Merge branch 'develop' into v3_fixes
This commit is contained in:
File diff suppressed because it is too large
Load Diff
@@ -12,7 +12,7 @@ class BTProgress:
|
||||
def init_step(self, action: BacktestState, max_steps: float):
|
||||
self._action = action
|
||||
self._max_steps = max_steps
|
||||
self._proress = 0
|
||||
self._progress = 0
|
||||
|
||||
def set_new_value(self, new_value: float):
|
||||
self._progress = new_value
|
||||
|
@@ -34,7 +34,7 @@ class EdgeCli:
|
||||
self.config['stake_amount'] = constants.UNLIMITED_STAKE_AMOUNT
|
||||
self.exchange = ExchangeResolver.load_exchange(self.config['exchange']['name'], self.config)
|
||||
self.strategy = StrategyResolver.load_strategy(self.config)
|
||||
self.strategy.dp = DataProvider(config, None)
|
||||
self.strategy.dp = DataProvider(config, self.exchange)
|
||||
|
||||
validate_config_consistency(self.config)
|
||||
|
||||
|
@@ -45,7 +45,7 @@ progressbar.streams.wrap_stdout()
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
INITIAL_POINTS = 5
|
||||
INITIAL_POINTS = 30
|
||||
|
||||
# Keep no more than SKOPT_MODEL_QUEUE_SIZE models
|
||||
# in the skopt model queue, to optimize memory consumption
|
||||
@@ -76,6 +76,7 @@ class Hyperopt:
|
||||
self.config = config
|
||||
|
||||
self.backtesting = Backtesting(self.config)
|
||||
self.pairlist = self.backtesting.pairlists.whitelist
|
||||
|
||||
if not self.config.get('hyperopt'):
|
||||
self.custom_hyperopt = HyperOptAuto(self.config)
|
||||
@@ -113,10 +114,8 @@ class Hyperopt:
|
||||
self.position_stacking = self.config.get('position_stacking', False)
|
||||
|
||||
if HyperoptTools.has_space(self.config, 'sell'):
|
||||
# Make sure use_sell_signal is enabled
|
||||
if 'ask_strategy' not in self.config:
|
||||
self.config['ask_strategy'] = {}
|
||||
self.config['ask_strategy']['use_sell_signal'] = True
|
||||
# Make sure use_exit_signal is enabled
|
||||
self.config['use_exit_signal'] = True
|
||||
|
||||
self.print_all = self.config.get('print_all', False)
|
||||
self.hyperopt_table_header = 0
|
||||
@@ -258,6 +257,7 @@ class Hyperopt:
|
||||
if HyperoptTools.has_space(self.config, 'trailing'):
|
||||
logger.debug("Hyperopt has 'trailing' space")
|
||||
self.trailing_space = self.custom_hyperopt.trailing_space()
|
||||
|
||||
self.dimensions = (self.buy_space + self.sell_space + self.protection_space
|
||||
+ self.roi_space + self.stoploss_space + self.trailing_space)
|
||||
|
||||
@@ -331,7 +331,7 @@ class Hyperopt:
|
||||
params_details = self._get_params_details(params_dict)
|
||||
|
||||
strat_stats = generate_strategy_stats(
|
||||
processed, self.backtesting.strategy.get_strategy_name(),
|
||||
self.pairlist, self.backtesting.strategy.get_strategy_name(),
|
||||
backtesting_results, min_date, max_date, market_change=0
|
||||
)
|
||||
results_explanation = HyperoptTools.format_results_explanation_string(
|
||||
@@ -365,7 +365,7 @@ class Hyperopt:
|
||||
}
|
||||
|
||||
def get_optimizer(self, dimensions: List[Dimension], cpu_count) -> Optimizer:
|
||||
estimator = self.custom_hyperopt.generate_estimator()
|
||||
estimator = self.custom_hyperopt.generate_estimator(dimensions=dimensions)
|
||||
|
||||
acq_optimizer = "sampling"
|
||||
if isinstance(estimator, str):
|
||||
@@ -394,6 +394,7 @@ class Hyperopt:
|
||||
|
||||
def prepare_hyperopt_data(self) -> None:
|
||||
data, timerange = self.backtesting.load_bt_data()
|
||||
self.backtesting.load_bt_data_detail()
|
||||
logger.info("Dataload complete. Calculating indicators")
|
||||
|
||||
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
|
||||
@@ -421,6 +422,7 @@ class Hyperopt:
|
||||
self.backtesting.exchange.close()
|
||||
self.backtesting.exchange._api = None # type: ignore
|
||||
self.backtesting.exchange._api_async = None # type: ignore
|
||||
self.backtesting.exchange.loop = None # type: ignore
|
||||
# self.backtesting.exchange = None # type: ignore
|
||||
self.backtesting.pairlists = None # type: ignore
|
||||
|
||||
|
@@ -3,6 +3,7 @@ HyperOptAuto class.
|
||||
This module implements a convenience auto-hyperopt class, which can be used together with strategies
|
||||
that implement IHyperStrategy interface.
|
||||
"""
|
||||
import logging
|
||||
from contextlib import suppress
|
||||
from typing import Callable, Dict, List
|
||||
|
||||
@@ -15,12 +16,19 @@ with suppress(ImportError):
|
||||
from freqtrade.optimize.hyperopt_interface import EstimatorType, IHyperOpt
|
||||
|
||||
|
||||
def _format_exception_message(space: str) -> str:
|
||||
raise OperationalException(
|
||||
f"The '{space}' space is included into the hyperoptimization "
|
||||
f"but no parameter for this space was not found in your Strategy. "
|
||||
f"Please make sure to have parameters for this space enabled for optimization "
|
||||
f"or remove the '{space}' space from hyperoptimization.")
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _format_exception_message(space: str, ignore_missing_space: bool) -> None:
|
||||
msg = (f"The '{space}' space is included into the hyperoptimization "
|
||||
f"but no parameter for this space was not found in your Strategy. "
|
||||
)
|
||||
if ignore_missing_space:
|
||||
logger.warning(msg + "This space will be ignored.")
|
||||
else:
|
||||
raise OperationalException(
|
||||
msg + f"Please make sure to have parameters for this space enabled for optimization "
|
||||
f"or remove the '{space}' space from hyperoptimization.")
|
||||
|
||||
|
||||
class HyperOptAuto(IHyperOpt):
|
||||
@@ -48,13 +56,16 @@ class HyperOptAuto(IHyperOpt):
|
||||
if attr.optimize:
|
||||
yield attr.get_space(attr_name)
|
||||
|
||||
def _get_indicator_space(self, category):
|
||||
def _get_indicator_space(self, category) -> List:
|
||||
# TODO: is this necessary, or can we call "generate_space" directly?
|
||||
indicator_space = list(self._generate_indicator_space(category))
|
||||
if len(indicator_space) > 0:
|
||||
return indicator_space
|
||||
else:
|
||||
_format_exception_message(category)
|
||||
_format_exception_message(
|
||||
category,
|
||||
self.config.get("hyperopt_ignore_missing_space", False))
|
||||
return []
|
||||
|
||||
def buy_indicator_space(self) -> List['Dimension']:
|
||||
return self._get_indicator_space('buy')
|
||||
@@ -80,5 +91,5 @@ class HyperOptAuto(IHyperOpt):
|
||||
def trailing_space(self) -> List['Dimension']:
|
||||
return self._get_func('trailing_space')()
|
||||
|
||||
def generate_estimator(self) -> EstimatorType:
|
||||
return self._get_func('generate_estimator')()
|
||||
def generate_estimator(self, dimensions: List['Dimension'], **kwargs) -> EstimatorType:
|
||||
return self._get_func('generate_estimator')(dimensions=dimensions, **kwargs)
|
||||
|
@@ -29,18 +29,16 @@ class IHyperOpt(ABC):
|
||||
Class attributes you can use:
|
||||
timeframe -> int: value of the timeframe to use for the strategy
|
||||
"""
|
||||
ticker_interval: str # DEPRECATED
|
||||
timeframe: str
|
||||
strategy: IStrategy
|
||||
|
||||
def __init__(self, config: dict) -> None:
|
||||
self.config = config
|
||||
|
||||
# Assign ticker_interval to be used in hyperopt
|
||||
IHyperOpt.ticker_interval = str(config['timeframe']) # DEPRECATED
|
||||
# Assign timeframe to be used in hyperopt
|
||||
IHyperOpt.timeframe = str(config['timeframe'])
|
||||
|
||||
def generate_estimator(self) -> EstimatorType:
|
||||
def generate_estimator(self, dimensions: List[Dimension], **kwargs) -> EstimatorType:
|
||||
"""
|
||||
Return base_estimator.
