Draft of money management
This commit is contained in:
commit
a74953cb4d
@ -171,6 +171,14 @@ class Arguments(object):
|
|||||||
dest='exportfilename',
|
dest='exportfilename',
|
||||||
metavar='PATH',
|
metavar='PATH',
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
'--backslap',
|
||||||
|
help="Utilize the Backslapping approach instead of the default Backtesting. This should provide more "
|
||||||
|
"accurate results, unless you are utilizing Min/Max function in your strategy.",
|
||||||
|
required=False,
|
||||||
|
dest='backslap',
|
||||||
|
action='store_true'
|
||||||
|
)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
|
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
|
||||||
@ -254,6 +262,7 @@ class Arguments(object):
|
|||||||
self.optimizer_shared_options(hyperopt_cmd)
|
self.optimizer_shared_options(hyperopt_cmd)
|
||||||
self.hyperopt_options(hyperopt_cmd)
|
self.hyperopt_options(hyperopt_cmd)
|
||||||
|
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def parse_timerange(text: Optional[str]) -> TimeRange:
|
def parse_timerange(text: Optional[str]) -> TimeRange:
|
||||||
"""
|
"""
|
||||||
|
@ -16,9 +16,16 @@ import arrow
|
|||||||
from freqtrade import misc, constants, OperationalException
|
from freqtrade import misc, constants, OperationalException
|
||||||
from freqtrade.exchange import Exchange
|
from freqtrade.exchange import Exchange
|
||||||
from freqtrade.arguments import TimeRange
|
from freqtrade.arguments import TimeRange
|
||||||
|
import importlib
|
||||||
|
ujson_found = importlib.util.find_spec("ujson")
|
||||||
|
if ujson_found is not None:
|
||||||
|
import ujson
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
if ujson_found is not None:
|
||||||
|
logger.debug('Loaded UltraJson ujson in optimize.py')
|
||||||
|
|
||||||
|
|
||||||
def json_load(data):
|
def json_load(data):
|
||||||
"""Try to load data with ujson"""
|
"""Try to load data with ujson"""
|
||||||
@ -77,11 +84,17 @@ def load_tickerdata_file(
|
|||||||
if os.path.isfile(gzipfile):
|
if os.path.isfile(gzipfile):
|
||||||
logger.debug('Loading ticker data from file %s', gzipfile)
|
logger.debug('Loading ticker data from file %s', gzipfile)
|
||||||
with gzip.open(gzipfile) as tickerdata:
|
with gzip.open(gzipfile) as tickerdata:
|
||||||
pairdata = json.load(tickerdata)
|
if ujson_found is not None:
|
||||||
|
pairdata = ujson.load(tickerdata, precise_float=True)
|
||||||
|
else:
|
||||||
|
pairdata = json.load(tickerdata)
|
||||||
elif os.path.isfile(file):
|
elif os.path.isfile(file):
|
||||||
logger.debug('Loading ticker data from file %s', file)
|
logger.debug('Loading ticker data from file %s', file)
|
||||||
with open(file) as tickerdata:
|
with open(file) as tickerdata:
|
||||||
pairdata = json.load(tickerdata)
|
if ujson_found is not None:
|
||||||
|
pairdata = ujson.load(tickerdata, precise_float=True)
|
||||||
|
else:
|
||||||
|
pairdata = json.load(tickerdata)
|
||||||
else:
|
else:
|
||||||
return None
|
return None
|
||||||
|
|
||||||
@ -177,7 +190,10 @@ def load_cached_data_for_updating(filename: str,
|
|||||||
# read the cached file
|
# read the cached file
|
||||||
if os.path.isfile(filename):
|
if os.path.isfile(filename):
|
||||||
with open(filename, "rt") as file:
|
with open(filename, "rt") as file:
|
||||||
data = json_load(file)
|
if ujson_found is not None:
|
||||||
|
data = ujson.load(file, precise_float=True)
|
||||||
|
else:
|
||||||
|
data = json.load(file)
|
||||||
# remove the last item, because we are not sure if it is correct
|
# remove the last item, because we are not sure if it is correct
|
||||||
# it could be fetched when the candle was incompleted
|
# it could be fetched when the candle was incompleted
|
||||||
if data:
|
if data:
|
||||||
@ -240,4 +256,4 @@ def download_backtesting_testdata(datadir: str,
|
|||||||
logger.debug("New Start: %s", misc.format_ms_time(data[0][0]))
|
logger.debug("New Start: %s", misc.format_ms_time(data[0][0]))
|
||||||
logger.debug("New End: %s", misc.format_ms_time(data[-1][0]))
|
logger.debug("New End: %s", misc.format_ms_time(data[-1][0]))
|
||||||
|
|
||||||
misc.file_dump_json(filename, data)
|
misc.file_dump_json(filename, data)
|
790
freqtrade/optimize/backslapping.py
Normal file
790
freqtrade/optimize/backslapping.py
Normal file
@ -0,0 +1,790 @@
|
|||||||
|
import timeit
|
||||||
|
from typing import Dict, Any
|
||||||
|
|
||||||
|
from pandas import DataFrame
|
||||||
|
|
||||||
|
from freqtrade.exchange import Exchange
|
||||||
|
from freqtrade.strategy import IStrategy
|
||||||
|
from freqtrade.strategy.interface import SellType
|
||||||
|
from freqtrade.strategy.resolver import StrategyResolver
|
||||||
|
import pdb
|
||||||
|
|
||||||
|
class Backslapping:
|
||||||
|
"""
|
||||||
|
provides a quick way to evaluate strategies over a longer term of time
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config: Dict[str, Any], exchange = None) -> None:
|
||||||
|
"""
|
||||||
|
constructor
|
||||||
|
"""
|
||||||
|
|
||||||
|
self.config = config
|
||||||
|
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
||||||
|
self.ticker_interval = self.strategy.ticker_interval
|
||||||
|
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||||
|
self.populate_buy_trend = self.strategy.populate_buy_trend
|
||||||
|
self.populate_sell_trend = self.strategy.populate_sell_trend
|
||||||
|
|
||||||
|
###
|
||||||
|
#
|
||||||
|
###
|
||||||
|
if exchange is None:
|
||||||
|
self.config['exchange']['secret'] = ''
|
||||||
|
self.config['exchange']['password'] = ''
|
||||||
|
self.config['exchange']['uid'] = ''
|
||||||
|
self.config['dry_run'] = True
|
||||||
|
self.exchange = Exchange(self.config)
|
||||||
|
else:
|
||||||
|
self.exchange = exchange
|
||||||
|
|
||||||
|
self.fee = self.exchange.get_fee()
|
||||||
|
|
||||||
|
self.stop_loss_value = self.strategy.stoploss
|
||||||
|
|
||||||
|
#### backslap config
|
||||||
|
'''
|
||||||
|
Numpy arrays are used for 100x speed up
|
||||||
|
We requires setting Int values for
|
||||||
|
buy stop triggers and stop calculated on
|
||||||
|
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6
|
||||||
|
'''
|
||||||
|
self.np_buy: int = 0
|
||||||
|
self.np_open: int = 1
|
||||||
|
self.np_close: int = 2
|
||||||
|
self.np_sell: int = 3
|
||||||
|
self.np_high: int = 4
|
||||||
|
self.np_low: int = 5
|
||||||
|
self.np_stop: int = 6
|
||||||
|
self.np_bto: int = self.np_close # buys_triggered_on - should be close
|
||||||
|
self.np_bco: int = self.np_open # buys calculated on - open of the next candle.
|
||||||
|
self.np_sto: int = self.np_low # stops_triggered_on - Should be low, FT uses close
|
||||||
|
self.np_sco: int = self.np_stop # stops_calculated_on - Should be stop, FT uses close
|
||||||
|
# self.np_sto: int = self.np_close # stops_triggered_on - Should be low, FT uses close
|
||||||
|
# self.np_sco: int = self.np_close # stops_calculated_on - Should be stop, FT uses close
|
||||||
|
|
||||||
|
self.debug = False # Main debug enable, very print heavy, enable 2 loops recommended
|
||||||
|
self.debug_timing = False # Stages within Backslap
|
||||||
|
self.debug_2loops = False # Limit each pair to two loops, useful when debugging
|
||||||
|
self.debug_vector = False # Debug vector calcs
|
||||||
|
self.debug_timing_main_loop = False # print overall timing per pair - works in Backtest and Backslap
|
||||||
|
|
||||||
|
self.backslap_show_trades = False # prints trades in addition to summary report
|
||||||
|
self.backslap_save_trades = True # saves trades as a pretty table to backslap.txt
|
||||||
|
|
||||||
|
self.stop_stops: int = 9999 # stop back testing any pair with this many stops, set to 999999 to not hit
|
||||||
|
|
||||||
|
def s(self):
|
||||||
|
st = timeit.default_timer()
|
||||||
|
return st
|
||||||
|
|
||||||
|
def f(self, st):
|
||||||
|
return (timeit.default_timer() - st)
|
||||||
|
|
||||||
|
def run(self,args):
|
||||||
|
|
||||||
|
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||||
|
processed = args['processed']
|
||||||
|
max_open_trades = args.get('max_open_trades', 0)
|
||||||
|
realistic = args.get('realistic', False)
|
||||||
|
trades = []
|
||||||
|
trade_count_lock: Dict = {}
|
||||||
|
|
||||||
|
########################### Call out BSlap Loop instead of Original BT code
|
||||||
|
bslap_results: list = []
|
||||||
|
for pair, pair_data in processed.items():
|
||||||
|
if self.debug_timing: # Start timer
|
||||||
|
fl = self.s()
|
||||||
|
|
||||||
|
ticker_data = self.populate_sell_trend(
|
||||||
|
self.populate_buy_trend(pair_data))[headers].copy()
|
||||||
|
|
||||||
|
if self.debug_timing: # print time taken
|
||||||
|
flt = self.f(fl)
|
||||||
|
# print("populate_buy_trend:", pair, round(flt, 10))
|
||||||
|
st = self.s()
|
||||||
|
|
||||||
|
# #dump same DFs to disk for offline testing in scratch
|
||||||
|
# f_pair:str = pair
|
||||||
|
# csv = f_pair.replace("/", "_")
|
||||||
|
# csv="/Users/creslin/PycharmProjects/freqtrade_new/frames/" + csv
|
||||||
|
# ticker_data.to_csv(csv, sep='\t', encoding='utf-8')
|
||||||
|
|
||||||
|
# call bslap - results are a list of dicts
|
||||||
|
bslap_pair_results = self.backslap_pair(ticker_data, pair)
|
||||||
|
last_bslap_results = bslap_results
|
||||||
|
bslap_results = last_bslap_results + bslap_pair_results
|
||||||
|
|
||||||
|
if self.debug_timing: # print time taken
|
||||||
|
tt = self.f(st)
|
||||||
|
print("Time to BackSlap :", pair, round(tt, 10))
|
||||||
|
print("-----------------------")
