) -> Dict[str, DataFrame]: ) -> Dict[str, DataFrame]:
""" """
Loads ticker history data for a list of pairs Load ticker history data for a list of pairs.
:return: dict(<pair>:<tickerlist>)
TODO: refresh_pairs is still used by edge to keep the data uptodate. :param datadir: Path to the data storage location.
This should be replaced in the future. Instead, writing the current candles to disk :param timeframe: Ticker Timeframe (e.g. "5m")
from dataprovider should be implemented, as this would avoid loading ohlcv data twice. :param pairs: List of pairs to load
exchange and refresh_pairs are then not needed here nor in load_pair_history. :param timerange: Limit data to be loaded to this timerange
:param fill_up_missing: Fill missing values with "No action"-candles
:param startup_candles: Additional candles to load at the start of the period
:param fail_without_data: Raise OperationalException if no data is found.
:return: dict(<pair>:<Dataframe>)
""" """
result: Dict[str, DataFrame] = {} result: Dict[str, DataFrame] = {}
if startup_candles > 0 and timerange:
logger.info(f'Using indicator startup period: {startup_candles} ...')
for pair in pairs: for pair in pairs:
hist = load_pair_history(pair=pair, ticker_interval=ticker_interval, hist = load_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange, datadir=datadir, timerange=timerange,
refresh_pairs=refresh_pairs, fill_up_missing=fill_up_missing,
exchange=exchange, startup_candles=startup_candles)
fill_up_missing=fill_up_missing) if not hist.empty:
if hist is not None:
result[pair] = hist result[pair] = hist
if fail_without_data and not result:
raise OperationalException("No data found. Terminating.")
return result return result
def pair_data_filename(datadir: Path, pair: str, ticker_interval: str) -> Path: def refresh_data(datadir: Path,
timeframe: str,
pairs: List[str],
exchange: Exchange,
timerange: Optional[TimeRange] = None,
) -> None:
"""
Refresh ticker history data for a list of pairs.
:param datadir: Path to the data storage location.
:param timeframe: Ticker Timeframe (e.g. "5m")
:param pairs: List of pairs to load
:param exchange: Exchange object
:param timerange: Limit data to be loaded to this timerange
"""
for pair in pairs:
_download_pair_history(pair=pair, timeframe=timeframe,
datadir=datadir, timerange=timerange,
exchange=exchange)
def pair_data_filename(datadir: Path, pair: str, timeframe: str) -> Path:
pair_s = pair.replace("/", "_") pair_s = pair.replace("/", "_")
filename = datadir.joinpath(f'{pair_s}-{ticker_interval}.json') filename = datadir.joinpath(f'{pair_s}-{timeframe}.json')
return filename return filename
@@ -194,7 +236,7 @@ def pair_trades_filename(datadir: Path, pair: str) -> Path:
return filename return filename
def _load_cached_data_for_updating(datadir: Path, pair: str, ticker_interval: str, def _load_cached_data_for_updating(datadir: Path, pair: str, timeframe: str,
timerange: Optional[TimeRange]) -> Tuple[List[Any], timerange: Optional[TimeRange]) -> Tuple[List[Any],
Optional[int]]: Optional[int]]:
""" """
@@ -212,12 +254,12 @@ def _load_cached_data_for_updating(datadir: Path, pair: str, ticker_interval: st
if timerange.starttype == 'date': if timerange.starttype == 'date':
since_ms = timerange.startts * 1000 since_ms = timerange.startts * 1000
elif timerange.stoptype == 'line': elif timerange.stoptype == 'line':
num_minutes = timerange.stopts * timeframe_to_minutes(ticker_interval) num_minutes = timerange.stopts * timeframe_to_minutes(timeframe)
since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000 since_ms = arrow.utcnow().shift(minutes=num_minutes).timestamp * 1000
# read the cached file # read the cached file
# Intentionally don't pass timerange in - since we need to load the full dataset. # Intentionally don't pass timerange in - since we need to load the full dataset.
data = load_tickerdata_file(datadir, pair, ticker_interval) data = load_tickerdata_file(datadir, pair, timeframe)
# remove the last item, could be incomplete candle # remove the last item, could be incomplete candle
if data: if data:
data.pop() data.pop()
@@ -235,69 +277,65 @@ def _load_cached_data_for_updating(datadir: Path, pair: str, ticker_interval: st
return (data, since_ms) return (data, since_ms)
def download_pair_history(datadir: Path, def _download_pair_history(datadir: Path,
exchange: Optional[Exchange], exchange: Exchange,
pair: str, pair: str,
ticker_interval: str = '5m', timeframe: str = '5m',
timerange: Optional[TimeRange] = None) -> bool: timerange: Optional[TimeRange] = None) -> bool:
""" """
Download the latest ticker intervals from the exchange for the pair passed in parameters Download latest candles from the exchange for the pair and timeframe passed in parameters
The data is downloaded starting from the last correct ticker interval data that The data is downloaded starting from the last correct data that
exists in a cache. If timerange starts earlier than the data in the cache, exists in a cache. If timerange starts earlier than the data in the cache,
the full data will be redownloaded the full data will be redownloaded
Based on @Rybolov work: https://github.com/rybolov/freqtrade-data Based on @Rybolov work: https://github.com/rybolov/freqtrade-data
:param pair: pair to download :param pair: pair to download
:param ticker_interval: ticker interval :param timeframe: Ticker Timeframe (e.g 5m)
:param timerange: range of time to download :param timerange: range of time to download
:return: bool with success state :return: bool with success state
""" """
if not exchange:
raise OperationalException(
"Exchange needs to be initialized when downloading pair history data"
)
try: try:
logger.info( logger.info(
f'Download history data for pair: "{pair}", interval: {ticker_interval} ' f'Download history data for pair: "{pair}", timeframe: {timeframe} '
f'and store in {datadir}.' f'and store in {datadir}.'
) )
data, since_ms = _load_cached_data_for_updating(datadir, pair, ticker_interval, timerange) data, since_ms = _load_cached_data_for_updating(datadir, pair, timeframe, timerange)
logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None') logger.debug("Current Start: %s", misc.format_ms_time(data[1][0]) if data else 'None')
logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None') logger.debug("Current End: %s", misc.format_ms_time(data[-1][0]) if data else 'None')
# Default since_ms to 30 days if nothing is given # Default since_ms to 30 days if nothing is given
new_data = exchange.get_historic_ohlcv(pair=pair, ticker_interval=ticker_interval, new_data = exchange.get_historic_ohlcv(pair=pair,
since_ms=since_ms if since_ms timeframe=timeframe,
else since_ms=since_ms if since_ms else
int(arrow.utcnow().shift( int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000) days=-30).float_timestamp) * 1000
)
data.extend(new_data) data.extend(new_data)
logger.debug("New Start: %s", misc.format_ms_time(data[0][0])) logger.debug("New Start: %s", misc.format_ms_time(data[0][0]))
logger.debug("New End: %s", misc.format_ms_time(data[-1][0])) logger.debug("New End: %s", misc.format_ms_time(data[-1][0]))
store_tickerdata_file(datadir, pair, ticker_interval, data=data) store_tickerdata_file(datadir, pair, timeframe, data=data)
return True return True
except Exception as e: except Exception as e:
logger.error( logger.error(
f'Failed to download history data for pair: "{pair}", interval: {ticker_interval}. ' f'Failed to download history data for pair: "{pair}", timeframe: {timeframe}. '
f'Error: {e}' f'Error: {e}'
) )
return False return False
def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str], def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes: List[str],
dl_path: Path, timerange: Optional[TimeRange] = None, datadir: Path, timerange: Optional[TimeRange] = None,
erase=False) -> List[str]: erase=False) -> List[str]:
""" """
Refresh stored ohlcv data for backtesting and hyperopt operations. Refresh stored ohlcv data for backtesting and hyperopt operations.
Used by freqtrade download-data Used by freqtrade download-data subcommand.
:return: Pairs not available :return: List of pairs that are not available.
""" """
pairs_not_available = [] pairs_not_available = []
for pair in pairs: for pair in pairs:
@@ -305,25 +343,25 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
pairs_not_available.append(pair) pairs_not_available.append(pair)
logger.info(f"Skipping pair {pair}...") logger.info(f"Skipping pair {pair}...")
continue continue
for ticker_interval in timeframes: for timeframe in timeframes:
dl_file = pair_data_filename(dl_path, pair, ticker_interval) dl_file = pair_data_filename(datadir, pair, timeframe)
if erase and dl_file.exists(): if erase and dl_file.exists():
logger.info( logger.info(
f'Deleting existing data for pair {pair}, interval {ticker_interval}.') f'Deleting existing data for pair {pair}, interval {timeframe}.')
dl_file.unlink() dl_file.unlink()
logger.info(f'Downloading pair {pair}, interval {ticker_interval}.') logger.info(f'Downloading pair {pair}, interval {timeframe}.')
download_pair_history(datadir=dl_path, exchange=exchange, _download_pair_history(datadir=datadir, exchange=exchange,
pair=pair, ticker_interval=str(ticker_interval), pair=pair, timeframe=str(timeframe),
timerange=timerange) timerange=timerange)
return pairs_not_available return pairs_not_available
def download_trades_history(datadir: Path, def _download_trades_history(datadir: Path,
exchange: Exchange, exchange: Exchange,
pair: str, pair: str,
timerange: Optional[TimeRange] = None) -> bool: timerange: Optional[TimeRange] = None) -> bool:
""" """
Download trade history from the exchange. Download trade history from the exchange.
Appends to previously downloaded trades data. Appends to previously downloaded trades data.
@@ -339,11 +377,11 @@ def download_trades_history(datadir: Path,
logger.debug("Current Start: %s", trades[0]['datetime'] if trades else 'None') logger.debug("Current Start: %s", trades[0]['datetime'] if trades else 'None')
logger.debug("Current End: %s", trades[-1]['datetime'] if trades else 'None') logger.debug("Current End: %s", trades[-1]['datetime'] if trades else 'None')
# Default since_ms to 30 days if nothing is given
new_trades = exchange.get_historic_trades(pair=pair, new_trades = exchange.get_historic_trades(pair=pair,
since=since if since else since=since if since else
int(arrow.utcnow().shift( int(arrow.utcnow().shift(
days=-30).float_timestamp) * 1000, days=-30).float_timestamp) * 1000,
# until=xxx,
from_id=from_id, from_id=from_id,
) )
trades.extend(new_trades[1]) trades.extend(new_trades[1])
@@ -365,9 +403,9 @@ def download_trades_history(datadir: Path,
def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path, def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir: Path,
timerange: TimeRange, erase=False) -> List[str]: timerange: TimeRange, erase=False) -> List[str]:
""" """
Refresh stored trades data. Refresh stored trades data for backtesting and hyperopt operations.
Used by freqtrade download-data Used by freqtrade download-data subcommand.
:return: Pairs not available :return: List of pairs that are not available.
""" """
pairs_not_available = [] pairs_not_available = []
for pair in pairs: for pair in pairs:
@@ -383,9 +421,9 @@ def refresh_backtest_trades_data(exchange: Exchange, pairs: List[str], datadir:
dl_file.unlink() dl_file.unlink()
logger.info(f'Downloading trades for pair {pair}.') logger.info(f'Downloading trades for pair {pair}.')
download_trades_history(datadir=datadir, exchange=exchange, _download_trades_history(datadir=datadir, exchange=exchange,
pair=pair, pair=pair,
timerange=timerange) timerange=timerange)
return pairs_not_available return pairs_not_available
@@ -406,22 +444,23 @@ def convert_trades_to_ohlcv(pairs: List[str], timeframes: List[str],
store_tickerdata_file(datadir, pair, timeframe, data=ohlcv) store_tickerdata_file(datadir, pair, timeframe, data=ohlcv)
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]: def get_timerange(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
""" """
Get the maximum timeframe for the given backtest data Get the maximum common timerange for the given backtest data.
:param data: dictionary with preprocessed backtesting data :param data: dictionary with preprocessed backtesting data
:return: tuple containing min_date, max_date :return: tuple containing min_date, max_date
""" """
timeframe = [ timeranges = [
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max())) (arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
for frame in data.values() for frame in data.values()
] ]
return min(timeframe, key=operator.itemgetter(0))[0], \ return (min(timeranges, key=operator.itemgetter(0))[0],
max(timeframe, key=operator.itemgetter(1))[1] max(timeranges, key=operator.itemgetter(1))[1])
def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime, def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
max_date: datetime, ticker_interval_mins: int) -> bool: max_date: datetime, timeframe_min: int) -> bool:
""" """
Validates preprocessed backtesting data for missing values and shows warnings about it that. Validates preprocessed backtesting data for missing values and shows warnings about it that.
@@ -429,10 +468,10 @@ def validate_backtest_data(data: DataFrame, pair: str, min_date: datetime,
:param pair: pair used for log output. :param pair: pair used for log output.
:param min_date: start-date of the data :param min_date: start-date of the data
:param max_date: end-date of the data :param max_date: end-date of the data
:param ticker_interval_mins: ticker interval in minutes :param timeframe_min: ticker Timeframe in minutes
""" """
# total difference in minutes / interval-minutes # total difference in minutes / timeframe-minutes
expected_frames = int((max_date - min_date).total_seconds() // 60 // ticker_interval_mins) expected_frames = int((max_date - min_date).total_seconds() // 60 // timeframe_min)
found_missing = False found_missing = False
dflen = len(data) dflen = len(data)
if dflen < expected_frames: if dflen < expected_frames:

View File

@@ -1,455 +1 @@
# pragma pylint: disable=W0603 from .edge_positioning import Edge, PairInfo # noqa: F401
""" Edge positioning package """
import logging
from pathlib import Path
from typing import Any, Dict, NamedTuple
import arrow
import numpy as np
import utils_find_1st as utf1st
from pandas import DataFrame
from freqtrade import constants, OperationalException
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.strategy.interface import SellType
logger = logging.getLogger(__name__)
class PairInfo(NamedTuple):
stoploss: float
winrate: float
risk_reward_ratio: float
required_risk_reward: float
expectancy: float
nb_trades: int
avg_trade_duration: float
class Edge:
"""
Calculates Win Rate, Risk Reward Ratio, Expectancy
against historical data for a give set of markets and a strategy
it then adjusts stoploss and position size accordingly
and force it into the strategy
Author: https://github.com/mishaker
"""
config: Dict = {}
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
self.config = config
self.exchange = exchange
self.strategy = strategy
self.edge_config = self.config.get('edge', {})
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
self._final_pairs: list = []
# checking max_open_trades. it should be -1 as with Edge
# the number of trades is determined by position size
if self.config['max_open_trades'] != float('inf'):
logger.critical('max_open_trades should be -1 in config !')
if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT:
raise OperationalException('Edge works only with unlimited stake amount')
self._capital_percentage: float = self.edge_config.get('capital_available_percentage')
self._allowed_risk: float = self.edge_config.get('allowed_risk')
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
self._last_updated: int = 0 # Timestamp of pairs last updated time
self._refresh_pairs = True
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
# calculating stoploss range
self._stoploss_range = np.arange(
self._stoploss_range_min,
self._stoploss_range_max,
self._stoploss_range_step
)
self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift(
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
if config.get('fee'):
self.fee = config['fee']
else:
self.fee = self.exchange.get_fee()
def calculate(self) -> bool:
pairs = self.config['exchange']['pair_whitelist']
heartbeat = self.edge_config.get('process_throttle_secs')
if (self._last_updated > 0) and (
self._last_updated + heartbeat > arrow.utcnow().timestamp):
return False
data: Dict[str, Any] = {}
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using local backtesting data (using whitelist in given config) ...')
data = history.load_data(
datadir=Path(self.config['datadir']),
pairs=pairs,
ticker_interval=self.strategy.ticker_interval,
refresh_pairs=self._refresh_pairs,
exchange=self.exchange,
timerange=self._timerange
)
if not data:
# Reinitializing cached pairs
self._cached_pairs = {}
logger.critical("No data found. Edge is stopped ...")
return False
preprocessed = self.strategy.tickerdata_to_dataframe(data)
# Print timeframe
min_date, max_date = history.get_timeframe(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days) ...',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
trades: list = []
for pair, pair_data in preprocessed.items():
# Sorting dataframe by date and reset index
pair_data = pair_data.sort_values(by=['date'])
pair_data = pair_data.reset_index(drop=True)
ticker_data = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
# If no trade found then exit
if len(trades) == 0:
logger.info("No trades found.")
return False
# Fill missing, calculable columns, profit, duration , abs etc.
trades_df = self._fill_calculable_fields(DataFrame(trades))
self._cached_pairs = self._process_expectancy(trades_df)
self._last_updated = arrow.utcnow().timestamp
return True
def stake_amount(self, pair: str, free_capital: float,
total_capital: float, capital_in_trade: float) -> float:
stoploss = self.stoploss(pair)
available_capital = (total_capital + capital_in_trade) * self._capital_percentage
allowed_capital_at_risk = available_capital * self._allowed_risk
max_position_size = abs(allowed_capital_at_risk / stoploss)
position_size = min(max_position_size, free_capital)
if pair in self._cached_pairs:
logger.info(
'winrate: %s, expectancy: %s, position size: %s, pair: %s,'
' capital in trade: %s, free capital: %s, total capital: %s,'
' stoploss: %s, available capital: %s.',
self._cached_pairs[pair].winrate,
self._cached_pairs[pair].expectancy,
position_size, pair,
capital_in_trade, free_capital, total_capital,
stoploss, available_capital
)
return round(position_size, 15)
def stoploss(self, pair: str) -> float:
if pair in self._cached_pairs:
return self._cached_pairs[pair].stoploss
else:
logger.warning('tried to access stoploss of a non-existing pair, '
'strategy stoploss is returned instead.')
return self.strategy.stoploss
def adjust(self, pairs) -> list:
"""
Filters out and sorts "pairs" according to Edge calculated pairs
"""
final = []
for pair, info in self._cached_pairs.items():
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
pair in pairs:
final.append(pair)
if self._final_pairs != final:
self._final_pairs = final
if self._final_pairs:
logger.info(
'Minimum expectancy and minimum winrate are met only for %s,'
' so other pairs are filtered out.',
self._final_pairs
)
else:
logger.info(
'Edge removed all pairs as no pair with minimum expectancy '
'and minimum winrate was found !'
)
return self._final_pairs
def accepted_pairs(self) -> list:
"""
return a list of accepted pairs along with their winrate, expectancy and stoploss
"""
final = []
for pair, info in self._cached_pairs.items():
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)):
final.append({
'Pair': pair,
'Winrate': info.winrate,
'Expectancy': info.expectancy,
'Stoploss': info.stoploss,
})
return final
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
"""
The result frame contains a number of columns that are calculable
from other columns. These are left blank till all rows are added,
to be populated in single vector calls.
Columns to be populated are:
- Profit
- trade duration
- profit abs
:param result Dataframe
:return: result Dataframe
"""
# stake and fees
# stake = 0.015
# 0.05% is 0.0005
# fee = 0.001
# we set stake amount to an arbitrary amount.
# as it doesn't change the calculation.
# all returned values are relative. they are percentages.
stake = 0.015
fee = self.fee
open_fee = fee / 2
close_fee = fee / 2
result['trade_duration'] = result['close_time'] - result['open_time']
result['trade_duration'] = result['trade_duration'].map(
lambda x: int(x.total_seconds() / 60))
# Spends, Takes, Profit, Absolute Profit
# Buy Price
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
result['buy_fee'] = stake * open_fee
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
# Sell price
result['sell_sum'] = result['buy_vol'] * result['close_rate']
result['sell_fee'] = result['sell_sum'] * close_fee
result['sell_take'] = result['sell_sum'] - result['sell_fee']
# profit_percent
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
# Absolute profit
result['profit_abs'] = result['sell_take'] - result['buy_spend']
return result
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
"""
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
The calulation will be done per pair and per strategy.
"""
# Removing pairs having less than min_trades_number
min_trades_number = self.edge_config.get('min_trade_number', 10)
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
###################################
# Removing outliers (Only Pumps) from the dataset
# The method to detect outliers is to calculate standard deviation
# Then every value more than (standard deviation + 2*average) is out (pump)
#
# Removing Pumps
if self.edge_config.get('remove_pumps', False):
results = results.groupby(['pair', 'stoploss']).apply(
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
##########################################################################
# Removing trades having a duration more than X minutes (set in config)
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
results = results[results.trade_duration < max_trade_duration]
#######################################################################
if results.empty:
return {}
groupby_aggregator = {
'profit_abs': [
('nb_trades', 'count'), # number of all trades
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
],
'trade_duration': [('avg_trade_duration', 'mean')]
}
# Group by (pair and stoploss) by applying above aggregator
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
groupby_aggregator).reset_index(col_level=1)
# Dropping level 0 as we don't need it
df.columns = df.columns.droplevel(0)
# Calculating number of losing trades, average win and average loss
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
df['average_win'] = df['profit_sum'] / df['nb_win_trades']
df['average_loss'] = df['loss_sum'] / df['nb_loss_trades']
# Win rate = number of profitable trades / number of trades
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
# risk_reward_ratio = average win / average loss
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
# required_risk_reward = (1 / winrate) - 1
df['required_risk_reward'] = (1 / df['winrate']) - 1
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
# sort by expectancy and stoploss
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
final = {}
for x in df.itertuples():
final[x.pair] = PairInfo(
x.stoploss,
x.winrate,
x.risk_reward_ratio,
x.required_risk_reward,
x.expectancy,
x.nb_trades,
x.avg_trade_duration
)
# Returning a list of pairs in order of "expectancy"
return final
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
buy_column = ticker_data['buy'].values
sell_column = ticker_data['sell'].values
date_column = ticker_data['date'].values
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
result: list = []
for stoploss in stoploss_range:
result += self._detect_next_stop_or_sell_point(
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
)
return result
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
ohlc_columns, stoploss, pair):
"""
Iterate through ohlc_columns in order to find the next trade
Next trade opens from the first buy signal noticed to
The sell or stoploss signal after it.
It then cuts OHLC, buy_column, sell_column and date_column.
Cut from (the exit trade index) + 1.
Author: https://github.com/mishaker
"""
result: list = []
start_point = 0
while True:
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
# Return empty if we don't find trade entry (i.e. buy==1) or
# we find a buy but at the end of array
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
break
else:
# When a buy signal is seen,
# trade opens in reality on the next candle
open_trade_index += 1
stop_price_percentage = stoploss + 1
open_price = ohlc_columns[open_trade_index, 0]
stop_price = (open_price * stop_price_percentage)
# Searching for the index where stoploss is hit
stop_index = utf1st.find_1st(
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
# If we don't find it then we assume stop_index will be far in future (infinite number)
if stop_index == -1:
stop_index = float('inf')
# Searching for the index where sell is hit
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
# If we don't find it then we assume sell_index will be far in future (infinite number)
if sell_index == -1:
sell_index = float('inf')
# Check if we don't find any stop or sell point (in that case trade remains open)
# It is not interesting for Edge to consider it so we simply ignore the trade
# And stop iterating there is no more entry
if stop_index == sell_index == float('inf'):
break
if stop_index <= sell_index:
exit_index = open_trade_index + stop_index
exit_type = SellType.STOP_LOSS
exit_price = stop_price
elif stop_index > sell_index:
# If exit is SELL then we exit at the next candle
exit_index = open_trade_index + sell_index + 1
# Check if we have the next candle
if len(ohlc_columns) - 1 < exit_index:
break
exit_type = SellType.SELL_SIGNAL
exit_price = ohlc_columns[exit_index, 0]
trade = {'pair': pair,
'stoploss': stoploss,
'profit_percent': '',
'profit_abs': '',
'open_time': date_column[open_trade_index],
'close_time': date_column[exit_index],
'open_index': start_point + open_trade_index,
'close_index': start_point + exit_index,
'trade_duration': '',
'open_rate': round(open_price, 15),
'close_rate': round(exit_price, 15),
'exit_type': exit_type
}
result.append(trade)
# Giving a view of exit_index till the end of array
buy_column = buy_column[exit_index:]
sell_column = sell_column[exit_index:]
date_column = date_column[exit_index:]
ohlc_columns = ohlc_columns[exit_index:]
start_point += exit_index
return result