|
||||
Can be any of "GP", "RF", "ET", "GBRT" or an instance of a class
|
||||
@@ -192,7 +190,7 @@ class IHyperOpt(ABC):
|
||||
Categorical([True, False], name='trailing_only_offset_is_reached'),
|
||||
]
|
||||
|
||||
# This is needed for proper unpickling the class attribute ticker_interval
|
||||
# This is needed for proper unpickling the class attribute timeframe
|
||||
# which is set to the actual value by the resolver.
|
||||
# Why do I still need such shamanic mantras in modern python?
|
||||
def __getstate__(self):
|
||||
@@ -202,5 +200,4 @@ class IHyperOpt(ABC):
|
||||
|
||||
def __setstate__(self, state):
|
||||
self.__dict__.update(state)
|
||||
IHyperOpt.ticker_interval = state['timeframe']
|
||||
IHyperOpt.timeframe = state['timeframe']
|
||||
|
63
freqtrade/optimize/hyperopt_loss_calmar.py
Normal file
63
freqtrade/optimize/hyperopt_loss_calmar.py
Normal file
@@ -0,0 +1,63 @@
|
||||
"""
|
||||
CalmarHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
from math import sqrt as msqrt
|
||||
from typing import Any, Dict
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class CalmarHyperOptLoss(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Calmar Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(
|
||||
results: DataFrame,
|
||||
trade_count: int,
|
||||
min_date: datetime,
|
||||
max_date: datetime,
|
||||
config: Dict,
|
||||
processed: Dict[str, DataFrame],
|
||||
backtest_stats: Dict[str, Any],
|
||||
*args,
|
||||
**kwargs
|
||||
) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Calmar Ratio calculation.
|
||||
"""
|
||||
total_profit = backtest_stats["profit_total"]
|
||||
days_period = (max_date - min_date).days
|
||||
|
||||
# adding slippage of 0.1% per trade
|
||||
total_profit = total_profit - 0.0005
|
||||
expected_returns_mean = total_profit.sum() / days_period * 100
|
||||
|
||||
# calculate max drawdown
|
||||
try:
|
||||
_, _, _, _, _, max_drawdown = calculate_max_drawdown(
|
||||
results, value_col="profit_abs"
|
||||
)
|
||||
except ValueError:
|
||||
max_drawdown = 0
|
||||
|
||||
if max_drawdown != 0:
|
||||
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(365)
|
||||
else:
|
||||
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
|
||||
calmar_ratio = -20.0
|
||||
|
||||
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
||||
return -calmar_ratio
|
41
freqtrade/optimize/hyperopt_loss_max_drawdown.py
Normal file
41
freqtrade/optimize/hyperopt_loss_max_drawdown.py
Normal file
@@ -0,0 +1,41 @@
|
||||
"""
|
||||
MaxDrawDownHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class MaxDrawDownHyperOptLoss(IHyperOptLoss):
|
||||
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation optimizes for max draw down and profit
|
||||
Less max drawdown more profit -> Lower return value
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int,
|
||||
min_date: datetime, max_date: datetime,
|
||||
*args, **kwargs) -> float:
|
||||
|
||||
"""
|
||||
Objective function.
|
||||
|
||||
Uses profit ratio weighted max_drawdown when drawdown is available.
|
||||
Otherwise directly optimizes profit ratio.
|
||||
"""
|
||||
total_profit = results['profit_abs'].sum()
|
||||
try:
|
||||
max_drawdown = calculate_max_drawdown(results, value_col='profit_abs')
|
||||
except ValueError:
|
||||
# No losing trade, therefore no drawdown.
|
||||
return -total_profit
|
||||
return -total_profit / max_drawdown[0]
|
30
freqtrade/optimize/hyperopt_loss_profit_drawdown.py
Normal file
30
freqtrade/optimize/hyperopt_loss_profit_drawdown.py
Normal file
@@ -0,0 +1,30 @@
|
||||
"""
|
||||
ProfitDrawDownHyperOptLoss
|
||||
|
||||
This module defines the alternative HyperOptLoss class based on Profit &
|
||||
Drawdown objective which can be used for Hyperoptimization.
|
||||
|
||||
Possible to change `DRAWDOWN_MULT` to penalize drawdown objective for
|
||||
individual needs.
|
||||
"""
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.data.btanalysis import calculate_max_drawdown
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
# higher numbers penalize drawdowns more severely
|
||||
DRAWDOWN_MULT = 0.075
|
||||
|
||||
|
||||
class ProfitDrawDownHyperOptLoss(IHyperOptLoss):
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(results: DataFrame, trade_count: int, *args, **kwargs) -> float:
|
||||
total_profit = results["profit_abs"].sum()
|
||||
|
||||
try:
|
||||
max_drawdown_abs = calculate_max_drawdown(results, value_col="profit_abs")[5]
|
||||
except ValueError:
|
||||
max_drawdown_abs = 0
|
||||
|
||||
return -1 * (total_profit * (1 - max_drawdown_abs * DRAWDOWN_MULT))
|
@@ -1,4 +1,3 @@
|
||||
|
||||
import io
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
@@ -64,10 +63,11 @@ class HyperoptTools():
|
||||
'export_time': datetime.now(timezone.utc),
|
||||
}
|
||||
logger.info(f"Dumping parameters to {filename}")
|
||||
rapidjson.dump(final_params, filename.open('w'), indent=2,
|
||||
default=hyperopt_serializer,
|
||||
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN
|
||||
)
|
||||
with filename.open('w') as f:
|
||||
rapidjson.dump(final_params, f, indent=2,
|
||||
default=hyperopt_serializer,
|
||||
number_mode=rapidjson.NM_NATIVE | rapidjson.NM_NAN
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def try_export_params(config: Dict[str, Any], strategy_name: str, params: Dict):
|
||||
@@ -137,6 +137,7 @@ class HyperoptTools():
|
||||
}
|
||||
if not HyperoptTools._test_hyperopt_results_exist(results_file):
|
||||
# No file found.
|
||||
logger.warning(f"Hyperopt file {results_file} not found.")
