Merge pull request #3744 from freqtrade/fix/infomrativesample
fix Informative pair documentation
This commit is contained in:
commit
aa2d1e9cca
@ -483,6 +483,9 @@ if self.dp:
|
||||
### Complete Data-provider sample
|
||||
|
||||
```python
|
||||
from freqtrade.strategy import IStrategy, merge_informative_pairs
|
||||
from pandas import DataFrame
|
||||
|
||||
class SampleStrategy(IStrategy):
|
||||
# strategy init stuff...
|
||||
|
||||
@ -513,17 +516,12 @@ class SampleStrategy(IStrategy):
|
||||
# Get the 14 day rsi
|
||||
informative['rsi'] = ta.RSI(informative, timeperiod=14)
|
||||
|
||||
# Rename columns to be unique
|
||||
informative.columns = [f"{col}_{inf_tf}" for col in informative.columns]
|
||||
# Assuming inf_tf = '1d' - then the columns will now be:
|
||||
# date_1d, open_1d, high_1d, low_1d, close_1d, rsi_1d
|
||||
|
||||
# Combine the 2 dataframes
|
||||
# all indicators on the informative sample MUST be calculated before this point
|
||||
dataframe = pd.merge(dataframe, informative, left_on='date', right_on=f'date_{inf_tf}', how='left')
|
||||
# FFill to have the 1d value available in every row throughout the day.
|
||||
# Without this, comparisons would only work once per day.
|
||||
dataframe = dataframe.ffill()
|
||||
# Use the helper function merge_informative_pair to safely merge the pair
|
||||
# Automatically renames the columns and merges a shorter timeframe dataframe and a longer timeframe informative pair
|
||||
# use ffill to have the 1d value available in every row throughout the day.
|
||||
# Without this, comparisons between columns of the original and the informative pair would only work once per day.
|
||||
# Full documentation of this method, see below
|
||||
dataframe = merge_informative_pair(dataframe, informative, self.timeframe, inf_tf, ffill=True)
|
||||
|
||||
# Calculate rsi of the original dataframe (5m timeframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe, timeperiod=14)
|
||||
@ -547,6 +545,68 @@ class SampleStrategy(IStrategy):
|
||||
|
||||
***
|
||||
|
||||
## Helper functions
|
||||
|
||||
### *merge_informative_pair()*
|
||||
|
||||
This method helps you merge an informative pair to a regular dataframe without lookahead bias.
|
||||
It's there to help you merge the dataframe in a safe and consistent way.
|
||||
|
||||
Options:
|
||||
|
||||
- Rename the columns for you to create unique columns
|
||||
- Merge the dataframe without lookahead bias
|
||||
- Forward-fill (optional)
|
||||
|
||||
All columns of the informative dataframe will be available on the returning dataframe in a renamed fashion:
|
||||
|
||||
!!! Example "Column renaming"
|
||||
Assuming `inf_tf = '1d'` the resulting columns will be:
|
||||
|
||||
``` python
|
||||
'date', 'open', 'high', 'low', 'close', 'rsi' # from the original dataframe
|
||||
'date_1d', 'open_1d', 'high_1d', 'low_1d', 'close_1d', 'rsi_1d' # from the informative dataframe
|
||||
```
|
||||
|
||||
??? Example "Column renaming - 1h"
|
||||
Assuming `inf_tf = '1h'` the resulting columns will be:
|
||||
|
||||
``` python
|
||||
'date', 'open', 'high', 'low', 'close', 'rsi' # from the original dataframe
|
||||
'date_1h', 'open_1h', 'high_1h', 'low_1h', 'close_1h', 'rsi_1h' # from the informative dataframe
|
||||
```
|
||||
|
||||
??? Example "Custom implementation"
|
||||
A custom implementation for this is possible, and can be done as follows:
|
||||
|
||||
``` python
|
||||
# Rename columns to be unique
|
||||
informative.columns = [f"{col}_{inf_tf}" for col in informative.columns]
|
||||
# Assuming inf_tf = '1d' - then the columns will now be:
|
||||
# date_1d, open_1d, high_1d, low_1d, close_1d, rsi_1d
|
||||
|
||||
# Shift date by 1 candle
|
||||
# This is necessary since the data is always the "open date"
|
||||
# and a 15m candle starting at 12:15 should not know the close of the 1h candle from 12:00 to 13:00
|
||||
minutes = timeframe_to_minutes(inf_tf)
|
||||
# Only do this if the timeframes are different:
|
||||
informative['date_merge'] = informative["date"] + pd.to_timedelta(minutes, 'm')
|
||||
|
||||
# Combine the 2 dataframes
|
||||
# all indicators on the informative sample MUST be calculated before this point
|
||||
dataframe = pd.merge(dataframe, informative, left_on='date', right_on=f'date_merge_{inf_tf}', how='left')