|
||||||
|
|
||||||
|
# Switch List of Trade Dicts (bslap_results) to Dataframe
|
||||||
|
# Fill missing, calculable columns, profit, duration , abs etc.
|
||||||
|
bslap_results_df = DataFrame(bslap_results)
|
||||||
|
|
||||||
|
if len(bslap_results_df) > 0: # Only post process a frame if it has a record
|
||||||
|
# bslap_results_df['open_time'] = to_datetime(bslap_results_df['open_time'])
|
||||||
|
# bslap_results_df['close_time'] = to_datetime(bslap_results_df['close_time'])
|
||||||
|
# if debug:
|
||||||
|
# print("open_time and close_time converted to datetime columns")
|
||||||
|
|
||||||
|
bslap_results_df = self.vector_fill_results_table(bslap_results_df, pair)
|
||||||
|
else:
|
||||||
|
from freqtrade.optimize.backtesting import BacktestResult
|
||||||
|
|
||||||
|
bslap_results_df = []
|
||||||
|
bslap_results_df = DataFrame.from_records(bslap_results_df, columns=BacktestResult._fields)
|
||||||
|
|
||||||
|
return bslap_results_df
|
||||||
|
|
||||||
|
def vector_fill_results_table(self, bslap_results_df: DataFrame, pair: str):
|
||||||
|
"""
|
||||||
|
The Results frame contains a number of columns that are calculable
|
||||||
|
from othe columns. These are left blank till all rows are added,
|
||||||
|
to be populated in single vector calls.
|
||||||
|
|
||||||
|
Columns to be populated are:
|
||||||
|
- Profit
|
||||||
|
- trade duration
|
||||||
|
- profit abs
|
||||||
|
:param bslap_results Dataframe
|
||||||
|
:return: bslap_results Dataframe
|
||||||
|
"""
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
debug = self.debug_vector
|
||||||
|
|
||||||
|
# stake and fees
|
||||||
|
# stake = 0.015
|
||||||
|
# 0.05% is 0.0005
|
||||||
|
# fee = 0.001
|
||||||
|
|
||||||
|
stake = self.config.get('stake_amount')
|
||||||
|
fee = self.fee
|
||||||
|
open_fee = fee / 2
|
||||||
|
close_fee = fee / 2
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print("Stake is,", stake, "the sum of currency to spend per trade")
|
||||||
|
print("The open fee is", open_fee, "The close fee is", close_fee)
|
||||||
|
if debug:
|
||||||
|
from pandas import set_option
|
||||||
|
set_option('display.max_rows', 5000)
|
||||||
|
set_option('display.max_columns', 20)
|
||||||
|
pd.set_option('display.width', 1000)
|
||||||
|
pd.set_option('max_colwidth', 40)
|
||||||
|
pd.set_option('precision', 12)
|
||||||
|
|
||||||
|
# # Get before
|
||||||
|
# csv = "cryptosher_before_debug"
|
||||||
|
# bslap_results_df.to_csv(csv, sep='\t', encoding='utf-8')
|
||||||
|
|
||||||
|
# bslap_results_df.to_csv(csv, sep='\t', encoding='utf-8')
|
||||||
|
|
||||||
|
bslap_results_df['trade_duration'] = bslap_results_df['close_time'] - bslap_results_df['open_time']
|
||||||
|
bslap_results_df['trade_duration'] = bslap_results_df['trade_duration'].map(lambda x: int(x.total_seconds() / 60))
|
||||||
|
|
||||||
|
## Spends, Takes, Profit, Absolute Profit
|
||||||
|
# print(bslap_results_df)
|
||||||
|
# Buy Price
|
||||||
|
bslap_results_df['buy_vol'] = stake / bslap_results_df['open_rate'] # How many target are we buying
|
||||||
|
bslap_results_df['buy_fee'] = stake * open_fee
|
||||||
|
bslap_results_df['buy_spend'] = stake + bslap_results_df['buy_fee'] # How much we're spending
|
||||||
|
|
||||||
|
# Sell price
|
||||||
|
bslap_results_df['sell_sum'] = bslap_results_df['buy_vol'] * bslap_results_df['close_rate']
|
||||||
|
bslap_results_df['sell_fee'] = bslap_results_df['sell_sum'] * close_fee
|
||||||
|
bslap_results_df['sell_take'] = bslap_results_df['sell_sum'] - bslap_results_df['sell_fee']
|
||||||
|
# profit_percent
|
||||||
|
bslap_results_df['profit_percent'] = (bslap_results_df['sell_take'] - bslap_results_df['buy_spend']) \
|
||||||
|
/ bslap_results_df['buy_spend']
|
||||||
|
# Absolute profit
|
||||||
|
bslap_results_df['profit_abs'] = bslap_results_df['sell_take'] - bslap_results_df['buy_spend']
|
||||||
|
|
||||||
|
# # Get After
|
||||||
|
# csv="cryptosher_after_debug"
|
||||||
|
# bslap_results_df.to_csv(csv, sep='\t', encoding='utf-8')
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print("\n")
|
||||||
|
print(bslap_results_df[
|
||||||
|
['buy_vol', 'buy_fee', 'buy_spend', 'sell_sum', 'sell_fee', 'sell_take', 'profit_percent',
|
||||||
|
'profit_abs', 'exit_type']])
|
||||||
|
|
||||||
|
#pdb.set_trace()
|
||||||
|
return bslap_results_df
|
||||||
|
|
||||||
|
def np_get_t_open_ind(self, np_buy_arr, t_exit_ind: int, np_buy_arr_len: int, stop_stops: int,
|
||||||
|
stop_stops_count: int):
|
||||||
|
import utils_find_1st as utf1st
|
||||||
|
"""
|
||||||
|
The purpose of this def is to return the next "buy" = 1
|
||||||
|
after t_exit_ind.
|
||||||
|
|
||||||
|
This function will also check is the stop limit for the pair has been reached.
|
||||||
|
if stop_stops is the limit and stop_stops_count it the number of times the stop has been hit.
|
||||||
|
|
||||||
|
t_exit_ind is the index the last trade exited on
|
||||||
|
or 0 if first time around this loop.
|
||||||
|
|
||||||
|
stop_stops i
|
||||||
|
"""
|
||||||
|
debug = self.debug
|
||||||
|
|
||||||
|
# Timers, to be called if in debug
|
||||||
|
def s():
|
||||||
|
st = timeit.default_timer()
|
||||||
|
return st
|
||||||
|
|
||||||
|
def f(st):
|
||||||
|
return (timeit.default_timer() - st)
|
||||||
|
|
||||||
|
st = s()
|
||||||
|
t_open_ind: int
|
||||||
|
|
||||||
|
"""
|
||||||
|
Create a view on our buy index starting after last trade exit
|
||||||
|
Search for next buy
|
||||||
|
"""
|
||||||
|
np_buy_arr_v = np_buy_arr[t_exit_ind:]
|
||||||
|
t_open_ind = utf1st.find_1st(np_buy_arr_v, 1, utf1st.cmp_equal)
|
||||||
|
|
||||||
|
'''
|
||||||
|
If -1 is returned no buy has been found, preserve the value
|
||||||
|
'''
|
||||||
|
if t_open_ind != -1: # send back the -1 if no buys found. otherwise update index
|
||||||
|
t_open_ind = t_open_ind + t_exit_ind # Align numpy index
|
||||||
|
|
||||||
|
if t_open_ind == np_buy_arr_len - 1: # If buy found on last candle ignore, there is no OPEN in next to use
|
||||||
|
t_open_ind = -1 # -1 ends the loop
|
||||||
|
|
||||||
|
if stop_stops_count >= stop_stops: # if maximum number of stops allowed in a pair is hit, exit loop
|
||||||
|
t_open_ind = -1 # -1 ends the loop
|
||||||
|
if debug:
|
||||||
|
print("Max stop limit ", stop_stops, "reached. Moving to next pair")
|
||||||
|
|
||||||
|
return t_open_ind
|
||||||
|
|
||||||
|
def backslap_pair(self, ticker_data, pair):
|
||||||
|
import pandas as pd
|
||||||
|
import numpy as np
|
||||||
|
import timeit
|
||||||
|
import utils_find_1st as utf1st
|
||||||
|
from datetime import datetime
|
||||||
|
|
||||||
|
### backslap debug wrap
|
||||||
|
# debug_2loops = False # only loop twice, for faster debug
|
||||||
|
# debug_timing = False # print timing for each step
|
||||||
|
# debug = False # print values, to check accuracy
|
||||||
|
debug_2loops = self.debug_2loops # only loop twice, for faster debug
|
||||||
|
debug_timing = self.debug_timing # print timing for each step
|
||||||
|
debug = self.debug # print values, to check accuracy
|
||||||
|
|
||||||
|
# Read Stop Loss Values and Stake
|
||||||
|
stop = self.stop_loss_value
|
||||||
|
p_stop = (stop + 1) # What stop really means, e.g 0.01 is 0.99 of price
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print("Stop is ", stop, "value from stragey file")
|
||||||
|
print("p_stop is", p_stop, "value used to multiply to entry price")
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
from pandas import set_option
|
||||||
|
set_option('display.max_rows', 5000)
|
||||||
|
set_option('display.max_columns', 8)
|
||||||
|
pd.set_option('display.width', 1000)
|
||||||
|
pd.set_option('max_colwidth', 40)
|
||||||
|
pd.set_option('precision', 12)
|
||||||
|
|
||||||
|
def s():
|
||||||
|
st = timeit.default_timer()
|
||||||
|
return st
|
||||||
|
|
||||||
|
def f(st):
|
||||||
|
return (timeit.default_timer() - st)
|
||||||
|
|
||||||
|
#### backslap config
|
||||||
|
'''
|
||||||
|
Numpy arrays are used for 100x speed up
|
||||||
|
We requires setting Int values for
|
||||||
|
buy stop triggers and stop calculated on
|
||||||
|
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6
|
||||||
|
'''
|
||||||
|
|
||||||
|
#######
|
||||||
|
# Use vars set at top of backtest
|
||||||
|
np_buy: int = self.np_buy
|
||||||
|
np_open: int = self.np_open
|
||||||
|
np_close: int = self.np_close
|
||||||
|
np_sell: int = self.np_sell
|
||||||
|
np_high: int = self.np_high
|
||||||
|
np_low: int = self.np_low
|
||||||
|
np_stop: int = self.np_stop
|
||||||
|
np_bto: int = self.np_bto # buys_triggered_on - should be close
|
||||||
|
np_bco: int = self.np_bco # buys calculated on - open of the next candle.