|
||||
return [], 0
|
||||
|
||||
epochs = []
|
||||
@@ -284,10 +285,10 @@ class HyperoptTools():
|
||||
return (f"{results_metrics['total_trades']:6d} trades. "
|
||||
f"{results_metrics['wins']}/{results_metrics['draws']}"
|
||||
f"/{results_metrics['losses']} Wins/Draws/Losses. "
|
||||
f"Avg profit {results_metrics['profit_mean'] * 100: 6.2f}%. "
|
||||
f"Median profit {results_metrics['profit_median'] * 100: 6.2f}%. "
|
||||
f"Total profit {results_metrics['profit_total_abs']: 11.8f} {stake_currency} "
|
||||
f"({results_metrics['profit_total'] * 100: 7.2f}%). "
|
||||
f"Avg profit {results_metrics['profit_mean']:7.2%}. "
|
||||
f"Median profit {results_metrics['profit_median']:7.2%}. "
|
||||
f"Total profit {results_metrics['profit_total_abs']:11.8f} {stake_currency} "
|
||||
f"({results_metrics['profit_total']:8.2%}). "
|
||||
f"Avg duration {results_metrics['holding_avg']} min."
|
||||
)
|
||||
|
||||
@@ -299,8 +300,7 @@ class HyperoptTools():
|
||||
f"Objective: {results['loss']:.5f}")
|
||||
|
||||
@staticmethod
|
||||
def prepare_trials_columns(trials: pd.DataFrame, legacy_mode: bool,
|
||||
has_drawdown: bool) -> pd.DataFrame:
|
||||
def prepare_trials_columns(trials: pd.DataFrame, has_drawdown: bool) -> pd.DataFrame:
|
||||
trials['Best'] = ''
|
||||
|
||||
if 'results_metrics.winsdrawslosses' not in trials.columns:
|
||||
@@ -309,33 +309,26 @@ class HyperoptTools():
|
||||
|
||||
if not has_drawdown:
|
||||
# Ensure compatibility with older versions of hyperopt results
|
||||
trials['results_metrics.max_drawdown_abs'] = None
|
||||
trials['results_metrics.max_drawdown'] = None
|
||||
trials['results_metrics.max_drawdown_account'] = None
|
||||
|
||||
if not legacy_mode:
|
||||
# New mode, using backtest result for metrics
|
||||
trials['results_metrics.winsdrawslosses'] = trials.apply(
|
||||
lambda x: f"{x['results_metrics.wins']} {x['results_metrics.draws']:>4} "
|
||||
f"{x['results_metrics.losses']:>4}", axis=1)
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.total_trades',
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
|
||||
'results_metrics.profit_total', 'results_metrics.holding_avg',
|
||||
'results_metrics.max_drawdown', 'results_metrics.max_drawdown_abs',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
# New mode, using backtest result for metrics
|
||||
trials['results_metrics.winsdrawslosses'] = trials.apply(
|
||||
lambda x: f"{x['results_metrics.wins']} {x['results_metrics.draws']:>4} "
|
||||
f"{x['results_metrics.losses']:>4}", axis=1)
|
||||
|
||||
else:
|
||||
# Legacy mode
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.winsdrawslosses', 'results_metrics.avg_profit',
|
||||
'results_metrics.total_profit', 'results_metrics.profit',
|
||||
'results_metrics.duration', 'results_metrics.max_drawdown',
|
||||
'results_metrics.max_drawdown_abs', 'loss', 'is_initial_point',
|
||||
'is_best']]
|
||||
trials = trials[['Best', 'current_epoch', 'results_metrics.total_trades',
|
||||
'results_metrics.winsdrawslosses',
|
||||
'results_metrics.profit_mean', 'results_metrics.profit_total_abs',
|
||||
'results_metrics.profit_total', 'results_metrics.holding_avg',
|
||||
'results_metrics.max_drawdown',
|
||||
'results_metrics.max_drawdown_account', 'results_metrics.max_drawdown_abs',
|
||||
'loss', 'is_initial_point', 'is_best']]
|
||||
|
||||
trials.columns = ['Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
|
||||
'Total profit', 'Profit', 'Avg duration', 'Max Drawdown',
|
||||
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best']
|
||||
trials.columns = [
|
||||
'Best', 'Epoch', 'Trades', ' Win Draw Loss', 'Avg profit',
|
||||
'Total profit', 'Profit', 'Avg duration', 'max_drawdown', 'max_drawdown_account',
|
||||
'max_drawdown_abs', 'Objective', 'is_initial_point', 'is_best'
|
||||
]
|
||||
|
||||
return trials
|
||||
|
||||
@@ -351,10 +344,9 @@ class HyperoptTools():
|
||||
tabulate.PRESERVE_WHITESPACE = True
|
||||
trials = json_normalize(results, max_level=1)
|
||||
|
||||
legacy_mode = 'results_metrics.total_trades' not in trials
|
||||
has_drawdown = 'results_metrics.max_drawdown_abs' in trials.columns
|
||||
has_account_drawdown = 'results_metrics.max_drawdown_account' in trials.columns
|
||||
|
||||
trials = HyperoptTools.prepare_trials_columns(trials, legacy_mode, has_drawdown)
|
||||
trials = HyperoptTools.prepare_trials_columns(trials, has_account_drawdown)
|
||||
|
||||
trials['is_profit'] = False
|
||||
trials.loc[trials['is_initial_point'], 'Best'] = '* '
|
||||
@@ -362,12 +354,12 @@ class HyperoptTools():
|
||||
trials.loc[trials['is_initial_point'] & trials['is_best'], 'Best'] = '* Best'
|
||||
trials.loc[trials['Total profit'] > 0, 'is_profit'] = True
|
||||
trials['Trades'] = trials['Trades'].astype(str)
|
||||
perc_multi = 1 if legacy_mode else 100
|
||||
# perc_multi = 1 if legacy_mode else 100
|
||||
trials['Epoch'] = trials['Epoch'].apply(
|
||||
lambda x: '{}/{}'.format(str(x).rjust(len(str(total_epochs)), ' '), total_epochs)
|
||||
)
|
||||
trials['Avg profit'] = trials['Avg profit'].apply(
|
||||
lambda x: f'{x * perc_multi:,.2f}%'.rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
|
||||
lambda x: f'{x:,.2%}'.rjust(7, ' ') if not isna(x) else "--".rjust(7, ' ')
|
||||
)
|
||||
trials['Avg duration'] = trials['Avg duration'].apply(
|
||||
lambda x: f'{x:,.1f} m'.rjust(7, ' ') if isinstance(x, float) else f"{x}"
|
||||
@@ -379,26 +371,27 @@ class HyperoptTools():
|
||||
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
if has_drawdown:
|
||||
trials['Max Drawdown'] = trials.apply(
|
||||
lambda x: '{} {}'.format(
|
||||
round_coin_value(x['max_drawdown_abs'], stake_currency),
|
||||
'({:,.2f}%)'.format(x['Max Drawdown'] * perc_multi).rjust(10, ' ')
|
||||
).rjust(25 + len(stake_currency))
|
||||
if x['Max Drawdown'] != 0.0 else '--'.rjust(25 + len(stake_currency)),
|
||||
axis=1
|
||||
)
|
||||
else:
|
||||
trials = trials.drop(columns=['Max Drawdown'])
|
||||