View File

@@ -0,0 +1,464 @@
# pragma pylint: disable=W0603
""" Edge positioning package """
import logging
from typing import Any, Dict, NamedTuple
import arrow
import numpy as np
import utils_find_1st as utf1st
from pandas import DataFrame
from freqtrade import constants
from freqtrade.configuration import TimeRange
from freqtrade.data import history
from freqtrade.exceptions import OperationalException
from freqtrade.strategy.interface import SellType
logger = logging.getLogger(__name__)
class PairInfo(NamedTuple):
stoploss: float
winrate: float
risk_reward_ratio: float
required_risk_reward: float
expectancy: float
nb_trades: int
avg_trade_duration: float
class Edge:
"""
Calculates Win Rate, Risk Reward Ratio, Expectancy
against historical data for a give set of markets and a strategy
it then adjusts stoploss and position size accordingly
and force it into the strategy
Author: https://github.com/mishaker
"""
config: Dict = {}
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
self.config = config
self.exchange = exchange
self.strategy = strategy
self.edge_config = self.config.get('edge', {})
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
self._final_pairs: list = []
# checking max_open_trades. it should be -1 as with Edge
# the number of trades is determined by position size
if self.config['max_open_trades'] != float('inf'):
logger.critical('max_open_trades should be -1 in config !')
if self.config['stake_amount'] != constants.UNLIMITED_STAKE_AMOUNT:
raise OperationalException('Edge works only with unlimited stake amount')
# Deprecated capital_available_percentage. Will use tradable_balance_ratio in the future.
self._capital_percentage: float = self.edge_config.get(
'capital_available_percentage', self.config['tradable_balance_ratio'])
self._allowed_risk: float = self.edge_config.get('allowed_risk')
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
self._last_updated: int = 0 # Timestamp of pairs last updated time
self._refresh_pairs = True
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
# calculating stoploss range
self._stoploss_range = np.arange(
self._stoploss_range_min,
self._stoploss_range_max,
self._stoploss_range_step
)
self._timerange: TimeRange = TimeRange.parse_timerange("%s-" % arrow.now().shift(
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
if config.get('fee'):
self.fee = config['fee']
else:
self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0])
def calculate(self) -> bool:
pairs = self.config['exchange']['pair_whitelist']
heartbeat = self.edge_config.get('process_throttle_secs')
if (self._last_updated > 0) and (
self._last_updated + heartbeat > arrow.utcnow().timestamp):
return False
data: Dict[str, Any] = {}
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using local backtesting data (using whitelist in given config) ...')
if self._refresh_pairs:
history.refresh_data(
datadir=self.config['datadir'],
pairs=pairs,
exchange=self.exchange,
timeframe=self.strategy.ticker_interval,
timerange=self._timerange,
)
data = history.load_data(
datadir=self.config['datadir'],
pairs=pairs,
timeframe=self.strategy.ticker_interval,
timerange=self._timerange,
startup_candles=self.strategy.startup_candle_count,
)
if not data:
# Reinitializing cached pairs
self._cached_pairs = {}
logger.critical("No data found. Edge is stopped ...")
return False
preprocessed = self.strategy.tickerdata_to_dataframe(data)
# Print timeframe
min_date, max_date = history.get_timerange(preprocessed)
logger.info(
'Measuring data from %s up to %s (%s days) ...',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
trades: list = []
for pair, pair_data in preprocessed.items():
# Sorting dataframe by date and reset index
pair_data = pair_data.sort_values(by=['date'])
pair_data = pair_data.reset_index(drop=True)
ticker_data = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
# If no trade found then exit
if len(trades) == 0:
logger.info("No trades found.")
return False
# Fill missing, calculable columns, profit, duration , abs etc.
trades_df = self._fill_calculable_fields(DataFrame(trades))
self._cached_pairs = self._process_expectancy(trades_df)
self._last_updated = arrow.utcnow().timestamp
return True
def stake_amount(self, pair: str, free_capital: float,
total_capital: float, capital_in_trade: float) -> float:
stoploss = self.stoploss(pair)
available_capital = (total_capital + capital_in_trade) * self._capital_percentage
allowed_capital_at_risk = available_capital * self._allowed_risk
max_position_size = abs(allowed_capital_at_risk / stoploss)
position_size = min(max_position_size, free_capital)
if pair in self._cached_pairs:
logger.info(
'winrate: %s, expectancy: %s, position size: %s, pair: %s,'
' capital in trade: %s, free capital: %s, total capital: %s,'
' stoploss: %s, available capital: %s.',
self._cached_pairs[pair].winrate,
self._cached_pairs[pair].expectancy,
position_size, pair,
capital_in_trade, free_capital, total_capital,
stoploss, available_capital
)
return round(position_size, 15)
def stoploss(self, pair: str) -> float:
if pair in self._cached_pairs:
return self._cached_pairs[pair].stoploss
else:
logger.warning('tried to access stoploss of a non-existing pair, '
'strategy stoploss is returned instead.')
return self.strategy.stoploss
def adjust(self, pairs) -> list:
"""
Filters out and sorts "pairs" according to Edge calculated pairs
"""
final = []
for pair, info in self._cached_pairs.items():
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
pair in pairs:
final.append(pair)
if self._final_pairs != final:
self._final_pairs = final
if self._final_pairs:
logger.info(
'Minimum expectancy and minimum winrate are met only for %s,'
' so other pairs are filtered out.',
self._final_pairs
)
else:
logger.info(
'Edge removed all pairs as no pair with minimum expectancy '
'and minimum winrate was found !'
)
return self._final_pairs
def accepted_pairs(self) -> list:
"""
return a list of accepted pairs along with their winrate, expectancy and stoploss
"""
final = []
for pair, info in self._cached_pairs.items():
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)):
final.append({
'Pair': pair,
'Winrate': info.winrate,
'Expectancy': info.expectancy,
'Stoploss': info.stoploss,
})
return final
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
"""
The result frame contains a number of columns that are calculable
from other columns. These are left blank till all rows are added,
to be populated in single vector calls.
Columns to be populated are:
- Profit
- trade duration
- profit abs
:param result Dataframe
:return: result Dataframe
"""
# stake and fees
# stake = 0.015
# 0.05% is 0.0005
# fee = 0.001
# we set stake amount to an arbitrary amount.
# as it doesn't change the calculation.
# all returned values are relative. they are percentages.
stake = 0.015
fee = self.fee
open_fee = fee / 2
close_fee = fee / 2
result['trade_duration'] = result['close_time'] - result['open_time']
result['trade_duration'] = result['trade_duration'].map(
lambda x: int(x.total_seconds() / 60))
# Spends, Takes, Profit, Absolute Profit
# Buy Price
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
result['buy_fee'] = stake * open_fee
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
# Sell price
result['sell_sum'] = result['buy_vol'] * result['close_rate']
result['sell_fee'] = result['sell_sum'] * close_fee
result['sell_take'] = result['sell_sum'] - result['sell_fee']
# profit_percent
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
# Absolute profit
result['profit_abs'] = result['sell_take'] - result['buy_spend']
return result
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
"""
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
The calulation will be done per pair and per strategy.
"""
# Removing pairs having less than min_trades_number
min_trades_number = self.edge_config.get('min_trade_number', 10)
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
###################################
# Removing outliers (Only Pumps) from the dataset
# The method to detect outliers is to calculate standard deviation
# Then every value more than (standard deviation + 2*average) is out (pump)
#
# Removing Pumps
if self.edge_config.get('remove_pumps', False):
results = results.groupby(['pair', 'stoploss']).apply(
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
##########################################################################
# Removing trades having a duration more than X minutes (set in config)
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
results = results[results.trade_duration < max_trade_duration]
#######################################################################
if results.empty:
return {}
groupby_aggregator = {
'profit_abs': [
('nb_trades', 'count'), # number of all trades
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
],
'trade_duration': [('avg_trade_duration', 'mean')]
}
# Group by (pair and stoploss) by applying above aggregator
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
groupby_aggregator).reset_index(col_level=1)
# Dropping level 0 as we don't need it
df.columns = df.columns.droplevel(0)
# Calculating number of losing trades, average win and average loss
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
df['average_win'] = df['profit_sum'] / df['nb_win_trades']
df['average_loss'] = df['loss_sum'] / df['nb_loss_trades']
# Win rate = number of profitable trades / number of trades
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
# risk_reward_ratio = average win / average loss
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
# required_risk_reward = (1 / winrate) - 1
df['required_risk_reward'] = (1 / df['winrate']) - 1
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
# sort by expectancy and stoploss
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
final = {}
for x in df.itertuples():
final[x.pair] = PairInfo(
x.stoploss,
x.winrate,
x.risk_reward_ratio,
x.required_risk_reward,
x.expectancy,
x.nb_trades,
x.avg_trade_duration
)
# Returning a list of pairs in order of "expectancy"
return final
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
buy_column = ticker_data['buy'].values
sell_column = ticker_data['sell'].values
date_column = ticker_data['date'].values
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
result: list = []
for stoploss in stoploss_range:
result += self._detect_next_stop_or_sell_point(
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
)
return result
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
ohlc_columns, stoploss, pair):
"""
Iterate through ohlc_columns in order to find the next trade
Next trade opens from the first buy signal noticed to
The sell or stoploss signal after it.
It then cuts OHLC, buy_column, sell_column and date_column.
Cut from (the exit trade index) + 1.
Author: https://github.com/mishaker
"""
result: list = []
start_point = 0
while True:
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
# Return empty if we don't find trade entry (i.e. buy==1) or
# we find a buy but at the end of array
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
break
else:
# When a buy signal is seen,
# trade opens in reality on the next candle
open_trade_index += 1
stop_price_percentage = stoploss + 1
open_price = ohlc_columns[open_trade_index, 0]
stop_price = (open_price * stop_price_percentage)
# Searching for the index where stoploss is hit
stop_index = utf1st.find_1st(
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
# If we don't find it then we assume stop_index will be far in future (infinite number)
if stop_index == -1:
stop_index = float('inf')
# Searching for the index where sell is hit
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
# If we don't find it then we assume sell_index will be far in future (infinite number)
if sell_index == -1:
sell_index = float('inf')
# Check if we don't find any stop or sell point (in that case trade remains open)
# It is not interesting for Edge to consider it so we simply ignore the trade
# And stop iterating there is no more entry
if stop_index == sell_index == float('inf'):
break
if stop_index <= sell_index:
exit_index = open_trade_index + stop_index
exit_type = SellType.STOP_LOSS
exit_price = stop_price
elif stop_index > sell_index:
# If exit is SELL then we exit at the next candle
exit_index = open_trade_index + sell_index + 1
# Check if we have the next candle
if len(ohlc_columns) - 1 < exit_index:
break
exit_type = SellType.SELL_SIGNAL
exit_price = ohlc_columns[exit_index, 0]
trade = {'pair': pair,
'stoploss': stoploss,
'profit_percent': '',
'profit_abs': '',
'open_time': date_column[open_trade_index],
'close_time': date_column[exit_index],
'open_index': start_point + open_trade_index,
'close_index': start_point + exit_index,
'trade_duration': '',
'open_rate': round(open_price, 15),
'close_rate': round(exit_price, 15),
'exit_type': exit_type
}
result.append(trade)
# Giving a view of exit_index till the end of array
buy_column = buy_column[exit_index:]
sell_column = sell_column[exit_index:]
date_column = date_column[exit_index:]
ohlc_columns = ohlc_columns[exit_index:]
start_point += exit_index
return result

37
freqtrade/exceptions.py Normal file
View File

@@ -0,0 +1,37 @@
class FreqtradeException(Exception):
"""
Freqtrade base exception. Handled at the outermost level.
All other exception types are subclasses of this exception type.
"""
class OperationalException(FreqtradeException):
"""
Requires manual intervention and will stop the bot.
Most of the time, this is caused by an invalid Configuration.
"""
class DependencyException(FreqtradeException):
"""
Indicates that an assumed dependency is not met.
This could happen when there is currently not enough money on the account.
"""
class InvalidOrderException(FreqtradeException):
"""
This is returned when the order is not valid. Example:
If stoploss on exchange order is hit, then trying to cancel the order
should return this exception.
"""
class TemporaryError(FreqtradeException):
"""
Temporary network or exchange related error.
This could happen when an exchange is congested, unavailable, or the user
has networking problems. Usually resolves itself after a time.
"""

View File

@@ -1,4 +1,5 @@
from freqtrade.exchange.exchange import Exchange, MAP_EXCHANGE_CHILDCLASS # noqa: F401 from freqtrade.exchange.common import MAP_EXCHANGE_CHILDCLASS # noqa: F401
from freqtrade.exchange.exchange import Exchange # noqa: F401
from freqtrade.exchange.exchange import (get_exchange_bad_reason, # noqa: F401 from freqtrade.exchange.exchange import (get_exchange_bad_reason, # noqa: F401
is_exchange_bad, is_exchange_bad,
is_exchange_known_ccxt, is_exchange_known_ccxt,
@@ -14,3 +15,4 @@ from freqtrade.exchange.exchange import (market_is_active, # noqa: F401
symbol_is_pair) symbol_is_pair)
from freqtrade.exchange.kraken import Kraken # noqa: F401 from freqtrade.exchange.kraken import Kraken # noqa: F401
from freqtrade.exchange.binance import Binance # noqa: F401 from freqtrade.exchange.binance import Binance # noqa: F401
from freqtrade.exchange.bibox import Bibox # noqa: F401

View File

@@ -0,0 +1,22 @@
""" Bibox exchange subclass """
import logging
from typing import Dict
from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__)
class Bibox(Exchange):
"""
Bibox exchange class. Contains adjustments needed for Freqtrade to work
with this exchange.
Please note that this exchange is not included in the list of exchanges
officially supported by the Freqtrade development team. So some features
may still not work as expected.
"""
# fetchCurrencies API point requires authentication for Bibox,
# so switch it off for Freqtrade load_markets()
_ccxt_config: Dict = {"has": {"fetchCurrencies": False}}

View File

@@ -4,8 +4,8 @@ from typing import Dict
import ccxt import ccxt
from freqtrade import (DependencyException, InvalidOrderException, from freqtrade.exceptions import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError) OperationalException, TemporaryError)
from freqtrade.exchange import Exchange from freqtrade.exchange import Exchange
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -41,7 +41,7 @@ class Binance(Exchange):
""" """
ordertype = "stop_loss_limit" ordertype = "stop_loss_limit"
stop_price = self.symbol_price_prec(pair, stop_price) stop_price = self.price_to_precision(pair, stop_price)
# Ensure rate is less than stop price # Ensure rate is less than stop price
if stop_price <= rate: if stop_price <= rate:
@@ -57,9 +57,9 @@ class Binance(Exchange):
params = self._params.copy() params = self._params.copy()
params.update({'stopPrice': stop_price}) params.update({'stopPrice': stop_price})
amount = self.symbol_amount_prec(pair, amount) amount = self.amount_to_precision(pair, amount)
rate = self.symbol_price_prec(pair, rate) rate = self.price_to_precision(pair, rate)
order = self._api.create_order(pair, ordertype, 'sell', order = self._api.create_order(pair, ordertype, 'sell',
amount, rate, params) amount, rate, params)

View File

@@ -0,0 +1,124 @@
import logging
from freqtrade.exceptions import DependencyException, TemporaryError
logger = logging.getLogger(__name__)
API_RETRY_COUNT = 4
BAD_EXCHANGES = {
"bitmex": "Various reasons.",
"bitstamp": "Does not provide history. "
"Details in https://github.com/freqtrade/freqtrade/issues/1983",
"hitbtc": "This API cannot be used with Freqtrade. "
"Use `hitbtc2` exchange id to access this exchange.",
**dict.fromkeys([
'adara',
'anxpro',
'bigone',
'coinbase',
'coinexchange',
'coinmarketcap',
'lykke',
'xbtce',
], "Does not provide timeframes. ccxt fetchOHLCV: False"),
**dict.fromkeys([
'bcex',
'bit2c',
'bitbay',
'bitflyer',
'bitforex',
'bithumb',
'bitso',
'bitstamp1',
'bl3p',
'braziliex',
'btcbox',
'btcchina',
'btctradeim',
'btctradeua',
'bxinth',
'chilebit',
'coincheck',
'coinegg',
'coinfalcon',
'coinfloor',
'coingi',
'coinmate',
'coinone',
'coinspot',
'coolcoin',
'crypton',
'deribit',
'exmo',
'exx',
'flowbtc',
'foxbit',
'fybse',
# 'hitbtc',
'ice3x',
'independentreserve',
'indodax',
'itbit',
'lakebtc',
'latoken',
'liquid',
'livecoin',
'luno',
'mixcoins',
'negociecoins',
'nova',
'paymium',
'southxchange',
'stronghold',
'surbitcoin',
'therock',
'tidex',
'vaultoro',
'vbtc',
'virwox',
'yobit',
'zaif',
], "Does not provide timeframes. ccxt fetchOHLCV: emulated"),
}
MAP_EXCHANGE_CHILDCLASS = {
'binanceus': 'binance',
'binanceje': 'binance',
}
def retrier_async(f):
async def wrapper(*args, **kwargs):
count = kwargs.pop('count', API_RETRY_COUNT)
try:
return await f(*args, **kwargs)
except (TemporaryError, DependencyException) as ex:
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
if count > 0:
count -= 1
kwargs.update({'count': count})
logger.warning('retrying %s() still for %s times', f.__name__, count)
return await wrapper(*args, **kwargs)
else:
logger.warning('Giving up retrying: %s()', f.__name__)
raise ex
return wrapper
def retrier(f):
def wrapper(*args, **kwargs):
count = kwargs.pop('count', API_RETRY_COUNT)
try:
return f(*args, **kwargs)
except (TemporaryError, DependencyException) as ex:
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
if count > 0:
count -= 1
kwargs.update({'count': count})
logger.warning('retrying %s() still for %s times', f.__name__, count)
return wrapper(*args, **kwargs)
else:
logger.warning('Giving up retrying: %s()', f.__name__)
raise ex
return wrapper

View File

@@ -7,148 +7,33 @@ import inspect
import logging import logging
from copy import deepcopy from copy import deepcopy
from datetime import datetime, timezone from datetime import datetime, timezone
from math import ceil, floor from math import ceil
from random import randint from random import randint
from typing import Any, Dict, List, Optional, Tuple from typing import Any, Dict, List, Optional, Tuple
import arrow import arrow
import ccxt import ccxt
import ccxt.async_support as ccxt_async import ccxt.async_support as ccxt_async
from ccxt.base.decimal_to_precision import ROUND_UP, ROUND_DOWN from ccxt.base.decimal_to_precision import (ROUND_DOWN, ROUND_UP, TICK_SIZE,
TRUNCATE, decimal_to_precision)
from pandas import DataFrame from pandas import DataFrame
from freqtrade import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError, constants)
from freqtrade.data.converter import parse_ticker_dataframe from freqtrade.data.converter import parse_ticker_dataframe
from freqtrade.exceptions import (DependencyException, InvalidOrderException,
OperationalException, TemporaryError)
from freqtrade.exchange.common import BAD_EXCHANGES, retrier, retrier_async
from freqtrade.misc import deep_merge_dicts from freqtrade.misc import deep_merge_dicts
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
API_RETRY_COUNT = 4
BAD_EXCHANGES = {
"bitmex": "Various reasons.",
"bitstamp": "Does not provide history. "
"Details in https://github.com/freqtrade/freqtrade/issues/1983",
"hitbtc": "This API cannot be used with Freqtrade. "
"Use `hitbtc2` exchange id to access this exchange.",
**dict.fromkeys([
'adara',
'anxpro',
'bigone',
'coinbase',
'coinexchange',
'coinmarketcap',
'lykke',
'xbtce',
], "Does not provide timeframes. ccxt fetchOHLCV: False"),
**dict.fromkeys([
'bcex',
'bit2c',
'bitbay',
'bitflyer',
'bitforex',
'bithumb',
'bitso',
'bitstamp1',
'bl3p',
'braziliex',
'btcbox',
'btcchina',
'btctradeim',
'btctradeua',
'bxinth',
'chilebit',
'coincheck',
'coinegg',
'coinfalcon',
'coinfloor',
'coingi',
'coinmate',
'coinone',
'coinspot',
'coolcoin',
'crypton',
'deribit',
'exmo',
'exx',
'flowbtc',
'foxbit',
'fybse',
# 'hitbtc',
'ice3x',
'independentreserve',
'indodax',
'itbit',
'lakebtc',
'latoken',
'liquid',
'livecoin',
'luno',
'mixcoins',
'negociecoins',
'nova',
'paymium',
'southxchange',
'stronghold',
'surbitcoin',
'therock',
'tidex',
'vaultoro',
'vbtc',
'virwox',
'yobit',
'zaif',
], "Does not provide timeframes. ccxt fetchOHLCV: emulated"),
}
MAP_EXCHANGE_CHILDCLASS = {
'binanceus': 'binance',
'binanceje': 'binance',
}
def retrier_async(f):
async def wrapper(*args, **kwargs):
count = kwargs.pop('count', API_RETRY_COUNT)
try:
return await f(*args, **kwargs)
except (TemporaryError, DependencyException) as ex:
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
if count > 0:
count -= 1
kwargs.update({'count': count})
logger.warning('retrying %s() still for %s times', f.__name__, count)
return await wrapper(*args, **kwargs)
else:
logger.warning('Giving up retrying: %s()', f.__name__)
raise ex
return wrapper
def retrier(f):
def wrapper(*args, **kwargs):
count = kwargs.pop('count', API_RETRY_COUNT)
try:
return f(*args, **kwargs)
except (TemporaryError, DependencyException) as ex:
logger.warning('%s() returned exception: "%s"', f.__name__, ex)
if count > 0:
count -= 1
kwargs.update({'count': count})
logger.warning('retrying %s() still for %s times', f.__name__, count)
return wrapper(*args, **kwargs)
else:
logger.warning('Giving up retrying: %s()', f.__name__)
raise ex
return wrapper
class Exchange: class Exchange:
_config: Dict = {} _config: Dict = {}
# Parameters to add directly to ccxt sync/async initialization.
_ccxt_config: Dict = {}
# Parameters to add directly to buy/sell calls (like agreeing to trading agreement) # Parameters to add directly to buy/sell calls (like agreeing to trading agreement)
_params: Dict = {} _params: Dict = {}
@@ -210,10 +95,17 @@ class Exchange:
self._trades_pagination_arg = self._ft_has['trades_pagination_arg'] self._trades_pagination_arg = self._ft_has['trades_pagination_arg']
# Initialize ccxt objects # Initialize ccxt objects
ccxt_config = self._ccxt_config.copy()
ccxt_config = deep_merge_dicts(exchange_config.get('ccxt_config', {}),
ccxt_config)
self._api = self._init_ccxt( self._api = self._init_ccxt(
exchange_config, ccxt_kwargs=exchange_config.get('ccxt_config')) exchange_config, ccxt_kwargs=ccxt_config)
ccxt_async_config = self._ccxt_config.copy()
ccxt_async_config = deep_merge_dicts(exchange_config.get('ccxt_async_config', {}),
ccxt_async_config)
self._api_async = self._init_ccxt( self._api_async = self._init_ccxt(
exchange_config, ccxt_async, ccxt_kwargs=exchange_config.get('ccxt_async_config')) exchange_config, ccxt_async, ccxt_kwargs=ccxt_async_config)
logger.info('Using Exchange "%s"', self.name) logger.info('Using Exchange "%s"', self.name)
@@ -225,9 +117,11 @@ class Exchange:
self._load_markets() self._load_markets()
# Check if all pairs are available # Check if all pairs are available
self.validate_stakecurrency(config['stake_currency'])
self.validate_pairs(config['exchange']['pair_whitelist']) self.validate_pairs(config['exchange']['pair_whitelist'])
self.validate_ordertypes(config.get('order_types', {})) self.validate_ordertypes(config.get('order_types', {}))
self.validate_order_time_in_force(config.get('order_time_in_force', {})) self.validate_order_time_in_force(config.get('order_time_in_force', {}))
self.validate_required_startup_candles(config.get('startup_candle_count', 0))
# Converts the interval provided in minutes in config to seconds # Converts the interval provided in minutes in config to seconds
self.markets_refresh_interval: int = exchange_config.get( self.markets_refresh_interval: int = exchange_config.get(
@@ -296,6 +190,11 @@ class Exchange:
self._load_markets() self._load_markets()
return self._api.markets return self._api.markets
@property
def precisionMode(self) -> str:
"""exchange ccxt precisionMode"""
return self._api.precisionMode
def get_markets(self, base_currencies: List[str] = None, quote_currencies: List[str] = None, def get_markets(self, base_currencies: List[str] = None, quote_currencies: List[str] = None,
pairs_only: bool = False, active_only: bool = False) -> Dict: pairs_only: bool = False, active_only: bool = False) -> Dict:
""" """
@@ -318,6 +217,13 @@ class Exchange:
markets = {k: v for k, v in markets.items() if market_is_active(v)} markets = {k: v for k, v in markets.items() if market_is_active(v)}
return markets return markets
def get_quote_currencies(self) -> List[str]:
"""
Return a list of supported quote currencies
"""
markets = self.markets
return sorted(set([x['quote'] for _, x in markets.items()]))
def klines(self, pair_interval: Tuple[str, str], copy=True) -> DataFrame: def klines(self, pair_interval: Tuple[str, str], copy=True) -> DataFrame:
if pair_interval in self._klines: if pair_interval in self._klines:
return self._klines[pair_interval].copy() if copy else self._klines[pair_interval] return self._klines[pair_interval].copy() if copy else self._klines[pair_interval]
@@ -367,11 +273,23 @@ class Exchange:
except ccxt.BaseError: except ccxt.BaseError:
logger.exception("Could not reload markets.") logger.exception("Could not reload markets.")
def validate_stakecurrency(self, stake_currency) -> None:
"""
Checks stake-currency against available currencies on the exchange.
:param stake_currency: Stake-currency to validate
:raise: OperationalException if stake-currency is not available.
"""
quote_currencies = self.get_quote_currencies()
if stake_currency not in quote_currencies:
raise OperationalException(
f"{stake_currency} is not available as stake on {self.name}. "
f"Available currencies are: {', '.join(quote_currencies)}")
def validate_pairs(self, pairs: List[str]) -> None: def validate_pairs(self, pairs: List[str]) -> None:
""" """
Checks if all given pairs are tradable on the current exchange. Checks if all given pairs are tradable on the current exchange.
Raises OperationalException if one pair is not available.
:param pairs: list of pairs :param pairs: list of pairs
:raise: OperationalException if one pair is not available
:return: None :return: None
""" """
@@ -386,7 +304,15 @@ class Exchange:
raise OperationalException( raise OperationalException(
f'Pair {pair} is not available on {self.name}. ' f'Pair {pair} is not available on {self.name}. '
f'Please remove {pair} from your whitelist.') f'Please remove {pair} from your whitelist.')
elif self.markets[pair].get('info', {}).get('IsRestricted', False):
# From ccxt Documentation:
# markets.info: An associative array of non-common market properties,
# including fees, rates, limits and other general market information.
# The internal info array is different for each particular market,
# its contents depend on the exchange.
# It can also be a string or similar ... so we need to verify that first.
elif (isinstance(self.markets[pair].get('info', None), dict)
and self.markets[pair].get('info', {}).get('IsRestricted', False)):
# Warn users about restricted pairs in whitelist. # Warn users about restricted pairs in whitelist.
# We cannot determine reliably if Users are affected. # We cannot determine reliably if Users are affected.
logger.warning(f"Pair {pair} is restricted for some users on this exchange." logger.warning(f"Pair {pair} is restricted for some users on this exchange."
@@ -419,6 +345,10 @@ class Exchange:
raise OperationalException( raise OperationalException(
f"Invalid ticker interval '{timeframe}'. This exchange supports: {self.timeframes}") f"Invalid ticker interval '{timeframe}'. This exchange supports: {self.timeframes}")
if timeframe and timeframe_to_minutes(timeframe) < 1:
raise OperationalException(
f"Timeframes < 1m are currently not supported by Freqtrade.")
def validate_ordertypes(self, order_types: Dict) -> None: def validate_ordertypes(self, order_types: Dict) -> None:
""" """
Checks if order-types configured in strategy/config are supported Checks if order-types configured in strategy/config are supported
@@ -443,6 +373,16 @@ class Exchange:
raise OperationalException( raise OperationalException(
f'Time in force policies are not supported for {self.name} yet.') f'Time in force policies are not supported for {self.name} yet.')
def validate_required_startup_candles(self, startup_candles) -> None:
"""
Checks if required startup_candles is more than ohlcv_candle_limit.
Requires a grace-period of 5 candles - so a startup-period up to 494 is allowed by default.
"""
if startup_candles + 5 > self._ft_has['ohlcv_candle_limit']:
raise OperationalException(
f"This strategy requires {startup_candles} candles to start. "
f"{self.name} only provides {self._ft_has['ohlcv_candle_limit']}.")
def exchange_has(self, endpoint: str) -> bool: def exchange_has(self, endpoint: str) -> bool:
""" """
Checks if exchange implements a specific API endpoint. Checks if exchange implements a specific API endpoint.
@@ -452,40 +392,58 @@ class Exchange:
""" """
return endpoint in self._api.has and self._api.has[endpoint] return endpoint in self._api.has and self._api.has[endpoint]
def symbol_amount_prec(self, pair, amount: float): def amount_to_precision(self, pair, amount: float) -> float:
''' '''
Returns the amount to buy or sell to a precision the Exchange accepts Returns the amount to buy or sell to a precision the Exchange accepts
Rounded down Reimplementation of ccxt internal methods - ensuring we can test the result is correct
based on our definitions.
''' '''
if self.markets[pair]['precision']['amount']: if self.markets[pair]['precision']['amount']:
symbol_prec = self.markets[pair]['precision']['amount'] amount = float(decimal_to_precision(amount, rounding_mode=TRUNCATE,
big_amount = amount * pow(10, symbol_prec) precision=self.markets[pair]['precision']['amount'],
amount = floor(big_amount) / pow(10, symbol_prec) counting_mode=self.precisionMode,
))
return amount return amount
def symbol_price_prec(self, pair, price: float): def price_to_precision(self, pair, price: float) -> float:
''' '''
Returns the price buying or selling with to the precision the Exchange accepts Returns the price rounded up to the precision the Exchange accepts.
Partial Reimplementation of ccxt internal method decimal_to_precision(),
which does not support rounding up
TODO: If ccxt supports ROUND_UP for decimal_to_precision(), we could remove this and
align with amount_to_precision().
Rounds up Rounds up
''' '''
if self.markets[pair]['precision']['price']: if self.markets[pair]['precision']['price']:
symbol_prec = self.markets[pair]['precision']['price'] # price = float(decimal_to_precision(price, rounding_mode=ROUND,
big_price = price * pow(10, symbol_prec) # precision=self.markets[pair]['precision']['price'],
price = ceil(big_price) / pow(10, symbol_prec) # counting_mode=self.precisionMode,
# ))
if self.precisionMode == TICK_SIZE:
precision = self.markets[pair]['precision']['price']
missing = price % precision
if missing != 0:
price = price - missing + precision
else:
symbol_prec = self.markets[pair]['precision']['price']
big_price = price * pow(10, symbol_prec)
price = ceil(big_price) / pow(10, symbol_prec)
return price return price
def dry_run_order(self, pair: str, ordertype: str, side: str, amount: float, def dry_run_order(self, pair: str, ordertype: str, side: str, amount: float,
rate: float, params: Dict = {}) -> Dict[str, Any]: rate: float, params: Dict = {}) -> Dict[str, Any]:
order_id = f'dry_run_{side}_{randint(0, 10**6)}' order_id = f'dry_run_{side}_{randint(0, 10**6)}'
_amount = self.amount_to_precision(pair, amount)
dry_order = { dry_order = {
"id": order_id, "id": order_id,
'pair': pair, 'pair': pair,
'price': rate, 'price': rate,
'amount': amount, 'amount': _amount,
"cost": amount * rate, "cost": _amount * rate,
'type': ordertype, 'type': ordertype,
'side': side, 'side': side,
'remaining': amount, 'remaining': _amount,
'datetime': arrow.utcnow().isoformat(), 'datetime': arrow.utcnow().isoformat(),
'status': "closed" if ordertype == "market" else "open", 'status': "closed" if ordertype == "market" else "open",
'fee': None, 'fee': None,
@@ -511,13 +469,13 @@ class Exchange:
rate: float, params: Dict = {}) -> Dict: rate: float, params: Dict = {}) -> Dict:
try: try:
# Set the precision for amount and price(rate) as accepted by the exchange # Set the precision for amount and price(rate) as accepted by the exchange
amount = self.symbol_amount_prec(pair, amount) amount = self.amount_to_precision(pair, amount)
needs_price = (ordertype != 'market' needs_price = (ordertype != 'market'
or self._api.options.get("createMarketBuyOrderRequiresPrice", False)) or self._api.options.get("createMarketBuyOrderRequiresPrice", False))
rate = self.symbol_price_prec(pair, rate) if needs_price else None rate_for_order = self.price_to_precision(pair, rate) if needs_price else None
return self._api.create_order(pair, ordertype, side, return self._api.create_order(pair, ordertype, side,
amount, rate, params) amount, rate_for_order, params)
except ccxt.InsufficientFunds as e: except ccxt.InsufficientFunds as e:
raise DependencyException( raise DependencyException(
@@ -576,7 +534,7 @@ class Exchange:
@retrier @retrier
def get_balance(self, currency: str) -> float: def get_balance(self, currency: str) -> float:
if self._config['dry_run']: if self._config['dry_run']:
return constants.DRY_RUN_WALLET return self._config['dry_run_wallet']
# ccxt exception is already handled by get_balances # ccxt exception is already handled by get_balances
balances = self.get_balances() balances = self.get_balances()
@@ -621,7 +579,7 @@ class Exchange:
raise OperationalException(e) from e raise OperationalException(e) from e
@retrier @retrier
def get_ticker(self, pair: str, refresh: Optional[bool] = True) -> dict: def fetch_ticker(self, pair: str, refresh: Optional[bool] = True) -> dict:
if refresh or pair not in self._cached_ticker.keys(): if refresh or pair not in self._cached_ticker.keys():
try: try:
if pair not in self._api.markets or not self._api.markets[pair].get('active'): if pair not in self._api.markets or not self._api.markets[pair].get('active'):
@@ -644,40 +602,40 @@ class Exchange:
logger.info("returning cached ticker-data for %s", pair) logger.info("returning cached ticker-data for %s", pair)
return self._cached_ticker[pair] return self._cached_ticker[pair]
def get_historic_ohlcv(self, pair: str, ticker_interval: str, def get_historic_ohlcv(self, pair: str, timeframe: str,
since_ms: int) -> List: since_ms: int) -> List:
""" """
Gets candle history using asyncio and returns the list of candles. Gets candle history using asyncio and returns the list of candles.
Handles all async doing. Handles all async doing.
Async over one pair, assuming we get `_ohlcv_candle_limit` candles per call. Async over one pair, assuming we get `_ohlcv_candle_limit` candles per call.
:param pair: Pair to download :param pair: Pair to download
:param ticker_interval: Interval to get :param timeframe: Ticker Timeframe to get
:param since_ms: Timestamp in milliseconds to get history from :param since_ms: Timestamp in milliseconds to get history from
:returns List of tickers :returns List of tickers
""" """
return asyncio.get_event_loop().run_until_complete( return asyncio.get_event_loop().run_until_complete(
self._async_get_historic_ohlcv(pair=pair, ticker_interval=ticker_interval, self._async_get_historic_ohlcv(pair=pair, timeframe=timeframe,
since_ms=since_ms)) since_ms=since_ms))
async def _async_get_historic_ohlcv(self, pair: str, async def _async_get_historic_ohlcv(self, pair: str,
ticker_interval: str, timeframe: str,
since_ms: int) -> List: since_ms: int) -> List:
one_call = timeframe_to_msecs(ticker_interval) * self._ohlcv_candle_limit one_call = timeframe_to_msecs(timeframe) * self._ohlcv_candle_limit
logger.debug( logger.debug(
"one_call: %s msecs (%s)", "one_call: %s msecs (%s)",
one_call, one_call,
arrow.utcnow().shift(seconds=one_call // 1000).humanize(only_distance=True) arrow.utcnow().shift(seconds=one_call // 1000).humanize(only_distance=True)
) )
input_coroutines = [self._async_get_candle_history( input_coroutines = [self._async_get_candle_history(
pair, ticker_interval, since) for since in pair, timeframe, since) for since in
range(since_ms, arrow.utcnow().timestamp * 1000, one_call)] range(since_ms, arrow.utcnow().timestamp * 1000, one_call)]
tickers = await asyncio.gather(*input_coroutines, return_exceptions=True) tickers = await asyncio.gather(*input_coroutines, return_exceptions=True)
# Combine tickers # Combine tickers
data: List = [] data: List = []
for p, ticker_interval, ticker in tickers: for p, timeframe, ticker in tickers:
if p == pair: if p == pair:
data.extend(ticker) data.extend(ticker)
# Sort data again after extending the result - above calls return in "async order" # Sort data again after extending the result - above calls return in "async order"
@@ -697,14 +655,14 @@ class Exchange:
input_coroutines = [] input_coroutines = []
# Gather coroutines to run # Gather coroutines to run
for pair, ticker_interval in set(pair_list): for pair, timeframe in set(pair_list):
if (not ((pair, ticker_interval) in self._klines) if (not ((pair, timeframe) in self._klines)
or self._now_is_time_to_refresh(pair, ticker_interval)): or self._now_is_time_to_refresh(pair, timeframe)):
input_coroutines.append(self._async_get_candle_history(pair, ticker_interval)) input_coroutines.append(self._async_get_candle_history(pair, timeframe))
else: else:
logger.debug( logger.debug(
"Using cached ohlcv data for pair %s, interval %s ...", "Using cached ohlcv data for pair %s, timeframe %s ...",
pair, ticker_interval pair, timeframe
) )
tickers = asyncio.get_event_loop().run_until_complete( tickers = asyncio.get_event_loop().run_until_complete(
@@ -716,40 +674,40 @@ class Exchange:
logger.warning("Async code raised an exception: %s", res.__class__.__name__) logger.warning("Async code raised an exception: %s", res.__class__.__name__)
continue continue
pair = res[0] pair = res[0]
ticker_interval = res[1] timeframe = res[1]
ticks = res[2] ticks = res[2]
# keeping last candle time as last refreshed time of the pair # keeping last candle time as last refreshed time of the pair
if ticks: if ticks:
self._pairs_last_refresh_time[(pair, ticker_interval)] = ticks[-1][0] // 1000 self._pairs_last_refresh_time[(pair, timeframe)] = ticks[-1][0] // 1000
# keeping parsed dataframe in cache # keeping parsed dataframe in cache
self._klines[(pair, ticker_interval)] = parse_ticker_dataframe( self._klines[(pair, timeframe)] = parse_ticker_dataframe(
ticks, ticker_interval, pair=pair, fill_missing=True, ticks, timeframe, pair=pair, fill_missing=True,
drop_incomplete=self._ohlcv_partial_candle) drop_incomplete=self._ohlcv_partial_candle)
return tickers return tickers
def _now_is_time_to_refresh(self, pair: str, ticker_interval: str) -> bool: def _now_is_time_to_refresh(self, pair: str, timeframe: str) -> bool:
# Calculating ticker interval in seconds # Calculating ticker interval in seconds
interval_in_sec = timeframe_to_seconds(ticker_interval) interval_in_sec = timeframe_to_seconds(timeframe)
return not ((self._pairs_last_refresh_time.get((pair, ticker_interval), 0) return not ((self._pairs_last_refresh_time.get((pair, timeframe), 0)
+ interval_in_sec) >= arrow.utcnow().timestamp) + interval_in_sec) >= arrow.utcnow().timestamp)
@retrier_async @retrier_async
async def _async_get_candle_history(self, pair: str, ticker_interval: str, async def _async_get_candle_history(self, pair: str, timeframe: str,
since_ms: Optional[int] = None) -> Tuple[str, str, List]: since_ms: Optional[int] = None) -> Tuple[str, str, List]:
""" """
Asynchronously gets candle histories using fetch_ohlcv Asynchronously gets candle histories using fetch_ohlcv
returns tuple: (pair, ticker_interval, ohlcv_list) returns tuple: (pair, timeframe, ohlcv_list)
""" """
try: try:
# fetch ohlcv asynchronously # fetch ohlcv asynchronously
s = '(' + arrow.get(since_ms // 1000).isoformat() + ') ' if since_ms is not None else '' s = '(' + arrow.get(since_ms // 1000).isoformat() + ') ' if since_ms is not None else ''
logger.debug( logger.debug(
"Fetching pair %s, interval %s, since %s %s...", "Fetching pair %s, interval %s, since %s %s...",
pair, ticker_interval, since_ms, s pair, timeframe, since_ms, s
) )
data = await self._api_async.fetch_ohlcv(pair, timeframe=ticker_interval, data = await self._api_async.fetch_ohlcv(pair, timeframe=timeframe,
since=since_ms) since=since_ms)
# Because some exchange sort Tickers ASC and other DESC. # Because some exchange sort Tickers ASC and other DESC.
@@ -761,9 +719,9 @@ class Exchange:
data = sorted(data, key=lambda x: x[0]) data = sorted(data, key=lambda x: x[0])
except IndexError: except IndexError:
logger.exception("Error loading %s. Result was %s.", pair, data) logger.exception("Error loading %s. Result was %s.", pair, data)
return pair, ticker_interval, [] return pair, timeframe, []
logger.debug("Done fetching pair %s, interval %s ...", pair, ticker_interval) logger.debug("Done fetching pair %s, interval %s ...", pair, timeframe)
return pair, ticker_interval, data return pair, timeframe, data
except ccxt.NotSupported as e: except ccxt.NotSupported as e:
raise OperationalException( raise OperationalException(
@@ -910,7 +868,6 @@ class Exchange:
Handles all async doing. Handles all async doing.
Async over one pair, assuming we get `_ohlcv_candle_limit` candles per call. Async over one pair, assuming we get `_ohlcv_candle_limit` candles per call.
:param pair: Pair to download :param pair: Pair to download
:param ticker_interval: Interval to get
:param since: Timestamp in milliseconds to get history from :param since: Timestamp in milliseconds to get history from
:param until: Timestamp in milliseconds. Defaults to current timestamp if not defined. :param until: Timestamp in milliseconds. Defaults to current timestamp if not defined.
:param from_id: Download data starting with ID (if id is known) :param from_id: Download data starting with ID (if id is known)
@@ -983,6 +940,22 @@ class Exchange:
@retrier @retrier
def get_trades_for_order(self, order_id: str, pair: str, since: datetime) -> List: def get_trades_for_order(self, order_id: str, pair: str, since: datetime) -> List:
"""
Fetch Orders using the "fetch_my_trades" endpoint and filter them by order-id.
The "since" argument passed in is coming from the database and is in UTC,
as timezone-native datetime object.
From the python documentation:
> Naive datetime instances are assumed to represent local time
Therefore, calling "since.timestamp()" will get the UTC timestamp, after applying the
transformation from local timezone to UTC.
This works for timezones UTC+ since then the result will contain trades from a few hours
instead of from the last 5 seconds, however fails for UTC- timezones,
since we're then asking for trades with a "since" argument in the future.
:param order_id order_id: Order-id as given when creating the order
:param pair: Pair the order is for
:param since: datetime object of the order creation time. Assumes object is in UTC.
"""
if self._config['dry_run']: if self._config['dry_run']:
return [] return []
if not self.exchange_has('fetchMyTrades'): if not self.exchange_has('fetchMyTrades'):
@@ -990,7 +963,8 @@ class Exchange:
try: try:
# Allow 5s offset to catch slight time offsets (discovered in #1185) # Allow 5s offset to catch slight time offsets (discovered in #1185)
# since needs to be int in milliseconds # since needs to be int in milliseconds
my_trades = self._api.fetch_my_trades(pair, int((since.timestamp() - 5) * 1000)) my_trades = self._api.fetch_my_trades(
pair, int((since.replace(tzinfo=timezone.utc).timestamp() - 5) * 1000))
matched_trades = [trade for trade in my_trades if trade['order'] == order_id] matched_trades = [trade for trade in my_trades if trade['order'] == order_id]
return matched_trades return matched_trades
@@ -1002,7 +976,7 @@ class Exchange:
raise OperationalException(e) from e raise OperationalException(e) from e
@retrier @retrier
def get_fee(self, symbol='ETH/BTC', type='', side='', amount=1, def get_fee(self, symbol, type='', side='', amount=1,
price=1, taker_or_maker='maker') -> float: price=1, taker_or_maker='maker') -> float:
try: try:
# validate that markets are loaded before trying to get fee # validate that markets are loaded before trying to get fee
@@ -1049,27 +1023,27 @@ def available_exchanges(ccxt_module=None) -> List[str]:
return [x for x in exchanges if not is_exchange_bad(x)] return [x for x in exchanges if not is_exchange_bad(x)]
def timeframe_to_seconds(ticker_interval: str) -> int: def timeframe_to_seconds(timeframe: str) -> int:
""" """
Translates the timeframe interval value written in the human readable Translates the timeframe interval value written in the human readable
form ('1m', '5m', '1h', '1d', '1w', etc.) to the number form ('1m', '5m', '1h', '1d', '1w', etc.) to the number
of seconds for one timeframe interval. of seconds for one timeframe interval.
""" """
return ccxt.Exchange.parse_timeframe(ticker_interval) return ccxt.Exchange.parse_timeframe(timeframe)
def timeframe_to_minutes(ticker_interval: str) -> int: def timeframe_to_minutes(timeframe: str) -> int:
""" """
Same as timeframe_to_seconds, but returns minutes. Same as timeframe_to_seconds, but returns minutes.
""" """
return ccxt.Exchange.parse_timeframe(ticker_interval) // 60 return ccxt.Exchange.parse_timeframe(timeframe) // 60
def timeframe_to_msecs(ticker_interval: str) -> int: def timeframe_to_msecs(timeframe: str) -> int:
""" """
Same as timeframe_to_seconds, but returns milliseconds. Same as timeframe_to_seconds, but returns milliseconds.
""" """
return ccxt.Exchange.parse_timeframe(ticker_interval) * 1000 return ccxt.Exchange.parse_timeframe(timeframe) * 1000
def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime: def timeframe_to_prev_date(timeframe: str, date: datetime = None) -> datetime:

View File

@@ -4,7 +4,7 @@ from typing import Dict
import ccxt import ccxt
from freqtrade import OperationalException, TemporaryError from freqtrade.exceptions import OperationalException, TemporaryError
from freqtrade.exchange import Exchange from freqtrade.exchange import Exchange
from freqtrade.exchange.exchange import retrier from freqtrade.exchange.exchange import retrier

View File

@@ -7,21 +7,22 @@ import traceback
from datetime import datetime from datetime import datetime
from math import isclose from math import isclose
from os import getpid from os import getpid
from threading import Lock
from typing import Any, Dict, List, Optional, Tuple from typing import Any, Dict, List, Optional, Tuple
import arrow import arrow
from requests.exceptions import RequestException from requests.exceptions import RequestException
from freqtrade import (DependencyException, InvalidOrderException, __version__, from freqtrade import __version__, constants, persistence
constants, persistence)
from freqtrade.configuration import validate_config_consistency from freqtrade.configuration import validate_config_consistency
from freqtrade.data.converter import order_book_to_dataframe from freqtrade.data.converter import order_book_to_dataframe
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.edge import Edge from freqtrade.edge import Edge
from freqtrade.exceptions import DependencyException, InvalidOrderException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date from freqtrade.exchange import timeframe_to_minutes, timeframe_to_next_date
from freqtrade.pairlist.pairlistmanager import PairListManager
from freqtrade.persistence import Trade from freqtrade.persistence import Trade
from freqtrade.resolvers import (ExchangeResolver, PairListResolver, from freqtrade.resolvers import ExchangeResolver, StrategyResolver
StrategyResolver)
from freqtrade.rpc import RPCManager, RPCMessageType from freqtrade.rpc import RPCManager, RPCMessageType
from freqtrade.state import State from freqtrade.state import State
from freqtrade.strategy.interface import IStrategy, SellType from freqtrade.strategy.interface import IStrategy, SellType
@@ -55,14 +56,17 @@ class FreqtradeBot:
self.heartbeat_interval = self.config.get('internals', {}).get('heartbeat_interval', 60) self.heartbeat_interval = self.config.get('internals', {}).get('heartbeat_interval', 60)
self.strategy: IStrategy = StrategyResolver(self.config).strategy self.strategy: IStrategy = StrategyResolver.load_strategy(self.config)
# Check config consistency here since strategies can set certain options # Check config consistency here since strategies can set certain options
validate_config_consistency(config) validate_config_consistency(config)
self.exchange = ExchangeResolver(self.config['exchange']['name'], self.config).exchange self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
persistence.init(self.config.get('db_url', None), clean_open_orders=self.config['dry_run'])
self.wallets = Wallets(self.config, self.exchange) self.wallets = Wallets(self.config, self.exchange)
self.dataprovider = DataProvider(self.config, self.exchange) self.dataprovider = DataProvider(self.config, self.exchange)
# Attach Dataprovider to Strategy baseclass # Attach Dataprovider to Strategy baseclass
@@ -70,17 +74,13 @@ class FreqtradeBot:
# Attach Wallets to Strategy baseclass # Attach Wallets to Strategy baseclass
IStrategy.wallets = self.wallets IStrategy.wallets = self.wallets
pairlistname = self.config.get('pairlist', {}).get('method', 'StaticPairList') self.pairlists = PairListManager(self.exchange, self.config)
self.pairlists = PairListResolver(pairlistname, self, self.config).pairlist
# Initializing Edge only if enabled # Initializing Edge only if enabled
self.edge = Edge(self.config, self.exchange, self.strategy) if \ self.edge = Edge(self.config, self.exchange, self.strategy) if \
self.config.get('edge', {}).get('enabled', False) else None self.config.get('edge', {}).get('enabled', False) else None
self.active_pair_whitelist: List[str] = self.config['exchange']['pair_whitelist'] self.active_pair_whitelist = self._refresh_whitelist()
persistence.init(self.config.get('db_url', None),
clean_open_orders=self.config.get('dry_run', False))
# Set initial bot state from config # Set initial bot state from config
initial_state = self.config.get('initial_state') initial_state = self.config.get('initial_state')
@@ -92,6 +92,18 @@ class FreqtradeBot:
# the initial state of the bot. # the initial state of the bot.
# Keep this at the end of this initialization method. # Keep this at the end of this initialization method.
self.rpc: RPCManager = RPCManager(self) self.rpc: RPCManager = RPCManager(self)
# Protect sell-logic from forcesell and viceversa
self._sell_lock = Lock()
def notify_status(self, msg: str) -> None:
"""
Public method for users of this class (worker, etc.) to send notifications
via RPC about changes in the bot status.
"""
self.rpc.send_msg({
'type': RPCMessageType.STATUS_NOTIFICATION,
'status': msg
})
def cleanup(self) -> None: def cleanup(self) -> None:
""" """
@@ -123,48 +135,53 @@ class FreqtradeBot:
# Check whether markets have to be reloaded # Check whether markets have to be reloaded
self.exchange._reload_markets() self.exchange._reload_markets()
# Refresh whitelist
self.pairlists.refresh_pairlist()
self.active_pair_whitelist = self.pairlists.whitelist
# Calculating Edge positioning
if self.edge:
self.edge.calculate()
self.active_pair_whitelist = self.edge.adjust(self.active_pair_whitelist)
# Query trades from persistence layer # Query trades from persistence layer
trades = Trade.get_open_trades() trades = Trade.get_open_trades()
# Extend active-pair whitelist with pairs from open trades self.active_pair_whitelist = self._refresh_whitelist(trades)
# It ensures that tickers are downloaded for open trades
self._extend_whitelist_with_trades(self.active_pair_whitelist, trades)
# Refreshing candles # Refreshing candles
self.dataprovider.refresh(self._create_pair_whitelist(self.active_pair_whitelist), self.dataprovider.refresh(self._create_pair_whitelist(self.active_pair_whitelist),
self.strategy.informative_pairs()) self.strategy.informative_pairs())
# First process current opened trades # Protect from collisions with forcesell.
self.process_maybe_execute_sells(trades) # Without this, freqtrade my try to recreate stoploss_on_exchange orders
# while selling is in process, since telegram messages arrive in an different thread.
with self._sell_lock:
# First process current opened trades (positions)
self.exit_positions(trades)
# Then looking for buy opportunities # Then looking for buy opportunities
if len(trades) < self.config['max_open_trades']: if self.get_free_open_trades():
self.process_maybe_execute_buys() self.enter_positions()
if 'unfilledtimeout' in self.config: # Check and handle any timed out open orders
# Check and handle any timed out open orders self.check_handle_timedout()
self.check_handle_timedout() Trade.session.flush()
Trade.session.flush()
if (self.heartbeat_interval if (self.heartbeat_interval
and (arrow.utcnow().timestamp - self._heartbeat_msg > self.heartbeat_interval)): and (arrow.utcnow().timestamp - self._heartbeat_msg > self.heartbeat_interval)):
logger.info(f"Bot heartbeat. PID={getpid()}") logger.info(f"Bot heartbeat. PID={getpid()}")
self._heartbeat_msg = arrow.utcnow().timestamp self._heartbeat_msg = arrow.utcnow().timestamp
def _extend_whitelist_with_trades(self, whitelist: List[str], trades: List[Any]): def _refresh_whitelist(self, trades: List[Trade] = []) -> List[str]:
""" """
Extend whitelist with pairs from open trades Refresh whitelist from pairlist or edge and extend it with trades.
""" """
whitelist.extend([trade.pair for trade in trades if trade.pair not in whitelist]) # Refresh whitelist
self.pairlists.refresh_pairlist()
_whitelist = self.pairlists.whitelist
# Calculating Edge positioning
if self.edge:
self.edge.calculate()
_whitelist = self.edge.adjust(_whitelist)
if trades:
# Extend active-pair whitelist with pairs from open trades
# It ensures that tickers are downloaded for open trades
_whitelist.extend([trade.pair for trade in trades if trade.pair not in _whitelist])
return _whitelist
def _create_pair_whitelist(self, pairs: List[str]) -> List[Tuple[str, str]]: def _create_pair_whitelist(self, pairs: List[str]) -> List[Tuple[str, str]]:
""" """
@@ -172,7 +189,52 @@ class FreqtradeBot:
""" """
return [(pair, self.config['ticker_interval']) for pair in pairs] return [(pair, self.config['ticker_interval']) for pair in pairs]
def get_target_bid(self, pair: str, tick: Dict = None) -> float: def get_free_open_trades(self):
"""
Return the number of free open trades slots or 0 if
max number of open trades reached
"""
open_trades = len(Trade.get_open_trades())
return max(0, self.config['max_open_trades'] - open_trades)
#
# BUY / enter positions / open trades logic and methods
#
def enter_positions(self) -> int:
"""
Tries to execute buy orders for new trades (positions)
"""
trades_created = 0
whitelist = copy.deepcopy(self.active_pair_whitelist)
if not whitelist:
logger.info("Active pair whitelist is empty.")
else:
# Remove pairs for currently opened trades from the whitelist
for trade in Trade.get_open_trades():
if trade.pair in whitelist:
whitelist.remove(trade.pair)
logger.debug('Ignoring %s in pair whitelist', trade.pair)
if not whitelist:
logger.info("No currency pair in active pair whitelist, "
"but checking to sell open trades.")
else:
# Create entity and execute trade for each pair from whitelist
for pair in whitelist:
try:
trades_created += self.create_trade(pair)
except DependencyException as exception:
logger.warning('Unable to create trade for %s: %s', pair, exception)
if not trades_created:
logger.debug("Found no buy signals for whitelisted currencies. "
"Trying again...")
return trades_created
def get_buy_rate(self, pair: str, tick: Dict = None) -> float:
""" """
Calculates bid target between current ask price and last price Calculates bid target between current ask price and last price
:return: float: Price :return: float: Price
@@ -191,7 +253,7 @@ class FreqtradeBot:
else: else:
if not tick: if not tick:
logger.info('Using Last Ask / Last Price') logger.info('Using Last Ask / Last Price')
ticker = self.exchange.get_ticker(pair) ticker = self.exchange.fetch_ticker(pair)
else: else:
ticker = tick ticker = tick
if ticker['ask'] < ticker['last']: if ticker['ask'] < ticker['last']:
@@ -203,14 +265,18 @@ class FreqtradeBot:
return used_rate return used_rate
def _get_trade_stake_amount(self, pair) -> Optional[float]: def get_trade_stake_amount(self, pair) -> float:
""" """
Check if stake amount can be fulfilled with the available balance Calculate stake amount for the trade
for the stake currency :return: float: Stake amount
:return: float: Stake Amount :raise: DependencyException if the available stake amount is too low
""" """
stake_amount: float
# Ensure wallets are uptodate.
self.wallets.update()
if self.edge: if self.edge:
return self.edge.stake_amount( stake_amount = self.edge.stake_amount(
pair, pair,
self.wallets.get_free(self.config['stake_currency']), self.wallets.get_free(self.config['stake_currency']),
self.wallets.get_total(self.config['stake_currency']), self.wallets.get_total(self.config['stake_currency']),
@@ -218,21 +284,60 @@ class FreqtradeBot:
) )
else: else:
stake_amount = self.config['stake_amount'] stake_amount = self.config['stake_amount']
if stake_amount == constants.UNLIMITED_STAKE_AMOUNT:
stake_amount = self._calculate_unlimited_stake_amount()
available_amount = self.wallets.get_free(self.config['stake_currency']) return self._check_available_stake_amount(stake_amount)
if stake_amount == constants.UNLIMITED_STAKE_AMOUNT: def _get_available_stake_amount(self) -> float:
open_trades = len(Trade.get_open_trades()) """
if open_trades >= self.config['max_open_trades']: Return the total currently available balance in stake currency,
logger.warning("Can't open a new trade: max number of trades is reached") respecting tradable_balance_ratio.
return None Calculated as
return available_amount / (self.config['max_open_trades'] - open_trades) <open_trade stakes> + free amount ) * tradable_balance_ratio - <open_trade stakes>
"""
val_tied_up = Trade.total_open_trades_stakes()
# Ensure <tradable_balance_ratio>% is used from the overall balance
# Otherwise we'd risk lowering stakes with each open trade.
# (tied up + current free) * ratio) - tied up
available_amount = ((val_tied_up + self.wallets.get_free(self.config['stake_currency'])) *
self.config['tradable_balance_ratio']) - val_tied_up
return available_amount
def _calculate_unlimited_stake_amount(self) -> float:
"""
Calculate stake amount for "unlimited" stake amount
:return: 0 if max number of trades reached, else stake_amount to use.
"""
free_open_trades = self.get_free_open_trades()
if not free_open_trades:
return 0
available_amount = self._get_available_stake_amount()
return available_amount / free_open_trades
def _check_available_stake_amount(self, stake_amount: float) -> float:
"""
Check if stake amount can be fulfilled with the available balance
for the stake currency
:return: float: Stake amount
"""
available_amount = self._get_available_stake_amount()
if self.config['amend_last_stake_amount']:
# Remaining amount needs to be at least stake_amount * last_stake_amount_min_ratio
# Otherwise the remaining amount is too low to trade.
if available_amount > (stake_amount * self.config['last_stake_amount_min_ratio']):
stake_amount = min(stake_amount, available_amount)
else:
stake_amount = 0
# Check if stake_amount is fulfilled
if available_amount < stake_amount: if available_amount < stake_amount:
raise DependencyException( raise DependencyException(
f"Available balance({available_amount} {self.config['stake_currency']}) is " f"Available balance ({available_amount} {self.config['stake_currency']}) is "
f"lower than stake amount({stake_amount} {self.config['stake_currency']})" f"lower than stake amount ({stake_amount} {self.config['stake_currency']})"
) )
return stake_amount return stake_amount
@@ -266,63 +371,56 @@ class FreqtradeBot:
amount_reserve_percent += self.strategy.stoploss amount_reserve_percent += self.strategy.stoploss
# it should not be more than 50% # it should not be more than 50%
amount_reserve_percent = max(amount_reserve_percent, 0.5) amount_reserve_percent = max(amount_reserve_percent, 0.5)
return min(min_stake_amounts) / amount_reserve_percent
def create_trades(self) -> bool: # The value returned should satisfy both limits: for amount (base currency) and
""" # for cost (quote, stake currency), so max() is used here.
Checks the implemented trading strategy for buy-signals, using the active pair whitelist. # See also #2575 at github.
If a pair triggers the buy_signal a new trade record gets created. return max(min_stake_amounts) / amount_reserve_percent
Checks pairs as long as the open trade count is below `max_open_trades`.
:return: True if at least one trade has been created.
"""
whitelist = copy.deepcopy(self.active_pair_whitelist)
if not whitelist: def create_trade(self, pair: str) -> bool:
logger.info("Active pair whitelist is empty.") """
Check the implemented trading strategy for buy signals.
If the pair triggers the buy signal a new trade record gets created
and the buy-order opening the trade gets issued towards the exchange.
:return: True if a trade has been created.
"""
logger.debug(f"create_trade for pair {pair}")
if self.strategy.is_pair_locked(pair):
logger.info(f"Pair {pair} is currently locked.")
return False return False
# Remove currently opened and latest pairs from whitelist
for trade in Trade.get_open_trades():
if trade.pair in whitelist:
whitelist.remove(trade.pair)
logger.debug('Ignoring %s in pair whitelist', trade.pair)
if not whitelist:
logger.info("No currency pair in active pair whitelist, "
"but checking to sell open trades.")
return False
buycount = 0
# running get_signal on historical data fetched # running get_signal on historical data fetched
for _pair in whitelist: (buy, sell) = self.strategy.get_signal(
if self.strategy.is_pair_locked(_pair): pair, self.strategy.ticker_interval,
logger.info(f"Pair {_pair} is currently locked.") self.dataprovider.ohlcv(pair, self.strategy.ticker_interval))
continue
(buy, sell) = self.strategy.get_signal( if buy and not sell:
_pair, self.strategy.ticker_interval, if not self.get_free_open_trades():
self.dataprovider.ohlcv(_pair, self.strategy.ticker_interval)) logger.debug("Can't open a new trade: max number of trades is reached.")
return False
if buy and not sell and len(Trade.get_open_trades()) < self.config['max_open_trades']: stake_amount = self.get_trade_stake_amount(pair)
stake_amount = self._get_trade_stake_amount(_pair) if not stake_amount:
if not stake_amount: logger.debug("Stake amount is 0, ignoring possible trade for {pair}.")
continue return False
logger.info(f"Buy signal found: about create a new trade with stake_amount: " logger.info(f"Buy signal found: about create a new trade with stake_amount: "
f"{stake_amount} ...") f"{stake_amount} ...")
bidstrat_check_depth_of_market = self.config.get('bid_strategy', {}).\ bid_check_dom = self.config.get('bid_strategy', {}).get('check_depth_of_market', {})
get('check_depth_of_market', {}) if ((bid_check_dom.get('enabled', False)) and
if (bidstrat_check_depth_of_market.get('enabled', False)) and\ (bid_check_dom.get('bids_to_ask_delta', 0) > 0)):
(bidstrat_check_depth_of_market.get('bids_to_ask_delta', 0) > 0): if self._check_depth_of_market_buy(pair, bid_check_dom):
if self._check_depth_of_market_buy(_pair, bidstrat_check_depth_of_market): return self.execute_buy(pair, stake_amount)
buycount += self.execute_buy(_pair, stake_amount) else:
else: return False
continue
buycount += self.execute_buy(_pair, stake_amount) return self.execute_buy(pair, stake_amount)
else:
return buycount > 0 return False
def _check_depth_of_market_buy(self, pair: str, conf: Dict) -> bool: def _check_depth_of_market_buy(self, pair: str, conf: Dict) -> bool:
""" """
@@ -347,21 +445,18 @@ class FreqtradeBot:
:param pair: pair for which we want to create a LIMIT_BUY :param pair: pair for which we want to create a LIMIT_BUY
:return: None :return: None
""" """
pair_s = pair.replace('_', '/')
stake_currency = self.config['stake_currency']
fiat_currency = self.config.get('fiat_display_currency', None)
time_in_force = self.strategy.order_time_in_force['buy'] time_in_force = self.strategy.order_time_in_force['buy']
if price: if price:
buy_limit_requested = price buy_limit_requested = price
else: else:
# Calculate amount # Calculate price
buy_limit_requested = self.get_target_bid(pair) buy_limit_requested = self.get_buy_rate(pair)
min_stake_amount = self._get_min_pair_stake_amount(pair_s, buy_limit_requested) min_stake_amount = self._get_min_pair_stake_amount(pair, buy_limit_requested)
if min_stake_amount is not None and min_stake_amount > stake_amount: if min_stake_amount is not None and min_stake_amount > stake_amount:
logger.warning( logger.warning(
f"Can't open a new trade for {pair_s}: stake amount " f"Can't open a new trade for {pair}: stake amount "
f"is too small ({stake_amount} < {min_stake_amount})" f"is too small ({stake_amount} < {min_stake_amount})"
) )
return False return False
@@ -384,7 +479,7 @@ class FreqtradeBot:
if float(order['filled']) == 0: if float(order['filled']) == 0:
logger.warning('Buy %s order with time in force %s for %s is %s by %s.' logger.warning('Buy %s order with time in force %s for %s is %s by %s.'
' zero amount is fulfilled.', ' zero amount is fulfilled.',
order_tif, order_type, pair_s, order_status, self.exchange.name) order_tif, order_type, pair, order_status, self.exchange.name)
return False return False
else: else:
# the order is partially fulfilled # the order is partially fulfilled
@@ -392,7 +487,7 @@ class FreqtradeBot:
# if the order is fulfilled fully or partially # if the order is fulfilled fully or partially
logger.warning('Buy %s order with time in force %s for %s is %s by %s.' logger.warning('Buy %s order with time in force %s for %s is %s by %s.'
' %s amount fulfilled out of %s (%s remaining which is canceled).', ' %s amount fulfilled out of %s (%s remaining which is canceled).',
order_tif, order_type, pair_s, order_status, self.exchange.name, order_tif, order_type, pair, order_status, self.exchange.name,
order['filled'], order['amount'], order['remaining'] order['filled'], order['amount'], order['remaining']
) )
stake_amount = order['cost'] stake_amount = order['cost']
@@ -406,17 +501,6 @@ class FreqtradeBot:
amount = order['amount'] amount = order['amount']
buy_limit_filled_price = order['price'] buy_limit_filled_price = order['price']
self.rpc.send_msg({
'type': RPCMessageType.BUY_NOTIFICATION,
'exchange': self.exchange.name.capitalize(),
'pair': pair_s,
'limit': buy_limit_filled_price,
'order_type': order_type,
'stake_amount': stake_amount,
'stake_currency': stake_currency,
'fiat_currency': fiat_currency
})
# Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL # Fee is applied twice because we make a LIMIT_BUY and LIMIT_SELL
fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker') fee = self.exchange.get_fee(symbol=pair, taker_or_maker='maker')
trade = Trade( trade = Trade(
@@ -434,6 +518,8 @@ class FreqtradeBot:
ticker_interval=timeframe_to_minutes(self.config['ticker_interval']) ticker_interval=timeframe_to_minutes(self.config['ticker_interval'])
) )
self._notify_buy(trade, order_type)
# Update fees if order is closed # Update fees if order is closed
if order_status == 'closed': if order_status == 'closed':
self.update_trade_state(trade, order) self.update_trade_state(trade, order)
@@ -446,126 +532,59 @@ class FreqtradeBot:
return True return True
def process_maybe_execute_buys(self) -> None: def _notify_buy(self, trade: Trade, order_type: str):
""" """
Tries to execute buy orders for trades in a safe way Sends rpc notification when a buy occured.
""" """
try: msg = {
# Create entity and execute trade 'type': RPCMessageType.BUY_NOTIFICATION,
if not self.create_trades(): 'exchange': self.exchange.name.capitalize(),
logger.debug('Found no buy signals for whitelisted currencies. Trying again...') 'pair': trade.pair,
except DependencyException as exception: 'limit': trade.open_rate,
logger.warning('Unable to create trade: %s', exception) 'order_type': order_type,
'stake_amount': trade.stake_amount,
'stake_currency': self.config['stake_currency'],
'fiat_currency': self.config.get('fiat_display_currency', None),
}
def process_maybe_execute_sells(self, trades: List[Any]) -> None: # Send the message
self.rpc.send_msg(msg)
#
# SELL / exit positions / close trades logic and methods
#
def exit_positions(self, trades: List[Any]) -> int:
""" """
Tries to execute sell orders for trades in a safe way Tries to execute sell orders for open trades (positions)
""" """
result = False trades_closed = 0
for trade in trades: for trade in trades:
try: try:
self.update_trade_state(trade) self.update_trade_state(trade)
if (self.strategy.order_types.get('stoploss_on_exchange') and if (self.strategy.order_types.get('stoploss_on_exchange') and
self.handle_stoploss_on_exchange(trade)): self.handle_stoploss_on_exchange(trade)):
result = True trades_closed += 1
continue continue
# Check if we can sell our current pair # Check if we can sell our current pair
if trade.open_order_id is None and self.handle_trade(trade): if trade.open_order_id is None and self.handle_trade(trade):
result = True trades_closed += 1
except DependencyException as exception: except DependencyException as exception:
logger.warning('Unable to sell trade: %s', exception) logger.warning('Unable to sell trade: %s', exception)
# Updating wallets if any trade occured # Updating wallets if any trade occured
if result: if trades_closed:
self.wallets.update() self.wallets.update()
def get_real_amount(self, trade: Trade, order: Dict, order_amount: float = None) -> float: return trades_closed
"""
Get real amount for the trade
Necessary for exchanges which charge fees in base currency (e.g. binance)
"""
if order_amount is None:
order_amount = order['amount']
# Only run for closed orders
if trade.fee_open == 0 or order['status'] == 'open':
return order_amount
# use fee from order-dict if possible
if ('fee' in order and order['fee'] is not None and
(order['fee'].keys() >= {'currency', 'cost'})):
if (order['fee']['currency'] is not None and
order['fee']['cost'] is not None and
trade.pair.startswith(order['fee']['currency'])):
new_amount = order_amount - order['fee']['cost']
logger.info("Applying fee on amount for %s (from %s to %s) from Order",
trade, order['amount'], new_amount)
return new_amount
# Fallback to Trades
trades = self.exchange.get_trades_for_order(trade.open_order_id, trade.pair,
trade.open_date)
if len(trades) == 0:
logger.info("Applying fee on amount for %s failed: myTrade-Dict empty found", trade)
return order_amount
amount = 0
fee_abs = 0
for exectrade in trades:
amount += exectrade['amount']
if ("fee" in exectrade and exectrade['fee'] is not None and
(exectrade['fee'].keys() >= {'currency', 'cost'})):
# only applies if fee is in quote currency!
if (exectrade['fee']['currency'] is not None and
exectrade['fee']['cost'] is not None and
trade.pair.startswith(exectrade['fee']['currency'])):
fee_abs += exectrade['fee']['cost']
if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC):
logger.warning(f"Amount {amount} does not match amount {trade.amount}")
raise DependencyException("Half bought? Amounts don't match")
real_amount = amount - fee_abs
if fee_abs != 0:
logger.info(f"Applying fee on amount for {trade} "
f"(from {order_amount} to {real_amount}) from Trades")
return real_amount
def update_trade_state(self, trade, action_order: dict = None):
"""
Checks trades with open orders and updates the amount if necessary
"""
# Get order details for actual price per unit
if trade.open_order_id:
# Update trade with order values
logger.info('Found open order for %s', trade)
try:
order = action_order or self.exchange.get_order(trade.open_order_id, trade.pair)
except InvalidOrderException as exception:
logger.warning('Unable to fetch order %s: %s', trade.open_order_id, exception)
return
# Try update amount (binance-fix)
try:
new_amount = self.get_real_amount(trade, order)
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
order['amount'] = new_amount
# Fee was applied, so set to 0
trade.fee_open = 0
except DependencyException as exception:
logger.warning("Could not update trade amount: %s", exception)
trade.update(order)
# Updating wallets when order is closed
if not trade.is_open:
self.wallets.update()
def get_sell_rate(self, pair: str, refresh: bool) -> float: def get_sell_rate(self, pair: str, refresh: bool) -> float:
""" """
Get sell rate - either using get-ticker bid or first bid based on orderbook Get sell rate - either using get-ticker bid or first bid based on orderbook
The orderbook portion is only used for rpc messaging, which would otherwise fail The orderbook portion is only used for rpc messaging, which would otherwise fail
for BitMex (has no bid/ask in get_ticker) for BitMex (has no bid/ask in fetch_ticker)
or remain static in any other case since it's not updating. or remain static in any other case since it's not updating.
:return: Bid rate :return: Bid rate
""" """
@@ -577,7 +596,7 @@ class FreqtradeBot:
rate = order_book['bids'][0][0] rate = order_book['bids'][0][0]
else: else:
rate = self.exchange.get_ticker(pair, refresh)['bid'] rate = self.exchange.fetch_ticker(pair, refresh)['bid']
return rate return rate
def handle_trade(self, trade: Trade) -> bool: def handle_trade(self, trade: Trade) -> bool:
@@ -632,8 +651,8 @@ class FreqtradeBot:
Force-sells the pair (using EmergencySell reason) in case of Problems creating the order. Force-sells the pair (using EmergencySell reason) in case of Problems creating the order.
:return: True if the order succeeded, and False in case of problems. :return: True if the order succeeded, and False in case of problems.
""" """
# Limit price threshold: As limit price should always be below price # Limit price threshold: As limit price should always be below stop-price
LIMIT_PRICE_PCT = 0.99 LIMIT_PRICE_PCT = self.strategy.order_types.get('stoploss_on_exchange_limit_ratio', 0.99)
try: try:
stoploss_order = self.exchange.stoploss_limit(pair=trade.pair, amount=trade.amount, stoploss_order = self.exchange.stoploss_limit(pair=trade.pair, amount=trade.amount,
@@ -745,8 +764,8 @@ class FreqtradeBot:
Check and execute sell Check and execute sell
""" """
should_sell = self.strategy.should_sell( should_sell = self.strategy.should_sell(
trade, sell_rate, datetime.utcnow(), buy, sell, trade, sell_rate, datetime.utcnow(), buy, sell,
force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0 force_stoploss=self.edge.stoploss(trade.pair) if self.edge else 0
) )
if should_sell.sell_flag: if should_sell.sell_flag:
@@ -755,23 +774,28 @@ class FreqtradeBot:
return True return True
return False return False
def _check_timed_out(self, side: str, order: dict) -> bool:
"""
Check if timeout is active, and if the order is still open and timed out
"""
timeout = self.config.get('unfilledtimeout', {}).get(side)
ordertime = arrow.get(order['datetime']).datetime
if timeout is not None:
timeout_threshold = arrow.utcnow().shift(minutes=-timeout).datetime
return (order['status'] == 'open' and order['side'] == side
and ordertime < timeout_threshold)
return False
def check_handle_timedout(self) -> None: def check_handle_timedout(self) -> None:
""" """
Check if any orders are timed out and cancel if neccessary Check if any orders are timed out and cancel if neccessary
:param timeoutvalue: Number of minutes until order is considered timed out :param timeoutvalue: Number of minutes until order is considered timed out
:return: None :return: None
""" """
buy_timeout = self.config['unfilledtimeout']['buy']
sell_timeout = self.config['unfilledtimeout']['sell']
buy_timeout_threshold = arrow.utcnow().shift(minutes=-buy_timeout).datetime
sell_timeout_threshold = arrow.utcnow().shift(minutes=-sell_timeout).datetime
for trade in Trade.query.filter(Trade.open_order_id.isnot(None)).all(): for trade in Trade.get_open_order_trades():
try: try:
# FIXME: Somehow the query above returns results
# where the open_order_id is in fact None.
# This is probably because the record got
# updated via /forcesell in a different thread.
if not trade.open_order_id: if not trade.open_order_id:
continue continue
order = self.exchange.get_order(trade.open_order_id, trade.pair) order = self.exchange.get_order(trade.open_order_id, trade.pair)
@@ -781,23 +805,20 @@ class FreqtradeBot:
trade, trade,
traceback.format_exc()) traceback.format_exc())
continue continue
ordertime = arrow.get(order['datetime']).datetime
# Check if trade is still actually open # Check if trade is still actually open
if float(order['remaining']) == 0.0: if float(order.get('remaining', 0.0)) == 0.0:
self.wallets.update() self.wallets.update()
continue continue
if ((order['side'] == 'buy' and order['status'] == 'canceled') if ((order['side'] == 'buy' and order['status'] == 'canceled')
or (order['status'] == 'open' or (self._check_timed_out('buy', order))):
and order['side'] == 'buy' and ordertime < buy_timeout_threshold)):
self.handle_timedout_limit_buy(trade, order) self.handle_timedout_limit_buy(trade, order)
self.wallets.update() self.wallets.update()
elif ((order['side'] == 'sell' and order['status'] == 'canceled') elif ((order['side'] == 'sell' and order['status'] == 'canceled')
or (order['status'] == 'open' or (self._check_timed_out('sell', order))):
and order['side'] == 'sell' and ordertime < sell_timeout_threshold)):
self.handle_timedout_limit_sell(trade, order) self.handle_timedout_limit_sell(trade, order)
self.wallets.update() self.wallets.update()
@@ -812,7 +833,8 @@ class FreqtradeBot:
}) })
def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool: def handle_timedout_limit_buy(self, trade: Trade, order: Dict) -> bool:
"""Buy timeout - cancel order """
Buy timeout - cancel order
:return: True if order was fully cancelled :return: True if order was fully cancelled
""" """
reason = "cancelled due to timeout" reason = "cancelled due to timeout"
@@ -823,22 +845,27 @@ class FreqtradeBot:
corder = order corder = order
reason = "canceled on Exchange" reason = "canceled on Exchange"
if corder['remaining'] == corder['amount']: if corder.get('remaining', order['remaining']) == order['amount']:
# if trade is not partially completed, just delete the trade # if trade is not partially completed, just delete the trade
self.handle_buy_order_full_cancel(trade, reason) self.handle_buy_order_full_cancel(trade, reason)
return True return True
# if trade is partially complete, edit the stake details for the trade # if trade is partially complete, edit the stake details for the trade
# and close the order # and close the order
trade.amount = corder['amount'] - corder['remaining'] # cancel_order may not contain the full order dict, so we need to fallback
# to the order dict aquired before cancelling.
# we need to fall back to the values from order if corder does not contain these keys.
trade.amount = order['amount'] - corder.get('remaining', order['remaining'])
trade.stake_amount = trade.amount * trade.open_rate trade.stake_amount = trade.amount * trade.open_rate
# verify if fees were taken from amount to avoid problems during selling # verify if fees were taken from amount to avoid problems during selling
try: try:
new_amount = self.get_real_amount(trade, corder, trade.amount) new_amount = self.get_real_amount(trade, corder if 'fee' in corder else order,
trade.amount)
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC): if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
trade.amount = new_amount trade.amount = new_amount
# Fee was applied, so set to 0 # Fee was applied, so set to 0
trade.fee_open = 0 trade.fee_open = 0
trade.recalc_open_trade_price()
except DependencyException as e: except DependencyException as e:
logger.warning("Could not update trade amount: %s", e) logger.warning("Could not update trade amount: %s", e)
@@ -879,6 +906,31 @@ class FreqtradeBot:
# TODO: figure out how to handle partially complete sell orders # TODO: figure out how to handle partially complete sell orders
return False return False
def _safe_sell_amount(self, pair: str, amount: float) -> float:
"""
Get sellable amount.
Should be trade.amount - but will fall back to the available amount if necessary.
This should cover cases where get_real_amount() was not able to update the amount
for whatever reason.
:param pair: Pair we're trying to sell
:param amount: amount we expect to be available
:return: amount to sell
:raise: DependencyException: if available balance is not within 2% of the available amount.
"""
# Update wallets to ensure amounts tied up in a stoploss is now free!
self.wallets.update()
wallet_amount = self.wallets.get_free(pair.split('/')[0])
logger.debug(f"{pair} - Wallet: {wallet_amount} - Trade-amount: {amount}")
if wallet_amount >= amount:
return amount
elif wallet_amount > amount * 0.98:
logger.info(f"{pair} - Falling back to wallet-amount.")
return wallet_amount
else:
raise DependencyException(
f"Not enough amount to sell. Trade-amount: {amount}, Wallet: {wallet_amount}")
def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> None: def execute_sell(self, trade: Trade, limit: float, sell_reason: SellType) -> None:
""" """
Executes a limit sell for the given trade and limit Executes a limit sell for the given trade and limit
@@ -893,7 +945,7 @@ class FreqtradeBot:
# if stoploss is on exchange and we are on dry_run mode, # if stoploss is on exchange and we are on dry_run mode,
# we consider the sell price stop price # we consider the sell price stop price
if self.config.get('dry_run', False) and sell_type == 'stoploss' \ if self.config['dry_run'] and sell_type == 'stoploss' \
and self.strategy.order_types['stoploss_on_exchange']: and self.strategy.order_types['stoploss_on_exchange']:
limit = trade.stop_loss limit = trade.stop_loss
@@ -904,15 +956,17 @@ class FreqtradeBot:
except InvalidOrderException: except InvalidOrderException:
logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}") logger.exception(f"Could not cancel stoploss order {trade.stoploss_order_id}")
ordertype = self.strategy.order_types[sell_type] order_type = self.strategy.order_types[sell_type]
if sell_reason == SellType.EMERGENCY_SELL: if sell_reason == SellType.EMERGENCY_SELL:
# Emergencysells (default to market!) # Emergencysells (default to market!)
ordertype = self.strategy.order_types.get("emergencysell", "market") order_type = self.strategy.order_types.get("emergencysell", "market")
amount = self._safe_sell_amount(trade.pair, trade.amount)
# Execute sell and update trade record # Execute sell and update trade record
order = self.exchange.sell(pair=str(trade.pair), order = self.exchange.sell(pair=str(trade.pair),
ordertype=ordertype, ordertype=order_type,
amount=trade.amount, rate=limit, amount=amount, rate=limit,
time_in_force=self.strategy.order_time_in_force['sell'] time_in_force=self.strategy.order_time_in_force['sell']
) )
@@ -927,7 +981,7 @@ class FreqtradeBot:
# Lock pair for one candle to prevent immediate rebuys # Lock pair for one candle to prevent immediate rebuys
self.strategy.lock_pair(trade.pair, timeframe_to_next_date(self.config['ticker_interval'])) self.strategy.lock_pair(trade.pair, timeframe_to_next_date(self.config['ticker_interval']))
self._notify_sell(trade, ordertype) self._notify_sell(trade, order_type)
def _notify_sell(self, trade: Trade, order_type: str): def _notify_sell(self, trade: Trade, order_type: str):
""" """
@@ -937,7 +991,7 @@ class FreqtradeBot:
profit_trade = trade.calc_profit(rate=profit_rate) profit_trade = trade.calc_profit(rate=profit_rate)
# Use cached ticker here - it was updated seconds ago. # Use cached ticker here - it was updated seconds ago.
current_rate = self.get_sell_rate(trade.pair, False) current_rate = self.get_sell_rate(trade.pair, False)
profit_percent = trade.calc_profit_percent(profit_rate) profit_percent = trade.calc_profit_ratio(profit_rate)
gain = "profit" if profit_percent > 0 else "loss" gain = "profit" if profit_percent > 0 else "loss"
msg = { msg = {
@@ -952,17 +1006,101 @@ class FreqtradeBot:
'current_rate': current_rate, 'current_rate': current_rate,
'profit_amount': profit_trade, 'profit_amount': profit_trade,
'profit_percent': profit_percent, 'profit_percent': profit_percent,
'sell_reason': trade.sell_reason 'sell_reason': trade.sell_reason,
'open_date': trade.open_date,
'close_date': trade.close_date or datetime.utcnow(),
'stake_currency': self.config['stake_currency'],
} }
# For regular case, when the configuration exists if 'fiat_display_currency' in self.config:
if 'stake_currency' in self.config and 'fiat_display_currency' in self.config:
stake_currency = self.config['stake_currency']
fiat_currency = self.config['fiat_display_currency']
msg.update({ msg.update({
'stake_currency': stake_currency, 'fiat_currency': self.config['fiat_display_currency'],
'fiat_currency': fiat_currency,
}) })
# Send the message # Send the message
self.rpc.send_msg(msg) self.rpc.send_msg(msg)
#
# Common update trade state methods
#
def update_trade_state(self, trade, action_order: dict = None):
"""
Checks trades with open orders and updates the amount if necessary
"""
# Get order details for actual price per unit
if trade.open_order_id:
# Update trade with order values
logger.info('Found open order for %s', trade)
try:
order = action_order or self.exchange.get_order(trade.open_order_id, trade.pair)
except InvalidOrderException as exception:
logger.warning('Unable to fetch order %s: %s', trade.open_order_id, exception)
return
# Try update amount (binance-fix)
try:
new_amount = self.get_real_amount(trade, order)
if not isclose(order['amount'], new_amount, abs_tol=constants.MATH_CLOSE_PREC):
order['amount'] = new_amount
# Fee was applied, so set to 0
trade.fee_open = 0
trade.recalc_open_trade_price()
except DependencyException as exception:
logger.warning("Could not update trade amount: %s", exception)
trade.update(order)
# Updating wallets when order is closed
if not trade.is_open:
self.wallets.update()
def get_real_amount(self, trade: Trade, order: Dict, order_amount: float = None) -> float:
"""
Get real amount for the trade
Necessary for exchanges which charge fees in base currency (e.g. binance)
"""
if order_amount is None:
order_amount = order['amount']
# Only run for closed orders
if trade.fee_open == 0 or order['status'] == 'open':
return order_amount
# use fee from order-dict if possible
if ('fee' in order and order['fee'] is not None and
(order['fee'].keys() >= {'currency', 'cost'})):
if (order['fee']['currency'] is not None and
order['fee']['cost'] is not None and
trade.pair.startswith(order['fee']['currency'])):
new_amount = order_amount - order['fee']['cost']
logger.info("Applying fee on amount for %s (from %s to %s) from Order",
trade, order['amount'], new_amount)
return new_amount
# Fallback to Trades
trades = self.exchange.get_trades_for_order(trade.open_order_id, trade.pair,
trade.open_date)
if len(trades) == 0:
logger.info("Applying fee on amount for %s failed: myTrade-Dict empty found", trade)
return order_amount
amount = 0
fee_abs = 0
for exectrade in trades:
amount += exectrade['amount']
if ("fee" in exectrade and exectrade['fee'] is not None and
(exectrade['fee'].keys() >= {'currency', 'cost'})):
# only applies if fee is in quote currency!
if (exectrade['fee']['currency'] is not None and
exectrade['fee']['cost'] is not None and
trade.pair.startswith(exectrade['fee']['currency'])):
fee_abs += exectrade['fee']['cost']
if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC):
logger.warning(f"Amount {amount} does not match amount {trade.amount}")
raise DependencyException("Half bought? Amounts don't match")
real_amount = amount - fee_abs
if fee_abs != 0:
logger.info(f"Applying fee on amount for {trade} "
f"(from {order_amount} to {real_amount}) from Trades")
return real_amount

View File

@@ -1,9 +1,12 @@
import logging import logging
import sys import sys
from logging.handlers import RotatingFileHandler from logging import Formatter
from logging.handlers import RotatingFileHandler, SysLogHandler
from typing import Any, Dict, List from typing import Any, Dict, List
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -33,13 +36,41 @@ def setup_logging(config: Dict[str, Any]) -> None:
# Log level # Log level
verbosity = config['verbosity'] verbosity = config['verbosity']
# Log to stdout, not stderr # Log to stderr
log_handlers: List[logging.Handler] = [logging.StreamHandler(sys.stdout)] log_handlers: List[logging.Handler] = [logging.StreamHandler(sys.stderr)]
if config.get('logfile'): logfile = config.get('logfile')
log_handlers.append(RotatingFileHandler(config['logfile'], if logfile:
maxBytes=1024 * 1024, # 1Mb s = logfile.split(':')
backupCount=10)) if s[0] == 'syslog':
# Address can be either a string (socket filename) for Unix domain socket or
# a tuple (hostname, port) for UDP socket.
# Address can be omitted (i.e. simple 'syslog' used as the value of
# config['logfilename']), which defaults to '/dev/log', applicable for most
# of the systems.
address = (s[1], int(s[2])) if len(s) > 2 else s[1] if len(s) > 1 else '/dev/log'
handler = SysLogHandler(address=address)
# No datetime field for logging into syslog, to allow syslog
# to perform reduction of repeating messages if this is set in the
# syslog config. The messages should be equal for this.
handler.setFormatter(Formatter('%(name)s - %(levelname)s - %(message)s'))
log_handlers.append(handler)
elif s[0] == 'journald':
try:
from systemd.journal import JournaldLogHandler
except ImportError:
raise OperationalException("You need the systemd python package be installed in "
"order to use logging to journald.")
handler = JournaldLogHandler()
# No datetime field for logging into journald, to allow syslog
# to perform reduction of repeating messages if this is set in the
# syslog config. The messages should be equal for this.
handler.setFormatter(Formatter('%(name)s - %(levelname)s - %(message)s'))
log_handlers.append(handler)
else:
log_handlers.append(RotatingFileHandler(logfile,
maxBytes=1024 * 1024, # 1Mb
backupCount=10))
logging.basicConfig( logging.basicConfig(
level=logging.INFO if verbosity < 1 else logging.DEBUG, level=logging.INFO if verbosity < 1 else logging.DEBUG,

View File

@@ -4,6 +4,7 @@ Main Freqtrade bot script.
Read the documentation to know what cli arguments you need. Read the documentation to know what cli arguments you need.
""" """
from freqtrade.exceptions import FreqtradeException, OperationalException
import sys import sys
# check min. python version # check min. python version
if sys.version_info < (3, 6): if sys.version_info < (3, 6):
@@ -13,9 +14,7 @@ if sys.version_info < (3, 6):
import logging import logging
from typing import Any, List from typing import Any, List
from freqtrade import OperationalException from freqtrade.commands import Arguments
from freqtrade.configuration import Arguments
from freqtrade.worker import Worker
logger = logging.getLogger('freqtrade') logger = logging.getLogger('freqtrade')
@@ -28,35 +27,35 @@ def main(sysargv: List[str] = None) -> None:
""" """
return_code: Any = 1 return_code: Any = 1
worker = None
try: try:
arguments = Arguments(sysargv) arguments = Arguments(sysargv)
args = arguments.get_parsed_arg() args = arguments.get_parsed_arg()
# A subcommand has been issued. # Call subcommand.
# Means if Backtesting or Hyperopt have been called we exit the bot
if 'func' in args: if 'func' in args:
args['func'](args) return_code = args['func'](args)
# TODO: fetch return_code as returned by the command function here
return_code = 0
else: else:
# Load and run worker # No subcommand was issued.
worker = Worker(args) raise OperationalException(
worker.run() "Usage of Freqtrade requires a subcommand to be specified.\n"
"To have the previous behavior (bot executing trades in live/dry-run modes, "
"depending on the value of the `dry_run` setting in the config), run freqtrade "
"as `freqtrade trade [options...]`.\n"
"To see the full list of options available, please use "
"`freqtrade --help` or `freqtrade <command> --help`."
)
except SystemExit as e: except SystemExit as e:
return_code = e return_code = e
except KeyboardInterrupt: except KeyboardInterrupt:
logger.info('SIGINT received, aborting ...') logger.info('SIGINT received, aborting ...')
return_code = 0 return_code = 0
except OperationalException as e: except FreqtradeException as e:
logger.error(str(e)) logger.error(str(e))
return_code = 2 return_code = 2
except Exception: except Exception:
logger.exception('Fatal exception!') logger.exception('Fatal exception!')
finally: finally:
if worker:
worker.exit()
sys.exit(return_code) sys.exit(return_code)

View File

@@ -127,3 +127,16 @@ def round_dict(d, n):
def plural(num, singular: str, plural: str = None) -> str: def plural(num, singular: str, plural: str = None) -> str:
return singular if (num == 1 or num == -1) else plural or singular + 's' return singular if (num == 1 or num == -1) else plural or singular + 's'
def render_template(templatefile: str, arguments: dict = {}):
from jinja2 import Environment, PackageLoader, select_autoescape
env = Environment(
loader=PackageLoader('freqtrade', 'templates'),
autoescape=select_autoescape(['html', 'xml'])
)
template = env.get_template(templatefile)
return template.render(**arguments)