|
||||||
|
np_sto: int = self.np_sto # stops_triggered_on - Should be low, FT uses close
|
||||||
|
np_sco: int = self.np_sco # stops_calculated_on - Should be stop, FT uses close
|
||||||
|
|
||||||
|
### End Config
|
||||||
|
|
||||||
|
pair: str = pair
|
||||||
|
|
||||||
|
# ticker_data: DataFrame = ticker_dfs[t_file]
|
||||||
|
bslap: DataFrame = ticker_data
|
||||||
|
|
||||||
|
# Build a single dimension numpy array from "buy" index for faster search
|
||||||
|
# (500x faster than pandas)
|
||||||
|
np_buy_arr = bslap['buy'].values
|
||||||
|
np_buy_arr_len: int = len(np_buy_arr)
|
||||||
|
|
||||||
|
# use numpy array for faster searches in loop, 20x faster than pandas
|
||||||
|
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
|
||||||
|
np_bslap = np.array(bslap[['buy', 'open', 'close', 'sell', 'high', 'low']])
|
||||||
|
|
||||||
|
# Build a numpy list of date-times.
|
||||||
|
# We use these when building the trade
|
||||||
|
# The rationale is to address a value from a pandas cell is thousands of
|
||||||
|
# times more expensive. Processing time went X25 when trying to use any data from pandas
|
||||||
|
np_bslap_dates = bslap['date'].values
|
||||||
|
|
||||||
|
loop: int = 0 # how many time around the loop
|
||||||
|
t_exit_ind = 0 # Start loop from first index
|
||||||
|
t_exit_last = 0 # To test for exit
|
||||||
|
|
||||||
|
stop_stops = self.stop_stops # Int of stops within a pair to stop trading a pair at
|
||||||
|
stop_stops_count = 0 # stop counter per pair
|
||||||
|
|
||||||
|
st = s() # Start timer for processing dataframe
|
||||||
|
if debug:
|
||||||
|
print('Processing:', pair)
|
||||||
|
|
||||||
|
# Results will be stored in a list of dicts
|
||||||
|
bslap_pair_results: list = []
|
||||||
|
bslap_result: dict = {}
|
||||||
|
|
||||||
|
while t_exit_ind < np_buy_arr_len:
|
||||||
|
loop = loop + 1
|
||||||
|
if debug or debug_timing:
|
||||||
|
print("-- T_exit_Ind - Numpy Index is", t_exit_ind, " ----------------------- Loop", loop, pair)
|
||||||
|
if debug_2loops:
|
||||||
|
if loop == 3:
|
||||||
|
print(
|
||||||
|
"++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Loop debug max met - breaking")
|
||||||
|
break
|
||||||
|
'''
|
||||||
|
Dev phases
|
||||||
|
Phase 1
|
||||||
|
1) Manage buy, sell, stop enter/exit
|
||||||
|
a) Find first buy index
|
||||||
|
b) Discover first stop and sell hit after buy index
|
||||||
|
c) Chose first instance as trade exit
|
||||||
|
|
||||||
|
Phase 2
|
||||||
|
2) Manage dynamic Stop and ROI Exit
|
||||||
|
a) Create trade slice from 1
|
||||||
|
b) search within trade slice for dynamice stop hit
|
||||||
|
c) search within trade slice for ROI hit
|
||||||
|
'''
|
||||||
|
|
||||||
|
if debug_timing:
|
||||||
|
st = s()
|
||||||
|
'''
|
||||||
|
0 - Find next buy entry
|
||||||
|
Finds index for first (buy = 1) flag
|
||||||
|
|
||||||
|
Requires: np_buy_arr - a 1D array of the 'buy' column. To find next "1"
|
||||||
|
Required: t_exit_ind - Either 0, first loop. Or The index we last exited on
|
||||||
|
Requires: np_buy_arr_len - length of pair array.
|
||||||
|
Requires: stops_stops - number of stops allowed before stop trading a pair
|
||||||
|
Requires: stop_stop_counts - count of stops hit in the pair
|
||||||
|
Provides: The next "buy" index after t_exit_ind
|
||||||
|
|
||||||
|
If -1 is returned no buy has been found in remainder of array, skip to exit loop
|
||||||
|
'''
|
||||||
|
t_open_ind = self.np_get_t_open_ind(np_buy_arr, t_exit_ind, np_buy_arr_len, stop_stops, stop_stops_count)
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print("\n(0) numpy debug \nnp_get_t_open, has returned the next valid buy index as", t_open_ind)
|
||||||
|
print("If -1 there are no valid buys in the remainder of ticker data. Skipping to end of loop")
|
||||||
|
if debug_timing:
|
||||||
|
t_t = f(st)
|
||||||
|
print("0-numpy", str.format('{0:.17f}', t_t))
|
||||||
|
st = s()
|
||||||
|
|
||||||
|
if t_open_ind != -1:
|
||||||
|
|
||||||
|
"""
|
||||||
|
1 - Create views to search within for our open trade
|
||||||
|
|
||||||
|
The views are our search space for the next Stop or Sell
|
||||||
|
Numpy view is employed as:
|
||||||
|
1,000 faster than pandas searches
|
||||||
|
Pandas cannot assure it will always return a view, it may make a slow copy.
|
||||||
|
|
||||||
|
The view contains columns:
|
||||||
|
buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
|
||||||
|
|
||||||
|
Requires: np_bslap is our numpy array of the ticker DataFrame
|
||||||
|
Requires: t_open_ind is the index row with the buy.
|
||||||
|
Provides: np_t_open_v View of array after buy.
|
||||||
|
Provides: np_t_open_v_stop View of array after buy +1
|
||||||
|
(Stop will search in here to prevent stopping in the past)
|
||||||
|
"""
|
||||||
|
np_t_open_v = np_bslap[t_open_ind:]
|
||||||
|
np_t_open_v_stop = np_bslap[t_open_ind + 1:]
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print("\n(1) numpy debug \nNumpy view row 0 is now Ticker_Data Index", t_open_ind)
|
||||||
|
print("Numpy View: Buy - Open - Close - Sell - High - Low")
|
||||||
|
print("Row 0", np_t_open_v[0])
|
||||||
|
print("Row 1", np_t_open_v[1], )
|
||||||
|
if debug_timing:
|
||||||
|
t_t = f(st)
|
||||||
|
print("2-numpy", str.format('{0:.17f}', t_t))
|
||||||
|
st = s()
|
||||||
|
|
||||||
|
'''
|
||||||
|
2 - Calculate our stop-loss price
|
||||||
|
|
||||||
|
As stop is based on buy price of our trade
|
||||||
|
- (BTO)Buys are Triggered On np_bto, typically the CLOSE of candle
|
||||||
|
- (BCO)Buys are Calculated On np_bco, default is OPEN of the next candle.
|
||||||
|
This is as we only see the CLOSE after it has happened.
|
||||||
|
The back test assumption is we have bought at first available price, the OPEN
|
||||||
|
|
||||||
|
Requires: np_bslap - is our numpy array of the ticker DataFrame
|
||||||
|
Requires: t_open_ind - is the index row with the first buy.
|
||||||
|
Requires: p_stop - is the stop rate, ie. 0.99 is -1%
|
||||||
|
Provides: np_t_stop_pri - The value stop-loss will be triggered on
|
||||||
|
'''
|
||||||
|
np_t_stop_pri = (np_bslap[t_open_ind + 1, np_bco] * p_stop)
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print("\n(2) numpy debug\nStop-Loss has been calculated at:", np_t_stop_pri)
|
||||||
|
if debug_timing:
|
||||||
|
t_t = f(st)
|
||||||
|
print("2-numpy", str.format('{0:.17f}', t_t))
|
||||||
|
st = s()
|
||||||
|
|
||||||
|
'''
|
||||||
|
3 - Find candle STO is under Stop-Loss After Trade opened.