trials[f"Max Drawdown{' (Acct)' if has_account_drawdown else ''}"] = trials.apply(
|
||||
lambda x: "{} {}".format(
|
||||
round_coin_value(x['max_drawdown_abs'], stake_currency, keep_trailing_zeros=True),
|
||||
(f"({x['max_drawdown_account']:,.2%})"
|
||||
if has_account_drawdown
|
||||
else f"({x['max_drawdown']:,.2%})"
|
||||
).rjust(10, ' ')
|
||||
).rjust(25 + len(stake_currency))
|
||||
if x['max_drawdown'] != 0.0 or x['max_drawdown_account'] != 0.0
|
||||
else '--'.rjust(25 + len(stake_currency)),
|
||||
axis=1
|
||||
)
|
||||
|
||||
trials = trials.drop(columns=['max_drawdown_abs'])
|
||||
trials = trials.drop(columns=['max_drawdown_abs', 'max_drawdown', 'max_drawdown_account'])
|
||||
|
||||
trials['Profit'] = trials.apply(
|
||||
lambda x: '{} {}'.format(
|
||||
round_coin_value(x['Total profit'], stake_currency),
|
||||
'({:,.2f}%)'.format(x['Profit'] * perc_multi).rjust(10, ' ')
|
||||
).rjust(25+len(stake_currency))
|
||||
if x['Total profit'] != 0.0 else '--'.rjust(25+len(stake_currency)),
|
||||
round_coin_value(x['Total profit'], stake_currency, keep_trailing_zeros=True),
|
||||
f"({x['Profit']:,.2%})".rjust(10, ' ')
|
||||
).rjust(25 + len(stake_currency))
|
||||
if x['Total profit'] != 0.0 else '--'.rjust(25 + len(stake_currency)),
|
||||
axis=1
|
||||
)
|
||||
trials = trials.drop(columns=['Total profit'])
|
||||
@@ -406,11 +399,11 @@ class HyperoptTools():
|
||||
if print_colorized:
|
||||
for i in range(len(trials)):
|
||||
if trials.loc[i]['is_profit']:
|
||||
for j in range(len(trials.loc[i])-3):
|
||||
for j in range(len(trials.loc[i]) - 3):
|
||||
trials.iat[i, j] = "{}{}{}".format(Fore.GREEN,
|
||||
str(trials.loc[i][j]), Fore.RESET)
|
||||
if trials.loc[i]['is_best'] and highlight_best:
|
||||
for j in range(len(trials.loc[i])-3):
|
||||
for j in range(len(trials.loc[i]) - 3):
|
||||
trials.iat[i, j] = "{}{}{}".format(Style.BRIGHT,
|
||||
str(trials.loc[i][j]), Style.RESET_ALL)
|
||||
|
||||
@@ -466,7 +459,7 @@ class HyperoptTools():
|
||||
'loss', 'is_initial_point', 'is_best']
|
||||
perc_multi = 100
|
||||
|
||||
param_metrics = [("params_dict."+param) for param in results[0]['params_dict'].keys()]
|
||||
param_metrics = [("params_dict." + param) for param in results[0]['params_dict'].keys()]
|
||||
trials = trials[base_metrics + param_metrics]
|
||||
|
||||
base_columns = ['Best', 'Epoch', 'Trades', 'Avg profit', 'Median profit', 'Total profit',
|
||||
|
@@ -1,16 +1,18 @@
|
||||
import logging
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Union
|
||||
|
||||
from numpy import int64
|
||||
from pandas import DataFrame
|
||||
from pandas import DataFrame, to_datetime
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade.constants import DATETIME_PRINT_FORMAT, LAST_BT_RESULT_FN, UNLIMITED_STAKE_AMOUNT
|
||||
from freqtrade.data.btanalysis import (calculate_csum, calculate_market_change,
|
||||
calculate_max_drawdown)
|
||||
from freqtrade.misc import decimals_per_coin, file_dump_json, round_coin_value
|
||||
from freqtrade.misc import (decimals_per_coin, file_dump_json, get_backtest_metadata_filename,
|
||||
round_coin_value)
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -32,6 +34,11 @@ def store_backtest_stats(recordfilename: Path, stats: Dict[str, DataFrame]) -> N
|
||||
recordfilename.parent,
|
||||
f'{recordfilename.stem}-{datetime.now().strftime("%Y-%m-%d_%H-%M-%S")}'
|
||||
).with_suffix(recordfilename.suffix)
|
||||
|
||||
# Store metadata separately.
|
||||
file_dump_json(get_backtest_metadata_filename(filename), stats['metadata'])
|
||||
del stats['metadata']
|
||||
|
||||
file_dump_json(filename, stats)
|
||||
|
||||
latest_filename = Path.joinpath(filename.parent, LAST_BT_RESULT_FN)
|
||||
@@ -46,11 +53,11 @@ def _get_line_floatfmt(stake_currency: str) -> List[str]:
|
||||
'.2f', 'd', 's', 's']
|
||||
|
||||
|
||||
def _get_line_header(first_column: str, stake_currency: str) -> List[str]:
|
||||
def _get_line_header(first_column: str, stake_currency: str, direction: str = 'Buys') -> List[str]:
|
||||
"""
|
||||
Generate header lines (goes in line with _generate_result_line())
|
||||
"""
|
||||
return [first_column, 'Buys', 'Avg Profit %', 'Cum Profit %',
|
||||
return [first_column, direction, 'Avg Profit %', 'Cum Profit %',
|
||||
f'Tot Profit {stake_currency}', 'Tot Profit %', 'Avg Duration',
|
||||
'Win Draw Loss Win%']
|
||||
|
||||
@@ -98,11 +105,11 @@ def _generate_result_line(result: DataFrame, starting_balance: int, first_column
|
||||
}
|
||||
|
||||
|
||||
def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, starting_balance: int,
|
||||
def generate_pair_metrics(pairlist: List[str], stake_currency: str, starting_balance: int,
|
||||
results: DataFrame, skip_nan: bool = False) -> List[Dict]:
|
||||
"""
|
||||
Generates and returns a list for the given backtest data and the results dataframe
|
||||
:param data: Dict of <pair: dataframe> containing data that was used during backtesting.
|
||||
:param pairlist: Pairlist used
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:param starting_balance: Starting balance
|
||||
:param results: Dataframe containing the backtest results
|
||||
@@ -112,7 +119,7 @@ def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, starting_b
|
||||
|
||||
tabular_data = []
|
||||
|
||||
for pair in data:
|
||||
for pair in pairlist:
|
||||
result = results[results['pair'] == pair]
|
||||
if skip_nan and result['profit_abs'].isnull().all():
|
||||
continue
|
||||
@@ -127,7 +134,39 @@ def generate_pair_metrics(data: Dict[str, Dict], stake_currency: str, starting_b
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
|
||||
def generate_tag_metrics(tag_type: str,
|
||||
starting_balance: int,
|
||||
results: DataFrame,
|
||||
skip_nan: bool = False) -> List[Dict]:
|
||||
"""
|
||||
Generates and returns a list of metrics for the given tag trades and the results dataframe
|
||||
:param starting_balance: Starting balance
|
||||
:param results: Dataframe containing the backtest results
