Merge pull request #2451 from freqtrade/bt_analysis_maxopen

Bt analysis maxopen at any time
This commit is contained in:
hroff-1902 2019-11-01 00:13:31 +03:00 committed by GitHub
commit f435384bf0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 83 additions and 16 deletions

View File

@ -107,6 +107,22 @@ trades = load_trades_from_db("sqlite:///tradesv3.sqlite")
trades.groupby("pair")["sell_reason"].value_counts()
```
## Analyze the loaded trades for trade parallelism
This can be useful to find the best `max_open_trades` parameter, when used with backtesting in conjunction with `--disable-max-market-positions`.
`analyze_trade_parallelism()` returns a timeseries dataframe with an "open_trades" column, specifying the number of open trades for each candle.
```python
from freqtrade.data.btanalysis import analyze_trade_parallelism
# Analyze the above
parallel_trades = analyze_trade_parallelism(trades, '5m')
parallel_trades.plot()
```
## Plot results
Freqtrade offers interactive plotting capabilities based on plotly.

View File

@ -52,16 +52,18 @@ def load_backtest_data(filename) -> pd.DataFrame:
return df
def evaluate_result_multi(results: pd.DataFrame, freq: str, max_open_trades: int) -> pd.DataFrame:
def analyze_trade_parallelism(results: pd.DataFrame, timeframe: str) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps
and then counting overlaps.
:param results: Results Dataframe - can be loaded
:param freq: Frequency used for the backtest
:param max_open_trades: parameter max_open_trades used during backtest run
:return: dataframe with open-counts per time-period in freq
:param timeframe: Timeframe used for backtest
:return: dataframe with open-counts per time-period in timeframe
"""
dates = [pd.Series(pd.date_range(row[1].open_time, row[1].close_time, freq=freq))
from freqtrade.exchange import timeframe_to_minutes
timeframe_min = timeframe_to_minutes(timeframe)
dates = [pd.Series(pd.date_range(row[1].open_time, row[1].close_time,
freq=f"{timeframe_min}min"))
for row in results[['open_time', 'close_time']].iterrows()]
deltas = [len(x) for x in dates]
dates = pd.Series(pd.concat(dates).values, name='date')
@ -69,8 +71,23 @@ def evaluate_result_multi(results: pd.DataFrame, freq: str, max_open_trades: int
df2 = pd.concat([dates, df2], axis=1)
df2 = df2.set_index('date')
df_final = df2.resample(freq)[['pair']].count()
return df_final[df_final['pair'] > max_open_trades]
df_final = df2.resample(f"{timeframe_min}min")[['pair']].count()
df_final = df_final.rename({'pair': 'open_trades'}, axis=1)
return df_final
def evaluate_result_multi(results: pd.DataFrame, timeframe: str,
max_open_trades: int) -> pd.DataFrame:
"""
Find overlapping trades by expanding each trade once per period it was open
and then counting overlaps
:param results: Results Dataframe - can be loaded
:param timeframe: Frequency used for the backtest
:param max_open_trades: parameter max_open_trades used during backtest run
:return: dataframe with open-counts per time-period in freq
"""
df_final = analyze_trade_parallelism(results, timeframe)
return df_final[df_final['open_trades'] > max_open_trades]
def load_trades_from_db(db_url: str) -> pd.DataFrame:

View File

@ -10,7 +10,7 @@ from freqtrade.data.btanalysis import (BT_DATA_COLUMNS,
create_cum_profit,
extract_trades_of_period,
load_backtest_data, load_trades,
load_trades_from_db)
load_trades_from_db, analyze_trade_parallelism)
from freqtrade.data.history import load_data, load_pair_history
from tests.test_persistence import create_mock_trades
@ -32,7 +32,7 @@ def test_load_backtest_data(testdatadir):
@pytest.mark.usefixtures("init_persistence")
def test_load_trades_db(default_conf, fee, mocker):
def test_load_trades_from_db(default_conf, fee, mocker):
create_mock_trades(fee)
# remove init so it does not init again
@ -84,6 +84,17 @@ def test_extract_trades_of_period(testdatadir):
assert trades1.iloc[-1].close_time == Arrow(2017, 11, 14, 15, 25, 0).datetime
def test_analyze_trade_parallelism(default_conf, mocker, testdatadir):
filename = testdatadir / "backtest-result_test.json"
bt_data = load_backtest_data(filename)
res = analyze_trade_parallelism(bt_data, "5m")
assert isinstance(res, DataFrame)
assert 'open_trades' in res.columns
assert res['open_trades'].max() == 3
assert res['open_trades'].min() == 0
def test_load_trades(default_conf, mocker):
db_mock = mocker.patch("freqtrade.data.btanalysis.load_trades_from_db", MagicMock())
bt_mock = mocker.patch("freqtrade.data.btanalysis.load_backtest_data", MagicMock())

View File

@ -714,9 +714,9 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir)
results = backtesting.backtest(backtest_conf)
# Make sure we have parallel trades
assert len(evaluate_result_multi(results, '5min', 2)) > 0
assert len(evaluate_result_multi(results, '5m', 2)) > 0
# make sure we don't have trades with more than configured max_open_trades
assert len(evaluate_result_multi(results, '5min', 3)) == 0
assert len(evaluate_result_multi(results, '5m', 3)) == 0
backtest_conf = {
'stake_amount': default_conf['stake_amount'],
@ -727,7 +727,7 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir)
'end_date': max_date,
}
results = backtesting.backtest(backtest_conf)
assert len(evaluate_result_multi(results, '5min', 1)) == 0
assert len(evaluate_result_multi(results, '5m', 1)) == 0
def test_backtest_record(default_conf, fee, mocker):

View File

@ -68,9 +68,7 @@
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"metadata": {},
"outputs": [],
"source": [
"# Load strategy using values set above\n",
@ -169,6 +167,31 @@
"trades.groupby(\"pair\")[\"sell_reason\"].value_counts()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analyze the loaded trades for trade parallelism\n",
"This can be useful to find the best `max_open_trades` parameter, when used with backtesting in conjunction with `--disable-max-market-positions`.\n",
"\n",
"`analyze_trade_parallelism()` returns a timeseries dataframe with an \"open_trades\" column, specifying the number of open trades for each candle."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from freqtrade.data.btanalysis import analyze_trade_parallelism\n",
"\n",
"# Analyze the above\n",
"parallel_trades = analyze_trade_parallelism(trades, '5m')\n",
"\n",
"\n",
"parallel_trades.plot()"
]
},
{
"cell_type": "markdown",
"metadata": {},