|
||||
# FFill to have the 1d value available in every row throughout the day.
|
||||
# Without this, comparisons would only work once per day.
|
||||
dataframe = dataframe.ffill()
|
||||
|
||||
```
|
||||
|
||||
!!! Warning "Informative timeframe < timeframe"
|
||||
Using informative timeframes smaller than the dataframe timeframe is not recommended with this method, as it will not use any of the additional information this would provide.
|
||||
To use the more detailed information properly, more advanced methods should be applied (which are out of scope for freqtrade documentation, as it'll depend on the respective need).
|
||||
|
||||
***
|
||||
|
||||
## Additional data (Wallets)
|
||||
|
||||
The strategy provides access to the `Wallets` object. This contains the current balances on the exchange.
|
||||
|
@ -1 +1,5 @@
|
||||
from freqtrade.strategy.interface import IStrategy # noqa: F401
|
||||
# flake8: noqa: F401
|
||||
from freqtrade.exchange import (timeframe_to_minutes, timeframe_to_prev_date,
|
||||
timeframe_to_seconds, timeframe_to_next_date, timeframe_to_msecs)
|
||||
from freqtrade.strategy.interface import IStrategy
|
||||
from freqtrade.strategy.strategy_helper import merge_informative_pair
|
||||
|
48
freqtrade/strategy/strategy_helper.py
Normal file
48
freqtrade/strategy/strategy_helper.py
Normal file
@ -0,0 +1,48 @@
|
||||
import pandas as pd
|
||||
from freqtrade.exchange import timeframe_to_minutes
|
||||
|
||||
|
||||
def merge_informative_pair(dataframe: pd.DataFrame, informative: pd.DataFrame,
|
||||
timeframe: str, timeframe_inf: str, ffill: bool = True) -> pd.DataFrame:
|
||||
"""
|
||||
Correctly merge informative samples to the original dataframe, avoiding lookahead bias.
|
||||
|
||||
Since dates are candle open dates, merging a 15m candle that starts at 15:00, and a
|
||||
1h candle that starts at 15:00 will result in all candles to know the close at 16:00
|
||||
which they should not know.
|
||||
|
||||
Moves the date of the informative pair by 1 time interval forward.
|
||||
This way, the 14:00 1h candle is merged to 15:00 15m candle, since the 14:00 1h candle is the
|
||||
last candle that's closed at 15:00, 15:15, 15:30 or 15:45.
|
||||
|
||||
Assuming inf_tf = '1d' - then the resulting columns will be:
|
||||
date_1d, open_1d, high_1d, low_1d, close_1d, rsi_1d
|
||||
|
||||
:param dataframe: Original dataframe
|
||||
:param informative: Informative pair, most likely loaded via dp.get_pair_dataframe
|
||||
:param timeframe: Timeframe of the original pair sample.
|
||||
:param timeframe_inf: Timeframe of the informative pair sample.
