Merge pull request #1837 from hroff-1902/hyperopt-minor-1
minor: hyperopt output improvements
This commit is contained in:
commit
cfcf97b616
@ -33,6 +33,7 @@ from freqtrade.resolvers import HyperOptResolver
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
INITIAL_POINTS = 30
|
||||
MAX_LOSS = 100000 # just a big enough number to be bad result in loss optimization
|
||||
TICKERDATA_PICKLE = os.path.join('user_data', 'hyperopt_tickerdata.pkl')
|
||||
TRIALSDATA_PICKLE = os.path.join('user_data', 'hyperopt_results.pickle')
|
||||
@ -62,9 +63,11 @@ class Hyperopt(Backtesting):
|
||||
# if eval ends with higher value, we consider it a failed eval
|
||||
self.max_accepted_trade_duration = 300
|
||||
|
||||
# this is expexted avg profit * expected trade count
|
||||
# for example 3.5%, 1100 trades, self.expected_max_profit = 3.85
|
||||
# check that the reported Σ% values do not exceed this!
|
||||
# This is assumed to be expected avg profit * expected trade count.
|
||||
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||
# self.expected_max_profit = 3.85
|
||||
# Check that the reported Σ% values do not exceed this!
|
||||
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
||||
self.expected_max_profit = 3.0
|
||||
|
||||
# Previous evaluations
|
||||
@ -120,14 +123,20 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
Log results if it is better than any previous evaluation
|
||||
"""
|
||||
if self.config.get('print_all', False) or results['loss'] < self.current_best_loss:
|
||||
current = results['current_tries']
|
||||
print_all = self.config.get('print_all', False)
|
||||
if print_all or results['loss'] < self.current_best_loss:
|
||||
# Output human-friendly index here (starting from 1)
|
||||
current = results['current_tries'] + 1
|
||||
total = results['total_tries']
|
||||
res = results['result']
|
||||
loss = results['loss']
|
||||
self.current_best_loss = results['loss']
|
||||
log_msg = f'\n{current:5d}/{total}: {res}. Loss {loss:.5f}'
|
||||
print(log_msg)
|
||||
log_msg = f'{current:5d}/{total}: {res} Objective: {loss:.5f}'
|
||||
log_msg = f'*{log_msg}' if results['initial_point'] else f' {log_msg}'
|
||||
if print_all:
|
||||
print(log_msg)
|
||||
else:
|
||||
print('\n' + log_msg)
|
||||
else:
|
||||
print('.', end='')
|
||||
sys.stdout.flush()
|
||||
@ -204,8 +213,8 @@ class Hyperopt(Backtesting):
|
||||
trade_count = len(results.index)
|
||||
trade_duration = results.trade_duration.mean()
|
||||
|
||||
# If this evaluation contains too short small amount of trades
|
||||
# to be interesting -- consider it as 'bad' (assign max. loss value)
|
||||
# If this evaluation contains too short amount of trades to be
|
||||
# interesting -- consider it as 'bad' (assigned max. loss value)
|
||||
# in order to cast this hyperspace point away from optimization
|
||||
# path. We do not want to optimize 'hodl' strategies.
|
||||
if trade_count < self.config['hyperopt_min_trades']:
|
||||
@ -231,19 +240,19 @@ class Hyperopt(Backtesting):
|
||||
avg_profit = results.profit_percent.mean() * 100.0
|
||||
total_profit = results.profit_abs.sum()
|
||||
stake_cur = self.config['stake_currency']
|
||||
profit = results.profit_percent.sum()
|
||||
profit = results.profit_percent.sum() * 100.0
|
||||
duration = results.trade_duration.mean()
|
||||
|
||||
return (f'{trades:6d} trades. Avg profit {avg_profit: 5.2f}%. '
|
||||
f'Total profit {total_profit: 11.8f} {stake_cur} '
|
||||
f'({profit:.4f}Σ%). Avg duration {duration:5.1f} mins.')
|
||||
f'({profit: 7.2f}Σ%). Avg duration {duration:5.1f} mins.')
|
||||
|
||||
def get_optimizer(self, cpu_count) -> Optimizer:
|
||||
return Optimizer(
|
||||
self.hyperopt_space(),
|
||||
base_estimator="ET",
|
||||
acq_optimizer="auto",
|
||||
n_initial_points=30,
|
||||
n_initial_points=INITIAL_POINTS,
|
||||
acq_optimizer_kwargs={'n_jobs': cpu_count},
|
||||
random_state=self.config.get('hyperopt_random_state', None)
|
||||
)
|
||||
@ -301,15 +310,17 @@ class Hyperopt(Backtesting):
|
||||
|
||||
self.trials += f_val
|
||||
for j in range(jobs):
|
||||
current = i * jobs + j
|
||||
self.log_results({
|
||||
'loss': f_val[j]['loss'],
|
||||
'current_tries': i * jobs + j,
|
||||
'current_tries': current,
|
||||
'initial_point': current < INITIAL_POINTS,
|
||||
'total_tries': self.total_tries,
|
||||
'result': f_val[j]['result'],
|
||||
})
|
||||
logger.debug(f"Optimizer params: {f_val[j]['params']}")
|
||||
for j in range(jobs):
|
||||
logger.debug(f"Opimizer state: Xi: {opt.Xi[-j-1]}, yi: {opt.yi[-j-1]}")
|
||||
logger.debug(f"Optimizer state: Xi: {opt.Xi[-j-1]}, yi: {opt.yi[-j-1]}")
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
|
||||
|
@ -249,11 +249,12 @@ def test_log_results_if_loss_improves(hyperopt, capsys) -> None:
|
||||
'loss': 1,
|
||||
'current_tries': 1,
|
||||
'total_tries': 2,
|
||||
'result': 'foo'
|
||||
'result': 'foo.',
|
||||
'initial_point': False
|
||||
}
|
||||
)
|
||||
out, err = capsys.readouterr()
|
||||
assert ' 1/2: foo. Loss 1.00000' in out
|
||||
assert ' 2/2: foo. Objective: 1.00000' in out
|
||||
|
||||
|
||||
def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
|
||||
@ -459,7 +460,7 @@ def test_generate_optimizer(mocker, default_conf) -> None:
|
||||
response_expected = {
|
||||
'loss': 1.9840569076926293,
|
||||
'result': ' 1 trades. Avg profit 2.31%. Total profit 0.00023300 BTC '
|
||||
'(0.0231Σ%). Avg duration 100.0 mins.',
|
||||
'( 2.31Σ%). Avg duration 100.0 mins.',
|
||||
'params': optimizer_param
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user