View File

@@ -1,102 +0,0 @@
import logging
from typing import Any, Dict
from freqtrade import DependencyException, constants, OperationalException
from freqtrade.state import RunMode
from freqtrade.utils import setup_utils_configuration
logger = logging.getLogger(__name__)
def setup_configuration(args: Dict[str, Any], method: RunMode) -> Dict[str, Any]:
"""
Prepare the configuration for the Hyperopt module
:param args: Cli args from Arguments()
:return: Configuration
"""
config = setup_utils_configuration(args, method)
if method == RunMode.BACKTEST:
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
raise DependencyException('stake amount could not be "%s" for backtesting' %
constants.UNLIMITED_STAKE_AMOUNT)
return config
def start_backtesting(args: Dict[str, Any]) -> None:
"""
Start Backtesting script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading backtesting module when it's not used
from freqtrade.optimize.backtesting import Backtesting
# Initialize configuration
config = setup_configuration(args, RunMode.BACKTEST)
logger.info('Starting freqtrade in Backtesting mode')
# Initialize backtesting object
backtesting = Backtesting(config)
backtesting.start()
def start_hyperopt(args: Dict[str, Any]) -> None:
"""
Start hyperopt script
:param args: Cli args from Arguments()
:return: None
"""
# Import here to avoid loading hyperopt module when it's not used
try:
from filelock import FileLock, Timeout
from freqtrade.optimize.hyperopt import Hyperopt
except ImportError as e:
raise OperationalException(
f"{e}. Please ensure that the hyperopt dependencies are installed.") from e
# Initialize configuration
config = setup_configuration(args, RunMode.HYPEROPT)
logger.info('Starting freqtrade in Hyperopt mode')
lock = FileLock(Hyperopt.get_lock_filename(config))
try:
with lock.acquire(timeout=1):
# Remove noisy log messages
logging.getLogger('hyperopt.tpe').setLevel(logging.WARNING)
logging.getLogger('filelock').setLevel(logging.WARNING)
# Initialize backtesting object
hyperopt = Hyperopt(config)
hyperopt.start()
except Timeout:
logger.info("Another running instance of freqtrade Hyperopt detected.")
logger.info("Simultaneous execution of multiple Hyperopt commands is not supported. "
"Hyperopt module is resource hungry. Please run your Hyperopts sequentially "
"or on separate machines.")
logger.info("Quitting now.")
# TODO: return False here in order to help freqtrade to exit
# with non-zero exit code...
# Same in Edge and Backtesting start() functions.
def start_edge(args: Dict[str, Any]) -> None:
"""
Start Edge script
:param args: Cli args from Arguments()
:return: None
"""
from freqtrade.optimize.edge_cli import EdgeCli
# Initialize configuration
config = setup_configuration(args, RunMode.EDGE)
logger.info('Starting freqtrade in Edge mode')
# Initialize Edge object
edge_cli = EdgeCli(config)
edge_cli.start()

View File

@@ -11,17 +11,20 @@ from typing import Any, Dict, List, NamedTuple, Optional
from pandas import DataFrame from pandas import DataFrame
from freqtrade import OperationalException from freqtrade.configuration import (TimeRange, remove_credentials,
from freqtrade.configuration import TimeRange validate_config_consistency)
from freqtrade.data import history from freqtrade.data import history
from freqtrade.data.dataprovider import DataProvider from freqtrade.data.dataprovider import DataProvider
from freqtrade.exchange import timeframe_to_minutes from freqtrade.exceptions import OperationalException
from freqtrade.exchange import timeframe_to_minutes, timeframe_to_seconds
from freqtrade.misc import file_dump_json from freqtrade.misc import file_dump_json
from freqtrade.optimize.optimize_reports import (
generate_text_table, generate_text_table_sell_reason,
generate_text_table_strategy)
from freqtrade.persistence import Trade from freqtrade.persistence import Trade
from freqtrade.resolvers import ExchangeResolver, StrategyResolver from freqtrade.resolvers import ExchangeResolver, StrategyResolver
from freqtrade.state import RunMode from freqtrade.state import RunMode
from freqtrade.strategy.interface import IStrategy, SellType from freqtrade.strategy.interface import IStrategy, SellType
from tabulate import tabulate
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -57,18 +60,14 @@ class Backtesting:
self.config = config self.config = config
# Reset keys for backtesting # Reset keys for backtesting
self.config['exchange']['key'] = '' remove_credentials(self.config)
self.config['exchange']['secret'] = ''
self.config['exchange']['password'] = ''
self.config['exchange']['uid'] = ''
self.config['dry_run'] = True
self.strategylist: List[IStrategy] = [] self.strategylist: List[IStrategy] = []
self.exchange = ExchangeResolver(self.config['exchange']['name'], self.config).exchange self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
if config.get('fee'): if config.get('fee'):
self.fee = config['fee'] self.fee = config['fee']
else: else:
self.fee = self.exchange.get_fee() self.fee = self.exchange.get_fee(symbol=self.config['exchange']['pair_whitelist'][0])
if self.config.get('runmode') != RunMode.HYPEROPT: if self.config.get('runmode') != RunMode.HYPEROPT:
self.dataprovider = DataProvider(self.config, self.exchange) self.dataprovider = DataProvider(self.config, self.exchange)
@@ -78,18 +77,22 @@ class Backtesting:
for strat in list(self.config['strategy_list']): for strat in list(self.config['strategy_list']):
stratconf = deepcopy(self.config) stratconf = deepcopy(self.config)
stratconf['strategy'] = strat stratconf['strategy'] = strat
self.strategylist.append(StrategyResolver(stratconf).strategy) self.strategylist.append(StrategyResolver.load_strategy(stratconf))
validate_config_consistency(stratconf)
else: else:
# No strategy list specified, only one strategy # No strategy list specified, only one strategy
self.strategylist.append(StrategyResolver(self.config).strategy) self.strategylist.append(StrategyResolver.load_strategy(self.config))
validate_config_consistency(self.config)
if "ticker_interval" not in self.config: if "ticker_interval" not in self.config:
raise OperationalException("Ticker-interval needs to be set in either configuration " raise OperationalException("Ticker-interval needs to be set in either configuration "
"or as cli argument `--ticker-interval 5m`") "or as cli argument `--ticker-interval 5m`")
self.ticker_interval = str(self.config.get('ticker_interval')) self.timeframe = str(self.config.get('ticker_interval'))
self.ticker_interval_mins = timeframe_to_minutes(self.ticker_interval) self.timeframe_min = timeframe_to_minutes(self.timeframe)
# Get maximum required startup period
self.required_startup = max([strat.startup_candle_count for strat in self.strategylist])
# Load one (first) strategy # Load one (first) strategy
self._set_strategy(self.strategylist[0]) self._set_strategy(self.strategylist[0])
@@ -103,93 +106,30 @@ class Backtesting:
# And the regular "stoploss" function would not apply to that case # And the regular "stoploss" function would not apply to that case
self.strategy.order_types['stoploss_on_exchange'] = False self.strategy.order_types['stoploss_on_exchange'] = False
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame, def load_bt_data(self):
skip_nan: bool = False) -> str: timerange = TimeRange.parse_timerange(None if self.config.get(
""" 'timerange') is None else str(self.config.get('timerange')))
Generates and returns a text table for the given backtest data and the results dataframe
:return: pretty printed table with tabulate as str
"""
stake_currency = str(self.config.get('stake_currency'))
max_open_trades = self.config.get('max_open_trades')
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f') data = history.load_data(
tabular_data = [] datadir=self.config['datadir'],
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %', pairs=self.config['exchange']['pair_whitelist'],
'tot profit ' + stake_currency, 'tot profit %', 'avg duration', timeframe=self.timeframe,
'profit', 'loss'] timerange=timerange,
for pair in data: startup_candles=self.required_startup,
result = results[results.pair == pair] fail_without_data=True,
if skip_nan and result.profit_abs.isnull().all(): )
continue
tabular_data.append([ min_date, max_date = history.get_timerange(data)
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_percent.sum() * 100.0,
result.profit_abs.sum(),
result.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
len(result[result.profit_abs > 0]),
len(result[result.profit_abs < 0])
])
# Append Total logger.info(
tabular_data.append([ 'Loading data from %s up to %s (%s days)..',
'TOTAL', min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
len(results.index), )
results.profit_percent.mean() * 100.0, # Adjust startts forward if not enough data is available
results.profit_percent.sum() * 100.0, timerange.adjust_start_if_necessary(timeframe_to_seconds(self.timeframe),
results.profit_abs.sum(), self.required_startup, min_date)
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str: return data, timerange
"""
Generate small table outlining Backtest results
"""
tabular_data = []
headers = ['Sell Reason', 'Count']
for reason, count in results['sell_reason'].value_counts().iteritems():
tabular_data.append([reason.value, count])
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
def _generate_text_table_strategy(self, all_results: dict) -> str:
"""
Generate summary table per strategy
"""
stake_currency = str(self.config.get('stake_currency'))
max_open_trades = self.config.get('max_open_trades')
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
'tot profit ' + stake_currency, 'tot profit %', 'avg duration',
'profit', 'loss']
for strategy, results in all_results.items():
tabular_data.append([
strategy,
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def _store_backtest_result(self, recordfilename: Path, results: DataFrame, def _store_backtest_result(self, recordfilename: Path, results: DataFrame,
strategyname: Optional[str] = None) -> None: strategyname: Optional[str] = None) -> None:
@@ -218,7 +158,8 @@ class Backtesting:
ticker: Dict = {} ticker: Dict = {}
# Create ticker dict # Create ticker dict
for pair, pair_data in processed.items(): for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run pair_data.loc[:, 'buy'] = 0 # cleanup from previous run
pair_data.loc[:, 'sell'] = 0 # cleanup from previous run
ticker_data = self.strategy.advise_sell( ticker_data = self.strategy.advise_sell(
self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy() self.strategy.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
@@ -234,6 +175,45 @@ class Backtesting:
ticker[pair] = [x for x in ticker_data.itertuples()] ticker[pair] = [x for x in ticker_data.itertuples()]
return ticker return ticker
def _get_close_rate(self, sell_row, trade: Trade, sell, trade_dur) -> float:
"""
Get close rate for backtesting result
"""
# Special handling if high or low hit STOP_LOSS or ROI
if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
# Set close_rate to stoploss
return trade.stop_loss
elif sell.sell_type == (SellType.ROI):
roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None:
if roi == -1 and roi_entry % self.timeframe_min == 0:
# When forceselling with ROI=-1, the roi time will always be equal to trade_dur.
# If that entry is a multiple of the timeframe (so on candle open)
# - we'll use open instead of close
return sell_row.open
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
close_rate = - (trade.open_rate * roi + trade.open_rate *
(1 + trade.fee_open)) / (trade.fee_close - 1)
if (trade_dur > 0 and trade_dur == roi_entry
and roi_entry % self.timeframe_min == 0
and sell_row.open > close_rate):
# new ROI entry came into effect.
# use Open rate if open_rate > calculated sell rate
return sell_row.open
# Use the maximum between close_rate and low as we
# cannot sell outside of a candle.
# Applies when a new ROI setting comes in place and the whole candle is above that.
return max(close_rate, sell_row.low)
else:
# This should not be reached...
return sell_row.open
else:
return sell_row.open
def _get_sell_trade_entry( def _get_sell_trade_entry(
self, pair: str, buy_row: DataFrame, self, pair: str, buy_row: DataFrame,
partial_ticker: List, trade_count_lock: Dict, partial_ticker: List, trade_count_lock: Dict,
@@ -260,29 +240,10 @@ class Backtesting:
sell_row.sell, low=sell_row.low, high=sell_row.high) sell_row.sell, low=sell_row.low, high=sell_row.high)
if sell.sell_flag: if sell.sell_flag:
trade_dur = int((sell_row.date - buy_row.date).total_seconds() // 60) trade_dur = int((sell_row.date - buy_row.date).total_seconds() // 60)
# Special handling if high or low hit STOP_LOSS or ROI closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
if sell.sell_type in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
# Set close_rate to stoploss
closerate = trade.stop_loss
elif sell.sell_type == (SellType.ROI):
roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None:
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
closerate = - (trade.open_rate * roi + trade.open_rate *
(1 + trade.fee_open)) / (trade.fee_close - 1)
# Use the maximum between closerate and low as we
# cannot sell outside of a candle.
# Applies when using {"xx": -1} as roi to force sells after xx minutes
closerate = max(closerate, sell_row.low)
else:
# This should not be reached...
closerate = sell_row.open
else:
closerate = sell_row.open
return BacktestResult(pair=pair, return BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=closerate), profit_percent=trade.calc_profit_ratio(rate=closerate),
profit_abs=trade.calc_profit(rate=closerate), profit_abs=trade.calc_profit(rate=closerate),
open_time=buy_row.date, open_time=buy_row.date,
close_time=sell_row.date, close_time=sell_row.date,
@@ -298,7 +259,7 @@ class Backtesting:
# no sell condition found - trade stil open at end of backtest period # no sell condition found - trade stil open at end of backtest period
sell_row = partial_ticker[-1] sell_row = partial_ticker[-1]
bt_res = BacktestResult(pair=pair, bt_res = BacktestResult(pair=pair,
profit_percent=trade.calc_profit_percent(rate=sell_row.open), profit_percent=trade.calc_profit_ratio(rate=sell_row.open),
profit_abs=trade.calc_profit(rate=sell_row.open), profit_abs=trade.calc_profit(rate=sell_row.open),
open_time=buy_row.date, open_time=buy_row.date,
close_time=sell_row.date, close_time=sell_row.date,
@@ -318,30 +279,28 @@ class Backtesting:
return bt_res return bt_res
return None return None
def backtest(self, args: Dict) -> DataFrame: def backtest(self, processed: Dict, stake_amount: float,
start_date, end_date,
max_open_trades: int = 0, position_stacking: bool = False) -> DataFrame:
""" """
Implements backtesting functionality Implement backtesting functionality
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized. NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
Of course try to not have ugly code. By some accessor are sometime slower than functions. Of course try to not have ugly code. By some accessor are sometime slower than functions.
Avoid, logging on this method Avoid extensive logging in this method and functions it calls.
:param args: a dict containing: :param processed: a processed dictionary with format {pair, data}
stake_amount: btc amount to use for each trade :param stake_amount: amount to use for each trade
processed: a processed dictionary with format {pair, data} :param start_date: backtesting timerange start datetime
max_open_trades: maximum number of concurrent trades (default: 0, disabled) :param end_date: backtesting timerange end datetime
position_stacking: do we allow position stacking? (default: False) :param max_open_trades: maximum number of concurrent trades, <= 0 means unlimited
:return: DataFrame :param position_stacking: do we allow position stacking?
:return: DataFrame with trades (results of backtesting)
""" """
# Arguments are long and noisy, so this is commented out. logger.debug(f"Run backtest, stake_amount: {stake_amount}, "
# Uncomment if you need to debug the backtest() method. f"start_date: {start_date}, end_date: {end_date}, "
# logger.debug(f"Start backtest, args: {args}") f"max_open_trades: {max_open_trades}, position_stacking: {position_stacking}"
processed = args['processed'] )
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
position_stacking = args.get('position_stacking', False)
start_date = args['start_date']
end_date = args['end_date']
trades = [] trades = []
trade_count_lock: Dict = {} trade_count_lock: Dict = {}
@@ -351,7 +310,7 @@ class Backtesting:
lock_pair_until: Dict = {} lock_pair_until: Dict = {}
# Indexes per pair, so some pairs are allowed to have a missing start. # Indexes per pair, so some pairs are allowed to have a missing start.
indexes: Dict = {} indexes: Dict = {}
tmp = start_date + timedelta(minutes=self.ticker_interval_mins) tmp = start_date + timedelta(minutes=self.timeframe_min)
# Loop timerange and get candle for each pair at that point in time # Loop timerange and get candle for each pair at that point in time
while tmp < end_date: while tmp < end_date:
@@ -403,48 +362,30 @@ class Backtesting:
lock_pair_until[pair] = end_date.datetime lock_pair_until[pair] = end_date.datetime
# Move time one configured time_interval ahead. # Move time one configured time_interval ahead.
tmp += timedelta(minutes=self.ticker_interval_mins) tmp += timedelta(minutes=self.timeframe_min)
return DataFrame.from_records(trades, columns=BacktestResult._fields) return DataFrame.from_records(trades, columns=BacktestResult._fields)
def start(self) -> None: def start(self) -> None:
""" """
Run a backtesting end-to-end Run backtesting end-to-end
:return: None :return: None
""" """
data: Dict[str, Any] = {} data: Dict[str, Any] = {}
pairs = self.config['exchange']['pair_whitelist']
logger.info('Using stake_currency: %s ...', self.config['stake_currency']) logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
logger.info('Using stake_amount: %s ...', self.config['stake_amount']) logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange')))
data = history.load_data(
datadir=Path(self.config['datadir']),
pairs=pairs,
ticker_interval=self.ticker_interval,
timerange=timerange,
)
if not data:
logger.critical("No data found. Terminating.")
return
# Use max_open_trades in backtesting, except --disable-max-market-positions is set # Use max_open_trades in backtesting, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True): if self.config.get('use_max_market_positions', True):
max_open_trades = self.config['max_open_trades'] max_open_trades = self.config['max_open_trades']
else: else:
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...') logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
max_open_trades = 0 max_open_trades = 0
position_stacking = self.config.get('position_stacking', False)
data, timerange = self.load_bt_data()
all_results = {} all_results = {}
min_date, max_date = history.get_timeframe(data)
logger.info(
'Backtesting with data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
for strat in self.strategylist: for strat in self.strategylist:
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name()) logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
self._set_strategy(strat) self._set_strategy(strat)
@@ -452,16 +393,23 @@ class Backtesting:
# need to reprocess data every time to populate signals # need to reprocess data every time to populate signals
preprocessed = self.strategy.tickerdata_to_dataframe(data) preprocessed = self.strategy.tickerdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = history.trim_dataframe(df, timerange)
min_date, max_date = history.get_timerange(preprocessed)
logger.info(
'Backtesting with data from %s up to %s (%s days)..',
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
)
# Execute backtest and print results # Execute backtest and print results
all_results[self.strategy.get_strategy_name()] = self.backtest( all_results[self.strategy.get_strategy_name()] = self.backtest(
{ processed=preprocessed,
'stake_amount': self.config.get('stake_amount'), stake_amount=self.config['stake_amount'],
'processed': preprocessed, start_date=min_date,
'max_open_trades': max_open_trades, end_date=max_date,
'position_stacking': self.config.get('position_stacking', False), max_open_trades=max_open_trades,
'start_date': min_date, position_stacking=position_stacking,
'end_date': max_date,
}
) )
for strategy, results in all_results.items(): for strategy, results in all_results.items():
@@ -472,16 +420,24 @@ class Backtesting:
print(f"Result for strategy {strategy}") print(f"Result for strategy {strategy}")
print(' BACKTESTING REPORT '.center(133, '=')) print(' BACKTESTING REPORT '.center(133, '='))
print(self._generate_text_table(data, results)) print(generate_text_table(data,
stake_currency=self.config['stake_currency'],
max_open_trades=self.config['max_open_trades'],
results=results))
print(' SELL REASON STATS '.center(133, '=')) print(' SELL REASON STATS '.center(133, '='))
print(self._generate_text_table_sell_reason(data, results)) print(generate_text_table_sell_reason(data, results))
print(' LEFT OPEN TRADES REPORT '.center(133, '=')) print(' LEFT OPEN TRADES REPORT '.center(133, '='))
print(self._generate_text_table(data, results.loc[results.open_at_end], True)) print(generate_text_table(data,
stake_currency=self.config['stake_currency'],
max_open_trades=self.config['max_open_trades'],
results=results.loc[results.open_at_end], skip_nan=True))
print() print()
if len(all_results) > 1: if len(all_results) > 1:
# Print Strategy summary table # Print Strategy summary table
print(' Strategy Summary '.center(133, '=')) print(' Strategy Summary '.center(133, '='))
print(self._generate_text_table_strategy(all_results)) print(generate_text_table_strategy(self.config['stake_currency'],
self.config['max_open_trades'],
all_results=all_results))
print('\nFor more details, please look at the detail tables above') print('\nFor more details, please look at the detail tables above')

View File

@@ -4,14 +4,14 @@
This module contains the edge backtesting interface This module contains the edge backtesting interface
""" """
import logging import logging
from typing import Dict, Any from typing import Any, Dict
from tabulate import tabulate
from freqtrade import constants
from freqtrade.edge import Edge
from freqtrade.configuration import TimeRange from freqtrade import constants
from freqtrade.exchange import Exchange from freqtrade.configuration import (TimeRange, remove_credentials,
from freqtrade.resolvers import StrategyResolver validate_config_consistency)
from freqtrade.edge import Edge
from freqtrade.optimize.optimize_reports import generate_edge_table
from freqtrade.resolvers import ExchangeResolver, StrategyResolver
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -29,51 +29,22 @@ class EdgeCli:
self.config = config self.config = config
# Reset keys for edge # Reset keys for edge
self.config['exchange']['key'] = '' remove_credentials(self.config)
self.config['exchange']['secret'] = ''
self.config['exchange']['password'] = ''
self.config['exchange']['uid'] = ''
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
self.config['dry_run'] = True self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
self.exchange = Exchange(self.config) self.strategy = StrategyResolver.load_strategy(self.config)
self.strategy = StrategyResolver(self.config).strategy
validate_config_consistency(self.config)
self.edge = Edge(config, self.exchange, self.strategy) self.edge = Edge(config, self.exchange, self.strategy)
# Set refresh_pairs to false for edge-cli (it must be true for edge) # Set refresh_pairs to false for edge-cli (it must be true for edge)
self.edge._refresh_pairs = False self.edge._refresh_pairs = False
self.timerange = TimeRange.parse_timerange(None if self.config.get( self.edge._timerange = TimeRange.parse_timerange(None if self.config.get(
'timerange') is None else str(self.config.get('timerange'))) 'timerange') is None else str(self.config.get('timerange')))
self.edge._timerange = self.timerange
def _generate_edge_table(self, results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
tabular_data = []
headers = ['pair', 'stoploss', 'win rate', 'risk reward ratio',
'required risk reward', 'expectancy', 'total number of trades',
'average duration (min)']
for result in results.items():
if result[1].nb_trades > 0:
tabular_data.append([
result[0],
result[1].stoploss,
result[1].winrate,
result[1].risk_reward_ratio,
result[1].required_risk_reward,
result[1].expectancy,
result[1].nb_trades,
round(result[1].avg_trade_duration)
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def start(self) -> None: def start(self) -> None:
result = self.edge.calculate() result = self.edge.calculate()
if result: if result:
print('') # blank line for readability print('') # blank line for readability
print(self._generate_edge_table(self.edge._cached_pairs)) print(generate_edge_table(self.edge._cached_pairs))