|
||||||
|
|
||||||
|
where [np_sto] (stop tiggered on variable: "close", "low" etc) < np_t_stop_pri
|
||||||
|
|
||||||
|
Requires: np_t_open_v_stop Numpy view of ticker_data after buy row +1 (when trade was opened)
|
||||||
|
Requires: np_sto User Var(STO)StopTriggeredOn. Typically set to "low" or "close"
|
||||||
|
Requires: np_t_stop_pri The stop-loss price STO must fall under to trigger stop
|
||||||
|
Provides: np_t_stop_ind The first candle after trade open where STO is under stop-loss
|
||||||
|
'''
|
||||||
|
np_t_stop_ind = utf1st.find_1st(np_t_open_v_stop[:, np_sto],
|
||||||
|
np_t_stop_pri,
|
||||||
|
utf1st.cmp_smaller)
|
||||||
|
|
||||||
|
# plus 1 as np_t_open_v_stop is 1 ahead of view np_t_open_v, used from here on out.
|
||||||
|
np_t_stop_ind = np_t_stop_ind + 1
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print("\n(3) numpy debug\nNext view index with STO (stop trigger on) under Stop-Loss is",
|
||||||
|
np_t_stop_ind - 1,
|
||||||
|
". STO is using field", np_sto,
|
||||||
|
"\nFrom key: buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5\n")
|
||||||
|
|
||||||
|
print(
|
||||||
|
"If -1 or 0 returned there is no stop found to end of view, then next two array lines are garbage")
|
||||||
|
print("Row", np_t_stop_ind - 1, np_t_open_v[np_t_stop_ind])
|
||||||
|
print("Row", np_t_stop_ind, np_t_open_v[np_t_stop_ind + 1])
|
||||||
|
if debug_timing:
|
||||||
|
t_t = f(st)
|
||||||
|
print("3-numpy", str.format('{0:.17f}', t_t))
|
||||||
|
st = s()
|
||||||
|
|
||||||
|
'''
|
||||||
|
4 - Find first sell index after trade open
|
||||||
|
|
||||||
|
First index in the view np_t_open_v where ['sell'] = 1
|
||||||
|
|
||||||
|
Requires: np_t_open_v - view of ticker_data from buy onwards
|
||||||
|
Requires: no_sell - integer '3', the buy column in the array
|
||||||
|
Provides: np_t_sell_ind index of view where first sell=1 after buy
|
||||||
|
'''
|
||||||
|
# Use numpy array for faster search for sell
|
||||||
|
# Sell uses column 3.
|
||||||
|
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
|
||||||
|
# Numpy searches 25-35x quicker than pandas on this data
|
||||||
|
|
||||||
|
np_t_sell_ind = utf1st.find_1st(np_t_open_v[:, np_sell],
|
||||||
|
1, utf1st.cmp_equal)
|
||||||
|
if debug:
|
||||||
|
print("\n(4) numpy debug\nNext view index with sell = 1 is ", np_t_sell_ind)
|
||||||
|
print("If 0 or less is returned there is no sell found to end of view, then next lines garbage")
|
||||||
|
print("Row", np_t_sell_ind, np_t_open_v[np_t_sell_ind])
|
||||||
|
print("Row", np_t_sell_ind + 1, np_t_open_v[np_t_sell_ind + 1])
|
||||||
|
if debug_timing:
|
||||||
|
t_t = f(st)
|
||||||
|
print("4-numpy", str.format('{0:.17f}', t_t))
|
||||||
|
st = s()
|
||||||
|
|
||||||
|
'''
|
||||||
|
5 - Determine which was hit first a stop or sell
|
||||||
|
To then use as exit index price-field (sell on buy, stop on stop)
|
||||||
|
|
||||||
|
STOP takes priority over SELL as would be 'in candle' from tick data
|
||||||
|
Sell would use Open from Next candle.
|
||||||
|
So in a draw Stop would be hit first on ticker data in live
|
||||||
|
|
||||||
|
Validity of when types of trades may be executed can be summarised as:
|
||||||
|
|
||||||
|
Tick View
|
||||||
|
index index Buy Sell open low close high Stop price
|
||||||
|
open 2am 94 -1 0 0 ----- ------ ------ ----- -----
|
||||||
|
open 3am 95 0 1 0 ----- ------ trg buy ----- -----
|
||||||
|
open 4am 96 1 0 1 Enter trgstop trg sel ROI out Stop out
|
||||||
|
open 5am 97 2 0 0 Exit ------ ------- ----- -----
|
||||||
|
open 6am 98 3 0 0 ----- ------ ------- ----- -----
|
||||||
|
|
||||||
|
-1 means not found till end of view i.e no valid Stop found. Exclude from match.
|
||||||
|
Stop tiggering and closing in 96-1, the candle we bought at OPEN in, is valid.
|
||||||
|
|
||||||
|
Buys and sells are triggered at candle close
|
||||||
|
Both will open their postions at the open of the next candle. i/e + 1 index
|
||||||
|
|
||||||
|
Stop and buy Indexes are on the view. To map to the ticker dataframe
|
||||||
|
the t_open_ind index should be summed.
|
||||||
|
|
||||||
|
np_t_stop_ind: Stop Found index in view
|
||||||
|
t_exit_ind : Sell found in view
|
||||||
|
t_open_ind : Where view was started on ticker_data
|
||||||
|
|
||||||
|
TODO: fix this frig for logic test,, case/switch/dictionary would be better...
|
||||||
|
more so when later testing many options, dynamic stop / roi etc
|
||||||
|
cludge - Setting np_t_sell_ind as 9999999999 when -1 (not found)
|
||||||
|
cludge - Setting np_t_stop_ind as 9999999999 when -1 (not found)
|
||||||
|
|
||||||
|
'''
|
||||||
|
if debug:
|
||||||
|
print("\n(5) numpy debug\nStop or Sell Logic Processing")
|
||||||
|
|
||||||
|
# cludge for logic test (-1) means it was not found, set crazy high to lose < test
|
||||||
|
np_t_sell_ind = 99999999 if np_t_sell_ind <= 0 else np_t_sell_ind
|
||||||
|
np_t_stop_ind = 99999999 if np_t_stop_ind <= 0 else np_t_stop_ind
|
||||||
|
|
||||||
|
# Stoploss trigger found before a sell =1
|
||||||
|
if np_t_stop_ind < 99999999 and np_t_stop_ind <= np_t_sell_ind:
|
||||||
|
t_exit_ind = t_open_ind + np_t_stop_ind # Set Exit row index
|
||||||
|
t_exit_type = SellType.STOP_LOSS # Set Exit type (stop)
|
||||||
|
np_t_exit_pri = np_sco # The price field our STOP exit will use
|
||||||
|
if debug:
|
||||||
|
print("Type STOP is first exit condition. "
|
||||||
|
"At view index:", np_t_stop_ind, ". Ticker data exit index is", t_exit_ind)
|
||||||
|
|
||||||
|
# Buy = 1 found before a stoploss triggered
|
||||||
|
elif np_t_sell_ind < 99999999 and np_t_sell_ind < np_t_stop_ind:
|
||||||
|
# move sell onto next candle, we only look back on sell
|
||||||
|
# will use the open price later.
|
||||||
|
t_exit_ind = t_open_ind + np_t_sell_ind + 1 # Set Exit row index
|
||||||
|
t_exit_type = SellType.SELL_SIGNAL # Set Exit type (sell)
|
||||||
|
np_t_exit_pri = np_open # The price field our SELL exit will use
|
||||||
|
if debug:
|
||||||
|
print("Type SELL is first exit condition. "
|
||||||
|
"At view index", np_t_sell_ind, ". Ticker data exit index is", t_exit_ind)
|
||||||
|
|
||||||
|
# No stop or buy left in view - set t_exit_last -1 to handle gracefully
|
||||||
|
else:
|
||||||
|
t_exit_last: int = -1 # Signal loop to exit, no buys or sells found.
|
||||||
|
t_exit_type = SellType.NONE
|
||||||
|
np_t_exit_pri = 999 # field price should be calculated on. 999 a non-existent column
|
||||||
|
if debug:
|
||||||
|
print("No valid STOP or SELL found. Signalling t_exit_last to gracefully exit")
|
||||||
|
|
||||||
|
# TODO: fix having to cludge/uncludge this ..
|
||||||
|
# Undo cludge
|
||||||
|
np_t_sell_ind = -1 if np_t_sell_ind == 99999999 else np_t_sell_ind
|
||||||
|
np_t_stop_ind = -1 if np_t_stop_ind == 99999999 else np_t_stop_ind
|
||||||
|
|
||||||
|
if debug_timing:
|
||||||
|
t_t = f(st)
|
||||||
|
print("5-logic", str.format('{0:.17f}', t_t))
|
||||||
|
st = s()
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
'''
|
||||||
|
Print out the buys, stops, sells
|
||||||
|
Include Line before and after to for easy
|
||||||
|
Human verification
|
||||||
|
'''
