diff --git a/freqtrade/arguments.py b/freqtrade/arguments.py index 501c1784f..4f47849d8 100644 --- a/freqtrade/arguments.py +++ b/freqtrade/arguments.py @@ -171,6 +171,14 @@ class Arguments(object): dest='exportfilename', metavar='PATH', ) + parser.add_argument( + '--backslap', + help="Utilize the Backslapping approach instead of the default Backtesting. This should provide more " + "accurate results, unless you are utilizing Min/Max function in your strategy.", + required=False, + dest='backslap', + action='store_true' + ) @staticmethod def optimizer_shared_options(parser: argparse.ArgumentParser) -> None: @@ -254,6 +262,7 @@ class Arguments(object): self.optimizer_shared_options(hyperopt_cmd) self.hyperopt_options(hyperopt_cmd) + @staticmethod def parse_timerange(text: Optional[str]) -> TimeRange: """ diff --git a/freqtrade/optimize/__init__.py b/freqtrade/optimize/__init__.py index 0478dbda6..77caf6761 100644 --- a/freqtrade/optimize/__init__.py +++ b/freqtrade/optimize/__init__.py @@ -16,9 +16,16 @@ import arrow from freqtrade import misc, constants, OperationalException from freqtrade.exchange import Exchange from freqtrade.arguments import TimeRange +import importlib +ujson_found = importlib.util.find_spec("ujson") +if ujson_found is not None: + import ujson logger = logging.getLogger(__name__) +if ujson_found is not None: + logger.debug('Loaded UltraJson ujson in optimize.py') + def json_load(data): """Try to load data with ujson""" @@ -77,11 +84,17 @@ def load_tickerdata_file( if os.path.isfile(gzipfile): logger.debug('Loading ticker data from file %s', gzipfile) with gzip.open(gzipfile) as tickerdata: - pairdata = json.load(tickerdata) + if ujson_found is not None: + pairdata = ujson.load(tickerdata, precise_float=True) + else: + pairdata = json.load(tickerdata) elif os.path.isfile(file): logger.debug('Loading ticker data from file %s', file) with open(file) as tickerdata: - pairdata = json.load(tickerdata) + if ujson_found is not None: + pairdata = ujson.load(tickerdata, precise_float=True) + else: + pairdata = json.load(tickerdata) else: return None @@ -177,7 +190,10 @@ def load_cached_data_for_updating(filename: str, # read the cached file if os.path.isfile(filename): with open(filename, "rt") as file: - data = json_load(file) + if ujson_found is not None: + data = ujson.load(file, precise_float=True) + else: + data = json.load(file) # remove the last item, because we are not sure if it is correct # it could be fetched when the candle was incompleted if data: @@ -240,4 +256,4 @@ def download_backtesting_testdata(datadir: str, logger.debug("New Start: %s", misc.format_ms_time(data[0][0])) logger.debug("New End: %s", misc.format_ms_time(data[-1][0])) - misc.file_dump_json(filename, data) + misc.file_dump_json(filename, data) \ No newline at end of file diff --git a/freqtrade/optimize/backslapping.py b/freqtrade/optimize/backslapping.py new file mode 100644 index 000000000..28b2bd460 --- /dev/null +++ b/freqtrade/optimize/backslapping.py @@ -0,0 +1,790 @@ +import timeit +from typing import Dict, Any + +from pandas import DataFrame + +from freqtrade.exchange import Exchange +from freqtrade.strategy import IStrategy +from freqtrade.strategy.interface import SellType +from freqtrade.strategy.resolver import StrategyResolver +import pdb + +class Backslapping: + """ + provides a quick way to evaluate strategies over a longer term of time + """ + + def __init__(self, config: Dict[str, Any], exchange = None) -> None: + """ + constructor + """ + + self.config = config + self.strategy: IStrategy = StrategyResolver(self.config).strategy + self.ticker_interval = self.strategy.ticker_interval + self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe + self.populate_buy_trend = self.strategy.populate_buy_trend + self.populate_sell_trend = self.strategy.populate_sell_trend + + ### + # + ### + if exchange is None: + self.config['exchange']['secret'] = '' + self.config['exchange']['password'] = '' + self.config['exchange']['uid'] = '' + self.config['dry_run'] = True + self.exchange = Exchange(self.config) + else: + self.exchange = exchange + + self.fee = self.exchange.get_fee() + + self.stop_loss_value = self.strategy.stoploss + + #### backslap config + ''' + Numpy arrays are used for 100x speed up + We requires setting Int values for + buy stop triggers and stop calculated on + # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6 + ''' + self.np_buy: int = 0 + self.np_open: int = 1 + self.np_close: int = 2 + self.np_sell: int = 3 + self.np_high: int = 4 + self.np_low: int = 5 + self.np_stop: int = 6 + self.np_bto: int = self.np_close # buys_triggered_on - should be close + self.np_bco: int = self.np_open # buys calculated on - open of the next candle. + self.np_sto: int = self.np_low # stops_triggered_on - Should be low, FT uses close + self.np_sco: int = self.np_stop # stops_calculated_on - Should be stop, FT uses close + # self.np_sto: int = self.np_close # stops_triggered_on - Should be low, FT uses close + # self.np_sco: int = self.np_close # stops_calculated_on - Should be stop, FT uses close + + self.debug = False # Main debug enable, very print heavy, enable 2 loops recommended + self.debug_timing = False # Stages within Backslap + self.debug_2loops = False # Limit each pair to two loops, useful when debugging + self.debug_vector = False # Debug vector calcs + self.debug_timing_main_loop = False # print overall timing per pair - works in Backtest and Backslap + + self.backslap_show_trades = False # prints trades in addition to summary report + self.backslap_save_trades = True # saves trades as a pretty table to backslap.txt + + self.stop_stops: int = 9999 # stop back testing any pair with this many stops, set to 999999 to not hit + + def s(self): + st = timeit.default_timer() + return st + + def f(self, st): + return (timeit.default_timer() - st) + + def run(self,args): + + headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low'] + processed = args['processed'] + max_open_trades = args.get('max_open_trades', 0) + realistic = args.get('realistic', False) + trades = [] + trade_count_lock: Dict = {} + + ########################### Call out BSlap Loop instead of Original BT code + bslap_results: list = [] + for pair, pair_data in processed.items(): + if self.debug_timing: # Start timer + fl = self.s() + + ticker_data = self.populate_sell_trend( + self.populate_buy_trend(pair_data))[headers].copy() + + if self.debug_timing: # print time taken + flt = self.f(fl) + # print("populate_buy_trend:", pair, round(flt, 10)) + st = self.s() + + # #dump same DFs to disk for offline testing in scratch + # f_pair:str = pair + # csv = f_pair.replace("/", "_") + # csv="/Users/creslin/PycharmProjects/freqtrade_new/frames/" + csv + # ticker_data.to_csv(csv, sep='\t', encoding='utf-8') + + # call bslap - results are a list of dicts + bslap_pair_results = self.backslap_pair(ticker_data, pair) + last_bslap_results = bslap_results + bslap_results = last_bslap_results + bslap_pair_results + + if self.debug_timing: # print time taken + tt = self.f(st) + print("Time to BackSlap :", pair, round(tt, 10)) + print("-----------------------") + + # Switch List of Trade Dicts (bslap_results) to Dataframe + # Fill missing, calculable columns, profit, duration , abs etc. + bslap_results_df = DataFrame(bslap_results) + + if len(bslap_results_df) > 0: # Only post process a frame if it has a record + # bslap_results_df['open_time'] = to_datetime(bslap_results_df['open_time']) + # bslap_results_df['close_time'] = to_datetime(bslap_results_df['close_time']) + # if debug: + # print("open_time and