|
||||
:param ffill: Forwardfill missing values - optional but usually required
|
||||
"""
|
||||
|
||||
minutes_inf = timeframe_to_minutes(timeframe_inf)
|
||||
minutes = timeframe_to_minutes(timeframe)
|
||||
if minutes >= minutes_inf:
|
||||
# No need to forwardshift if the timeframes are identical
|
||||
informative['date_merge'] = informative["date"]
|
||||
else:
|
||||
informative['date_merge'] = informative["date"] + pd.to_timedelta(minutes_inf, 'm')
|
||||
|
||||
# Rename columns to be unique
|
||||
informative.columns = [f"{col}_{timeframe_inf}" for col in informative.columns]
|
||||
|
||||
# Combine the 2 dataframes
|
||||
# all indicators on the informative sample MUST be calculated before this point
|
||||
dataframe = pd.merge(dataframe, informative, left_on='date',
|
||||
right_on=f'date_merge_{timeframe_inf}', how='left')
|
||||
dataframe = dataframe.drop(f'date_merge_{timeframe_inf}', axis=1)
|
||||
|
||||
if ffill:
|
||||
dataframe = dataframe.ffill()
|
||||
|
||||
return dataframe
|
88
tests/strategy/test_strategy_helpers.py
Normal file
88
tests/strategy/test_strategy_helpers.py
Normal file
@ -0,0 +1,88 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
|
||||
from freqtrade.strategy import merge_informative_pair, timeframe_to_minutes
|
||||
|
||||
|
||||
def generate_test_data(timeframe: str, size: int):
|
||||
np.random.seed(42)
|
||||
tf_mins = timeframe_to_minutes(timeframe)
|
||||
|
||||
base = np.random.normal(20, 2, size=size)
|
||||
|
||||
date = pd.period_range('2020-07-05', periods=size, freq=f'{tf_mins}min').to_timestamp()
|
||||
df = pd.DataFrame({
|
||||
'date': date,
|
||||
'open': base,
|
||||
'high': base + np.random.normal(2, 1, size=size),
|
||||
'low': base - np.random.normal(2, 1, size=size),
|
||||
'close': base + np.random.normal(0, 1, size=size),
|
||||
'volume': np.random.normal(200, size=size)
|
||||
}
|
||||
)
|
||||
df = df.dropna()
|
||||
return df
|
||||
|
||||
|
||||
def test_merge_informative_pair():
|
||||
data = generate_test_data('15m', 40)
|
||||
informative = generate_test_data('1h', 40)
|
||||
|
||||
result = merge_informative_pair(data, informative, '15m', '1h', ffill=True)
|
||||
assert isinstance(result, pd.DataFrame)
|
||||
assert len(result) == len(data)
|
||||
assert 'date' in result.columns
|
||||
assert result['date'].equals(data['date'])
|
||||
assert 'date_1h' in result.columns
|
||||
|
||||
assert 'open' in result.columns
|
||||
assert 'open_1h' in result.columns
|
||||
assert result['open'].equals(data['open'])
|
||||
|
||||
assert 'close' in result.columns
|
||||
assert 'close_1h' in result.columns
|
||||
assert result['close'].equals(data['close'])
|
||||
|
||||
assert 'volume' in result.columns
|
||||
assert 'volume_1h' in result.columns
|
||||
assert result['volume'].equals(data['volume'])
|
||||
|
||||
# First 4 rows are empty
|
||||
assert result.iloc[0]['date_1h'] is pd.NaT
|
||||
assert result.iloc[1]['date_1h'] is pd.NaT
|
||||
assert result.iloc[2]['date_1h'] is pd.NaT
|
||||
assert result.iloc[3]['date_1h'] is pd.NaT
|
||||
# Next 4 rows contain the starting date (0:00)
|
||||
assert result.iloc[4]['date_1h'] == result.iloc[0]['date']
|
||||
assert result.iloc[5]['date_1h'] == result.iloc[0]['date']
|
||||
assert result.iloc[6]['date_1h'] == result.iloc[0]['date']
|
||||
assert result.iloc[7]['date_1h'] == result.iloc[0]['date']
|
||||
# Next 4 rows contain the next Hourly date original date row 4
|
||||
assert result.iloc[8]['date_1h'] == result.iloc[4]['date']
|
||||
|
||||
|
||||
def test_merge_informative_pair_same():
|
||||
data = generate_test_data('15m', 40)
|
||||
informative = generate_test_data('15m', 40)
|
||||
|
||||
result = merge_informative_pair(data, informative, '15m', '15m', ffill=True)
|
||||
assert isinstance(result, pd.DataFrame)
|
||||
assert len(result) == len(data)
|
||||
assert 'date' in result.columns
|
||||
assert result['date'].equals(data['date'])
|
||||
assert 'date_15m' in result.columns
|
||||
|
||||
assert 'open' in result.columns
|
||||
assert 'open_15m' in result.columns
|
||||
assert result['open'].equals(data['open'])
|
||||
|
||||
assert 'close' in result.columns
|
||||
assert 'close_15m' in result.columns
|
||||
assert result['close'].equals(data['close'])
|
||||
|
||||
assert 'volume' in result.columns
|
||||
assert 'volume_15m' in result.columns
|
||||
assert result['volume'].equals(data['volume'])
|
||||
|
||||
# Dates match 1:1
|
||||
assert result['date_15m'].equals(result['date'])
|
Loading…
Reference in New Issue
Block a user