Make CLI option and docs clearer that we're handling signals not trades

This commit is contained in:
froggleston 2022-12-08 18:47:09 +00:00
parent 854f056eaf
commit f5359985e8
7 changed files with 34 additions and 34 deletions

View File

@ -116,12 +116,12 @@ For example, if your backtest timerange was `20220101-20221231` but you only wan
freqtrade backtesting-analysis -c <config.json> --timerange 20220101-20220201
```
### Printing out rejected trades
### Printing out rejected signals
Use the `--rejected` option to print out rejected trades.
Use the `--rejected-signals` option to print out rejected signals.
```bash
freqtrade backtesting-analysis -c <config.json> --rejected
freqtrade backtesting-analysis -c <config.json> --rejected-signals
```
### Writing tables to CSV
@ -136,11 +136,11 @@ freqtrade backtesting-analysis -c <config.json> --analysis-to-csv
By default this will write one file per output table you specified in the `backtesting-analysis` command, e.g.
```bash
freqtrade backtesting-analysis -c <config.json> --analysis-to-csv --rejected --analysis-groups 0 1
freqtrade backtesting-analysis -c <config.json> --analysis-to-csv --rejected-signals --analysis-groups 0 1
```
This will write to `user_data/backtest_results`:
* rejected.csv
* rejected_signals.csv
* group_0.csv
* group_1.csv

View File

@ -659,8 +659,8 @@ AVAILABLE_CLI_OPTIONS = {
default=[],
),
"analysis_rejected": Arg(
'--rejected',
help='Analyse rejected trades',
'--rejected-signals',
help='Analyse rejected signals',
action='store_true',
),
"analysis_to_csv": Arg(

View File

@ -466,7 +466,7 @@ class Configuration:
logstring='Filter trades by timerange: {}')
self._args_to_config(config, argname='analysis_rejected',
logstring='Analyse rejected trades: {}')
logstring='Analyse rejected signals: {}')
self._args_to_config(config, argname='analysis_to_csv',
logstring='Store analysis tables to CSV: {}')

View File

@ -25,15 +25,15 @@ def _load_backtest_analysis_data(backtest_dir: Path, name: str):
try:
scp = open(scpf, "rb")
rejected_trades = joblib.load(scp)
loaded_data = joblib.load(scp)
logger.info(f"Loaded {name} data: {str(scpf)}")
except Exception as e:
logger.error(f"Cannot load {name} data from pickled results: ", e)
return rejected_trades
return loaded_data
def _load_rejected_trades(backtest_dir: Path):
def _load_rejected_signals(backtest_dir: Path):
return _load_backtest_analysis_data(backtest_dir, "rejected")
@ -163,13 +163,13 @@ def _do_group_table_output(bigdf, glist, to_csv=False, csv_path=None):
logger.warning("Invalid group mask specified.")
def _do_rejected_trades_output(rejected_trades_df, to_csv=False, csv_path=None):
def _do_rejected_signals_output(rejected_signals_df, to_csv=False, csv_path=None):
cols = ['pair', 'date', 'enter_tag']
sortcols = ['date', 'pair', 'enter_tag']
_print_table(rejected_trades_df[cols],
_print_table(rejected_signals_df[cols],
sortcols,
show_index=False,
name="Rejected Trades:",
name="Rejected Signals:",
to_csv=to_csv,
csv_path=csv_path)
@ -208,13 +208,13 @@ def prepare_results(analysed_trades, stratname,
def print_results(res_df, analysis_groups, indicator_list,
rejected_trades=None, to_csv=False, csv_path=None):
rejected_signals=None, to_csv=False, csv_path=None):
if res_df.shape[0] > 0:
if analysis_groups:
_do_group_table_output(res_df, analysis_groups, to_csv=to_csv, csv_path=csv_path)
if rejected_trades is not None and not rejected_trades.empty:
_do_rejected_trades_output(rejected_trades, to_csv=to_csv, csv_path=csv_path)
if rejected_signals is not None and not rejected_signals.empty:
_do_rejected_signals_output(rejected_signals, to_csv=to_csv, csv_path=csv_path)
# NB this can be large for big dataframes!
if "all" in indicator_list:
@ -291,8 +291,8 @@ def process_entry_exit_reasons(config: Config):
rej_df = None
if do_rejected:
rejected_trades_dict = _load_rejected_trades(config['exportfilename'])