|
||||||
|
# Combine the np_t_stop_pri value to bslap dataframe to make debug
|
||||||
|
# life easy. This is the current stop price based on buy price_
|
||||||
|
# This is slow but don't care about performance in debug
|
||||||
|
#
|
||||||
|
# When referencing equiv np_column, as example np_sto, its 5 in numpy and 6 in df, so +1
|
||||||
|
# as there is no data column in the numpy array.
|
||||||
|
bslap['np_stop_pri'] = np_t_stop_pri
|
||||||
|
|
||||||
|
# Buy
|
||||||
|
print("\n\nDATAFRAME DEBUG =================== BUY ", pair)
|
||||||
|
print("Numpy Array BUY Index is:", 0)
|
||||||
|
print("DataFrame BUY Index is:", t_open_ind, "displaying DF \n")
|
||||||
|
print("HINT, BUY trade should use OPEN price from next candle, i.e ", t_open_ind + 1)
|
||||||
|
op_is = t_open_ind - 1 # Print open index start, line before
|
||||||
|
op_if = t_open_ind + 3 # Print open index finish, line after
|
||||||
|
print(bslap.iloc[op_is:op_if], "\n")
|
||||||
|
|
||||||
|
# Stop - Stops trigger price np_sto (+1 for pandas column), and price received np_sco +1. (Stop Trigger|Calculated On)
|
||||||
|
if np_t_stop_ind < 0:
|
||||||
|
print("DATAFRAME DEBUG =================== STOP ", pair)
|
||||||
|
print("No STOPS were found until the end of ticker data file\n")
|
||||||
|
else:
|
||||||
|
print("DATAFRAME DEBUG =================== STOP ", pair)
|
||||||
|
print("Numpy Array STOP Index is:", np_t_stop_ind, "View starts at index", t_open_ind)
|
||||||
|
df_stop_index = (t_open_ind + np_t_stop_ind)
|
||||||
|
|
||||||
|
print("DataFrame STOP Index is:", df_stop_index, "displaying DF \n")
|
||||||
|
print("First Stoploss trigger after Trade entered at OPEN in candle", t_open_ind + 1, "is ",
|
||||||
|
df_stop_index, ": \n",
|
||||||
|
str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sto + 1]),
|
||||||
|
"is less than", str.format('{0:.17f}', np_t_stop_pri))
|
||||||
|
|
||||||
|
print("A stoploss exit will be calculated at rate:",
|
||||||
|
str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sco + 1]))
|
||||||
|
|
||||||
|
print("\nHINT, STOPs should exit in-candle, i.e", df_stop_index,
|
||||||
|
": As live STOPs are not linked to O-C times")
|
||||||
|
|
||||||
|
st_is = df_stop_index - 1 # Print stop index start, line before
|
||||||
|
st_if = df_stop_index + 2 # Print stop index finish, line after
|
||||||
|
print(bslap.iloc[st_is:st_if], "\n")
|
||||||
|
|
||||||
|
# Sell
|
||||||
|
if np_t_sell_ind < 0:
|
||||||
|
print("DATAFRAME DEBUG =================== SELL ", pair)
|
||||||
|
print("No SELLS were found till the end of ticker data file\n")
|
||||||
|
else:
|
||||||
|
print("DATAFRAME DEBUG =================== SELL ", pair)
|
||||||
|
print("Numpy View SELL Index is:", np_t_sell_ind, "View starts at index", t_open_ind)
|
||||||
|
df_sell_index = (t_open_ind + np_t_sell_ind)
|
||||||
|
|
||||||
|
print("DataFrame SELL Index is:", df_sell_index, "displaying DF \n")
|
||||||
|
print("First Sell Index after Trade open is in candle", df_sell_index)
|
||||||
|
print("HINT, if exit is SELL (not stop) trade should use OPEN price from next candle",
|
||||||
|
df_sell_index + 1)
|
||||||
|
sl_is = df_sell_index - 1 # Print sell index start, line before
|
||||||
|
sl_if = df_sell_index + 3 # Print sell index finish, line after
|
||||||
|
print(bslap.iloc[sl_is:sl_if], "\n")
|
||||||
|
|
||||||
|
# Chosen Exit (stop or sell)
|
||||||
|
|
||||||
|
print("DATAFRAME DEBUG =================== EXIT ", pair)
|
||||||
|
print("Exit type is :", t_exit_type)
|
||||||
|
print("trade exit price field is", np_t_exit_pri, "\n")
|
||||||
|
|
||||||
|
if debug_timing:
|
||||||
|
t_t = f(st)
|
||||||
|
print("6-depra", str.format('{0:.17f}', t_t))
|
||||||
|
st = s()
|
||||||
|
|
||||||
|
## use numpy view "np_t_open_v" for speed. Columns are
|
||||||
|
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
|
||||||
|
# exception is 6 which is use the stop value.
|
||||||
|
|
||||||
|
# TODO no! this is hard coded bleh fix this open
|
||||||
|
np_trade_enter_price = np_bslap[t_open_ind + 1, np_open]
|
||||||
|
if t_exit_type == SellType.STOP_LOSS:
|
||||||
|
if np_t_exit_pri == 6:
|
||||||
|
np_trade_exit_price = np_t_stop_pri
|
||||||
|
else:
|
||||||
|
np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri]
|
||||||
|
if t_exit_type == SellType.SELL_SIGNAL:
|
||||||
|
np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri]
|
||||||
|
|
||||||
|
# Catch no exit found
|
||||||
|
if t_exit_type == SellType.NONE:
|
||||||
|
np_trade_exit_price = 0
|
||||||
|
|
||||||
|
if debug_timing:
|
||||||
|
t_t = f(st)
|
||||||
|
print("7-numpy", str.format('{0:.17f}', t_t))
|
||||||
|
st = s()
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print("//////////////////////////////////////////////")
|
||||||
|
print("+++++++++++++++++++++++++++++++++ Trade Enter ")
|
||||||
|
print("np_trade Enter Price is ", str.format('{0:.17f}', np_trade_enter_price))
|
||||||
|
print("--------------------------------- Trade Exit ")
|
||||||
|
print("Trade Exit Type is ", t_exit_type)
|
||||||
|
print("np_trade Exit Price is", str.format('{0:.17f}', np_trade_exit_price))
|
||||||
|
print("//////////////////////////////////////////////")
|
||||||
|
|
||||||
|
else: # no buys were found, step 0 returned -1
|
||||||
|
# Gracefully exit the loop
|
||||||
|
t_exit_last == -1
|
||||||
|
if debug:
|
||||||
|
print("\n(E) No buys were found in remaining ticker file. Exiting", pair)
|
||||||
|
|
||||||
|
# Loop control - catch no closed trades.
|
||||||
|
if debug:
|
||||||
|
print("---------------------------------------- end of loop", loop,
|
||||||
|
" Dataframe Exit Index is: ", t_exit_ind)
|
||||||
|
print("Exit Index Last, Exit Index Now Are: ", t_exit_last, t_exit_ind)
|
||||||
|
|
||||||
|
if t_exit_last >= t_exit_ind or t_exit_last == -1:
|
||||||
|
"""
|
||||||
|
Break loop and go on to next pair.
|
||||||
|
|
||||||
|
When last trade exit equals index of last exit, there is no
|
||||||
|
opportunity to close any more trades.
|
||||||
|
"""
|
||||||
|
# TODO :add handing here to record none closed open trades
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print(bslap_pair_results)
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
"""
|
||||||
|
Add trade to backtest looking results list of dicts
|
||||||
|
Loop back to look for more trades.
|
||||||
|
"""
|
||||||
|
# Build trade dictionary
|
||||||
|
## In general if a field can be calculated later from other fields leave blank here
|
||||||
|
## Its X(number of trades faster) to calc all in a single vector than 1 trade at a time
|
||||||
|
|
||||||
|
# create a new dict
|
||||||
|
close_index: int = t_exit_ind
|
||||||
|
bslap_result = {} # Must have at start or we end up with a list of multiple same last result
|
||||||
|
bslap_result["pair"] = pair
|
||||||
|
bslap_result["profit_percent"] = "" # To be 1 vector calc across trades when loop complete
|
||||||
|
bslap_result["profit_abs"] = "" # To be 1 vector calc across trades when loop complete
|
||||||
|
bslap_result["open_time"] = np_bslap_dates[t_open_ind + 1] # use numpy array, pandas 20x slower
|
||||||
|
bslap_result["close_time"] = np_bslap_dates[close_index] # use numpy array, pandas 20x slower
|
||||||
|
bslap_result["open_index"] = t_open_ind + 1 # +1 as we buy on next.
|
||||||
|
bslap_result["close_index"] = close_index
|
||||||
|
bslap_result["trade_duration"] = "" # To be 1 vector calc across trades when loop complete
|
||||||
|
bslap_result["open_at_end"] = False
|
||||||
|
bslap_result["open_rate"] = round(np_trade_enter_price, 15)
|
||||||
|
bslap_result["close_rate"] = round(np_trade_exit_price, 15)
|
||||||
|
bslap_result["exit_type"] = t_exit_type
|
||||||
|
bslap_result["sell_reason"] = t_exit_type #duplicated, but I don't care
|
||||||
|
# append the dict to the list and print list
|
||||||
|
bslap_pair_results.append(bslap_result)
|
||||||
|
|
||||||
|
if t_exit_type is SellType.STOP_LOSS:
|
||||||
|
stop_stops_count = stop_stops_count + 1
|
||||||
|
|
||||||
|
if debug:
|
||||||
|
print("The trade dict is: \n", bslap_result)
|
||||||
|
print("Trades dicts in list after append are: \n ", bslap_pair_results)
|
||||||
|
|
||||||
|
"""
|
||||||
|
Loop back to start. t_exit_last becomes where loop
|
||||||
|
will seek to open new trades from.
