Merge pull request #3744 from freqtrade/fix/infomrativesample
fix Informative pair documentation
This commit is contained in:
@@ -1 +1,5 @@
|
||||
from freqtrade.strategy.interface import IStrategy # noqa: F401
|
||||
# flake8: noqa: F401
|
||||
from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_prev_date,
|
||||
timeframe_to_seconds, timeframe_to_next_date, timeframe_to_msecs)
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.strategy_helper import merge_informative_pair
|
||||
|
48
freqtrade/strategy/strategy_helper.py
Normal file
48
freqtrade/strategy/strategy_helper.py
Normal file
@@ -0,0 +1,48 @@
|
||||
import pandas as pd
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
|
||||
|
||||
def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
timeframe: str, timeframe_inf: str, ffill: bool = True) -> pd.DataFrame:
|
||||
"""
|
||||
Correctly merge informative samples to the original dataframe, avoiding lookahead bias.
|
||||
|
||||
Since dates are candle open dates, merging a 15m candle that starts at 15:00, and a
|
||||
1h candle that starts at 15:00 will result in all candles to know the close at 16:00
|
||||
which they should not know.
|
||||
|
||||
Moves the date of the informative pair by 1 time interval forward.
|
||||
This way, the 14:00 1h candle is merged to 15:00 15m candle, since the 14:00 1h candle is the
|
||||
last candle that's closed at 15:00, 15:15, 15:30 or 15:45.
|
||||
|
||||
Assuming inf_tf = '1d' - then the resulting columns will be:
|
||||
date_1d, open_1d, high_1d, low_1d, close_1d, rsi_1d
|
||||
|
||||
:param dataframe: Original dataframe
|
||||
:param informative: Informative pair, most likely loaded via dp.get_pair_dataframe
|
||||
:param timeframe: Timeframe of the original pair sample.
|
||||
:param timeframe_inf: Timeframe of the informative pair sample.
|
||||
:param ffill: Forwardfill missing values - optional but usually required
|
||||
"""
|
||||
|
||||
minutes_inf = timeframe_to_minutes(timeframe_inf)
|
||||
minutes = timeframe_to_minutes(timeframe)
|
||||
if minutes >= minutes_inf:
|
||||
# No need to forwardshift if the timeframes are identical
|
||||
informative['date_merge'] = informative["date"]
|
||||
else:
|
||||
informative['date_merge'] = informative["date"] + pd.to_timedelta(minutes_inf, 'm')
|
||||
|
||||
# Rename columns to be unique
|
||||
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
|
||||
|
||||
# Combine the 2 dataframes
|
||||
# all indicators on the informative sample MUST be calculated before this point
|
||||
dataframe = pd.merge(dataframe, informative, left_on='date',
|
||||
right_on=f'date_merge_{timeframe_inf}', how='left')
|
||||
dataframe = dataframe.drop(f'date_merge_{timeframe_inf}', axis=1)
|
||||
|
||||
if ffill:
|
||||
dataframe = dataframe.ffill()
|
||||
|
||||
return dataframe
|
Reference in New Issue
Block a user