close_time converted to datetime columns") + + bslap_results_df = self.vector_fill_results_table(bslap_results_df, pair) + else: + from freqtrade.optimize.backtesting import BacktestResult + + bslap_results_df = [] + bslap_results_df = DataFrame.from_records(bslap_results_df, columns=BacktestResult._fields) + + return bslap_results_df + + def vector_fill_results_table(self, bslap_results_df: DataFrame, pair: str): + """ + The Results frame contains a number of columns that are calculable + from othe columns. These are left blank till all rows are added, + to be populated in single vector calls. + + Columns to be populated are: + - Profit + - trade duration + - profit abs + :param bslap_results Dataframe + :return: bslap_results Dataframe + """ + import pandas as pd + import numpy as np + debug = self.debug_vector + + # stake and fees + # stake = 0.015 + # 0.05% is 0.0005 + # fee = 0.001 + + stake = self.config.get('stake_amount') + fee = self.fee + open_fee = fee / 2 + close_fee = fee / 2 + + if debug: + print("Stake is,", stake, "the sum of currency to spend per trade") + print("The open fee is", open_fee, "The close fee is", close_fee) + if debug: + from pandas import set_option + set_option('display.max_rows', 5000) + set_option('display.max_columns', 20) + pd.set_option('display.width', 1000) + pd.set_option('max_colwidth', 40) + pd.set_option('precision', 12) + + # # Get before + # csv = "cryptosher_before_debug" + # bslap_results_df.to_csv(csv, sep='\t', encoding='utf-8') + + # bslap_results_df.to_csv(csv, sep='\t', encoding='utf-8') + + bslap_results_df['trade_duration'] = bslap_results_df['close_time'] - bslap_results_df['open_time'] + bslap_results_df['trade_duration'] = bslap_results_df['trade_duration'].map(lambda x: int(x.total_seconds() / 60)) + + ## Spends, Takes, Profit, Absolute Profit + # print(bslap_results_df) + # Buy Price + bslap_results_df['buy_vol'] = stake / bslap_results_df['open_rate'] # How many target are we buying + bslap_results_df['buy_fee'] = stake * open_fee + bslap_results_df['buy_spend'] = stake + bslap_results_df['buy_fee'] # How much we're spending + + # Sell price + bslap_results_df['sell_sum'] = bslap_results_df['buy_vol'] * bslap_results_df['close_rate'] + bslap_results_df['sell_fee'] = bslap_results_df['sell_sum'] * close_fee + bslap_results_df['sell_take'] = bslap_results_df['sell_sum'] - bslap_results_df['sell_fee'] + # profit_percent + bslap_results_df['profit_percent'] = (bslap_results_df['sell_take'] - bslap_results_df['buy_spend']) \ + / bslap_results_df['buy_spend'] + # Absolute profit + bslap_results_df['profit_abs'] = bslap_results_df['sell_take'] - bslap_results_df['buy_spend'] + + # # Get After + # csv="cryptosher_after_debug" + # bslap_results_df.to_csv(csv, sep='\t', encoding='utf-8') + + if debug: + print("\n") + print(bslap_results_df[ + ['buy_vol', 'buy_fee', 'buy_spend', 'sell_sum', 'sell_fee', 'sell_take', 'profit_percent', + 'profit_abs', 'exit_type']]) + + #pdb.set_trace() + return bslap_results_df + + def np_get_t_open_ind(self, np_buy_arr, t_exit_ind: int, np_buy_arr_len: int, stop_stops: int, + stop_stops_count: int): + import utils_find_1st as utf1st + """ + The purpose of this def is to return the next "buy" = 1 + after t_exit_ind. + + This function will also check is the stop limit for the pair has been reached. + if stop_stops is the limit and stop_stops_count it the number of times the stop has been hit. + + t_exit_ind is the index the last trade exited on + or 0 if first time around this loop. + + stop_stops i + """ + debug = self.debug + + # Timers, to be called if in debug + def s(): + st = timeit.default_timer() + return st + + def f(st): + return (timeit.default_timer() - st) + + st = s() + t_open_ind: int + + """ + Create a view on our buy index starting after last trade