|
||||||
|
Push index on 1 to not open on close
|
||||||
|
"""
|
||||||
|
t_exit_last = t_exit_ind + 1
|
||||||
|
|
||||||
|
if debug_timing:
|
||||||
|
t_t = f(st)
|
||||||
|
print("8+trade", str.format('{0:.17f}', t_t))
|
||||||
|
|
||||||
|
# Send back List of trade dicts
|
||||||
|
return bslap_pair_results
|
@ -6,13 +6,11 @@ This module contains the backtesting logic
|
|||||||
import logging
|
import logging
|
||||||
import operator
|
import operator
|
||||||
from argparse import Namespace
|
from argparse import Namespace
|
||||||
from copy import deepcopy
|
|
||||||
from datetime import datetime, timedelta
|
from datetime import datetime, timedelta
|
||||||
from pathlib import Path
|
|
||||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||||
|
|
||||||
import arrow
|
import arrow
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame, to_datetime
|
||||||
from tabulate import tabulate
|
from tabulate import tabulate
|
||||||
|
|
||||||
import freqtrade.optimize as optimize
|
import freqtrade.optimize as optimize
|
||||||
@ -21,9 +19,15 @@ from freqtrade.arguments import Arguments
|
|||||||
from freqtrade.configuration import Configuration
|
from freqtrade.configuration import Configuration
|
||||||
from freqtrade.exchange import Exchange
|
from freqtrade.exchange import Exchange
|
||||||
from freqtrade.misc import file_dump_json
|
from freqtrade.misc import file_dump_json
|
||||||
|
from freqtrade.optimize.backslapping import Backslapping
|
||||||
from freqtrade.persistence import Trade
|
from freqtrade.persistence import Trade
|
||||||
from freqtrade.strategy.interface import SellType
|
from freqtrade.strategy.interface import SellType
|
||||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||||
|
from collections import OrderedDict
|
||||||
|
import timeit
|
||||||
|
from time import sleep
|
||||||
|
|
||||||
|
import pdb
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
@ -57,6 +61,11 @@ class Backtesting(object):
|
|||||||
|
|
||||||
def __init__(self, config: Dict[str, Any]) -> None:
|
def __init__(self, config: Dict[str, Any]) -> None:
|
||||||
self.config = config
|
self.config = config
|
||||||
|
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
||||||
|
self.ticker_interval = self.strategy.ticker_interval
|
||||||
|
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||||
|
self.advise_buy = self.strategy.advise_buy
|
||||||
|
self.advise_sell = self.strategy.advise_sell
|
||||||
|
|
||||||
# Reset keys for backtesting
|
# Reset keys for backtesting
|
||||||
self.config['exchange']['key'] = ''
|
self.config['exchange']['key'] = ''
|
||||||
@ -64,35 +73,51 @@ class Backtesting(object):
|
|||||||
self.config['exchange']['password'] = ''
|
self.config['exchange']['password'] = ''
|
||||||
self.config['exchange']['uid'] = ''
|
self.config['exchange']['uid'] = ''
|
||||||
self.config['dry_run'] = True
|
self.config['dry_run'] = True
|
||||||
self.strategylist: List[IStrategy] = []
|
|
||||||
if self.config.get('strategy_list', None):
|
|
||||||
# Force one interval
|
|
||||||
self.ticker_interval = str(self.config.get('ticker_interval'))
|
|
||||||
for strat in list(self.config['strategy_list']):
|
|
||||||
stratconf = deepcopy(self.config)
|
|
||||||
stratconf['strategy'] = strat
|
|
||||||
self.strategylist.append(StrategyResolver(stratconf).strategy)
|
|
||||||
|
|
||||||
else:
|
|
||||||
# only one strategy
|
|
||||||
strat = StrategyResolver(self.config).strategy
|
|
||||||
|
|
||||||
self.strategylist.append(StrategyResolver(self.config).strategy)
|
|
||||||
# Load one strategy
|
|
||||||
self._set_strategy(self.strategylist[0])
|
|
||||||
|
|
||||||
self.exchange = Exchange(self.config)
|
self.exchange = Exchange(self.config)
|
||||||
self.fee = self.exchange.get_fee()
|
self.fee = self.exchange.get_fee()
|
||||||
|
|
||||||
def _set_strategy(self, strategy):
|
self.stop_loss_value = self.strategy.stoploss
|
||||||
"""
|
|
||||||
Load strategy into backtesting
|
#### backslap config
|
||||||
"""
|
'''
|
||||||
self.strategy = strategy
|
Numpy arrays are used for 100x speed up
|
||||||
self.ticker_interval = self.config.get('ticker_interval')
|
We requires setting Int values for
|
||||||
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
|
buy stop triggers and stop calculated on
|
||||||
self.advise_buy = strategy.advise_buy
|
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6
|
||||||
self.advise_sell = strategy.advise_sell
|
'''
|
||||||
|
self.np_buy: int = 0
|
||||||
|
self.np_open: int = 1
|
||||||
|
self.np_close: int = 2
|
||||||
|
self.np_sell: int = 3
|
||||||
|
self.np_high: int = 4
|
||||||
|
self.np_low: int = 5
|
||||||
|
self.np_stop: int = 6
|
||||||
|
self.np_bto: int = self.np_close # buys_triggered_on - should be close
|
||||||
|
self.np_bco: int = self.np_open # buys calculated on - open of the next candle.
|
||||||
|
self.np_sto: int = self.np_low # stops_triggered_on - Should be low, FT uses close
|
||||||
|
self.np_sco: int = self.np_stop # stops_calculated_on - Should be stop, FT uses close
|
||||||
|
# self.np_sto: int = self.np_close # stops_triggered_on - Should be low, FT uses close
|
||||||
|
# self.np_sco: int = self.np_close # stops_calculated_on - Should be stop, FT uses close
|
||||||
|
|
||||||
|
if 'backslap' in config:
|
||||||
|
self.use_backslap = config['backslap'] # Enable backslap - if false Orginal code is executed.
|
||||||
|
else:
|
||||||
|
self.use_backslap = False
|
||||||
|
|
||||||
|
logger.info("using backslap: {}".format(self.use_backslap))
|
||||||
|
|
||||||
|
self.debug = False # Main debug enable, very print heavy, enable 2 loops recommended
|
||||||
|
self.debug_timing = False # Stages within Backslap
|
||||||
|
self.debug_2loops = False # Limit each pair to two loops, useful when debugging
|
||||||
|
self.debug_vector = False # Debug vector calcs
|
||||||
|
self.debug_timing_main_loop = False # print overall timing per pair - works in Backtest and Backslap
|
||||||
|
|
||||||
|
self.backslap_show_trades = False # prints trades in addition to summary report
|
||||||
|
self.backslap_save_trades = True # saves trades as a pretty table to backslap.txt
|
||||||
|
|
||||||
|
self.stop_stops: int = 9999 # stop back testing any pair with this many stops, set to 999999 to not hit
|
||||||
|
|
||||||
|
self.backslap = Backslapping(config)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||||
@ -106,7 +131,7 @@ class Backtesting(object):
|
|||||||
for frame in data.values()
|
for frame in data.values()
|
||||||
]
|
]
|
||||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||||
max(timeframe, key=operator.itemgetter(1))[1]
|
max(timeframe, key=operator.itemgetter(1))[1]
|
||||||
|
|
||||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||||
"""
|
"""
|
||||||
@ -117,10 +142,13 @@ class Backtesting(object):
|
|||||||
|
|
||||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
||||||
tabular_data = []
|
tabular_data = []
|
||||||
|
# headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
||||||
|
# 'total profit ' + stake_currency, 'avg duration', 'profit', 'loss', 'total loss ab', 'total profit ab', 'Risk Reward Ratio', 'Win Rate']
|
||||||
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
||||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss', 'RRR', 'Win Rate %', 'Required RR']
|
||||||
for pair in data:
|
for pair in data:
|
||||||
result = results[results.pair == pair]
|
result = results[results.pair == pair]
|
||||||
|
win_rate = (len(result[result.profit_abs > 0]) / len(result.index)) if (len(result.index) > 0) else None
|
||||||
tabular_data.append([
|
tabular_data.append([
|
||||||
pair,
|
pair,
|
||||||
len(result.index),
|
len(result.index),
|
||||||
@ -130,7 +158,12 @@ class Backtesting(object):
|
|||||||
str(timedelta(
|
str(timedelta(
|
||||||
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||||
len(result[result.profit_abs > 0]),
|
len(result[result.profit_abs > 0]),
|
||||||
len(result[result.profit_abs < 0])
|
len(result[result.profit_abs < 0]),
|
||||||
|
# result[result.profit_abs < 0]['profit_abs'].sum(),
|
||||||
|
# result[result.profit_abs > 0]['profit_abs'].sum(),
|
||||||
|
abs(1 / ((result[result.profit_abs < 0]['profit_abs'].sum() / len(result[result.profit_abs < 0])) / (result[result.profit_abs > 0]['profit_abs'].sum() / len(result[result.profit_abs > 0])))),
|
||||||
|
win_rate * 100 if win_rate else "nan",
|
||||||
|
((1 / win_rate) - 1) if win_rate else "nan"
|
||||||
])
|
])
|
||||||
|
|
||||||
# Append Total
|
# Append Total
|
||||||
@ -147,42 +180,88 @@ class Backtesting(object):
|
|||||||
])
|
])
|
||||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||||
|
|
||||||
|
|
||||||
|
def _generate_text_table_edge_positioning(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||||
|
"""
|
||||||
|
This is a temporary version of edge positioning calculation.
|
||||||
|
The function will be eventually moved to a plugin called Edge in order to calculate necessary WR, RRR and
|
||||||
|
other indictaors related to money management periodically (each X minutes) and keep it in a storage.
|
||||||
|
The calulation will be done per pair and per strategy.
|
||||||
|
"""
|
||||||
|
|
||||||
|
tabular_data = []
|
||||||
|
headers = ['Number of trades', 'RRR', 'Win Rate %', 'Required RR']
