Add sample hyperopt loss file
This commit is contained in:
parent
639a4d5cf7
commit
b8704e12b7
47
user_data/hyperopts/sample_hyperopt_loss.py
Normal file
47
user_data/hyperopts/sample_hyperopt_loss.py
Normal file
@ -0,0 +1,47 @@
|
||||
from math import exp
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
# Define some constants:
|
||||
|
||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||
# to the number of days
|
||||
TARGET_TRADES = 600
|
||||
# This is assumed to be expected avg profit * expected trade count.
|
||||
# For example, for 0.35% avg per trade (or 0.0035 as ratio) and 1100 trades,
|
||||
# self.expected_max_profit = 3.85
|
||||
# Check that the reported Σ% values do not exceed this!
|
||||
# Note, this is ratio. 3.85 stated above means 385Σ%.
|
||||
EXPECTED_MAX_PROFIT = 3.0
|
||||
|
||||
# max average trade duration in minutes
|
||||
# if eval ends with higher value, we consider it a failed eval
|
||||
MAX_ACCEPTED_TRADE_DURATION = 300
|
||||
|
||||
|
||||
class SampleHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the default loss function for hyperopt
|
||||
This is intendet to give you some inspiration for your own loss function.
|
||||
|
||||
The Function needs to return a number (float) - which becomes for better backtest results.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for better results
|
||||
"""
|
||||
total_profit = results.profit_percent.sum()
|
||||
trade_duration = results.trade_duration.mean()
|
||||
|
||||
trade_loss = 1 - 0.25 * exp(-(trade_count - TARGET_TRADES) ** 2 / 10 ** 5.8)
|
||||
profit_loss = max(0, 1 - total_profit / EXPECTED_MAX_PROFIT)
|
||||
duration_loss = 0.4 * min(trade_duration / MAX_ACCEPTED_TRADE_DURATION, 1)
|
||||
result = trade_loss + profit_loss + duration_loss
|
||||
return result
|
Loading…
Reference in New Issue
Block a user