exit + Search for next buy + """ + np_buy_arr_v = np_buy_arr[t_exit_ind:] + t_open_ind = utf1st.find_1st(np_buy_arr_v, 1, utf1st.cmp_equal) + + ''' + If -1 is returned no buy has been found, preserve the value + ''' + if t_open_ind != -1: # send back the -1 if no buys found. otherwise update index + t_open_ind = t_open_ind + t_exit_ind # Align numpy index + + if t_open_ind == np_buy_arr_len - 1: # If buy found on last candle ignore, there is no OPEN in next to use + t_open_ind = -1 # -1 ends the loop + + if stop_stops_count >= stop_stops: # if maximum number of stops allowed in a pair is hit, exit loop + t_open_ind = -1 # -1 ends the loop + if debug: + print("Max stop limit ", stop_stops, "reached. Moving to next pair") + + return t_open_ind + + def backslap_pair(self, ticker_data, pair): + import pandas as pd + import numpy as np + import timeit + import utils_find_1st as utf1st + from datetime import datetime + + ### backslap debug wrap + # debug_2loops = False # only loop twice, for faster debug + # debug_timing = False # print timing for each step + # debug = False # print values, to check accuracy + debug_2loops = self.debug_2loops # only loop twice, for faster debug + debug_timing = self.debug_timing # print timing for each step + debug = self.debug # print values, to check accuracy + + # Read Stop Loss Values and Stake + stop = self.stop_loss_value + p_stop = (stop + 1) # What stop really means, e.g 0.01 is 0.99 of price + + if debug: + print("Stop is ", stop, "value from stragey file") + print("p_stop is", p_stop, "value used to multiply to entry price") + + if debug: + from pandas import set_option + set_option('display.max_rows', 5000) + set_option('display.max_columns', 8) + pd.set_option('display.width', 1000) + pd.set_option('max_colwidth', 40) + pd.set_option('precision', 12) + + def s(): + st = timeit.default_timer() + return st + + def f(st): + return (timeit.default_timer() - st) + + #### backslap config + ''' + Numpy arrays are used for 100x speed up + We requires setting Int values for + buy stop triggers and stop calculated on + # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6 + ''' + + ####### + # Use vars set at top of backtest + np_buy: int = self.np_buy + np_open: int = self.np_open + np_close: int = self.np_close + np_sell: int = self.np_sell + np_high: int = self.np_high + np_low: int = self.np_low + np_stop: int = self.np_stop + np_bto: int = self.np_bto # buys_triggered_on - should be close + np_bco: int = self.np_bco # buys calculated on - open of the next candle. + np_sto: int = self.np_sto # stops_triggered_on - Should be low, FT uses close + np_sco: int = self.np_sco # stops_calculated_on - Should be stop, FT uses close + + ### End Config + + pair: str = pair + + # ticker_data: DataFrame = ticker_dfs[t_file] + bslap: DataFrame = ticker_data + + # Build a single dimension numpy array from "buy" index for faster search + # (500x faster than pandas) + np_buy_arr = bslap['buy'].values + np_buy_arr_len: int = len(np_buy_arr) + + # use numpy array for faster searches in loop, 20x faster than pandas + # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 + np_bslap = np.array(bslap[['buy', 'open', 'close', 'sell', 'high', 'low']]) + + # Build a numpy list of date-times. + # We use these when building the trade + # The rationale is to address a value from a pandas cell is thousands of + # times more expensive. Processing time went X25 when trying to use any data from pandas + np_bslap_dates = bslap['date'].values + + loop: int = 0 # how many time around the loop + t_exit_ind = 0 # Start loop from first index + t_exit_last = 0 # To test for exit + + stop_stops = self.stop_stops # Int of stops within a pair to stop trading a pair at + stop_stops_count = 0 # stop counter per pair + + st = s() # Start timer