View File

@@ -4,9 +4,11 @@
This module contains the hyperopt logic This module contains the hyperopt logic
""" """
import locale
import logging import logging
import random
import sys import sys
import warnings
from collections import OrderedDict from collections import OrderedDict
from operator import itemgetter from operator import itemgetter
from pathlib import Path from pathlib import Path
@@ -14,22 +16,27 @@ from pprint import pprint
from typing import Any, Dict, List, Optional from typing import Any, Dict, List, Optional
import rapidjson import rapidjson
from colorama import init as colorama_init
from colorama import Fore, Style from colorama import Fore, Style
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects, cpu_count from colorama import init as colorama_init
from joblib import (Parallel, cpu_count, delayed, dump, load,
wrap_non_picklable_objects)
from pandas import DataFrame from pandas import DataFrame
from skopt import Optimizer
from skopt.space import Dimension
from freqtrade.configuration import TimeRange from freqtrade.data.history import get_timerange, trim_dataframe
from freqtrade.data.history import load_data, get_timeframe from freqtrade.exceptions import OperationalException
from freqtrade.misc import round_dict from freqtrade.misc import plural, round_dict
from freqtrade.optimize.backtesting import Backtesting from freqtrade.optimize.backtesting import Backtesting
# Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules # Import IHyperOpt and IHyperOptLoss to allow unpickling classes from these modules
from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F4 from freqtrade.optimize.hyperopt_interface import IHyperOpt # noqa: F401
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F4 from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss # noqa: F401
from freqtrade.resolvers.hyperopt_resolver import HyperOptResolver, HyperOptLossResolver from freqtrade.resolvers.hyperopt_resolver import (HyperOptLossResolver,
HyperOptResolver)
# Suppress scikit-learn FutureWarnings from skopt
with warnings.catch_warnings():
warnings.filterwarnings("ignore", category=FutureWarning)
from skopt import Optimizer
from skopt.space import Dimension
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -55,11 +62,11 @@ class Hyperopt:
def __init__(self, config: Dict[str, Any]) -> None: def __init__(self, config: Dict[str, Any]) -> None:
self.config = config self.config = config
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
self.backtesting = Backtesting(self.config) self.backtesting = Backtesting(self.config)
self.custom_hyperoptloss = HyperOptLossResolver(self.config).hyperoptloss self.custom_hyperopt = HyperOptResolver.load_hyperopt(self.config)
self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config)
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
self.trials_file = (self.config['user_data_dir'] / self.trials_file = (self.config['user_data_dir'] /
@@ -75,6 +82,8 @@ class Hyperopt:
else: else:
logger.info("Continuing on previous hyperopt results.") logger.info("Continuing on previous hyperopt results.")
self.num_trials_saved = 0
# Previous evaluations # Previous evaluations
self.trials: List = [] self.trials: List = []
@@ -103,6 +112,10 @@ class Hyperopt:
self.config['ask_strategy'] = {} self.config['ask_strategy'] = {}
self.config['ask_strategy']['use_sell_signal'] = True self.config['ask_strategy']['use_sell_signal'] = True
self.print_all = self.config.get('print_all', False)
self.print_colorized = self.config.get('print_colorized', False)
self.print_json = self.config.get('print_json', False)
@staticmethod @staticmethod
def get_lock_filename(config) -> str: def get_lock_filename(config) -> str:
@@ -118,125 +131,178 @@ class Hyperopt:
logger.info(f"Removing `{p}`.") logger.info(f"Removing `{p}`.")
p.unlink() p.unlink()
def get_args(self, params): def _get_params_dict(self, raw_params: List[Any]) -> Dict:
dimensions = self.dimensions dimensions: List[Dimension] = self.dimensions
# Ensure the number of dimensions match # Ensure the number of dimensions match
# the number of parameters in the list x. # the number of parameters in the list.
if len(params) != len(dimensions): if len(raw_params) != len(dimensions):
raise ValueError('Mismatch in number of search-space dimensions. ' raise ValueError('Mismatch in number of search-space dimensions.')
f'len(dimensions)=={len(dimensions)} and len(x)=={len(params)}')
# Create a dict where the keys are the names of the dimensions # Return a dict where the keys are the names of the dimensions
# and the values are taken from the list of parameters x. # and the values are taken from the list of parameters.
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)} return {d.name: v for d, v in zip(dimensions, raw_params)}
return arg_dict
def save_trials(self) -> None: def save_trials(self, final: bool = False) -> None:
""" """
Save hyperopt trials to file Save hyperopt trials to file
""" """
if self.trials: num_trials = len(self.trials)
logger.info("Saving %d evaluations to '%s'", len(self.trials), self.trials_file) if num_trials > self.num_trials_saved:
logger.info(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
dump(self.trials, self.trials_file) dump(self.trials, self.trials_file)
self.num_trials_saved = num_trials
if final:
logger.info(f"{num_trials} {plural(num_trials, 'epoch')} "
f"saved to '{self.trials_file}'.")
def read_trials(self) -> List: @staticmethod
def _read_trials(trials_file) -> List:
""" """
Read hyperopt trials file Read hyperopt trials file
""" """
logger.info("Reading Trials from '%s'", self.trials_file) logger.info("Reading Trials from '%s'", trials_file)
trials = load(self.trials_file) trials = load(trials_file)
self.trials_file.unlink()
return trials return trials
def log_trials_result(self) -> None: def _get_params_details(self, params: Dict) -> Dict:
""" """
Display Best hyperopt result Return the params for each space
""" """
results = sorted(self.trials, key=itemgetter('loss')) result: Dict = {}
best_result = results[0]
params = best_result['params']
log_str = self.format_results_logstring(best_result)
print(f"\nBest result:\n\n{log_str}\n")
if self.config.get('print_json'): if self.has_space('buy'):
result['buy'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('buy')}
if self.has_space('sell'):
result['sell'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('sell')}
if self.has_space('roi'):
result['roi'] = self.custom_hyperopt.generate_roi_table(params)
if self.has_space('stoploss'):
result['stoploss'] = {p.name: params.get(p.name)
for p in self.hyperopt_space('stoploss')}
if self.has_space('trailing'):
result['trailing'] = self.custom_hyperopt.generate_trailing_params(params)
return result
@staticmethod
def print_epoch_details(results, total_epochs, print_json: bool,
no_header: bool = False, header_str: str = None) -> None:
"""
Display details of the hyperopt result
"""
params = results.get('params_details', {})
# Default header string
if header_str is None:
header_str = "Best result"
if not no_header:
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
print(f"\n{header_str}:\n\n{explanation_str}\n")
if print_json:
result_dict: Dict = {} result_dict: Dict = {}
if self.has_space('buy') or self.has_space('sell'): for s in ['buy', 'sell', 'roi', 'stoploss', 'trailing']:
result_dict['params'] = {} Hyperopt._params_update_for_json(result_dict, params, s)
if self.has_space('buy'): print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
result_dict['params'].update({p.name: params.get(p.name)
for p in self.hyperopt_space('buy')}) else:
if self.has_space('sell'): Hyperopt._params_pretty_print(params, 'buy', "Buy hyperspace params:")
result_dict['params'].update({p.name: params.get(p.name) Hyperopt._params_pretty_print(params, 'sell', "Sell hyperspace params:")
for p in self.hyperopt_space('sell')}) Hyperopt._params_pretty_print(params, 'roi', "ROI table:")
if self.has_space('roi'): Hyperopt._params_pretty_print(params, 'stoploss', "Stoploss:")
Hyperopt._params_pretty_print(params, 'trailing', "Trailing stop:")
@staticmethod
def _params_update_for_json(result_dict, params, space: str):
if space in params:
space_params = Hyperopt._space_params(params, space)
if space in ['buy', 'sell']:
result_dict.setdefault('params', {}).update(space_params)
elif space == 'roi':
# Convert keys in min_roi dict to strings because # Convert keys in min_roi dict to strings because
# rapidjson cannot dump dicts with integer keys... # rapidjson cannot dump dicts with integer keys...
# OrderedDict is used to keep the numeric order of the items # OrderedDict is used to keep the numeric order of the items
# in the dict. # in the dict.
result_dict['minimal_roi'] = OrderedDict( result_dict['minimal_roi'] = OrderedDict(
(str(k), v) for k, v in self.custom_hyperopt.generate_roi_table(params).items() (str(k), v) for k, v in space_params.items()
) )
if self.has_space('stoploss'): else: # 'stoploss', 'trailing'
result_dict['stoploss'] = params.get('stoploss') result_dict.update(space_params)
print(rapidjson.dumps(result_dict, default=str, number_mode=rapidjson.NM_NATIVE))
else:
if self.has_space('buy'):
print('Buy hyperspace params:')
pprint({p.name: params.get(p.name) for p in self.hyperopt_space('buy')},
indent=4)
if self.has_space('sell'):
print('Sell hyperspace params:')
pprint({p.name: params.get(p.name) for p in self.hyperopt_space('sell')},
indent=4)
if self.has_space('roi'):
print("ROI table:")
# Round printed values to 5 digits after the decimal point
pprint(round_dict(self.custom_hyperopt.generate_roi_table(params), 5), indent=4)
if self.has_space('stoploss'):
# Also round to 5 digits after the decimal point
print(f"Stoploss: {round(params.get('stoploss'), 5)}")
def log_results(self, results) -> None: @staticmethod
def _params_pretty_print(params, space: str, header: str):
if space in params:
space_params = Hyperopt._space_params(params, space, 5)
if space == 'stoploss':
print(header, space_params.get('stoploss'))
else:
print(header)
pprint(space_params, indent=4)
@staticmethod
def _space_params(params, space: str, r: int = None) -> Dict:
d = params[space]
# Round floats to `r` digits after the decimal point if requested
return round_dict(d, r) if r else d
@staticmethod
def is_best_loss(results, current_best_loss) -> bool:
return results['loss'] < current_best_loss
def print_results(self, results) -> None:
""" """
Log results if it is better than any previous evaluation Log results if it is better than any previous evaluation
""" """
print_all = self.config.get('print_all', False) is_best = results['is_best']
is_best_loss = results['loss'] < self.current_best_loss if not self.print_all:
if print_all or is_best_loss: # Print '\n' after each 100th epoch to separate dots from the log messages.
if is_best_loss: # Otherwise output is messy on a terminal.
self.current_best_loss = results['loss'] print('.', end='' if results['current_epoch'] % 100 != 0 else None) # type: ignore
log_str = self.format_results_logstring(results)
# Colorize output
if self.config.get('print_colorized', False):
if results['total_profit'] > 0:
log_str = Fore.GREEN + log_str
if print_all and is_best_loss:
log_str = Style.BRIGHT + log_str
if print_all:
print(log_str)
else:
print('\n' + log_str)
else:
print('.', end='')
sys.stdout.flush() sys.stdout.flush()
def format_results_logstring(self, results) -> str: if self.print_all or is_best:
# Output human-friendly index here (starting from 1) if not self.print_all:
current = results['current_epoch'] + 1 # Separate the results explanation string from dots
total = self.total_epochs print("\n")
res = results['results_explanation'] self.print_results_explanation(results, self.total_epochs, self.print_all,
loss = results['loss'] self.print_colorized)
log_str = f'{current:5d}/{total}: {res} Objective: {loss:.5f}'
log_str = f'*{log_str}' if results['is_initial_point'] else f' {log_str}' @staticmethod
return log_str def print_results_explanation(results, total_epochs, highlight_best: bool,
print_colorized: bool) -> None:
"""
Log results explanation string
"""
explanation_str = Hyperopt._format_explanation_string(results, total_epochs)
# Colorize output
if print_colorized:
if results['total_profit'] > 0:
explanation_str = Fore.GREEN + explanation_str
if highlight_best and results['is_best']:
explanation_str = Style.BRIGHT + explanation_str
print(explanation_str)
@staticmethod
def _format_explanation_string(results, total_epochs) -> str:
return (("*" if results['is_initial_point'] else " ") +
f"{results['current_epoch']:5d}/{total_epochs}: " +
f"{results['results_explanation']} " +
f"Objective: {results['loss']:.5f}")
def has_space(self, space: str) -> bool: def has_space(self, space: str) -> bool:
""" """
Tell if a space value is contained in the configuration Tell if the space value is contained in the configuration
""" """
return any(s in self.config['spaces'] for s in [space, 'all']) # The 'trailing' space is not included in the 'default' set of spaces
if space == 'trailing':
return any(s in self.config['spaces'] for s in [space, 'all'])
else:
return any(s in self.config['spaces'] for s in [space, 'all', 'default'])
def hyperopt_space(self, space: Optional[str] = None) -> List[Dimension]: def hyperopt_space(self, space: Optional[str] = None) -> List[Dimension]:
""" """
@@ -246,106 +312,130 @@ class Hyperopt:
for all hyperspaces used. for all hyperspaces used.
""" """
spaces: List[Dimension] = [] spaces: List[Dimension] = []
if space == 'buy' or (space is None and self.has_space('buy')): if space == 'buy' or (space is None and self.has_space('buy')):
logger.debug("Hyperopt has 'buy' space") logger.debug("Hyperopt has 'buy' space")
spaces += self.custom_hyperopt.indicator_space() spaces += self.custom_hyperopt.indicator_space()
if space == 'sell' or (space is None and self.has_space('sell')): if space == 'sell' or (space is None and self.has_space('sell')):
logger.debug("Hyperopt has 'sell' space") logger.debug("Hyperopt has 'sell' space")
spaces += self.custom_hyperopt.sell_indicator_space() spaces += self.custom_hyperopt.sell_indicator_space()
if space == 'roi' or (space is None and self.has_space('roi')): if space == 'roi' or (space is None and self.has_space('roi')):
logger.debug("Hyperopt has 'roi' space") logger.debug("Hyperopt has 'roi' space")
spaces += self.custom_hyperopt.roi_space() spaces += self.custom_hyperopt.roi_space()
if space == 'stoploss' or (space is None and self.has_space('stoploss')): if space == 'stoploss' or (space is None and self.has_space('stoploss')):
logger.debug("Hyperopt has 'stoploss' space") logger.debug("Hyperopt has 'stoploss' space")
spaces += self.custom_hyperopt.stoploss_space() spaces += self.custom_hyperopt.stoploss_space()
if space == 'trailing' or (space is None and self.has_space('trailing')):
logger.debug("Hyperopt has 'trailing' space")
spaces += self.custom_hyperopt.trailing_space()
return spaces return spaces
def generate_optimizer(self, _params: Dict, iteration=None) -> Dict: def generate_optimizer(self, raw_params: List[Any], iteration=None) -> Dict:
""" """
Used Optimize function. Called once per epoch to optimize whatever is configured. Used Optimize function. Called once per epoch to optimize whatever is configured.
Keep this function as optimized as possible! Keep this function as optimized as possible!
""" """
params = self.get_args(_params) params_dict = self._get_params_dict(raw_params)
params_details = self._get_params_details(params_dict)
if self.has_space('roi'): if self.has_space('roi'):
self.backtesting.strategy.minimal_roi = \ self.backtesting.strategy.minimal_roi = \
self.custom_hyperopt.generate_roi_table(params) self.custom_hyperopt.generate_roi_table(params_dict)
if self.has_space('buy'): if self.has_space('buy'):
self.backtesting.strategy.advise_buy = \ self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.buy_strategy_generator(params) self.custom_hyperopt.buy_strategy_generator(params_dict)
if self.has_space('sell'): if self.has_space('sell'):
self.backtesting.strategy.advise_sell = \ self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.sell_strategy_generator(params) self.custom_hyperopt.sell_strategy_generator(params_dict)
if self.has_space('stoploss'): if self.has_space('stoploss'):
self.backtesting.strategy.stoploss = params['stoploss'] self.backtesting.strategy.stoploss = params_dict['stoploss']
if self.has_space('trailing'):
d = self.custom_hyperopt.generate_trailing_params(params_dict)
self.backtesting.strategy.trailing_stop = d['trailing_stop']
self.backtesting.strategy.trailing_stop_positive = d['trailing_stop_positive']
self.backtesting.strategy.trailing_stop_positive_offset = \
d['trailing_stop_positive_offset']
self.backtesting.strategy.trailing_only_offset_is_reached = \
d['trailing_only_offset_is_reached']
processed = load(self.tickerdata_pickle) processed = load(self.tickerdata_pickle)
min_date, max_date = get_timeframe(processed) min_date, max_date = get_timerange(processed)
results = self.backtesting.backtest( backtesting_results = self.backtesting.backtest(
{ processed=processed,
'stake_amount': self.config['stake_amount'], stake_amount=self.config['stake_amount'],
'processed': processed, start_date=min_date,
'max_open_trades': self.max_open_trades, end_date=max_date,
'position_stacking': self.position_stacking, max_open_trades=self.max_open_trades,
'start_date': min_date, position_stacking=self.position_stacking,
'end_date': max_date,
}
) )
results_explanation = self.format_results(results) return self._get_results_dict(backtesting_results, min_date, max_date,
params_dict, params_details)
trade_count = len(results.index) def _get_results_dict(self, backtesting_results, min_date, max_date,
total_profit = results.profit_abs.sum() params_dict, params_details):
results_metrics = self._calculate_results_metrics(backtesting_results)
results_explanation = self._format_results_explanation_string(results_metrics)
trade_count = results_metrics['trade_count']
total_profit = results_metrics['total_profit']
# If this evaluation contains too short amount of trades to be # If this evaluation contains too short amount of trades to be
# interesting -- consider it as 'bad' (assigned max. loss value) # interesting -- consider it as 'bad' (assigned max. loss value)
# in order to cast this hyperspace point away from optimization # in order to cast this hyperspace point away from optimization
# path. We do not want to optimize 'hodl' strategies. # path. We do not want to optimize 'hodl' strategies.
if trade_count < self.config['hyperopt_min_trades']: loss: float = MAX_LOSS
return { if trade_count >= self.config['hyperopt_min_trades']:
'loss': MAX_LOSS, loss = self.calculate_loss(results=backtesting_results, trade_count=trade_count,
'params': params, min_date=min_date.datetime, max_date=max_date.datetime)
'results_explanation': results_explanation,
'total_profit': total_profit,
}
loss = self.calculate_loss(results=results, trade_count=trade_count,
min_date=min_date.datetime, max_date=max_date.datetime)
return { return {
'loss': loss, 'loss': loss,
'params': params, 'params_dict': params_dict,
'params_details': params_details,
'results_metrics': results_metrics,
'results_explanation': results_explanation, 'results_explanation': results_explanation,
'total_profit': total_profit, 'total_profit': total_profit,
} }
def format_results(self, results: DataFrame) -> str: def _calculate_results_metrics(self, backtesting_results: DataFrame) -> Dict:
return {
'trade_count': len(backtesting_results.index),
'avg_profit': backtesting_results.profit_percent.mean() * 100.0,
'total_profit': backtesting_results.profit_abs.sum(),
'profit': backtesting_results.profit_percent.sum() * 100.0,
'duration': backtesting_results.trade_duration.mean(),
}
def _format_results_explanation_string(self, results_metrics: Dict) -> str:
""" """
Return the formatted results explanation in a string Return the formatted results explanation in a string
""" """
trades = len(results.index)
avg_profit = results.profit_percent.mean() * 100.0
total_profit = results.profit_abs.sum()
stake_cur = self.config['stake_currency'] stake_cur = self.config['stake_currency']
profit = results.profit_percent.sum() * 100.0 return (f"{results_metrics['trade_count']:6d} trades. "
duration = results.trade_duration.mean() f"Avg profit {results_metrics['avg_profit']: 6.2f}%. "
f"Total profit {results_metrics['total_profit']: 11.8f} {stake_cur} "
f"({results_metrics['profit']: 7.2f}\N{GREEK CAPITAL LETTER SIGMA}%). "
f"Avg duration {results_metrics['duration']:5.1f} min."
).encode(locale.getpreferredencoding(), 'replace').decode('utf-8')
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. ' def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer:
f'Total profit {total_profit: 11.8f} {stake_cur} '
f'({profit: 7.2f}Σ%). Avg duration {duration:5.1f} mins.')
def get_optimizer(self, dimensions, cpu_count) -> Optimizer:
return Optimizer( return Optimizer(
dimensions, dimensions,
base_estimator="ET", base_estimator="ET",
acq_optimizer="auto", acq_optimizer="auto",
n_initial_points=INITIAL_POINTS, n_initial_points=INITIAL_POINTS,
acq_optimizer_kwargs={'n_jobs': cpu_count}, acq_optimizer_kwargs={'n_jobs': cpu_count},
random_state=self.config.get('hyperopt_random_state', None) random_state=self.random_state,
) )
def fix_optimizer_models_list(self): def fix_optimizer_models_list(self):
@@ -369,56 +459,57 @@ class Hyperopt:
return parallel(delayed( return parallel(delayed(
wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked) wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked)
def load_previous_results(self): @staticmethod
""" read trials file if we have one """ def load_previous_results(trials_file) -> List:
if self.trials_file.is_file() and self.trials_file.stat().st_size > 0: """
self.trials = self.read_trials() Load data for epochs from the file if we have one
logger.info( """
'Loaded %d previous evaluations from disk.', trials: List = []
len(self.trials) if trials_file.is_file() and trials_file.stat().st_size > 0:
) trials = Hyperopt._read_trials(trials_file)
if trials[0].get('is_best') is None:
raise OperationalException(
"The file with Hyperopt results is incompatible with this version "
"of Freqtrade and cannot be loaded.")
logger.info(f"Loaded {len(trials)} previous evaluations from disk.")
return trials
def _set_random_state(self, random_state: Optional[int]) -> int:
return random_state or random.randint(1, 2**16 - 1)
def start(self) -> None: def start(self) -> None:
timerange = TimeRange.parse_timerange(None if self.config.get( self.random_state = self._set_random_state(self.config.get('hyperopt_random_state', None))
'timerange') is None else str(self.config.get('timerange'))) logger.info(f"Using optimizer random state: {self.random_state}")
data = load_data(
datadir=Path(self.config['datadir']),
pairs=self.config['exchange']['pair_whitelist'],
ticker_interval=self.backtesting.ticker_interval,
timerange=timerange
)
if not data: data, timerange = self.backtesting.load_bt_data()
logger.critical("No data found. Terminating.")
return
min_date, max_date = get_timeframe(data)
logger.info(
'Hyperopting with data from %s up to %s (%s days)..',
min_date.isoformat(),
max_date.isoformat(),
(max_date - min_date).days
)
preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data) preprocessed = self.backtesting.strategy.tickerdata_to_dataframe(data)
# Trim startup period from analyzed dataframe
for pair, df in preprocessed.items():
preprocessed[pair] = trim_dataframe(df, timerange)
min_date, max_date = get_timerange(data)
logger.info(
'Hyperopting with data from %s up to %s (%s days)..',
min_date.isoformat(), max_date.isoformat(), (max_date - min_date).days
)
dump(preprocessed, self.tickerdata_pickle) dump(preprocessed, self.tickerdata_pickle)
# We don't need exchange instance anymore while running hyperopt # We don't need exchange instance anymore while running hyperopt
self.backtesting.exchange = None # type: ignore self.backtesting.exchange = None # type: ignore
self.load_previous_results() self.trials = self.load_previous_results(self.trials_file)
cpus = cpu_count() cpus = cpu_count()
logger.info(f"Found {cpus} CPU cores. Let's make them scream!") logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
config_jobs = self.config.get('hyperopt_jobs', -1) config_jobs = self.config.get('hyperopt_jobs', -1)
logger.info(f'Number of parallel jobs set as: {config_jobs}') logger.info(f'Number of parallel jobs set as: {config_jobs}')
self.dimensions = self.hyperopt_space() self.dimensions: List[Dimension] = self.hyperopt_space()
self.opt = self.get_optimizer(self.dimensions, config_jobs) self.opt = self.get_optimizer(self.dimensions, config_jobs)
if self.config.get('print_colorized', False): if self.print_colorized:
colorama_init(autoreset=True) colorama_init(autoreset=True)
try: try:
@@ -432,15 +523,38 @@ class Hyperopt:
self.opt.tell(asked, [v['loss'] for v in f_val]) self.opt.tell(asked, [v['loss'] for v in f_val])
self.fix_optimizer_models_list() self.fix_optimizer_models_list()
for j in range(jobs): for j in range(jobs):
current = i * jobs + j # Use human-friendly indexes here (starting from 1)
current = i * jobs + j + 1
val = f_val[j] val = f_val[j]
val['current_epoch'] = current val['current_epoch'] = current
val['is_initial_point'] = current < INITIAL_POINTS val['is_initial_point'] = current <= INITIAL_POINTS
self.log_results(val)
self.trials.append(val)
logger.debug(f"Optimizer epoch evaluated: {val}") logger.debug(f"Optimizer epoch evaluated: {val}")
is_best = self.is_best_loss(val, self.current_best_loss)
# This value is assigned here and not in the optimization method
# to keep proper order in the list of results. That's because
# evaluations can take different time. Here they are aligned in the
# order they will be shown to the user.
val['is_best'] = is_best
self.print_results(val)
if is_best:
self.current_best_loss = val['loss']
self.trials.append(val)
# Save results after each best epoch and every 100 epochs
if is_best or current % 100 == 0:
self.save_trials()
except KeyboardInterrupt: except KeyboardInterrupt:
print('User interrupted..') print('User interrupted..')
self.save_trials() self.save_trials(final=True)
self.log_trials_result()
if self.trials:
sorted_trials = sorted(self.trials, key=itemgetter('loss'))
results = sorted_trials[0]
self.print_epoch_details(results, self.total_epochs, self.print_json)
else:
# This is printed when Ctrl+C is pressed quickly, before first epochs have
# a chance to be evaluated.
print("No epochs evaluated yet, no best result.")

View File

@@ -1,21 +1,18 @@
""" """
IHyperOpt interface IHyperOpt interface
This module defines the interface to apply for hyperopts This module defines the interface to apply for hyperopt
""" """
import logging import logging
import math import math
from abc import ABC
from typing import Any, Callable, Dict, List
from abc import ABC, abstractmethod from skopt.space import Categorical, Dimension, Integer, Real
from typing import Dict, Any, Callable, List
from pandas import DataFrame from freqtrade.exceptions import OperationalException
from skopt.space import Dimension, Integer, Real
from freqtrade import OperationalException
from freqtrade.exchange import timeframe_to_minutes from freqtrade.exchange import timeframe_to_minutes
from freqtrade.misc import round_dict from freqtrade.misc import round_dict
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -28,8 +25,8 @@ def _format_exception_message(method: str, space: str) -> str:
class IHyperOpt(ABC): class IHyperOpt(ABC):
""" """
Interface for freqtrade hyperopts Interface for freqtrade hyperopt
Defines the mandatory structure must follow any custom hyperopts Defines the mandatory structure must follow any custom hyperopt
Class attributes you can use: Class attributes you can use:
ticker_interval -> int: value of the ticker interval to use for the strategy ticker_interval -> int: value of the ticker interval to use for the strategy
@@ -42,15 +39,6 @@ class IHyperOpt(ABC):
# Assign ticker_interval to be used in hyperopt # Assign ticker_interval to be used in hyperopt
IHyperOpt.ticker_interval = str(config['ticker_interval']) IHyperOpt.ticker_interval = str(config['ticker_interval'])
@staticmethod
@abstractmethod
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
"""
Populate indicators that will be used in the Buy and Sell strategy.
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe().
:return: A Dataframe with all mandatory indicators for the strategies.
"""
@staticmethod @staticmethod
def buy_strategy_generator(params: Dict[str, Any]) -> Callable: def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
""" """
@@ -116,10 +104,10 @@ class IHyperOpt(ABC):
roi_t_alpha = 1.0 roi_t_alpha = 1.0
roi_p_alpha = 1.0 roi_p_alpha = 1.0
ticker_interval_mins = timeframe_to_minutes(IHyperOpt.ticker_interval) timeframe_min = timeframe_to_minutes(IHyperOpt.ticker_interval)
# We define here limits for the ROI space parameters automagically adapted to the # We define here limits for the ROI space parameters automagically adapted to the
# ticker_interval used by the bot: # timeframe used by the bot:
# #
# * 'roi_t' (limits for the time intervals in the ROI tables) components # * 'roi_t' (limits for the time intervals in the ROI tables) components
# are scaled linearly. # are scaled linearly.
@@ -127,8 +115,8 @@ class IHyperOpt(ABC):
# #
# The scaling is designed so that it maps exactly to the legacy Freqtrade roi_space() # The scaling is designed so that it maps exactly to the legacy Freqtrade roi_space()
# method for the 5m ticker interval. # method for the 5m ticker interval.
roi_t_scale = ticker_interval_mins / 5 roi_t_scale = timeframe_min / 5
roi_p_scale = math.log1p(ticker_interval_mins) / math.log1p(5) roi_p_scale = math.log1p(timeframe_min) / math.log1p(5)
roi_limits = { roi_limits = {
'roi_t1_min': int(10 * roi_t_scale * roi_t_alpha), 'roi_t1_min': int(10 * roi_t_scale * roi_t_alpha),
'roi_t1_max': int(120 * roi_t_scale * roi_t_alpha), 'roi_t1_max': int(120 * roi_t_scale * roi_t_alpha),
@@ -184,6 +172,47 @@ class IHyperOpt(ABC):
Real(-0.35, -0.02, name='stoploss'), Real(-0.35, -0.02, name='stoploss'),
] ]
@staticmethod
def generate_trailing_params(params: Dict) -> Dict:
"""
Create dict with trailing stop parameters.
"""
return {
'trailing_stop': params['trailing_stop'],
'trailing_stop_positive': params['trailing_stop_positive'],
'trailing_stop_positive_offset': (params['trailing_stop_positive'] +
params['trailing_stop_positive_offset_p1']),
'trailing_only_offset_is_reached': params['trailing_only_offset_is_reached'],
}
@staticmethod
def trailing_space() -> List[Dimension]:
"""
Create a trailing stoploss space.
You may override it in your custom Hyperopt class.
"""
return [
# It was decided to always set trailing_stop is to True if the 'trailing' hyperspace
# is used. Otherwise hyperopt will vary other parameters that won't have effect if
# trailing_stop is set False.
# This parameter is included into the hyperspace dimensions rather than assigning
# it explicitly in the code in order to have it printed in the results along with
# other 'trailing' hyperspace parameters.
Categorical([True], name='trailing_stop'),
Real(0.01, 0.35, name='trailing_stop_positive'),
# 'trailing_stop_positive_offset' should be greater than 'trailing_stop_positive',
# so this intermediate parameter is used as the value of the difference between
# them. The value of the 'trailing_stop_positive_offset' is constructed in the
# generate_trailing_params() method.
# # This is similar to the hyperspace dimensions used for constructing the ROI tables.
Real(0.001, 0.1, name='trailing_stop_positive_offset_p1'),
Categorical([True, False], name='trailing_only_offset_is_reached'),
]
# This is needed for proper unpickling the class attribute ticker_interval # This is needed for proper unpickling the class attribute ticker_interval
# which is set to the actual value by the resolver. # which is set to the actual value by the resolver.
# Why do I still need such shamanic mantras in modern python? # Why do I still need such shamanic mantras in modern python?

View File

@@ -1,6 +1,6 @@
""" """
IHyperOptLoss interface IHyperOptLoss interface
This module defines the interface for the loss-function for hyperopts This module defines the interface for the loss-function for hyperopt
""" """
from abc import ABC, abstractmethod from abc import ABC, abstractmethod
@@ -11,7 +11,7 @@ from pandas import DataFrame
class IHyperOptLoss(ABC): class IHyperOptLoss(ABC):
""" """
Interface for freqtrade hyperopts Loss functions. Interface for freqtrade hyperopt Loss functions.
Defines the custom loss function (`hyperopt_loss_function()` which is evaluated every epoch.) Defines the custom loss function (`hyperopt_loss_function()` which is evaluated every epoch.)
""" """
ticker_interval: str ticker_interval: str

View File

@@ -0,0 +1,135 @@
from datetime import timedelta
from typing import Dict
from pandas import DataFrame
from tabulate import tabulate
def generate_text_table(data: Dict[str, Dict], stake_currency: str, max_open_trades: int,
results: DataFrame, skip_nan: bool = False) -> str:
"""
Generates and returns a text table for the given backtest data and the results dataframe
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
:param stake_currency: stake-currency - used to correctly name headers
:param max_open_trades: Maximum allowed open trades
:param results: Dataframe containing the backtest results
:param skip_nan: Print "left open" open trades
:return: pretty printed table with tabulate as string
"""
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
f'tot profit {stake_currency}', 'tot profit %', 'avg duration',
'profit', 'loss']
for pair in data:
result = results[results.pair == pair]
if skip_nan and result.profit_abs.isnull().all():
continue
tabular_data.append([
pair,
len(result.index),
result.profit_percent.mean() * 100.0,
result.profit_percent.sum() * 100.0,
result.profit_abs.sum(),
result.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
len(result[result.profit_abs > 0]),
len(result[result.profit_abs < 0])
])
# Append Total
tabular_data.append([
'TOTAL',
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def generate_text_table_sell_reason(data: Dict[str, Dict], results: DataFrame) -> str:
"""
Generate small table outlining Backtest results
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
:param results: Dataframe containing the backtest results
:return: pretty printed table with tabulate as string
"""
tabular_data = []
headers = ['Sell Reason', 'Count', 'Profit', 'Loss', 'Profit %']
for reason, count in results['sell_reason'].value_counts().iteritems():
result = results.loc[results['sell_reason'] == reason]
profit = len(result[result['profit_abs'] >= 0])
loss = len(result[result['profit_abs'] < 0])
profit_mean = round(result['profit_percent'].mean() * 100.0, 2)
tabular_data.append([reason.value, count, profit, loss, profit_mean])
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
def generate_text_table_strategy(stake_currency: str, max_open_trades: str,
all_results: Dict) -> str:
"""
Generate summary table per strategy
:param stake_currency: stake-currency - used to correctly name headers
:param max_open_trades: Maximum allowed open trades used for backtest
:param all_results: Dict of <Strategyname: BacktestResult> containing results for all strategies
:return: pretty printed table with tabulate as string
"""
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', '.2f', 'd', '.1f', '.1f')
tabular_data = []
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
f'tot profit {stake_currency}', 'tot profit %', 'avg duration',
'profit', 'loss']
for strategy, results in all_results.items():
tabular_data.append([
strategy,
len(results.index),
results.profit_percent.mean() * 100.0,
results.profit_percent.sum() * 100.0,
results.profit_abs.sum(),
results.profit_percent.sum() * 100.0 / max_open_trades,
str(timedelta(
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
len(results[results.profit_abs > 0]),
len(results[results.profit_abs < 0])
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore
def generate_edge_table(results: dict) -> str:
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
tabular_data = []
headers = ['pair', 'stoploss', 'win rate', 'risk reward ratio',
'required risk reward', 'expectancy', 'total number of trades',
'average duration (min)']
for result in results.items():
if result[1].nb_trades > 0:
tabular_data.append([
result[0],
result[1].stoploss,
result[1].winrate,
result[1].risk_reward_ratio,
result[1].required_risk_reward,
result[1].expectancy,
result[1].nb_trades,
round(result[1].avg_trade_duration)
])
# Ignore type as floatfmt does allow tuples but mypy does not know that
return tabulate(tabular_data, headers=headers,
floatfmt=floatfmt, tablefmt="pipe") # type: ignore