|
||||
:param skip_nan: Print "left open" open trades
|
||||
:return: List of Dicts containing the metrics per pair
|
||||
"""
|
||||
|
||||
tabular_data = []
|
||||
|
||||
if tag_type in results.columns:
|
||||
for tag, count in results[tag_type].value_counts().iteritems():
|
||||
result = results[results[tag_type] == tag]
|
||||
if skip_nan and result['profit_abs'].isnull().all():
|
||||
continue
|
||||
|
||||
tabular_data.append(_generate_result_line(result, starting_balance, tag))
|
||||
|
||||
# Sort by total profit %:
|
||||
tabular_data = sorted(tabular_data, key=lambda k: k['profit_total_abs'], reverse=True)
|
||||
|
||||
# Append Total
|
||||
tabular_data.append(_generate_result_line(results, starting_balance, 'TOTAL'))
|
||||
return tabular_data
|
||||
else:
|
||||
return []
|
||||
|
||||
|
||||
def generate_exit_reason_stats(max_open_trades: int, results: DataFrame) -> List[Dict]:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param max_open_trades: Max_open_trades parameter
|
||||
@@ -136,8 +175,8 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
|
||||
"""
|
||||
tabular_data = []
|
||||
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
result = results.loc[results['sell_reason'] == reason]
|
||||
for reason, count in results['exit_reason'].value_counts().iteritems():
|
||||
result = results.loc[results['exit_reason'] == reason]
|
||||
|
||||
profit_mean = result['profit_ratio'].mean()
|
||||
profit_sum = result['profit_ratio'].sum()
|
||||
@@ -145,7 +184,7 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
|
||||
|
||||
tabular_data.append(
|
||||
{
|
||||
'sell_reason': reason,
|
||||
'exit_reason': reason,
|
||||
'trades': count,
|
||||
'wins': len(result[result['profit_abs'] > 0]),
|
||||
'draws': len(result[result['profit_abs'] == 0]),
|
||||
@@ -162,34 +201,25 @@ def generate_sell_reason_stats(max_open_trades: int, results: DataFrame) -> List
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_strategy_comparison(all_results: Dict) -> List[Dict]:
|
||||
def generate_strategy_comparison(bt_stats: Dict) -> List[Dict]:
|
||||
"""
|
||||
Generate summary per strategy
|
||||
:param all_results: Dict of <Strategyname: DataFrame> containing results for all strategies
|
||||
:param bt_stats: Dict of <Strategyname: DataFrame> containing results for all strategies
|
||||
:return: List of Dicts containing the metrics per Strategy
|
||||
"""
|
||||
|
||||
tabular_data = []
|
||||
for strategy, results in all_results.items():
|
||||
tabular_data.append(_generate_result_line(
|
||||
results['results'], results['config']['dry_run_wallet'], strategy)
|
||||
)
|
||||
try:
|
||||
max_drawdown_per, _, _, _, _ = calculate_max_drawdown(results['results'],
|
||||
value_col='profit_ratio')
|
||||
max_drawdown_abs, _, _, _, _ = calculate_max_drawdown(results['results'],
|
||||
value_col='profit_abs')
|
||||
except ValueError:
|
||||
max_drawdown_per = 0
|
||||
max_drawdown_abs = 0
|
||||
tabular_data[-1]['max_drawdown_per'] = round(max_drawdown_per * 100, 2)
|
||||
tabular_data[-1]['max_drawdown_abs'] = \
|
||||
round_coin_value(max_drawdown_abs, results['config']['stake_currency'], False)
|
||||
for strategy, result in bt_stats.items():
|
||||
tabular_data.append(deepcopy(result['results_per_pair'][-1]))
|
||||
# Update "key" to strategy (results_per_pair has it as "Total").
|
||||
tabular_data[-1]['key'] = strategy
|
||||
tabular_data[-1]['max_drawdown_account'] = result['max_drawdown_account']
|
||||
tabular_data[-1]['max_drawdown_abs'] = round_coin_value(
|
||||
result['max_drawdown_abs'], result['stake_currency'], False)
|
||||
return tabular_data
|
||||
|
||||
|
||||
def generate_edge_table(results: dict) -> str:
|
||||
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', 'd', 'd')
|
||||
tabular_data = []
|
||||
headers = ['Pair', 'Stoploss', 'Win Rate', 'Risk Reward Ratio',
|
||||
@@ -214,6 +244,41 @@ def generate_edge_table(results: dict) -> str:
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right") # type: ignore
|
||||
|
||||
|
||||
def _get_resample_from_period(period: str) -> str:
|
||||
if period == 'day':
|
||||
return '1d'
|
||||
if period == 'week':
|
||||
return '1w'
|
||||
if period == 'month':
|
||||
return '1M'
|
||||
raise ValueError(f"Period {period} is not supported.")
|
||||
|
||||
|
||||
def generate_periodic_breakdown_stats(trade_list: List, period: str) -> List[Dict[str, Any]]:
|
||||
results = DataFrame.from_records(trade_list)
|
||||
if len(results) == 0:
|
||||
return []
|
||||
results['close_date'] = to_datetime(results['close_date'], utc=True)
|
||||
resample_period = _get_resample_from_period(period)
|
||||
resampled = results.resample(resample_period, on='close_date')
|
||||
stats = []
|
||||
for name, day in resampled:
|
||||
profit_abs = day['profit_abs'].sum().round(10)
|
||||
wins = sum(day['profit_abs'] > 0)
|
||||
draws = sum(day['profit_abs'] == 0)
|
||||
loses = sum(day['profit_abs'] < 0)
|
||||
stats.append(
|
||||
{
|
||||
'date': name.strftime('%d/%m/%Y'),
|
||||
'profit_abs': profit_abs,
|
||||
'wins': wins,
|
||||
'draws': draws,
|
||||
'loses': loses
|
||||
}
|
||||
)
|
||||
return stats
|
||||
|
||||
|
||||
def generate_trading_stats(results: DataFrame) -> Dict[str, Any]:
|
||||
""" Generate overall trade statistics """
|
||||
if len(results) == 0:
|
||||
@@ -286,14 +351,14 @@ def generate_daily_stats(results: DataFrame) -> Dict[str, Any]:
|
||||
}
|
||||
|
||||
|
||||
def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
def generate_strategy_stats(pairlist: List[str],
|
||||
strategy: str,
|
||||
content: Dict[str, Any],
|
||||
min_date: datetime, max_date: datetime,
|
||||
market_change: float
|
||||
) -> Dict[str, Any]:
|
||||
"""
|
||||
:param btdata: Backtest data
|
||||
:param pairlist: List of pairs to backtest
|
||||
:param strategy: Strategy name
|
||||
:param content: Backtest result data in the format:
|
||||
{'results: results, 'config: config}}.