|
||||||
|
|
||||||
|
###
|
||||||
|
# The algorithm should be:
|
||||||
|
# 1) Removing outliers from dataframe. i.e. all profit_percent which are outside (mean -+ (2 * (standard deviation))).
|
||||||
|
# 2) Removing pairs with less than X trades (X defined in config).
|
||||||
|
# 3) Calculating RRR and WR.
|
||||||
|
# 4) Removing pairs for which WR and RRR are not in an acceptable range (e.x. WR > 95%).
|
||||||
|
# 5) Sorting the result based on the delta between required RR and RRR.
|
||||||
|
|
||||||
|
# Here we assume initial data in order to calculate position size.
|
||||||
|
# these values will be replaced by exchange info or config
|
||||||
|
for pair in data:
|
||||||
|
result = results[results.pair == pair]
|
||||||
|
|
||||||
|
# WinRate is calculated as follows: (Number of profitable trades) / (Total Trades)
|
||||||
|
win_rate = (len(result[result.profit_abs > 0]) / len(result.index)) if (len(result.index) > 0) else None
|
||||||
|
|
||||||
|
# Risk Reward Ratio is calculated as follows: 1 / ((total loss on losing trades / number of losing trades) / (total gain on profitable trades / number of winning trades))
|
||||||
|
risk_reward_ratio = abs(1 / ((result[result.profit_abs < 0]['profit_abs'].sum() / len(result[result.profit_abs < 0])) / (result[result.profit_abs > 0]['profit_abs'].sum() / len(result[result.profit_abs > 0]))))
|
||||||
|
|
||||||
|
# Required Reward Ratio is (1 / WinRate) - 1
|
||||||
|
required_risk_reward = ((1 / win_rate) - 1) if win_rate else None
|
||||||
|
|
||||||
|
#pdb.set_trace()
|
||||||
|
|
||||||
|
tabular_data.append([
|
||||||
|
pair,
|
||||||
|
len(result.index),
|
||||||
|
risk_reward_ratio,
|
||||||
|
win_rate * 100 if win_rate else "nan",
|
||||||
|
required_risk_reward
|
||||||
|
])
|
||||||
|
|
||||||
|
# for pair in data:
|
||||||
|
# result = results[results.pair == pair]
|
||||||
|
# win_rate = (len(result[result.profit_abs > 0]) / len(result.index)) if (len(result.index) > 0) else None
|
||||||
|
# tabular_data.append([
|
||||||
|
# pair,
|
||||||
|
# #len(result.index),
|
||||||
|
# #result.profit_percent.mean() * 100.0,
|
||||||
|
# #result.profit_percent.sum() * 100.0,
|
||||||
|
# #result.profit_abs.sum(),
|
||||||
|
# str(timedelta(
|
||||||
|
# minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||||
|
# len(result[result.profit_abs > 0]),
|
||||||
|
# len(result[result.profit_abs < 0]),
|
||||||
|
# # result[result.profit_abs < 0]['profit_abs'].sum(),
|
||||||
|
# # result[result.profit_abs > 0]['profit_abs'].sum(),
|
||||||
|
# abs(1 / ((result[result.profit_abs < 0]['profit_abs'].sum() / len(result[result.profit_abs < 0])) / (result[result.profit_abs > 0]['profit_abs'].sum() / len(result[result.profit_abs > 0])))),
|
||||||
|
# win_rate * 100 if win_rate else "nan",
|
||||||
|
# ((1 / win_rate) - 1) if win_rate else "nan"
|
||||||
|
# ])
|
||||||
|
|
||||||
|
#return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||||
|
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||||
"""
|
"""
|
||||||
Generate small table outlining Backtest results
|
Generate small table outlining Backtest results
|
||||||
"""
|
"""
|
||||||
|
|
||||||
tabular_data = []
|
tabular_data = []
|
||||||
headers = ['Sell Reason', 'Count']
|
headers = ['Sell Reason', 'Count']
|
||||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||||
tabular_data.append([reason.value, count])
|
tabular_data.append([reason.value, count])
|
||||||
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||||
|
|
||||||
def _generate_text_table_strategy(self, all_results: dict) -> str:
|
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
|
||||||
"""
|
|
||||||
Generate summary table per strategy
|
|
||||||
"""
|
|
||||||
stake_currency = str(self.config.get('stake_currency'))
|
|
||||||
|
|
||||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
|
||||||
tabular_data = []
|
|
||||||
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
|
|
||||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
|
||||||
for strategy, results in all_results.items():
|
|
||||||
tabular_data.append([
|
|
||||||
strategy,
|
|
||||||
len(results.index),
|
|
||||||
results.profit_percent.mean() * 100.0,
|
|
||||||
results.profit_percent.sum() * 100.0,
|
|
||||||
results.profit_abs.sum(),
|
|
||||||
str(timedelta(
|
|
||||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
|
||||||
len(results[results.profit_abs > 0]),
|
|
||||||
len(results[results.profit_abs < 0])
|
|
||||||
])
|
|
||||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
|
||||||
|
|
||||||
def _store_backtest_result(self, recordfilename: str, results: DataFrame,
|
|
||||||
strategyname: Optional[str] = None) -> None:
|
|
||||||
|
|
||||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||||
@ -190,11 +269,6 @@ class Backtesting(object):
|
|||||||
for index, t in results.iterrows()]
|
for index, t in results.iterrows()]
|
||||||
|
|
||||||
if records:
|
if records:
|
||||||
if strategyname:
|
|
||||||
# Inject strategyname to filename
|
|
||||||
recname = Path(recordfilename)
|
|
||||||
recordfilename = str(Path.joinpath(
|
|
||||||
recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix))
|
|
||||||
logger.info('Dumping backtest results to %s', recordfilename)
|
logger.info('Dumping backtest results to %s', recordfilename)
|
||||||
file_dump_json(recordfilename, records)
|
file_dump_json(recordfilename, records)
|
||||||
|
|
||||||
@ -223,14 +297,13 @@ class Backtesting(object):
|
|||||||
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, buy_signal,
|
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, buy_signal,
|
||||||
sell_row.sell)
|
sell_row.sell)
|
||||||
if sell.sell_flag:
|
if sell.sell_flag:
|
||||||
|
|
||||||
return BacktestResult(pair=pair,
|
return BacktestResult(pair=pair,
|
||||||
profit_percent=trade.calc_profit_percent(rate=sell_row.open),
|
profit_percent=trade.calc_profit_percent(rate=sell_row.open),
|
||||||
profit_abs=trade.calc_profit(rate=sell_row.open),
|
profit_abs=trade.calc_profit(rate=sell_row.open),
|
||||||
open_time=buy_row.date,
|
open_time=buy_row.date,
|
||||||
close_time=sell_row.date,
|
close_time=sell_row.date,
|
||||||
trade_duration=int((
|
trade_duration=int((
|
||||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||||
open_index=buy_row.Index,
|
open_index=buy_row.Index,
|
||||||
close_index=sell_row.Index,
|
close_index=sell_row.Index,
|
||||||
open_at_end=False,
|
open_at_end=False,
|
||||||
@ -247,7 +320,7 @@ class Backtesting(object):
|
|||||||
open_time=buy_row.date,
|
open_time=buy_row.date,
|
||||||
close_time=sell_row.date,
|
close_time=sell_row.date,
|
||||||
trade_duration=int((
|
trade_duration=int((
|
||||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||||
open_index=buy_row.Index,
|
open_index=buy_row.Index,
|
||||||
close_index=sell_row.Index,
|
close_index=sell_row.Index,
|
||||||
open_at_end=True,
|
open_at_end=True,
|
||||||
@ -260,6 +333,13 @@ class Backtesting(object):
|
|||||||
return btr
|
return btr
|
||||||
return None
|
return None
|
||||||
|
|
||||||
|
def s(self):
|
||||||
|
st = timeit.default_timer()
|
||||||
|
return st
|
||||||
|
|
||||||
|
def f(self, st):
|
||||||
|
return (timeit.default_timer() - st)
|
||||||
|
|
||||||
def backtest(self, args: Dict) -> DataFrame:
|
def backtest(self, args: Dict) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Implements backtesting functionality
|
Implements backtesting functionality
|
||||||
@ -275,32 +355,50 @@ class Backtesting(object):
|
|||||||
position_stacking: do we allow position stacking? (default: False)
|
position_stacking: do we allow position stacking? (default: False)
|
||||||
:return: DataFrame
|
:return: DataFrame
|
||||||
"""
|
"""
|
||||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
|
||||||
processed = args['processed']
|
|
||||||
max_open_trades = args.get('max_open_trades', 0)
|
|
||||||
position_stacking = args.get('position_stacking', False)
|
|
||||||
trades = []
|
|
||||||
trade_count_lock: Dict = {}
|
|
||||||
for pair, pair_data in processed.items():
|
|
||||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
|
||||||
|
|
||||||
ticker_data = self.advise_sell(
|
use_backslap = self.use_backslap
|
||||||
|
debug_timing = self.debug_timing_main_loop
|
||||||
|
|
||||||
|
if use_backslap: # Use Back Slap code
|
||||||
|
return self.backslap.run(args)
|
||||||
|
else: # use Original Back test code
|
||||||
|
########################## Original BT loop
|
||||||
|
|
||||||
|
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||||
|
processed = args['processed']
|
||||||
|
max_open_trades = args.get('max_open_trades', 0)
|
||||||
|
position_stacking = args.get('position_stacking', False)
|
||||||
|
trades = []
|
||||||
|
trade_count_lock: Dict = {}
|
||||||
|
|
||||||
|
for pair, pair_data in processed.items():
|
||||||
|
if debug_timing: # Start timer
|
||||||
|
fl = self.s()
|
||||||
|
|
||||||
|
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||||
|
|
||||||
|
ticker_data = self.advise_sell(
|
||||||
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||||
|
|
||||||
# to avoid using data from future, we buy/sell with signal from previous candle
|
# to avoid using data from future, we buy/sell with signal from previous candle
|
||||||
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||||
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
||||||
|
|
||||||
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||||
|
|
||||||
# Convert from Pandas to list for performance reasons
|
if debug_timing: # print time taken
|
||||||
# (Looping Pandas is slow.)
|
flt = self.f(fl)
|
||||||
ticker = [x for x in ticker_data.itertuples()]
|
# print("populate_buy_trend:", pair, round(flt, 10))
|
||||||
|
st = self.s()
|
||||||
|
|
||||||
lock_pair_until = None
|
# Convert from Pandas to list for performance reasons
|
||||||
for index, row in enumerate(ticker):
|
# (Looping Pandas is slow.)
|
||||||
if row.buy == 0 or row.sell == 1:
|
ticker = [x for x in ticker_data.itertuples()]
|
||||||
continue # skip rows where no buy signal or that would immediately sell off
|
|
||||||
|
lock_pair_until = None
|
||||||
|
for index, row in enumerate(ticker):
|
||||||
|
if row.buy == 0 or row.sell == 1:
|
||||||
|
continue # skip rows where no buy signal or that would immediately sell off
|
||||||
|
|
||||||
if not position_stacking:
|
if not position_stacking:
|
||||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||||
@ -310,20 +408,26 @@ class Backtesting(object):
|
|||||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||||
|
|
||||||
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
||||||
trade_count_lock, args)
|
trade_count_lock, args)
|
||||||
|
|
||||||
if trade_entry:
|
if trade_entry:
|
||||||
lock_pair_until = trade_entry.close_time
|
lock_pair_until = trade_entry.close_time
|
||||||
trades.append(trade_entry)
|
trades.append(trade_entry)
|
||||||
else:
|
else:
|
||||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||||
# This happens only if the buy-signal was with the last candle
|
# This happens only if the buy-signal was with the last candle
|
||||||
lock_pair_until = ticker_data.iloc[-1].date
|
lock_pair_until = ticker_data.iloc[-1].date
|
||||||
|
|
||||||
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
if debug_timing: # print time taken
|
||||||
|
tt = self.f(st)
|
||||||
|
print("Time to BackTest :", pair, round(tt, 10))
|
||||||
|
print("-----------------------")
|
||||||
|
|
||||||
|
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||||
|
####################### Original BT loop end
|
||||||
|
|
||||||
def start(self) -> None:
|
def start(self) -> None:
|
||||||
"""
|
"""
|
||||||
@ -338,12 +442,13 @@ class Backtesting(object):
|
|||||||
if self.config.get('live'):
|
if self.config.get('live'):
|
||||||
logger.info('Downloading data for all pairs in whitelist ...')