View File

@@ -5,22 +5,31 @@ Provides lists as configured in config.json
""" """
import logging import logging
from abc import ABC, abstractmethod from abc import ABC, abstractmethod, abstractproperty
from typing import List from copy import deepcopy
from typing import Dict, List
from freqtrade.exchange import market_is_active from freqtrade.exchange import market_is_active
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
class IPairList(ABC): class IPairList(ABC):
def __init__(self, freqtrade, config: dict) -> None: def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
self._freqtrade = freqtrade pairlist_pos: int) -> None:
"""
:param exchange: Exchange instance
:param pairlistmanager: Instanciating Pairlist manager
:param config: Global bot configuration
:param pairlistconfig: Configuration for this pairlist - can be empty.
:param pairlist_pos: Position of the filter in the pairlist-filter-list
"""
self._exchange = exchange
self._pairlistmanager = pairlistmanager
self._config = config self._config = config
self._whitelist = self._config['exchange']['pair_whitelist'] self._pairlistconfig = pairlistconfig
self._blacklist = self._config['exchange'].get('pair_blacklist', []) self._pairlist_pos = pairlist_pos
@property @property
def name(self) -> str: def name(self) -> str:
@@ -30,21 +39,13 @@ class IPairList(ABC):
""" """
return self.__class__.__name__ return self.__class__.__name__
@property @abstractproperty
def whitelist(self) -> List[str]: def needstickers(self) -> bool:
""" """
Has the current whitelist Boolean property defining if tickers are necessary.
-> no need to overwrite in subclasses If no Pairlist requries tickers, an empty List is passed
as tickers argument to filter_pairlist
""" """
return self._whitelist
@property
def blacklist(self) -> List[str]:
"""
Has the current blacklist
-> no need to overwrite in subclasses
"""
return self._blacklist
@abstractmethod @abstractmethod
def short_desc(self) -> str: def short_desc(self) -> str:
@@ -54,36 +55,62 @@ class IPairList(ABC):
""" """
@abstractmethod @abstractmethod
def refresh_pairlist(self) -> None: def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
""" """
Refreshes pairlists and assigns them to self._whitelist and self._blacklist respectively Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary
-> Please overwrite in subclasses -> Please overwrite in subclasses
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new whitelist
""" """
def _validate_whitelist(self, whitelist: List[str]) -> List[str]: @staticmethod
def verify_blacklist(pairlist: List[str], blacklist: List[str]) -> List[str]:
"""
Verify and remove items from pairlist - returning a filtered pairlist.
"""
for pair in deepcopy(pairlist):
if pair in blacklist:
logger.warning(f"Pair {pair} in your blacklist. Removing it from whitelist...")
pairlist.remove(pair)
return pairlist
def _verify_blacklist(self, pairlist: List[str]) -> List[str]:
"""
Proxy method to verify_blacklist for easy access for child classes.
"""
return IPairList.verify_blacklist(pairlist, self._pairlistmanager.blacklist)
def _whitelist_for_active_markets(self, pairlist: List[str]) -> List[str]:
""" """
Check available markets and remove pair from whitelist if necessary Check available markets and remove pair from whitelist if necessary
:param whitelist: the sorted list of pairs the user might want to trade :param whitelist: the sorted list of pairs the user might want to trade
:return: the list of pairs the user wants to trade without those unavailable or :return: the list of pairs the user wants to trade without those unavailable or
black_listed black_listed
""" """
markets = self._freqtrade.exchange.markets markets = self._exchange.markets
sanitized_whitelist = set() sanitized_whitelist: List[str] = []
for pair in whitelist: for pair in pairlist:
# pair is not in the generated dynamic market, or in the blacklist ... ignore it # pair is not in the generated dynamic market or has the wrong stake currency
if (pair in self.blacklist or pair not in markets if pair not in markets:
or not pair.endswith(self._config['stake_currency'])):
logger.warning(f"Pair {pair} is not compatible with exchange " logger.warning(f"Pair {pair} is not compatible with exchange "
f"{self._freqtrade.exchange.name} or contained in " f"{self._exchange.name}. Removing it from whitelist..")
f"your blacklist. Removing it from whitelist..")
continue continue
if not pair.endswith(self._config['stake_currency']):
logger.warning(f"Pair {pair} is not compatible with your stake currency "
f"{self._config['stake_currency']}. Removing it from whitelist..")
continue
# Check if market is active # Check if market is active
market = markets[pair] market = markets[pair]
if not market_is_active(market): if not market_is_active(market):
logger.info(f"Ignoring {pair} from whitelist. Market is not active.") logger.info(f"Ignoring {pair} from whitelist. Market is not active.")
continue continue
sanitized_whitelist.add(pair) if pair not in sanitized_whitelist:
sanitized_whitelist.append(pair)
sanitized_whitelist = self._verify_blacklist(sanitized_whitelist)
# We need to remove pairs that are unknown # We need to remove pairs that are unknown
return list(sanitized_whitelist) return sanitized_whitelist

View File

@@ -0,0 +1,63 @@
import logging
from copy import deepcopy
from typing import Dict, List
from freqtrade.pairlist.IPairList import IPairList
logger = logging.getLogger(__name__)
class PrecisionFilter(IPairList):
@property
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requries tickers, an empty List is passed
as tickers argument to filter_pairlist
"""
return True
def short_desc(self) -> str:
"""
Short whitelist method description - used for startup-messages
"""
return f"{self.name} - Filtering untradable pairs."
def _validate_precision_filter(self, ticker: dict, stoploss: float) -> bool:
"""
Check if pair has enough room to add a stoploss to avoid "unsellable" buys of very
low value pairs.
:param ticker: ticker dict as returned from ccxt.load_markets()
:param stoploss: stoploss value as set in the configuration
(already cleaned to be 1 - stoploss)
:return: True if the pair can stay, false if it should be removed
"""
stop_price = ticker['ask'] * stoploss
# Adjust stop-prices to precision
sp = self._exchange.price_to_precision(ticker["symbol"], stop_price)
stop_gap_price = self._exchange.price_to_precision(ticker["symbol"], stop_price * 0.99)
logger.debug(f"{ticker['symbol']} - {sp} : {stop_gap_price}")
if sp <= stop_gap_price:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because stop price {sp} would be <= stop limit {stop_gap_price}")
return False
return True
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
Filters and sorts pairlists and assigns and returns them again.
"""
stoploss = None
if self._config.get('stoploss') is not None:
# Precalculate sanitized stoploss value to avoid recalculation for every pair
stoploss = 1 - abs(self._config.get('stoploss'))
# Copy list since we're modifying this list
for p in deepcopy(pairlist):
ticker = tickers.get(p)
# Filter out assets which would not allow setting a stoploss
if not ticker or (stoploss and not self._validate_precision_filter(ticker, stoploss)):
pairlist.remove(p)
continue
return pairlist

View File

@@ -0,0 +1,69 @@
import logging
from copy import deepcopy
from typing import Dict, List
from freqtrade.pairlist.IPairList import IPairList
logger = logging.getLogger(__name__)
class PriceFilter(IPairList):
def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
pairlist_pos: int) -> None:
super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
self._low_price_ratio = pairlistconfig.get('low_price_ratio', 0)
@property
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requries tickers, an empty List is passed
as tickers argument to filter_pairlist
"""
return True
def short_desc(self) -> str:
"""
Short whitelist method description - used for startup-messages
"""
return f"{self.name} - Filtering pairs priced below {self._low_price_ratio * 100}%."
def _validate_ticker_lowprice(self, ticker) -> bool:
"""
Check if if one price-step (pip) is > than a certain barrier.
:param ticker: ticker dict as returned from ccxt.load_markets()
:param precision: Precision
:return: True if the pair can stay, false if it should be removed
"""
precision = self._exchange.markets[ticker['symbol']]['precision']['price']
compare = ticker['last'] + 1 / pow(10, precision)
changeperc = (compare - ticker['last']) / ticker['last']
if changeperc > self._low_price_ratio:
logger.info(f"Removed {ticker['symbol']} from whitelist, "
f"because 1 unit is {changeperc * 100:.3f}%")
return False
return True
def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
"""
Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new whitelist
"""
# Copy list since we're modifying this list
for p in deepcopy(pairlist):
ticker = tickers.get(p)
if not ticker:
pairlist.remove(p)
# Filter out assets which would not allow setting a stoploss
if self._low_price_ratio and not self._validate_ticker_lowprice(ticker):
pairlist.remove(p)
return pairlist

View File

@@ -5,6 +5,7 @@ Provides lists as configured in config.json
""" """
import logging import logging
from typing import Dict, List
from freqtrade.pairlist.IPairList import IPairList from freqtrade.pairlist.IPairList import IPairList
@@ -13,18 +14,28 @@ logger = logging.getLogger(__name__)
class StaticPairList(IPairList): class StaticPairList(IPairList):
def __init__(self, freqtrade, config: dict) -> None: @property
super().__init__(freqtrade, config) def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requries tickers, an empty List is passed
as tickers argument to filter_pairlist
"""
return False
def short_desc(self) -> str: def short_desc(self) -> str:
""" """
Short whitelist method description - used for startup-messages Short whitelist method description - used for startup-messages
-> Please overwrite in subclasses -> Please overwrite in subclasses
""" """
return f"{self.name}: {self.whitelist}" return f"{self.name}"
def refresh_pairlist(self) -> None: def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
""" """
Refreshes pairlists and assigns them to self._whitelist and self._blacklist respectively Filters and sorts pairlist and returns the whitelist again.
Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new whitelist
""" """
self._whitelist = self._validate_whitelist(self._config['exchange']['pair_whitelist']) return self._whitelist_for_active_markets(self._config['exchange']['pair_whitelist'])

View File

@@ -5,11 +5,12 @@ Provides lists as configured in config.json
""" """
import logging import logging
from typing import List from datetime import datetime
from cachetools import TTLCache, cached from typing import Dict, List
from freqtrade.exceptions import OperationalException
from freqtrade.pairlist.IPairList import IPairList from freqtrade.pairlist.IPairList import IPairList
from freqtrade import OperationalException
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
SORT_VALUES = ['askVolume', 'bidVolume', 'quoteVolume'] SORT_VALUES = ['askVolume', 'bidVolume', 'quoteVolume']
@@ -17,18 +18,19 @@ SORT_VALUES = ['askVolume', 'bidVolume', 'quoteVolume']
class VolumePairList(IPairList): class VolumePairList(IPairList):
def __init__(self, freqtrade, config: dict) -> None: def __init__(self, exchange, pairlistmanager, config, pairlistconfig: dict,
super().__init__(freqtrade, config) pairlist_pos: int) -> None:
self._whitelistconf = self._config.get('pairlist', {}).get('config') super().__init__(exchange, pairlistmanager, config, pairlistconfig, pairlist_pos)
if 'number_assets' not in self._whitelistconf:
if 'number_assets' not in self._pairlistconfig:
raise OperationalException( raise OperationalException(
f'`number_assets` not specified. Please check your configuration ' f'`number_assets` not specified. Please check your configuration '
'for "pairlist.config.number_assets"') 'for "pairlist.config.number_assets"')
self._number_pairs = self._whitelistconf['number_assets'] self._number_pairs = self._pairlistconfig['number_assets']
self._sort_key = self._whitelistconf.get('sort_key', 'quoteVolume') self._sort_key = self._pairlistconfig.get('sort_key', 'quoteVolume')
self._precision_filter = self._whitelistconf.get('precision_filter', False) self.refresh_period = self._pairlistconfig.get('refresh_period', 1800)
if not self._freqtrade.exchange.exchange_has('fetchTickers'): if not self._exchange.exchange_has('fetchTickers'):
raise OperationalException( raise OperationalException(
'Exchange does not support dynamic whitelist.' 'Exchange does not support dynamic whitelist.'
'Please edit your config and restart the bot' 'Please edit your config and restart the bot'
@@ -36,6 +38,16 @@ class VolumePairList(IPairList):
if not self._validate_keys(self._sort_key): if not self._validate_keys(self._sort_key):
raise OperationalException( raise OperationalException(
f'key {self._sort_key} not in {SORT_VALUES}') f'key {self._sort_key} not in {SORT_VALUES}')
self._last_refresh = 0
@property
def needstickers(self) -> bool:
"""
Boolean property defining if tickers are necessary.
If no Pairlist requries tickers, an empty List is passed
as tickers argument to filter_pairlist
"""
return True
def _validate_keys(self, key): def _validate_keys(self, key):
return key in SORT_VALUES return key in SORT_VALUES
@@ -43,54 +55,54 @@ class VolumePairList(IPairList):
def short_desc(self) -> str: def short_desc(self) -> str:
""" """
Short whitelist method description - used for startup-messages Short whitelist method description - used for startup-messages
-> Please overwrite in subclasses
""" """
return f"{self.name} - top {self._whitelistconf['number_assets']} volume pairs." return f"{self.name} - top {self._pairlistconfig['number_assets']} volume pairs."
def refresh_pairlist(self) -> None: def filter_pairlist(self, pairlist: List[str], tickers: Dict) -> List[str]:
""" """
Refreshes pairlists and assigns them to self._whitelist and self._blacklist respectively Filters and sorts pairlist and returns the whitelist again.
-> Please overwrite in subclasses Called on each bot iteration - please use internal caching if necessary
:param pairlist: pairlist to filter or sort
:param tickers: Tickers (from exchange.get_tickers()). May be cached.
:return: new whitelist
""" """
# Generate dynamic whitelist # Generate dynamic whitelist
self._whitelist = self._gen_pair_whitelist( if self._last_refresh + self.refresh_period < datetime.now().timestamp():
self._config['stake_currency'], self._sort_key)[:self._number_pairs] self._last_refresh = int(datetime.now().timestamp())
return self._gen_pair_whitelist(pairlist,
tickers,
self._config['stake_currency'],
self._sort_key,
)
else:
return pairlist
@cached(TTLCache(maxsize=1, ttl=1800)) def _gen_pair_whitelist(self, pairlist, tickers, base_currency: str, key: str) -> List[str]:
def _gen_pair_whitelist(self, base_currency: str, key: str) -> List[str]:
""" """
Updates the whitelist with with a dynamically generated list Updates the whitelist with with a dynamically generated list
:param base_currency: base currency as str :param base_currency: base currency as str
:param key: sort key (defaults to 'quoteVolume') :param key: sort key (defaults to 'quoteVolume')
:param tickers: Tickers (from exchange.get_tickers()).
:return: List of pairs :return: List of pairs
""" """
tickers = self._freqtrade.exchange.get_tickers() if self._pairlist_pos == 0:
# check length so that we make sure that '/' is actually in the string # If VolumePairList is the first in the list, use fresh pairlist
tickers = [v for k, v in tickers.items() # check length so that we make sure that '/' is actually in the string
if (len(k.split('/')) == 2 and k.split('/')[1] == base_currency filtered_tickers = [v for k, v in tickers.items()
and v[key] is not None)] if (len(k.split('/')) == 2 and k.split('/')[1] == base_currency
sorted_tickers = sorted(tickers, reverse=True, key=lambda t: t[key]) and v[key] is not None)]
else:
# If other pairlist is in front, use the incomming pairlist.
filtered_tickers = [v for k, v in tickers.items() if k in pairlist]
sorted_tickers = sorted(filtered_tickers, reverse=True, key=lambda t: t[key])
# Validate whitelist to only have active market pairs # Validate whitelist to only have active market pairs
valid_pairs = self._validate_whitelist([s['symbol'] for s in sorted_tickers]) pairs = self._whitelist_for_active_markets([s['symbol'] for s in sorted_tickers])
valid_tickers = [t for t in sorted_tickers if t["symbol"] in valid_pairs] pairs = self._verify_blacklist(pairs)
# Limit to X number of pairs
if self._freqtrade.strategy.stoploss is not None and self._precision_filter: pairs = pairs[:self._number_pairs]
logger.info(f"Searching {self._number_pairs} pairs: {pairs}")
stop_prices = [self._freqtrade.get_target_bid(t["symbol"], t)
* (1 - abs(self._freqtrade.strategy.stoploss)) for t in valid_tickers]
rates = [sp * 0.99 for sp in stop_prices]
logger.debug("\n".join([f"{sp} : {r}" for sp, r in zip(stop_prices[:10], rates[:10])]))
for i, t in enumerate(valid_tickers):
sp = self._freqtrade.exchange.symbol_price_prec(t["symbol"], stop_prices[i])
r = self._freqtrade.exchange.symbol_price_prec(t["symbol"], rates[i])
logger.debug(f"{t['symbol']} - {sp} : {r}")
if sp <= r:
logger.info(f"Removed {t['symbol']} from whitelist, "
f"because stop price {sp} would be <= stop limit {r}")
valid_tickers.remove(t)
pairs = [s['symbol'] for s in valid_tickers]
logger.info(f"Searching pairs: {self._whitelist}")
return pairs return pairs

View File

@@ -0,0 +1,96 @@
"""
Static List provider
Provides lists as configured in config.json
"""
import logging
from typing import Dict, List
from cachetools import TTLCache, cached
from freqtrade.exceptions import OperationalException
from freqtrade.pairlist.IPairList import IPairList
from freqtrade.resolvers import PairListResolver
logger = logging.getLogger(__name__)
class PairListManager():
def __init__(self, exchange, config: dict) -> None:
self._exchange = exchange
self._config = config
self._whitelist = self._config['exchange'].get('pair_whitelist')
self._blacklist = self._config['exchange'].get('pair_blacklist', [])
self._pairlists: List[IPairList] = []
self._tickers_needed = False
for pl in self._config.get('pairlists', None):
if 'method' not in pl:
logger.warning(f"No method in {pl}")
continue
pairl = PairListResolver.load_pairlist(pl.get('method'),
exchange=exchange,
pairlistmanager=self,
config=config,
pairlistconfig=pl,
pairlist_pos=len(self._pairlists)
)
self._tickers_needed = pairl.needstickers or self._tickers_needed
self._pairlists.append(pairl)
if not self._pairlists:
raise OperationalException("No Pairlist defined!")
@property
def whitelist(self) -> List[str]:
"""
Has the current whitelist
"""
return self._whitelist
@property
def blacklist(self) -> List[str]:
"""
Has the current blacklist
-> no need to overwrite in subclasses
"""
return self._blacklist
@property
def name_list(self) -> List[str]:
"""
Get list of loaded pairlists names
"""
return [p.name for p in self._pairlists]
def short_desc(self) -> List[Dict]:
"""
List of short_desc for each pairlist
"""
return [{p.name: p.short_desc()} for p in self._pairlists]
@cached(TTLCache(maxsize=1, ttl=1800))
def _get_cached_tickers(self):
return self._exchange.get_tickers()
def refresh_pairlist(self) -> None:
"""
Run pairlist through all configured pairlists.
"""
pairlist = self._whitelist.copy()
# tickers should be cached to avoid calling the exchange on each call.
tickers: Dict = {}
if self._tickers_needed:
tickers = self._get_cached_tickers()
# Process all pairlists in chain
for pl in self._pairlists:
pairlist = pl.filter_pairlist(pairlist, tickers)
# Validation against blacklist happens after the pairlists to ensure blacklist is respected.
pairlist = IPairList.verify_blacklist(pairlist, self.blacklist)
self._whitelist = pairlist

View File

@@ -8,16 +8,15 @@ from typing import Any, Dict, List, Optional
import arrow import arrow
from sqlalchemy import (Boolean, Column, DateTime, Float, Integer, String, from sqlalchemy import (Boolean, Column, DateTime, Float, Integer, String,
create_engine, inspect) create_engine, desc, func, inspect)
from sqlalchemy.exc import NoSuchModuleError from sqlalchemy.exc import NoSuchModuleError
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import Query
from sqlalchemy.orm.scoping import scoped_session from sqlalchemy.orm.scoping import scoped_session
from sqlalchemy.orm.session import sessionmaker from sqlalchemy.orm.session import sessionmaker
from sqlalchemy import func
from sqlalchemy.pool import StaticPool from sqlalchemy.pool import StaticPool
from freqtrade import OperationalException from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -52,9 +51,11 @@ def init(db_url: str, clean_open_orders: bool = False) -> None:
raise OperationalException(f"Given value for db_url: '{db_url}' " raise OperationalException(f"Given value for db_url: '{db_url}' "
f"is no valid database URL! (See {_SQL_DOCS_URL})") f"is no valid database URL! (See {_SQL_DOCS_URL})")
session = scoped_session(sessionmaker(bind=engine, autoflush=True, autocommit=True)) # https://docs.sqlalchemy.org/en/13/orm/contextual.html#thread-local-scope
Trade.session = session() # Scoped sessions proxy requests to the appropriate thread-local session.
Trade.query = session.query_property() # We should use the scoped_session object - not a seperately initialized version
Trade.session = scoped_session(sessionmaker(bind=engine, autoflush=True, autocommit=True))
Trade.query = Trade.session.query_property()
_DECL_BASE.metadata.create_all(engine) _DECL_BASE.metadata.create_all(engine)
check_migrate(engine) check_migrate(engine)
@@ -85,7 +86,7 @@ def check_migrate(engine) -> None:
logger.debug(f'trying {table_back_name}') logger.debug(f'trying {table_back_name}')
# Check for latest column # Check for latest column
if not has_column(cols, 'stop_loss_pct'): if not has_column(cols, 'open_trade_price'):
logger.info(f'Running database migration - backup available as {table_back_name}') logger.info(f'Running database migration - backup available as {table_back_name}')
fee_open = get_column_def(cols, 'fee_open', 'fee') fee_open = get_column_def(cols, 'fee_open', 'fee')
@@ -103,6 +104,8 @@ def check_migrate(engine) -> None:
sell_reason = get_column_def(cols, 'sell_reason', 'null') sell_reason = get_column_def(cols, 'sell_reason', 'null')
strategy = get_column_def(cols, 'strategy', 'null') strategy = get_column_def(cols, 'strategy', 'null')
ticker_interval = get_column_def(cols, 'ticker_interval', 'null') ticker_interval = get_column_def(cols, 'ticker_interval', 'null')
open_trade_price = get_column_def(cols, 'open_trade_price',
f'amount * open_rate * (1 + {fee_open})')
# Schema migration necessary # Schema migration necessary
engine.execute(f"alter table trades rename to {table_back_name}") engine.execute(f"alter table trades rename to {table_back_name}")
@@ -120,7 +123,7 @@ def check_migrate(engine) -> None:
stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct, stop_loss, stop_loss_pct, initial_stop_loss, initial_stop_loss_pct,
stoploss_order_id, stoploss_last_update, stoploss_order_id, stoploss_last_update,
max_rate, min_rate, sell_reason, strategy, max_rate, min_rate, sell_reason, strategy,
ticker_interval ticker_interval, open_trade_price
) )
select id, lower(exchange), select id, lower(exchange),
case case
@@ -139,7 +142,8 @@ def check_migrate(engine) -> None:
{initial_stop_loss_pct} initial_stop_loss_pct, {initial_stop_loss_pct} initial_stop_loss_pct,
{stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update, {stoploss_order_id} stoploss_order_id, {stoploss_last_update} stoploss_last_update,
{max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason, {max_rate} max_rate, {min_rate} min_rate, {sell_reason} sell_reason,
{strategy} strategy, {ticker_interval} ticker_interval {strategy} strategy, {ticker_interval} ticker_interval,
{open_trade_price} open_trade_price
from {table_back_name} from {table_back_name}
""") """)
@@ -181,6 +185,8 @@ class Trade(_DECL_BASE):
fee_close = Column(Float, nullable=False, default=0.0) fee_close = Column(Float, nullable=False, default=0.0)
open_rate = Column(Float) open_rate = Column(Float)
open_rate_requested = Column(Float) open_rate_requested = Column(Float)
# open_trade_price - calcuated via _calc_open_trade_price
open_trade_price = Column(Float)
close_rate = Column(Float) close_rate = Column(Float)
close_rate_requested = Column(Float) close_rate_requested = Column(Float)
close_profit = Column(Float) close_profit = Column(Float)
@@ -209,6 +215,10 @@ class Trade(_DECL_BASE):
strategy = Column(String, nullable=True) strategy = Column(String, nullable=True)
ticker_interval = Column(Integer, nullable=True) ticker_interval = Column(Integer, nullable=True)
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.recalc_open_trade_price()
def __repr__(self): def __repr__(self):
open_since = self.open_date.strftime('%Y-%m-%d %H:%M:%S') if self.is_open else 'closed' open_since = self.open_date.strftime('%Y-%m-%d %H:%M:%S') if self.is_open else 'closed'
@@ -301,6 +311,7 @@ class Trade(_DECL_BASE):
# Update open rate and actual amount # Update open rate and actual amount
self.open_rate = Decimal(order['price']) self.open_rate = Decimal(order['price'])
self.amount = Decimal(order['amount']) self.amount = Decimal(order['amount'])
self.recalc_open_trade_price()
logger.info('%s_BUY has been fulfilled for %s.', order_type.upper(), self) logger.info('%s_BUY has been fulfilled for %s.', order_type.upper(), self)
self.open_order_id = None self.open_order_id = None
elif order_type in ('market', 'limit') and order['side'] == 'sell': elif order_type in ('market', 'limit') and order['side'] == 'sell':
@@ -321,7 +332,7 @@ class Trade(_DECL_BASE):
and marks trade as closed and marks trade as closed
""" """
self.close_rate = Decimal(rate) self.close_rate = Decimal(rate)
self.close_profit = self.calc_profit_percent() self.close_profit = self.calc_profit_ratio()
self.close_date = datetime.utcnow() self.close_date = datetime.utcnow()
self.is_open = False self.is_open = False
self.open_order_id = None self.open_order_id = None
@@ -330,31 +341,36 @@ class Trade(_DECL_BASE):
self self
) )
def calc_open_trade_price(self, fee: Optional[float] = None) -> float: def _calc_open_trade_price(self) -> float:
""" """
Calculate the open_rate including fee. Calculate the open_rate including open_fee.
:param fee: fee to use on the open rate (optional).
If rate is not set self.fee will be used
:return: Price in of the open trade incl. Fees :return: Price in of the open trade incl. Fees
""" """
buy_trade = (Decimal(self.amount) * Decimal(self.open_rate)) buy_trade = Decimal(self.amount) * Decimal(self.open_rate)
fees = buy_trade * Decimal(fee or self.fee_open) fees = buy_trade * Decimal(self.fee_open)
return float(buy_trade + fees) return float(buy_trade + fees)
def recalc_open_trade_price(self) -> None:
"""
Recalculate open_trade_price.
Must be called whenever open_rate or fee_open is changed.
"""
self.open_trade_price = self._calc_open_trade_price()
def calc_close_trade_price(self, rate: Optional[float] = None, def calc_close_trade_price(self, rate: Optional[float] = None,
fee: Optional[float] = None) -> float: fee: Optional[float] = None) -> float:
""" """
Calculate the close_rate including fee Calculate the close_rate including fee
:param fee: fee to use on the close rate (optional). :param fee: fee to use on the close rate (optional).
If rate is not set self.fee will be used If rate is not set self.fee will be used
:param rate: rate to compare with (optional). :param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used If rate is not set self.close_rate will be used
:return: Price in BTC of the open trade :return: Price in BTC of the open trade
""" """
if rate is None and not self.close_rate: if rate is None and not self.close_rate:
return 0.0 return 0.0
sell_trade = (Decimal(self.amount) * Decimal(rate or self.close_rate)) sell_trade = Decimal(self.amount) * Decimal(rate or self.close_rate)
fees = sell_trade * Decimal(fee or self.fee_close) fees = sell_trade * Decimal(fee or self.fee_close)
return float(sell_trade - fees) return float(sell_trade - fees)
@@ -363,36 +379,65 @@ class Trade(_DECL_BASE):
""" """
Calculate the absolute profit in stake currency between Close and Open trade Calculate the absolute profit in stake currency between Close and Open trade
:param fee: fee to use on the close rate (optional). :param fee: fee to use on the close rate (optional).
If rate is not set self.fee will be used If rate is not set self.fee will be used
:param rate: close rate to compare with (optional). :param rate: close rate to compare with (optional).
If rate is not set self.close_rate will be used If rate is not set self.close_rate will be used
:return: profit in stake currency as float :return: profit in stake currency as float
""" """
open_trade_price = self.calc_open_trade_price()
close_trade_price = self.calc_close_trade_price( close_trade_price = self.calc_close_trade_price(
rate=(rate or self.close_rate), rate=(rate or self.close_rate),
fee=(fee or self.fee_close) fee=(fee or self.fee_close)
) )
profit = close_trade_price - open_trade_price profit = close_trade_price - self.open_trade_price
return float(f"{profit:.8f}") return float(f"{profit:.8f}")
def calc_profit_percent(self, rate: Optional[float] = None, def calc_profit_ratio(self, rate: Optional[float] = None,
fee: Optional[float] = None) -> float: fee: Optional[float] = None) -> float:
""" """
Calculates the profit in percentage (including fee). Calculates the profit as ratio (including fee).
:param rate: rate to compare with (optional). :param rate: rate to compare with (optional).
If rate is not set self.close_rate will be used If rate is not set self.close_rate will be used
:param fee: fee to use on the close rate (optional). :param fee: fee to use on the close rate (optional).
:return: profit in percentage as float :return: profit ratio as float
""" """
open_trade_price = self.calc_open_trade_price()
close_trade_price = self.calc_close_trade_price( close_trade_price = self.calc_close_trade_price(
rate=(rate or self.close_rate), rate=(rate or self.close_rate),
fee=(fee or self.fee_close) fee=(fee or self.fee_close)
) )
profit_percent = (close_trade_price / open_trade_price) - 1 profit_percent = (close_trade_price / self.open_trade_price) - 1
return float(f"{profit_percent:.8f}") return float(f"{profit_percent:.8f}")
@staticmethod
def get_trades(trade_filter=None) -> Query:
"""
Helper function to query Trades using filters.
:param trade_filter: Optional filter to apply to trades
Can be either a Filter object, or a List of filters
e.g. `(trade_filter=[Trade.id == trade_id, Trade.is_open.is_(True),])`
e.g. `(trade_filter=Trade.id == trade_id)`
:return: unsorted query object
"""
if trade_filter is not None:
if not isinstance(trade_filter, list):
trade_filter = [trade_filter]
return Trade.query.filter(*trade_filter)
else:
return Trade.query
@staticmethod
def get_open_trades() -> List[Any]:
"""
Query trades from persistence layer
"""
return Trade.get_trades(Trade.is_open.is_(True)).all()
@staticmethod
def get_open_order_trades():
"""
Returns all open trades
"""
return Trade.get_trades(Trade.open_order_id.isnot(None)).all()
@staticmethod @staticmethod
def total_open_trades_stakes() -> float: def total_open_trades_stakes() -> float:
""" """
@@ -405,11 +450,38 @@ class Trade(_DECL_BASE):
return total_open_stake_amount or 0 return total_open_stake_amount or 0
@staticmethod @staticmethod
def get_open_trades() -> List[Any]: def get_overall_performance() -> List[Dict[str, Any]]:
""" """
Query trades from persistence layer Returns List of dicts containing all Trades, including profit and trade count
""" """
return Trade.query.filter(Trade.is_open.is_(True)).all() pair_rates = Trade.session.query(
Trade.pair,
func.sum(Trade.close_profit).label('profit_sum'),
func.count(Trade.pair).label('count')
).filter(Trade.is_open.is_(False))\
.group_by(Trade.pair) \
.order_by(desc('profit_sum')) \
.all()
return [
{
'pair': pair,
'profit': rate,
'count': count
}
for pair, rate, count in pair_rates
]
@staticmethod
def get_best_pair():
"""
Get best pair with closed trade.
"""
best_pair = Trade.session.query(
Trade.pair, func.sum(Trade.close_profit).label('profit_sum')
).filter(Trade.is_open.is_(False)) \
.group_by(Trade.pair) \
.order_by(desc('profit_sum')).first()
return best_pair
@staticmethod @staticmethod
def stoploss_reinitialization(desired_stoploss): def stoploss_reinitialization(desired_stoploss):