|
||||
@@ -306,17 +371,21 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
if not isinstance(results, DataFrame):
|
||||
return {}
|
||||
config = content['config']
|
||||
max_open_trades = min(config['max_open_trades'], len(btdata.keys()))
|
||||
starting_balance = config['dry_run_wallet']
|
||||
max_open_trades = min(config['max_open_trades'], len(pairlist))
|
||||
start_balance = config['dry_run_wallet']
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
pair_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
starting_balance=starting_balance,
|
||||
pair_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
|
||||
starting_balance=start_balance,
|
||||
results=results, skip_nan=False)
|
||||
sell_reason_stats = generate_sell_reason_stats(max_open_trades=max_open_trades,
|
||||
|
||||
enter_tag_results = generate_tag_metrics("enter_tag", starting_balance=start_balance,
|
||||
results=results, skip_nan=False)
|
||||
|
||||
exit_reason_stats = generate_exit_reason_stats(max_open_trades=max_open_trades,
|
||||
results=results)
|
||||
left_open_results = generate_pair_metrics(btdata, stake_currency=stake_currency,
|
||||
starting_balance=starting_balance,
|
||||
left_open_results = generate_pair_metrics(pairlist, stake_currency=stake_currency,
|
||||
starting_balance=start_balance,
|
||||
results=results.loc[results['is_open']],
|
||||
skip_nan=True)
|
||||
daily_stats = generate_daily_stats(results)
|
||||
@@ -329,22 +398,31 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
results['open_timestamp'] = results['open_date'].view(int64) // 1e6
|
||||
results['close_timestamp'] = results['close_date'].view(int64) // 1e6
|
||||
|
||||
backtest_days = (max_date - min_date).days
|
||||
backtest_days = (max_date - min_date).days or 1
|
||||
strat_stats = {
|
||||
'trades': results.to_dict(orient='records'),
|
||||
'locks': [lock.to_json() for lock in content['locks']],
|
||||
'best_pair': best_pair,
|
||||
'worst_pair': worst_pair,
|
||||
'results_per_pair': pair_results,
|
||||
'sell_reason_summary': sell_reason_stats,
|
||||
'results_per_enter_tag': enter_tag_results,
|
||||
'exit_reason_summary': exit_reason_stats,
|
||||
'left_open_trades': left_open_results,
|
||||
# 'days_breakdown_stats': days_breakdown_stats,
|
||||
|
||||
'total_trades': len(results),
|
||||
'trade_count_long': len(results.loc[~results['is_short']]),
|
||||
'trade_count_short': len(results.loc[results['is_short']]),
|
||||
'total_volume': float(results['stake_amount'].sum()),
|
||||
'avg_stake_amount': results['stake_amount'].mean() if len(results) > 0 else 0,
|
||||
'profit_mean': results['profit_ratio'].mean() if len(results) > 0 else 0,
|
||||
'profit_median': results['profit_ratio'].median() if len(results) > 0 else 0,
|
||||
'profit_total': results['profit_abs'].sum() / starting_balance,
|
||||
'profit_total': results['profit_abs'].sum() / start_balance,
|
||||
'profit_total_long': results.loc[~results['is_short'], 'profit_abs'].sum() / start_balance,
|
||||
'profit_total_short': results.loc[results['is_short'], 'profit_abs'].sum() / start_balance,
|
||||
'profit_total_abs': results['profit_abs'].sum(),
|
||||
'profit_total_long_abs': results.loc[~results['is_short'], 'profit_abs'].sum(),
|
||||
'profit_total_short_abs': results.loc[results['is_short'], 'profit_abs'].sum(),
|
||||
'backtest_start': min_date.strftime(DATETIME_PRINT_FORMAT),
|
||||
'backtest_start_ts': int(min_date.timestamp() * 1000),
|
||||
'backtest_end': max_date.strftime(DATETIME_PRINT_FORMAT),
|
||||
@@ -354,16 +432,18 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
'backtest_run_start_ts': content['backtest_start_time'],
|
||||
'backtest_run_end_ts': content['backtest_end_time'],
|
||||
|
||||
'trades_per_day': round(len(results) / backtest_days, 2) if backtest_days > 0 else 0,
|
||||
'trades_per_day': round(len(results) / backtest_days, 2),
|
||||
'market_change': market_change,
|
||||
'pairlist': list(btdata.keys()),
|
||||
'pairlist': pairlist,
|
||||
'stake_amount': config['stake_amount'],
|
||||
'stake_currency': config['stake_currency'],
|
||||
'stake_currency_decimals': decimals_per_coin(config['stake_currency']),
|
||||
'starting_balance': starting_balance,
|
||||
'dry_run_wallet': starting_balance,
|
||||
'starting_balance': start_balance,
|
||||
'dry_run_wallet': start_balance,
|
||||
'final_balance': content['final_balance'],
|
||||
'rejected_signals': content['rejected_signals'],
|
||||
'timedout_entry_orders': content['timedout_entry_orders'],
|
||||
'timedout_exit_orders': content['timedout_exit_orders'],
|
||||
'max_open_trades': max_open_trades,
|
||||
'max_open_trades_setting': (config['max_open_trades']
|
||||
if config['max_open_trades'] != float('inf') else -1),
|
||||
@@ -380,21 +460,23 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
'trailing_only_offset_is_reached': config.get('trailing_only_offset_is_reached', False),
|
||||
'use_custom_stoploss': config.get('use_custom_stoploss', False),
|
||||
'minimal_roi': config['minimal_roi'],
|
||||
'use_sell_signal': config['use_sell_signal'],
|
||||
'sell_profit_only': config['sell_profit_only'],
|
||||
'sell_profit_offset': config['sell_profit_offset'],
|
||||
'ignore_roi_if_buy_signal': config['ignore_roi_if_buy_signal'],
|
||||
'use_exit_signal': config['use_exit_signal'],
|
||||
'exit_profit_only': config['exit_profit_only'],
|
||||
'exit_profit_offset': config['exit_profit_offset'],
|
||||
'ignore_roi_if_entry_signal': config['ignore_roi_if_entry_signal'],
|
||||
**daily_stats,
|
||||
**trade_stats
|
||||
}
|
||||
|
||||
try:
|
||||
max_drawdown, _, _, _, _ = calculate_max_drawdown(
|
||||
max_drawdown_legacy, _, _, _, _, _ = calculate_max_drawdown(
|
||||
results, value_col='profit_ratio')
|
||||
drawdown_abs, drawdown_start, drawdown_end, high_val, low_val = calculate_max_drawdown(
|
||||
results, value_col='profit_abs')
|
||||
(drawdown_abs, drawdown_start, drawdown_end, high_val, low_val,
|
||||
max_drawdown) = calculate_max_drawdown(
|
||||
results, value_col='profit_abs', starting_balance=start_balance)
|
||||
strat_stats.update({
|
||||
'max_drawdown': max_drawdown,
|
||||
'max_drawdown': max_drawdown_legacy, # Deprecated - do not use
|
||||
'max_drawdown_account': max_drawdown,
|
||||
'max_drawdown_abs': drawdown_abs,
|
||||
'drawdown_start': drawdown_start.strftime(DATETIME_PRINT_FORMAT),
|
||||
'drawdown_start_ts': drawdown_start.timestamp() * 1000,
|
||||
@@ -405,7 +487,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
'max_drawdown_high': high_val,
|
||||
})
|
||||
|
||||
csum_min, csum_max = calculate_csum(results, starting_balance)
|
||||
csum_min, csum_max = calculate_csum(results, start_balance)
|
||||
strat_stats.update({
|
||||
'csum_min': csum_min,
|
||||
'csum_max': csum_max
|
||||
@@ -414,6 +496,7 @@ def generate_strategy_stats(btdata: Dict[str, DataFrame],
|
||||
except ValueError:
|
||||
strat_stats.update({
|
||||
'max_drawdown': 0.0,
|
||||
'max_drawdown_account': 0.0,
|
||||
'max_drawdown_abs': 0.0,
|
||||
'max_drawdown_low': 0.0,
|
||||
'max_drawdown_high': 0.0,
|
||||
@@ -440,16 +523,26 @@ def generate_backtest_stats(btdata: Dict[str, DataFrame],
|
||||
:param max_date: Backtest end date
|
||||
:return: Dictionary containing results per strategy and a strategy summary.
