diff --git a/freqtrade/optimize/hyperopt_loss_sharpe_daily.py b/freqtrade/optimize/hyperopt_loss_sharpe_daily.py index f9394d78a..2c73b8e61 100644 --- a/freqtrade/optimize/hyperopt_loss_sharpe_daily.py +++ b/freqtrade/optimize/hyperopt_loss_sharpe_daily.py @@ -4,10 +4,10 @@ SharpeHyperOptLossDaily This module defines the alternative HyperOptLoss class which can be used for Hyperoptimization. """ +import math from datetime import datetime from pandas import DataFrame, date_range -import numpy as np from freqtrade.optimize.hyperopt import IHyperOptLoss @@ -35,7 +35,8 @@ class SharpeHyperOptLossDaily(IHyperOptLoss): risk_free_rate = annual_risk_free_rate / days_in_year # apply slippage per trade to profit_percent - results.loc[:, 'profit_percent_after_slippage'] = results['profit_percent'] - slippage_per_trade_ratio + results.loc[:, 'profit_percent_after_slippage'] = \ + results['profit_percent'] - slippage_per_trade_ratio # create the index within the min_date and end max_date t_index = date_range(start=min_date, end=max_date, freq=resample_freq) @@ -50,11 +51,11 @@ class SharpeHyperOptLossDaily(IHyperOptLoss): up_stdev = total_profit.std() if (up_stdev != 0.): - sharp_ratio = expected_returns_mean / up_stdev * np.sqrt(days_in_year) + sharp_ratio = expected_returns_mean / up_stdev * math.sqrt(days_in_year) else: # Define high (negative) sharpe ratio to be clear that this is NOT optimal. sharp_ratio = -20. - #print(t_index, sum_daily, total_profit) - #print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio) + # print(t_index, sum_daily, total_profit) + # print(risk_free_rate, expected_returns_mean, up_stdev, sharp_ratio) return -sharp_ratio