|
logger.info('Downloading data for all pairs in whitelist ...')
|
||||||
for pair in pairs:
|
for pair in pairs:
|
||||||
data[pair] = self.exchange.get_candle_history(pair, self.ticker_interval)
|
data[pair] = self.exchange.get_ticker_history(pair, self.ticker_interval)
|
||||||
else:
|
else:
|
||||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||||
|
|
||||||
timerange = Arguments.parse_timerange(None if self.config.get(
|
timerange = Arguments.parse_timerange(None if self.config.get(
|
||||||
'timerange') is None else str(self.config.get('timerange')))
|
'timerange') is None else str(self.config.get('timerange')))
|
||||||
|
|
||||||
data = optimize.load_data(
|
data = optimize.load_data(
|
||||||
self.config['datadir'],
|
self.config['datadir'],
|
||||||
pairs=pairs,
|
pairs=pairs,
|
||||||
@ -353,6 +458,7 @@ class Backtesting(object):
|
|||||||
timerange=timerange
|
timerange=timerange
|
||||||
)
|
)
|
||||||
|
|
||||||
|
ld_files = self.s()
|
||||||
if not data:
|
if not data:
|
||||||
logger.critical("No data found. Terminating.")
|
logger.critical("No data found. Terminating.")
|
||||||
return
|
return
|
||||||
@ -362,55 +468,109 @@ class Backtesting(object):
|
|||||||
else:
|
else:
|
||||||
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||||
max_open_trades = 0
|
max_open_trades = 0
|
||||||
all_results = {}
|
|
||||||
|
|
||||||
for strat in self.strategylist:
|
preprocessed = self.tickerdata_to_dataframe(data)
|
||||||
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
|
t_t = self.f(ld_files)
|
||||||
self._set_strategy(strat)
|
print("Load from json to file to df in mem took", t_t)
|
||||||
|
|
||||||
# need to reprocess data every time to populate signals
|
# Print timeframe
|
||||||
preprocessed = self.tickerdata_to_dataframe(data)
|
min_date, max_date = self.get_timeframe(preprocessed)
|
||||||
|
logger.info(
|
||||||
|
'Measuring data from %s up to %s (%s days)..',
|
||||||
|
min_date.isoformat(),
|
||||||
|
max_date.isoformat(),
|
||||||
|
(max_date - min_date).days
|
||||||
|
)
|
||||||
|
|
||||||
|
# Execute backtest and print results
|
||||||
|
results = self.backtest(
|
||||||
|
{
|
||||||
|
'stake_amount': self.config.get('stake_amount'),
|
||||||
|
'processed': preprocessed,
|
||||||
|
'max_open_trades': max_open_trades,
|
||||||
|
'position_stacking': self.config.get('position_stacking', False),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.config.get('export', False):
|
||||||
|
self._store_backtest_result(self.config.get('exportfilename'), results)
|
||||||
|
|
||||||
|
if self.use_backslap:
|
||||||
|
# logger.info(
|
||||||
|
# '\n====================================================== '
|
||||||
|
# 'BackSLAP REPORT'
|
||||||
|
# ' =======================================================\n'
|
||||||
|
# '%s',
|
||||||
|
# self._generate_text_table(
|
||||||
|
# data,
|
||||||
|
# results
|
||||||
|
# )
|
||||||
|
# )
|
||||||
|
|
||||||
# Print timeframe
|
|
||||||
min_date, max_date = self.get_timeframe(preprocessed)
|
|
||||||
logger.info(
|
logger.info(
|
||||||
'Measuring data from %s up to %s (%s days)..',
|
'\n====================================================== '
|
||||||
min_date.isoformat(),
|
'Edge positionning REPORT'
|
||||||
max_date.isoformat(),
|
' =======================================================\n'
|
||||||
(max_date - min_date).days
|
'%s',
|
||||||
|
self._generate_text_table_edge_positioning(
|
||||||
|
data,
|
||||||
|
results
|
||||||
|
)
|
||||||
|
)
|
||||||
|
# optional print trades
|
||||||
|
if self.backslap_show_trades:
|
||||||
|
TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs',
|
||||||
|
'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1)
|
||||||
|
|
||||||
|
def to_fwf(df, fname):
|
||||||
|
content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql')
|
||||||
|
print(content)
|
||||||
|
|
||||||
|
DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt")
|
||||||
|
|
||||||
|
# optional save trades
|
||||||
|
if self.backslap_save_trades:
|
||||||
|
TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs',
|
||||||
|
'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1)
|
||||||
|
|
||||||
|
def to_fwf(df, fname):
|
||||||
|
content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql')
|
||||||
|
open(fname, "w").write(content)
|
||||||
|
|
||||||
|
DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt")
|
||||||
|
|
||||||
|
else:
|
||||||
|
logger.info(
|
||||||
|
'\n================================================= '
|
||||||
|
'BACKTEST REPORT'
|
||||||
|
' ==================================================\n'
|
||||||
|
'%s',
|
||||||
|
self._generate_text_table(
|
||||||
|
data,
|
||||||
|
results
|
||||||
|
)
|
||||||
)
|
)
|
||||||
|
|
||||||
# Execute backtest and print results
|
if 'sell_reason' in results.columns:
|
||||||
all_results[self.strategy.get_strategy_name()] = self.backtest(
|
logger.info(
|
||||||
{
|
'\n' +
|
||||||
'stake_amount': self.config.get('stake_amount'),
|
' SELL READON STATS '.center(119, '=') +
|
||||||
'processed': preprocessed,
|
'\n%s \n',
|
||||||
'max_open_trades': max_open_trades,
|
self._generate_text_table_sell_reason(data, results)
|
||||||
'position_stacking': self.config.get('position_stacking', False),
|
|
||||||
}
|
|
||||||
)
|
)
|
||||||
|
else:
|
||||||
|
logger.info("no sell reasons available!")
|
||||||
|
|
||||||
for strategy, results in all_results.items():
|
logger.info(
|
||||||
|
'\n' +
|
||||||
if self.config.get('export', False):
|
' LEFT OPEN TRADES REPORT '.center(119, '=') +
|
||||||
self._store_backtest_result(self.config['exportfilename'], results,
|
'\n%s',
|
||||||
strategy if len(self.strategylist) > 1 else None)
|
self._generate_text_table(
|
||||||
|
data,
|
||||||
print(f"Result for strategy {strategy}")
|
results.loc[results.open_at_end]
|
||||||
print(' BACKTESTING REPORT '.center(119, '='))
|
)
|
||||||
print(self._generate_text_table(data, results))
|
)
|
||||||
|
|
||||||
print(' SELL REASON STATS '.center(119, '='))
|
|
||||||
print(self._generate_text_table_sell_reason(data, results))
|
|
||||||
|
|
||||||
print(' LEFT OPEN TRADES REPORT '.center(119, '='))
|
|
||||||
print(self._generate_text_table(data, results.loc[results.open_at_end]))
|
|
||||||
print()
|
|
||||||
if len(all_results) > 1:
|
|
||||||
# Print Strategy summary table
|
|
||||||
print(' Strategy Summary '.center(119, '='))
|
|
||||||
print(self._generate_text_table_strategy(all_results))
|
|
||||||
print('\nFor more details, please look at the detail tables above')
|
|
||||||
|
|
||||||
|
|
||||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||||
@ -425,7 +585,7 @@ def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
|||||||
# Ensure we do not use Exchange credentials
|
# Ensure we do not use Exchange credentials
|
||||||
config['exchange']['key'] = ''
|
config['exchange']['key'] = ''
|
||||||
config['exchange']['secret'] = ''
|
config['exchange']['secret'] = ''
|
||||||
|
config['backslap'] = args.backslap
|
||||||
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
||||||
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
||||||
constants.UNLIMITED_STAKE_AMOUNT)
|
constants.UNLIMITED_STAKE_AMOUNT)
|
||||||
@ -445,4 +605,4 @@ def start(args: Namespace) -> None:
|
|||||||
|
|
||||||
# Initialize backtesting object
|
# Initialize backtesting object
|
||||||
backtesting = Backtesting(config)
|
backtesting = Backtesting(config)
|
||||||
backtesting.start()
|
backtesting.start()
|
@ -28,7 +28,7 @@ class DefaultStrategy(IStrategy):
|
|||||||
# Optimal ticker interval for the strategy
|
# Optimal ticker interval for the strategy
|
||||||
ticker_interval = '5m'
|
ticker_interval = '5m'
|
||||||
|
|
||||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_indicators(self, dataframe: DataFrame, metadata: dict = {}) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Adds several different TA indicators to the given DataFrame
|
Adds several different TA indicators to the given DataFrame
|
||||||
|
|
||||||
@ -199,7 +199,7 @@ class DefaultStrategy(IStrategy):
|
|||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_buy_trend(self, dataframe: DataFrame, metadata: dict = {}) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Based on TA indicators, populates the buy signal for the given dataframe
|
Based on TA indicators, populates the buy signal for the given dataframe
|
||||||
:param dataframe: DataFrame
|
:param dataframe: DataFrame
|
||||||
@ -221,7 +221,7 @@ class DefaultStrategy(IStrategy):
|
|||||||
|
|
||||||
return dataframe
|
return dataframe
|
||||||
|
|
||||||
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
def populate_sell_trend(self, dataframe: DataFrame, metadata: dict = {}) -> DataFrame:
|
||||||
"""
|
"""
|
||||||
Based on TA indicators, populates the sell signal for the given dataframe
|
Based on TA indicators, populates the sell signal for the given dataframe
|
||||||
:param dataframe: DataFrame
|
:param dataframe: DataFrame
|
||||||
|
@ -23,3 +23,10 @@ scikit-optimize==0.5.2
|
|||||||
|
|
||||||
# Required for plotting data
|
# Required for plotting data
|
||||||
#plotly==3.1.1
|
#plotly==3.1.1
|
||||||
|
|
||||||
|
# find first, C search in arrays
|
||||||
|
py_find_1st==1.1.1
|
||||||
|
|
||||||
|
#Load ticker files 30% faster
|
||||||
|
ujson==1.35
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user