|
||||
"""
|
||||
result: Dict[str, Any] = {'strategy': {}}
|
||||
result: Dict[str, Any] = {
|
||||
'metadata': {},
|
||||
'strategy': {},
|
||||
'strategy_comparison': [],
|
||||
}
|
||||
market_change = calculate_market_change(btdata, 'close')
|
||||
|
||||
metadata = {}
|
||||
pairlist = list(btdata.keys())
|
||||
for strategy, content in all_results.items():
|
||||
strat_stats = generate_strategy_stats(btdata, strategy, content,
|
||||
strat_stats = generate_strategy_stats(pairlist, strategy, content,
|
||||
min_date, max_date, market_change=market_change)
|
||||
metadata[strategy] = {
|
||||
'run_id': content['run_id'],
|
||||
'backtest_start_time': content['backtest_start_time'],
|
||||
}
|
||||
result['strategy'][strategy] = strat_stats
|
||||
|
||||
strategy_results = generate_strategy_comparison(all_results=all_results)
|
||||
strategy_results = generate_strategy_comparison(bt_stats=result['strategy'])
|
||||
|
||||
result['metadata'] = metadata
|
||||
result['strategy_comparison'] = strategy_results
|
||||
|
||||
return result
|
||||
@@ -479,16 +572,16 @@ def text_table_bt_results(pair_results: List[Dict[str, Any]], stake_currency: st
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
def text_table_exit_reason(exit_reason_stats: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
:param sell_reason_stats: Sell reason metrics
|
||||
:param sell_reason_stats: Exit reason metrics
|
||||
:param stake_currency: Stakecurrency used
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
headers = [
|
||||
'Sell Reason',
|
||||
'Sells',
|
||||
'Exit Reason',
|
||||
'Exits',
|
||||
'Win Draws Loss Win%',
|
||||
'Avg Profit %',
|
||||
'Cum Profit %',
|
||||
@@ -497,12 +590,65 @@ def text_table_sell_reason(sell_reason_stats: List[Dict[str, Any]], stake_curren
|
||||
]
|
||||
|
||||
output = [[
|
||||
t['sell_reason'], t['trades'],
|
||||
t.get('exit_reason', t.get('sell_reason')), t['trades'],
|
||||
_generate_wins_draws_losses(t['wins'], t['draws'], t['losses']),
|
||||
t['profit_mean_pct'], t['profit_sum_pct'],
|
||||
round_coin_value(t['profit_total_abs'], stake_currency, False),
|
||||
t['profit_total_pct'],
|
||||
] for t in sell_reason_stats]
|
||||
] for t in exit_reason_stats]
|
||||
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_tags(tag_type: str, tag_results: List[Dict[str, Any]], stake_currency: str) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:param pair_results: List of Dictionaries - one entry per pair + final TOTAL row
|
||||
:param stake_currency: stake-currency - used to correctly name headers
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
if(tag_type == "enter_tag"):
|
||||
headers = _get_line_header("TAG", stake_currency)
|
||||
else:
|
||||
headers = _get_line_header("TAG", stake_currency, 'Sells')
|
||||
floatfmt = _get_line_floatfmt(stake_currency)
|
||||
output = [
|
||||
[
|
||||
t['key'] if t['key'] is not None and len(
|
||||
t['key']) > 0 else "OTHER",
|
||||
t['trades'],
|
||||
t['profit_mean_pct'],
|
||||
t['profit_sum_pct'],
|
||||
t['profit_total_abs'],
|
||||
t['profit_total_pct'],
|
||||
t['duration_avg'],
|
||||
_generate_wins_draws_losses(
|
||||
t['wins'],
|
||||
t['draws'],
|
||||
t['losses'])] for t in tag_results]
|
||||
# Ignore type as floatfmt does allow tuples but mypy does not know that
|
||||
return tabulate(output, headers=headers,
|
||||
floatfmt=floatfmt, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
def text_table_periodic_breakdown(days_breakdown_stats: List[Dict[str, Any]],
|
||||
stake_currency: str, period: str) -> str:
|
||||
"""
|
||||
Generate small table with Backtest results by days
|
||||
:param days_breakdown_stats: Days breakdown metrics
|
||||
:param stake_currency: Stakecurrency used
|
||||
:return: pretty printed table with tabulate as string
|
||||
"""
|
||||
headers = [
|
||||
period.capitalize(),
|
||||
f'Tot Profit {stake_currency}',
|
||||
'Wins',
|
||||
'Draws',
|
||||
'Losses',
|
||||
]
|
||||
output = [[
|
||||
d['date'], round_coin_value(d['profit_abs'], stake_currency, False),
|
||||
d['wins'], d['draws'], d['loses'],
|
||||
] for d in days_breakdown_stats]
|
||||
return tabulate(output, headers=headers, tablefmt="orgtbl", stralign="right")
|
||||
|
||||
|
||||
@@ -520,7 +666,12 @@ def text_table_strategy(strategy_results, stake_currency: str) -> str:
|
||||
headers.append('Drawdown')
|
||||
|
||||
# Align drawdown string on the center two space separator.
|
||||
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
|
||||
if 'max_drawdown_account' in strategy_results[0]:
|
||||
drawdown = [f'{t["max_drawdown_account"] * 100:.2f}' for t in strategy_results]
|
||||
else:
|
||||
# Support for prior backtest results
|
||||
drawdown = [f'{t["max_drawdown_per"]:.2f}' for t in strategy_results]
|
||||
|
||||
dd_pad_abs = max([len(t['max_drawdown_abs']) for t in strategy_results])
|
||||
dd_pad_per = max([len(dd) for dd in drawdown])
|
||||
drawdown = [f'{t["max_drawdown_abs"]:>{dd_pad_abs}} {stake_currency} {dd:>{dd_pad_per}}%'
|
||||
@@ -541,6 +692,19 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
best_trade = max(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
||||
worst_trade = min(strat_results['trades'], key=lambda x: x['profit_ratio'])
|
||||
|
||||
short_metrics = [
|
||||
('', ''), # Empty line to improve readability
|
||||
('Long / Short',
|
||||
f"{strat_results.get('trade_count_long', 'total_trades')} / "
|
||||
f"{strat_results.get('trade_count_short', 0)}"),
|
||||
('Total profit Long %', f"{strat_results['profit_total_long']:.2%}"),
|
||||
('Total profit Short %', f"{strat_results['profit_total_short']:.2%}"),
|
||||
('Absolute profit Long', round_coin_value(strat_results['profit_total_long_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Absolute profit Short', round_coin_value(strat_results['profit_total_short_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
] if strat_results.get('trade_count_short', 0) > 0 else []
|
||||
|
||||
# Newly added fields should be ignored if they are missing in strat_results. hyperopt-show
|
||||
# command stores these results and newer version of freqtrade must be able to handle old
|
||||
# results with missing new fields.
|
||||
@@ -551,25 +715,30 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
('', ''), # Empty line to improve readability
|
||||
('Total/Daily Avg Trades',
|
||||
f"{strat_results['total_trades']} / {strat_results['trades_per_day']}"),
|
||||
|
||||
('Starting balance', round_coin_value(strat_results['starting_balance'],
|
||||
strat_results['stake_currency'])),
|
||||
('Final balance', round_coin_value(strat_results['final_balance'],
|
||||
strat_results['stake_currency'])),
|
||||
('Absolute profit ', round_coin_value(strat_results['profit_total_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Total profit %', f"{round(strat_results['profit_total'] * 100, 2):}%"),
|
||||
('Total profit %', f"{strat_results['profit_total']:.2%}"),
|
||||
('Trades per day', strat_results['trades_per_day']),
|
||||
('Avg. daily profit %',
|
||||
f"{(strat_results['profit_total'] / strat_results['backtest_days']):.2%}"),
|
||||
('Avg. stake amount', round_coin_value(strat_results['avg_stake_amount'],
|
||||
strat_results['stake_currency'])),
|
||||
('Total trade volume', round_coin_value(strat_results['total_volume'],
|
||||
strat_results['stake_currency'])),
|
||||
*short_metrics,
|
||||
('', ''), # Empty line to improve readability
|
||||
('Best Pair', f"{strat_results['best_pair']['key']} "
|
||||
f"{round(strat_results['best_pair']['profit_sum_pct'], 2)}%"),
|
||||
f"{strat_results['best_pair']['profit_sum']:.2%}"),
|
||||
('Worst Pair', f"{strat_results['worst_pair']['key']} "
|
||||
f"{round(strat_results['worst_pair']['profit_sum_pct'], 2)}%"),