View File

@@ -37,9 +37,9 @@ def init_plotscript(config):
timerange = TimeRange.parse_timerange(config.get("timerange")) timerange = TimeRange.parse_timerange(config.get("timerange"))
tickers = history.load_data( tickers = history.load_data(
datadir=Path(str(config.get("datadir"))), datadir=config.get("datadir"),
pairs=pairs, pairs=pairs,
ticker_interval=config.get('ticker_interval', '5m'), timeframe=config.get('ticker_interval', '5m'),
timerange=timerange, timerange=timerange,
) )
@@ -47,28 +47,34 @@ def init_plotscript(config):
db_url=config.get('db_url'), db_url=config.get('db_url'),
exportfilename=config.get('exportfilename'), exportfilename=config.get('exportfilename'),
) )
trades = history.trim_dataframe(trades, timerange, 'open_time')
return {"tickers": tickers, return {"tickers": tickers,
"trades": trades, "trades": trades,
"pairs": pairs, "pairs": pairs,
} }
def add_indicators(fig, row, indicators: List[str], data: pd.DataFrame) -> make_subplots: def add_indicators(fig, row, indicators: Dict[str, Dict], data: pd.DataFrame) -> make_subplots:
""" """
Generator all the indicator selected by the user for a specific row Generate all the indicators selected by the user for a specific row, based on the configuration
:param fig: Plot figure to append to :param fig: Plot figure to append to
:param row: row number for this plot :param row: row number for this plot
:param indicators: List of indicators present in the dataframe :param indicators: Dict of Indicators with configuration options.
Dict key must correspond to dataframe column.
:param data: candlestick DataFrame :param data: candlestick DataFrame
""" """
for indicator in indicators: for indicator, conf in indicators.items():
logger.debug(f"indicator {indicator} with config {conf}")
if indicator in data: if indicator in data:
kwargs = {'x': data['date'],
'y': data[indicator].values,
'mode': 'lines',
'name': indicator
}
if 'color' in conf:
kwargs.update({'line': {'color': conf['color']}})
scatter = go.Scatter( scatter = go.Scatter(
x=data['date'], **kwargs
y=data[indicator].values,
mode='lines',
name=indicator
) )
fig.add_trace(scatter, row, 1) fig.add_trace(scatter, row, 1)
else: else:
@@ -107,11 +113,31 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
""" """
# Trades can be empty # Trades can be empty
if trades is not None and len(trades) > 0: if trades is not None and len(trades) > 0:
# Create description for sell summarizing the trade
trades['desc'] = trades.apply(lambda row: f"{round(row['profitperc'] * 100, 1)}%, "
f"{row['sell_reason']}, {row['duration']} min",
axis=1)
trade_buys = go.Scatter( trade_buys = go.Scatter(
x=trades["open_time"], x=trades["open_time"],
y=trades["open_rate"], y=trades["open_rate"],
mode='markers', mode='markers',
name='trade_buy', name='Trade buy',
text=trades["desc"],
marker=dict(
symbol='circle-open',
size=11,
line=dict(width=2),
color='cyan'
)
)
trade_sells = go.Scatter(
x=trades.loc[trades['profitperc'] > 0, "close_time"],
y=trades.loc[trades['profitperc'] > 0, "close_rate"],
text=trades.loc[trades['profitperc'] > 0, "desc"],
mode='markers',
name='Sell - Profit',
marker=dict( marker=dict(
symbol='square-open', symbol='square-open',
size=11, size=11,
@@ -119,16 +145,12 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
color='green' color='green'
) )
) )
# Create description for sell summarizing the trade trade_sells_loss = go.Scatter(
desc = trades.apply(lambda row: f"{round(row['profitperc'], 3)}%, {row['sell_reason']}, " x=trades.loc[trades['profitperc'] <= 0, "close_time"],
f"{row['duration']}min", y=trades.loc[trades['profitperc'] <= 0, "close_rate"],
axis=1) text=trades.loc[trades['profitperc'] <= 0, "desc"],
trade_sells = go.Scatter(
x=trades["close_time"],
y=trades["close_rate"],
text=desc,
mode='markers', mode='markers',
name='trade_sell', name='Sell - Loss',
marker=dict( marker=dict(
symbol='square-open', symbol='square-open',
size=11, size=11,
@@ -138,14 +160,53 @@ def plot_trades(fig, trades: pd.DataFrame) -> make_subplots:
) )
fig.add_trace(trade_buys, 1, 1) fig.add_trace(trade_buys, 1, 1)
fig.add_trace(trade_sells, 1, 1) fig.add_trace(trade_sells, 1, 1)
fig.add_trace(trade_sells_loss, 1, 1)
else: else:
logger.warning("No trades found.") logger.warning("No trades found.")
return fig return fig
def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFrame = None, def create_plotconfig(indicators1: List[str], indicators2: List[str],
plot_config: Dict[str, Dict]) -> Dict[str, Dict]:
"""
Combines indicators 1 and indicators 2 into plot_config if necessary
:param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators
:param plot_config: Dict of Dicts containing advanced plot configuration
:return: plot_config - eventually with indicators 1 and 2
"""
if plot_config:
if indicators1:
plot_config['main_plot'] = {ind: {} for ind in indicators1}
if indicators2:
plot_config['subplots'] = {'Other': {ind: {} for ind in indicators2}}
if not plot_config:
# If no indicators and no plot-config given, use defaults.
if not indicators1:
indicators1 = ['sma', 'ema3', 'ema5']
if not indicators2:
indicators2 = ['macd', 'macdsignal']
# Create subplot configuration if plot_config is not available.
plot_config = {
'main_plot': {ind: {} for ind in indicators1},
'subplots': {'Other': {ind: {} for ind in indicators2}},
}
if 'main_plot' not in plot_config:
plot_config['main_plot'] = {}
if 'subplots' not in plot_config:
plot_config['subplots'] = {}
return plot_config
def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFrame = None, *,
indicators1: List[str] = [], indicators1: List[str] = [],
indicators2: List[str] = [],) -> go.Figure: indicators2: List[str] = [],
plot_config: Dict[str, Dict] = {},
) -> go.Figure:
""" """
Generate the graph from the data generated by Backtesting or from DB Generate the graph from the data generated by Backtesting or from DB
Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators Volume will always be ploted in row2, so Row 1 and 3 are to our disposal for custom indicators
@@ -154,21 +215,26 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
:param trades: All trades created :param trades: All trades created
:param indicators1: List containing Main plot indicators :param indicators1: List containing Main plot indicators
:param indicators2: List containing Sub plot indicators :param indicators2: List containing Sub plot indicators
:return: None :param plot_config: Dict of Dicts containing advanced plot configuration
:return: Plotly figure
""" """
plot_config = create_plotconfig(indicators1, indicators2, plot_config)
rows = 2 + len(plot_config['subplots'])
row_widths = [1 for _ in plot_config['subplots']]
# Define the graph # Define the graph
fig = make_subplots( fig = make_subplots(
rows=3, rows=rows,
cols=1, cols=1,
shared_xaxes=True, shared_xaxes=True,
row_width=[1, 1, 4], row_width=row_widths + [1, 4],
vertical_spacing=0.0001, vertical_spacing=0.0001,
) )
fig['layout'].update(title=pair) fig['layout'].update(title=pair)
fig['layout']['yaxis1'].update(title='Price') fig['layout']['yaxis1'].update(title='Price')
fig['layout']['yaxis2'].update(title='Volume') fig['layout']['yaxis2'].update(title='Volume')
fig['layout']['yaxis3'].update(title='Other') for i, name in enumerate(plot_config['subplots']):
fig['layout'][f'yaxis{3 + i}'].update(title=name)
fig['layout']['xaxis']['rangeslider'].update(visible=False) fig['layout']['xaxis']['rangeslider'].update(visible=False)
# Common information # Common information
@@ -238,12 +304,13 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
) )
fig.add_trace(bb_lower, 1, 1) fig.add_trace(bb_lower, 1, 1)
fig.add_trace(bb_upper, 1, 1) fig.add_trace(bb_upper, 1, 1)
if 'bb_upperband' in indicators1 and 'bb_lowerband' in indicators1: if ('bb_upperband' in plot_config['main_plot']
indicators1.remove('bb_upperband') and 'bb_lowerband' in plot_config['main_plot']):
indicators1.remove('bb_lowerband') del plot_config['main_plot']['bb_upperband']
del plot_config['main_plot']['bb_lowerband']
# Add indicators to main plot # Add indicators to main plot
fig = add_indicators(fig=fig, row=1, indicators=indicators1, data=data) fig = add_indicators(fig=fig, row=1, indicators=plot_config['main_plot'], data=data)
fig = plot_trades(fig, trades) fig = plot_trades(fig, trades)
@@ -254,11 +321,14 @@ def generate_candlestick_graph(pair: str, data: pd.DataFrame, trades: pd.DataFra
name='Volume', name='Volume',
marker_color='DarkSlateGrey', marker_color='DarkSlateGrey',
marker_line_color='DarkSlateGrey' marker_line_color='DarkSlateGrey'
) )
fig.add_trace(volume, 2, 1) fig.add_trace(volume, 2, 1)
# Add indicators to separate row # Add indicators to separate row
fig = add_indicators(fig=fig, row=3, indicators=indicators2, data=data) for i, name in enumerate(plot_config['subplots']):
fig = add_indicators(fig=fig, row=3 + i,
indicators=plot_config['subplots'][name],
data=data)
return fig return fig
@@ -300,12 +370,12 @@ def generate_profit_graph(pairs: str, tickers: Dict[str, pd.DataFrame],
return fig return fig
def generate_plot_filename(pair, ticker_interval) -> str: def generate_plot_filename(pair, timeframe) -> str:
""" """
Generate filenames per pair/ticker_interval to be used for storing plots Generate filenames per pair/timeframe to be used for storing plots
""" """
pair_name = pair.replace("/", "_") pair_name = pair.replace("/", "_")
file_name = 'freqtrade-plot-' + pair_name + '-' + ticker_interval + '.html' file_name = 'freqtrade-plot-' + pair_name + '-' + timeframe + '.html'
logger.info('Generate plot file for %s', pair) logger.info('Generate plot file for %s', pair)
@@ -316,8 +386,9 @@ def store_plot_file(fig, filename: str, directory: Path, auto_open: bool = False
""" """
Generate a plot html file from pre populated fig plotly object Generate a plot html file from pre populated fig plotly object
:param fig: Plotly Figure to plot :param fig: Plotly Figure to plot
:param pair: Pair to plot (used as filename and Plot title) :param filename: Name to store the file as
:param ticker_interval: Used as part of the filename :param directory: Directory to store the file in
:param auto_open: Automatically open files saved
:return: None :return: None
""" """
directory.mkdir(parents=True, exist_ok=True) directory.mkdir(parents=True, exist_ok=True)
@@ -339,7 +410,7 @@ def load_and_plot_trades(config: Dict[str, Any]):
- Generate plot files - Generate plot files
:return: None :return: None
""" """
strategy = StrategyResolver(config).strategy strategy = StrategyResolver.load_strategy(config)
plot_elements = init_plotscript(config) plot_elements = init_plotscript(config)
trades = plot_elements['trades'] trades = plot_elements['trades']
@@ -358,8 +429,9 @@ def load_and_plot_trades(config: Dict[str, Any]):
pair=pair, pair=pair,
data=dataframe, data=dataframe,
trades=trades_pair, trades=trades_pair,
indicators1=config["indicators1"], indicators1=config.get("indicators1", []),
indicators2=config["indicators2"], indicators2=config.get("indicators2", []),
plot_config=strategy.plot_config if hasattr(strategy, 'plot_config') else {}
) )
store_plot_file(fig, filename=generate_plot_filename(pair, config['ticker_interval']), store_plot_file(fig, filename=generate_plot_filename(pair, config['ticker_interval']),
@@ -376,12 +448,14 @@ def plot_profit(config: Dict[str, Any]) -> None:
in helping out to find a good algorithm. in helping out to find a good algorithm.
""" """
plot_elements = init_plotscript(config) plot_elements = init_plotscript(config)
trades = load_trades(config['trade_source'], trades = plot_elements['trades']
db_url=str(config.get('db_url')),
exportfilename=str(config.get('exportfilename')),
)
# Filter trades to relevant pairs # Filter trades to relevant pairs
trades = trades[trades['pair'].isin(plot_elements["pairs"])] # Remove open pairs - we don't know the profit yet so can't calculate profit for these.
# Also, If only one open pair is left, then the profit-generation would fail.
trades = trades[(trades['pair'].isin(plot_elements["pairs"]))
& (~trades['close_time'].isnull())
]
# Create an average close price of all the pairs that were involved. # Create an average close price of all the pairs that were involved.
# this could be useful to gauge the overall market trend # this could be useful to gauge the overall market trend
fig = generate_profit_graph(plot_elements["pairs"], plot_elements["tickers"], fig = generate_profit_graph(plot_elements["pairs"], plot_elements["tickers"],

View File

@@ -14,10 +14,10 @@ class ExchangeResolver(IResolver):
""" """
This class contains all the logic to load a custom exchange class This class contains all the logic to load a custom exchange class
""" """
object_type = Exchange
__slots__ = ['exchange'] @staticmethod
def load_exchange(exchange_name: str, config: dict, validate: bool = True) -> Exchange:
def __init__(self, exchange_name: str, config: dict, validate: bool = True) -> None:
""" """
Load the custom class from config parameter Load the custom class from config parameter
:param config: configuration dictionary :param config: configuration dictionary
@@ -25,17 +25,20 @@ class ExchangeResolver(IResolver):
# Map exchange name to avoid duplicate classes for identical exchanges # Map exchange name to avoid duplicate classes for identical exchanges
exchange_name = MAP_EXCHANGE_CHILDCLASS.get(exchange_name, exchange_name) exchange_name = MAP_EXCHANGE_CHILDCLASS.get(exchange_name, exchange_name)
exchange_name = exchange_name.title() exchange_name = exchange_name.title()
exchange = None
try: try:
self.exchange = self._load_exchange(exchange_name, kwargs={'config': config, exchange = ExchangeResolver._load_exchange(exchange_name,
'validate': validate}) kwargs={'config': config,
'validate': validate})
except ImportError: except ImportError:
logger.info( logger.info(
f"No {exchange_name} specific subclass found. Using the generic class instead.") f"No {exchange_name} specific subclass found. Using the generic class instead.")
if not hasattr(self, "exchange"): if not exchange:
self.exchange = Exchange(config, validate=validate) exchange = Exchange(config, validate=validate)
return exchange
def _load_exchange( @staticmethod
self, exchange_name: str, kwargs: dict) -> Exchange: def _load_exchange(exchange_name: str, kwargs: dict) -> Exchange:
""" """
Loads the specified exchange. Loads the specified exchange.
Only checks for exchanges exported in freqtrade.exchanges Only checks for exchanges exported in freqtrade.exchanges

View File

@@ -1,14 +1,14 @@
# pragma pylint: disable=attribute-defined-outside-init # pragma pylint: disable=attribute-defined-outside-init
""" """
This module load custom hyperopts This module load custom hyperopt
""" """
import logging import logging
from pathlib import Path from pathlib import Path
from typing import Optional, Dict from typing import Dict
from freqtrade import OperationalException from freqtrade.constants import DEFAULT_HYPEROPT_LOSS, USERPATH_HYPEROPTS
from freqtrade.constants import DEFAULT_HYPEROPT, DEFAULT_HYPEROPT_LOSS from freqtrade.exceptions import OperationalException
from freqtrade.optimize.hyperopt_interface import IHyperOpt from freqtrade.optimize.hyperopt_interface import IHyperOpt
from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss from freqtrade.optimize.hyperopt_loss_interface import IHyperOptLoss
from freqtrade.resolvers import IResolver from freqtrade.resolvers import IResolver
@@ -20,98 +20,68 @@ class HyperOptResolver(IResolver):
""" """
This class contains all the logic to load custom hyperopt class This class contains all the logic to load custom hyperopt class
""" """
object_type = IHyperOpt
object_type_str = "Hyperopt"
user_subdir = USERPATH_HYPEROPTS
initial_search_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
__slots__ = ['hyperopt'] @staticmethod
def load_hyperopt(config: Dict) -> IHyperOpt:
def __init__(self, config: Dict) -> None:
""" """
Load the custom class from config parameter Load the custom hyperopt class from config parameter
:param config: configuration dictionary :param config: configuration dictionary
""" """
if not config.get('hyperopt'):
raise OperationalException("No Hyperopt set. Please use `--hyperopt` to specify "
"the Hyperopt class to use.")
# Verify the hyperopt is in the configuration, otherwise fallback to the default hyperopt hyperopt_name = config['hyperopt']
hyperopt_name = config.get('hyperopt') or DEFAULT_HYPEROPT
self.hyperopt = self._load_hyperopt(hyperopt_name, config,
extra_dir=config.get('hyperopt_path'))
if not hasattr(self.hyperopt, 'populate_buy_trend'): hyperopt = HyperOptResolver.load_object(hyperopt_name, config,
kwargs={'config': config},
extra_dir=config.get('hyperopt_path'))
if not hasattr(hyperopt, 'populate_indicators'):
logger.warning("Hyperopt class does not provide populate_indicators() method. "
"Using populate_indicators from the strategy.")
if not hasattr(hyperopt, 'populate_buy_trend'):
logger.warning("Hyperopt class does not provide populate_buy_trend() method. " logger.warning("Hyperopt class does not provide populate_buy_trend() method. "
"Using populate_buy_trend from the strategy.") "Using populate_buy_trend from the strategy.")
if not hasattr(self.hyperopt, 'populate_sell_trend'): if not hasattr(hyperopt, 'populate_sell_trend'):
logger.warning("Hyperopt class does not provide populate_sell_trend() method. " logger.warning("Hyperopt class does not provide populate_sell_trend() method. "
"Using populate_sell_trend from the strategy.") "Using populate_sell_trend from the strategy.")
return hyperopt
def _load_hyperopt(
self, hyperopt_name: str, config: Dict, extra_dir: Optional[str] = None) -> IHyperOpt:
"""
Search and loads the specified hyperopt.
:param hyperopt_name: name of the module to import
:param config: configuration dictionary
:param extra_dir: additional directory to search for the given hyperopt
:return: HyperOpt instance or None
"""
current_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
abs_paths = self.build_search_paths(config, current_path=current_path,
user_subdir='hyperopts', extra_dir=extra_dir)
hyperopt = self._load_object(paths=abs_paths, object_type=IHyperOpt,
object_name=hyperopt_name, kwargs={'config': config})
if hyperopt:
return hyperopt
raise OperationalException(
f"Impossible to load Hyperopt '{hyperopt_name}'. This class does not exist "
"or contains Python code errors."
)
class HyperOptLossResolver(IResolver): class HyperOptLossResolver(IResolver):
""" """
This class contains all the logic to load custom hyperopt loss class This class contains all the logic to load custom hyperopt loss class
""" """
object_type = IHyperOptLoss
object_type_str = "HyperoptLoss"
user_subdir = USERPATH_HYPEROPTS
initial_search_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
__slots__ = ['hyperoptloss'] @staticmethod
def load_hyperoptloss(config: Dict) -> IHyperOptLoss:
def __init__(self, config: Dict = None) -> None:
""" """
Load the custom class from config parameter Load the custom class from config parameter
:param config: configuration dictionary or None :param config: configuration dictionary
""" """
config = config or {}
# Verify the hyperopt is in the configuration, otherwise fallback to the default hyperopt # Verify the hyperopt_loss is in the configuration, otherwise fallback to the
hyperopt_name = config.get('hyperopt_loss') or DEFAULT_HYPEROPT_LOSS # default hyperopt loss
self.hyperoptloss = self._load_hyperoptloss( hyperoptloss_name = config.get('hyperopt_loss') or DEFAULT_HYPEROPT_LOSS
hyperopt_name, config, extra_dir=config.get('hyperopt_path'))
hyperoptloss = HyperOptLossResolver.load_object(hyperoptloss_name,
config, kwargs={},
extra_dir=config.get('hyperopt_path'))
# Assign ticker_interval to be used in hyperopt # Assign ticker_interval to be used in hyperopt
self.hyperoptloss.__class__.ticker_interval = str(config['ticker_interval']) hyperoptloss.__class__.ticker_interval = str(config['ticker_interval'])
if not hasattr(self.hyperoptloss, 'hyperopt_loss_function'): if not hasattr(hyperoptloss, 'hyperopt_loss_function'):
raise OperationalException( raise OperationalException(
f"Found hyperopt {hyperopt_name} does not implement `hyperopt_loss_function`.") f"Found HyperoptLoss class {hyperoptloss_name} does not "
"implement `hyperopt_loss_function`.")
def _load_hyperoptloss( return hyperoptloss
self, hyper_loss_name: str, config: Dict,
extra_dir: Optional[str] = None) -> IHyperOptLoss:
"""
Search and loads the specified hyperopt loss class.
:param hyper_loss_name: name of the module to import
:param config: configuration dictionary
:param extra_dir: additional directory to search for the given hyperopt
:return: HyperOptLoss instance or None
"""
current_path = Path(__file__).parent.parent.joinpath('optimize').resolve()
abs_paths = self.build_search_paths(config, current_path=current_path,
user_subdir='hyperopts', extra_dir=extra_dir)
hyperoptloss = self._load_object(paths=abs_paths, object_type=IHyperOptLoss,
object_name=hyper_loss_name)
if hyperoptloss:
return hyperoptloss
raise OperationalException(
f"Impossible to load HyperoptLoss '{hyper_loss_name}'. This class does not exist "
"or contains Python code errors."
)

View File

@@ -7,7 +7,9 @@ import importlib.util
import inspect import inspect
import logging import logging
from pathlib import Path from pathlib import Path
from typing import Any, List, Optional, Tuple, Union, Generator from typing import Any, Dict, Generator, List, Optional, Tuple, Type, Union
from freqtrade.exceptions import OperationalException
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@@ -16,14 +18,20 @@ class IResolver:
""" """
This class contains all the logic to load custom classes This class contains all the logic to load custom classes
""" """
# Childclasses need to override this
object_type: Type[Any]
object_type_str: str
user_subdir: Optional[str] = None
initial_search_path: Path
def build_search_paths(self, config, current_path: Path, user_subdir: str, @classmethod
def build_search_paths(cls, config, user_subdir: Optional[str] = None,
extra_dir: Optional[str] = None) -> List[Path]: extra_dir: Optional[str] = None) -> List[Path]:
abs_paths = [ abs_paths: List[Path] = [cls.initial_search_path]
config['user_data_dir'].joinpath(user_subdir),
current_path, if user_subdir:
] abs_paths.insert(0, config['user_data_dir'].joinpath(user_subdir))
if extra_dir: if extra_dir:
# Add extra directory to the top of the search paths # Add extra directory to the top of the search paths
@@ -31,12 +39,11 @@ class IResolver:
return abs_paths return abs_paths
@staticmethod @classmethod
def _get_valid_object(object_type, module_path: Path, def _get_valid_object(cls, module_path: Path,
object_name: str) -> Generator[Any, None, None]: object_name: Optional[str]) -> Generator[Any, None, None]:
""" """
Generator returning objects with matching object_type and object_name in the path given. Generator returning objects with matching object_type and object_name in the path given.
:param object_type: object_type (class)
:param module_path: absolute path to the module :param module_path: absolute path to the module
:param object_name: Class name of the object :param object_name: Class name of the object
:return: generator containing matching objects :return: generator containing matching objects
@@ -44,7 +51,7 @@ class IResolver:
# Generate spec based on absolute path # Generate spec based on absolute path
# Pass object_name as first argument to have logging print a reasonable name. # Pass object_name as first argument to have logging print a reasonable name.
spec = importlib.util.spec_from_file_location(object_name, str(module_path)) spec = importlib.util.spec_from_file_location(object_name or "", str(module_path))
module = importlib.util.module_from_spec(spec) module = importlib.util.module_from_spec(spec)
try: try:
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
@@ -54,19 +61,20 @@ class IResolver:
valid_objects_gen = ( valid_objects_gen = (
obj for name, obj in inspect.getmembers(module, inspect.isclass) obj for name, obj in inspect.getmembers(module, inspect.isclass)
if object_name == name and object_type in obj.__bases__ if (object_name is None or object_name == name) and cls.object_type in obj.__bases__
) )
return valid_objects_gen return valid_objects_gen
@staticmethod @classmethod
def _search_object(directory: Path, object_type, object_name: str, def _search_object(cls, directory: Path, object_name: str
kwargs: dict = {}) -> Union[Tuple[Any, Path], Tuple[None, None]]: ) -> Union[Tuple[Any, Path], Tuple[None, None]]:
""" """
Search for the objectname in the given directory Search for the objectname in the given directory
:param directory: relative or absolute directory path :param directory: relative or absolute directory path
:return: object instance :param object_name: ClassName of the object to load
:return: object class
""" """
logger.debug("Searching for %s %s in '%s'", object_type.__name__, object_name, directory) logger.debug(f"Searching for {cls.object_type.__name__} {object_name} in '{directory}'")
for entry in directory.iterdir(): for entry in directory.iterdir():
# Only consider python files # Only consider python files
if not str(entry).endswith('.py'): if not str(entry).endswith('.py'):
@@ -74,14 +82,14 @@ class IResolver:
continue continue
module_path = entry.resolve() module_path = entry.resolve()
obj = next(IResolver._get_valid_object(object_type, module_path, object_name), None) obj = next(cls._get_valid_object(module_path, object_name), None)
if obj: if obj:
return (obj(**kwargs), module_path) return (obj, module_path)
return (None, None) return (None, None)
@staticmethod @classmethod
def _load_object(paths: List[Path], object_type, object_name: str, def _load_object(cls, paths: List[Path], object_name: str,
kwargs: dict = {}) -> Optional[Any]: kwargs: dict = {}) -> Optional[Any]:
""" """
Try to load object from path list. Try to load object from path list.
@@ -89,16 +97,63 @@ class IResolver:
for _path in paths: for _path in paths:
try: try:
(module, module_path) = IResolver._search_object(directory=_path, (module, module_path) = cls._search_object(directory=_path,
object_type=object_type, object_name=object_name)
object_name=object_name,
kwargs=kwargs)
if module: if module:
logger.info( logger.info(
f"Using resolved {object_type.__name__.lower()[1:]} {object_name} " f"Using resolved {cls.object_type.__name__.lower()[1:]} {object_name} "
f"from '{module_path}'...") f"from '{module_path}'...")
return module return module(**kwargs)
except FileNotFoundError: except FileNotFoundError:
logger.warning('Path "%s" does not exist.', _path.resolve()) logger.warning('Path "%s" does not exist.', _path.resolve())
return None return None
@classmethod
def load_object(cls, object_name: str, config: dict, kwargs: dict,
extra_dir: Optional[str] = None) -> Any:
"""
Search and loads the specified object as configured in hte child class.
:param objectname: name of the module to import
:param config: configuration dictionary
:param extra_dir: additional directory to search for the given pairlist
:raises: OperationalException if the class is invalid or does not exist.
:return: Object instance or None
"""
abs_paths = cls.build_search_paths(config,
user_subdir=cls.user_subdir,
extra_dir=extra_dir)
pairlist = cls._load_object(paths=abs_paths, object_name=object_name,
kwargs=kwargs)
if pairlist:
return pairlist
raise OperationalException(
f"Impossible to load {cls.object_type_str} '{object_name}'. This class does not exist "
"or contains Python code errors."
)
@classmethod
def search_all_objects(cls, directory: Path) -> List[Dict[str, Any]]:
"""
Searches a directory for valid objects
:param directory: Path to search
:return: List of dicts containing 'name', 'class' and 'location' entires
"""
logger.debug(f"Searching for {cls.object_type.__name__} '{directory}'")
objects = []
for entry in directory.iterdir():
# Only consider python files
if not str(entry).endswith('.py'):
logger.debug('Ignoring %s', entry)
continue
module_path = entry.resolve()
logger.debug(f"Path {module_path}")
for obj in cls._get_valid_object(module_path, object_name=None):
objects.append(
{'name': obj.__name__,
'class': obj,
'location': entry,
})
return objects

Some files were not shown because too many files have changed in this diff Show More