No need for np; make flake happy
This commit is contained in:
parent
8e6ab0eaaf
commit
f3e94969b3
@ -4,10 +4,10 @@ SharpeHyperOptLossDaily
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
import math
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame, date_range
|
||||
import numpy as np
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
@ -35,7 +35,8 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
|
||||
risk_free_rate = annual_risk_free_rate / days_in_year
|
||||
|
||||
# apply slippage per trade to profit_percent
|
||||
results.loc[:, 'profit_percent_after_slippage'] = results['profit_percent'] - slippage_per_trade_ratio
|
||||
results.loc[:, 'profit_percent_after_slippage'] = \
|
||||
results['profit_percent'] - slippage_per_trade_ratio
|
||||
|
||||
# create the index within the min_date and end max_date
|
||||
t_index = date_range(start=min_date, end=max_date, freq=resample_freq)
|
||||
@ -50,11 +51,11 @@ class SharpeHyperOptLossDaily(IHyperOptLoss):
|
||||
up_stdev = total_profit.std()
|
||||
|
||||
if (up_stdev != 0.):
|
||||
sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(days_in_year)
|
||||
sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year)
|
||||
else:
|
||||
# Define high (negative) sharpe ratio to be clear that this is NOT optimal.
|
||||
sharp_ratio = -20.
|
||||
|
||||
#print(t_index, sum_daily, total_profit)
|
||||
#print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio)
|
||||
# print(t_index, sum_daily, total_profit)
|
||||
# print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio)
|
||||
return -sharp_ratio
|
||||
|
Loading…
Reference in New Issue
Block a user