|
||||
('Best trade', f"{best_trade['pair']} {round(best_trade['profit_ratio'] * 100, 2)}%"),
|
||||
f"{strat_results['worst_pair']['profit_sum']:.2%}"),
|
||||
('Best trade', f"{best_trade['pair']} {best_trade['profit_ratio']:.2%}"),
|
||||
('Worst trade', f"{worst_trade['pair']} "
|
||||
f"{round(worst_trade['profit_ratio'] * 100, 2)}%"),
|
||||
f"{worst_trade['profit_ratio']:.2%}"),
|
||||
|
||||
('Best day', round_coin_value(strat_results['backtest_best_day_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
@@ -579,7 +748,10 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
f"{strat_results['draw_days']} / {strat_results['losing_days']}"),
|
||||
('Avg. Duration Winners', f"{strat_results['winner_holding_avg']}"),
|
||||
('Avg. Duration Loser', f"{strat_results['loser_holding_avg']}"),
|
||||
('Rejected Buy signals', strat_results.get('rejected_signals', 'N/A')),
|
||||
('Rejected Entry signals', strat_results.get('rejected_signals', 'N/A')),
|
||||
('Entry/Exit Timeouts',
|
||||
f"{strat_results.get('timedout_entry_orders', 'N/A')} / "
|
||||
f"{strat_results.get('timedout_exit_orders', 'N/A')}"),
|
||||
('', ''), # Empty line to improve readability
|
||||
|
||||
('Min balance', round_coin_value(strat_results['csum_min'],
|
||||
@@ -587,7 +759,10 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
('Max balance', round_coin_value(strat_results['csum_max'],
|
||||
strat_results['stake_currency'])),
|
||||
|
||||
('Drawdown', f"{round(strat_results['max_drawdown'] * 100, 2)}%"),
|
||||
# Compatibility to show old hyperopt results
|
||||
('Drawdown (Account)', f"{strat_results['max_drawdown_account']:.2%}")
|
||||
if 'max_drawdown_account' in strat_results else (
|
||||
'Drawdown', f"{strat_results['max_drawdown']:.2%}"),
|
||||
('Drawdown', round_coin_value(strat_results['max_drawdown_abs'],
|
||||
strat_results['stake_currency'])),
|
||||
('Drawdown high', round_coin_value(strat_results['max_drawdown_high'],
|
||||
@@ -596,7 +771,7 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
strat_results['stake_currency'])),
|
||||
('Drawdown Start', strat_results['drawdown_start']),
|
||||
('Drawdown End', strat_results['drawdown_end']),
|
||||
('Market change', f"{round(strat_results['market_change'] * 100, 2)}%"),
|
||||
('Market change', f"{strat_results['market_change']:.2%}"),
|
||||
]
|
||||
|
||||
return tabulate(metrics, headers=["Metric", "Value"], tablefmt="orgtbl")
|
||||
@@ -614,7 +789,8 @@ def text_table_add_metrics(strat_results: Dict) -> str:
|
||||
return message
|
||||
|
||||
|
||||
def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str):
|
||||
def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency: str,
|
||||
backtest_breakdown=[]):
|
||||
"""
|
||||
Print results for one strategy
|
||||
"""
|
||||
@@ -625,10 +801,23 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
|
||||
print(' BACKTESTING REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = text_table_sell_reason(sell_reason_stats=results['sell_reason_summary'],
|
||||
if (results.get('results_per_enter_tag') is not None
|
||||
or results.get('results_per_buy_tag') is not None):
|
||||
# results_per_buy_tag is deprecated and should be removed 2 versions after short golive.
|
||||
table = text_table_tags(
|
||||
"enter_tag",
|
||||
results.get('results_per_enter_tag', results.get('results_per_buy_tag')),
|
||||
stake_currency=stake_currency)
|
||||
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' ENTER TAG STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
exit_reasons = results.get('exit_reason_summary', results.get('sell_reason_summary'))
|
||||
table = text_table_exit_reason(exit_reason_stats=exit_reasons,
|
||||
stake_currency=stake_currency)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' SELL REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(' EXIT REASON STATS '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = text_table_bt_results(results['left_open_trades'], stake_currency=stake_currency)
|
||||
@@ -636,6 +825,15 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
|
||||
print(' LEFT OPEN TRADES REPORT '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
for period in backtest_breakdown:
|
||||
days_breakdown_stats = generate_periodic_breakdown_stats(
|
||||
trade_list=results['trades'], period=period)
|
||||
table = text_table_periodic_breakdown(days_breakdown_stats=days_breakdown_stats,
|
||||
stake_currency=stake_currency, period=period)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(f' {period.upper()} BREAKDOWN '.center(len(table.splitlines()[0]), '='))
|
||||
print(table)
|
||||
|
||||
table = text_table_add_metrics(results)
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print(' SUMMARY METRICS '.center(len(table.splitlines()[0]), '='))
|
||||
@@ -643,6 +841,7 @@ def show_backtest_result(strategy: str, results: Dict[str, Any], stake_currency:
|
||||
|
||||
if isinstance(table, str) and len(table) > 0:
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
|
||||
print()
|
||||
|
||||
|
||||
@@ -650,7 +849,9 @@ def show_backtest_results(config: Dict, backtest_stats: Dict):
|
||||
stake_currency = config['stake_currency']
|
||||
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
show_backtest_result(strategy, results, stake_currency)
|
||||
show_backtest_result(
|
||||
strategy, results, stake_currency,
|
||||
config.get('backtest_breakdown', []))
|
||||
|
||||
if len(backtest_stats['strategy']) > 1:
|
||||
# Print Strategy summary table
|
||||
@@ -662,3 +863,13 @@ def show_backtest_results(config: Dict, backtest_stats: Dict):
|
||||
print(table)
|
||||
print('=' * len(table.splitlines()[0]))
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
|
||||
|
||||
def show_sorted_pairlist(config: Dict, backtest_stats: Dict):
|
||||
if config.get('backtest_show_pair_list', False):
|
||||
for strategy, results in backtest_stats['strategy'].items():
|
||||
print(f"Pairs for Strategy {strategy}: \n[")
|
||||
for result in results['results_per_pair']:
|
||||
if result["key"] != 'TOTAL':
|
||||
print(f'"{result["key"]}", // {result["profit_mean"]:.2%}')
|
||||
print("]")
|
||||
|
@@ -7,11 +7,15 @@ class SKDecimal(Integer):
|
||||
def __init__(self, low, high, decimals=3, prior="uniform", base=10, transform=None,
|
||||
name=None, dtype=np.int64):
|
||||
self.decimals = decimals
|
||||
_low = int(low * pow(10, self.decimals))
|
||||
_high = int(high * pow(10, self.decimals))
|
||||
|
||||
self.pow_dot_one = pow(0.1, self.decimals)
|
||||
self.pow_ten = pow(10, self.decimals)
|
||||
|
||||
_low = int(low * self.pow_ten)
|
||||
_high = int(high * self.pow_ten)
|
||||
# trunc to precision to avoid points out of space
|
||||
self.low_orig = round(_low * pow(0.1, self.decimals), self.decimals)
|
||||
self.high_orig = round(_high * pow(0.1, self.decimals), self.decimals)
|
||||
self.low_orig = round(_low * self.pow_dot_one, self.decimals)
|
||||
self.high_orig = round(_high * self.pow_dot_one, self.decimals)
|
||||
|
||||
super().__init__(_low, _high, prior, base, transform, name, dtype)
|
||||
|
||||
@@ -25,9 +29,9 @@ class SKDecimal(Integer):
|
||||
return self.low_orig <= point <= self.high_orig
|
||||
|
||||
def transform(self, Xt):
|
||||
aa = [int(x * pow(10, self.decimals)) for x in Xt]
|
||||
return super().transform(aa)
|
||||
return super().transform([int(v * self.pow_ten) for v in Xt])
|
||||
|
||||
def inverse_transform(self, Xt):
|
||||
res = super().inverse_transform(Xt)
|
||||
return [round(x * pow(0.1, self.decimals), self.decimals) for x in res]
|
||||
# equivalent to [round(x * pow(0.1, self.decimals), self.decimals) for x in res]
|
||||
return [int(v) / self.pow_ten for v in res]
|
||||
|
Reference in New Issue
Block a user