rej_df = prepare_results(rejected_trades_dict, strategy_name,
rejected_signals_dict = _load_rejected_signals(config['exportfilename'])
rej_df = prepare_results(rejected_signals_dict, strategy_name,
enter_reason_list, exit_reason_list,
timerange=timerange)
@ -307,7 +307,7 @@ def process_entry_exit_reasons(config: Config):
print_results(res_df,
analysis_groups,
indicator_list,
rejected_trades=rej_df,
rejected_signals=rej_df,
to_csv=to_csv,
csv_path=csv_path)

View File

@ -29,7 +29,7 @@ from freqtrade.mixins import LoggingMixin
from freqtrade.optimize.backtest_caching import get_strategy_run_id
from freqtrade.optimize.bt_progress import BTProgress
from freqtrade.optimize.optimize_reports import (generate_backtest_stats, show_backtest_results,
store_backtest_rejected_trades,
store_backtest_rejected_signals,
store_backtest_signal_candles,
store_backtest_stats)
from freqtrade.persistence import LocalTrade, Order, PairLocks, Trade
@ -1053,7 +1053,7 @@ class Backtesting:
def _collate_rejected(self, pair, row):
"""
Temporarily store rejected trade information for downstream use in backtesting_analysis
Temporarily store rejected signal information for downstream use in backtesting_analysis
"""
# It could be fun to enable hyperopt mode to write
# a loss function to reduce rejected signals
@ -1283,7 +1283,7 @@ class Backtesting:
if (self.config.get('export', 'none') == 'signals' and
self.dataprovider.runmode == RunMode.BACKTEST):
self._generate_trade_signal_candles(preprocessed_tmp, results)
self._generate_rejected_trades(preprocessed_tmp, self.rejected_dict)
self._generate_rejected_signals(preprocessed_tmp, self.rejected_dict)
return min_date, max_date
@ -1308,22 +1308,22 @@ class Backtesting:
self.processed_dfs[self.strategy.get_strategy_name()] = signal_candles_only
def _generate_rejected_trades(self, preprocessed_df, rejected_dict):
def _generate_rejected_signals(self, preprocessed_df, rejected_dict):
rejected_candles_only = {}
for pair, trades in rejected_dict.items():
rejected_trades_only_df = DataFrame()
for pair, signals in rejected_dict.items():
rejected_signals_only_df = DataFrame()
pairdf = preprocessed_df[pair]
for t in trades:
for t in signals:
data_df_row = pairdf.loc[(pairdf['date'] == t[0])].copy()
data_df_row['pair'] = pair
data_df_row['enter_tag'] = t[1]
rejected_trades_only_df = pd.concat([
rejected_trades_only_df.infer_objects(),
rejected_signals_only_df = pd.concat([
rejected_signals_only_df.infer_objects(),
data_df_row.infer_objects()])
rejected_candles_only[pair] = rejected_trades_only_df
rejected_candles_only[pair] = rejected_signals_only_df
self.rejected_df[self.strategy.get_strategy_name()] = rejected_candles_only
@ -1392,7 +1392,7 @@ class Backtesting:
store_backtest_signal_candles(
self.config['exportfilename'], self.processed_dfs, dt_appendix)
store_backtest_rejected_trades(
store_backtest_rejected_signals(
self.config['exportfilename'], self.rejected_df, dt_appendix)
# Results may be mixed up now. Sort them so they follow --strategy-list order.

View File

@ -75,7 +75,7 @@ def store_backtest_signal_candles(
return _store_backtest_analysis_data(Path(recordfilename), candles, dtappendix, "signals")
def store_backtest_rejected_trades(
def store_backtest_rejected_signals(
recordfilename: Path, trades: Dict[str, Dict], dtappendix: str) -> Path:
return _store_backtest_analysis_data(Path(recordfilename), trades, dtappendix, "rejected")

View File

@ -201,8 +201,8 @@ def test_backtest_analysis_nomock(default_conf, mocker, caplog, testdatadir, tmp
assert 'enter_tag_long_b' not in captured.out
# test rejected - how to mock this?
# args = get_args(base_args + ['--rejected'])
# args = get_args(base_args + ['--rejected-signals'])
# start_analysis_entries_exits(args)
# captured = capsys.readouterr()
# assert 'Rejected Trades:' in captured.out
# assert 'Rejected Signals:' in captured.out
# assert False