for processing dataframe + if debug: + print('Processing:', pair) + + # Results will be stored in a list of dicts + bslap_pair_results: list = [] + bslap_result: dict = {} + + while t_exit_ind < np_buy_arr_len: + loop = loop + 1 + if debug or debug_timing: + print("-- T_exit_Ind - Numpy Index is", t_exit_ind, " ----------------------- Loop", loop, pair) + if debug_2loops: + if loop == 3: + print( + "++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Loop debug max met - breaking") + break + ''' + Dev phases + Phase 1 + 1) Manage buy, sell, stop enter/exit + a) Find first buy index + b) Discover first stop and sell hit after buy index + c) Chose first instance as trade exit + + Phase 2 + 2) Manage dynamic Stop and ROI Exit + a) Create trade slice from 1 + b) search within trade slice for dynamice stop hit + c) search within trade slice for ROI hit + ''' + + if debug_timing: + st = s() + ''' + 0 - Find next buy entry + Finds index for first (buy = 1) flag + + Requires: np_buy_arr - a 1D array of the 'buy' column. To find next "1" + Required: t_exit_ind - Either 0, first loop. Or The index we last exited on + Requires: np_buy_arr_len - length of pair array. + Requires: stops_stops - number of stops allowed before stop trading a pair + Requires: stop_stop_counts - count of stops hit in the pair + Provides: The next "buy" index after t_exit_ind + + If -1 is returned no buy has been found in remainder of array, skip to exit loop + ''' + t_open_ind = self.np_get_t_open_ind(np_buy_arr, t_exit_ind, np_buy_arr_len, stop_stops, stop_stops_count) + + if debug: + print("\n(0) numpy debug \nnp_get_t_open, has returned the next valid buy index as", t_open_ind) + print("If -1 there are no valid buys in the remainder of ticker data. Skipping to end of loop") + if debug_timing: + t_t = f(st) + print("0-numpy", str.format('{0:.17f}', t_t)) + st = s() + + if t_open_ind != -1: + + """ + 1 - Create views to search within for our open trade + + The views are our search space for the next Stop or Sell + Numpy view is employed as: + 1,000 faster than pandas searches + Pandas cannot assure it will always return a view, it may make a slow copy. + + The view contains columns: + buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 + + Requires: np_bslap is our numpy array of the ticker DataFrame + Requires: t_open_ind is the index row with the buy. + Provides: np_t_open_v View of array after buy. + Provides: np_t_open_v_stop View of array after buy +1 + (Stop will search in here to prevent stopping in the past) + """ + np_t_open_v = np_bslap[t_open_ind:] + np_t_open_v_stop = np_bslap[t_open_ind + 1:] + + if debug: + print("\n(1) numpy debug \nNumpy view row 0 is now Ticker_Data Index", t_open_ind) + print("Numpy View: Buy - Open - Close - Sell - High - Low") + print("Row 0", np_t_open_v[0]) + print("Row 1", np_t_open_v[1], ) + if debug_timing: + t_t = f(st) + print("2-numpy", str.format('{0:.17f}', t_t)) + st = s() + + ''' + 2 - Calculate our stop-loss price + + As stop is based on buy price of our trade + - (BTO)Buys are Triggered On np_bto, typically the CLOSE of candle + - (BCO)Buys are Calculated On np_bco, default is OPEN of the next candle. + This is as we only see the CLOSE after it has happened. + The back test assumption is we have bought at first available price, the OPEN + + Requires: np_bslap - is our numpy array of the ticker DataFrame + Requires: t_open_ind - is the index row with the first buy. + Requires: p_stop - is the stop rate, ie. 0.99 is -1% + Provides: np_t_stop_pri - The value stop-loss will be triggered on + ''' + np_t_stop_pri = (np_bslap[t_open_ind + 1, np_bco] * p_stop) + + if debug: + print("\n(2) numpy debug\nStop-Loss has been calculated at:", np_t_stop_pri) + if debug_timing: + t_t = f(st) + print("2-numpy", str.format('{0:.17f}', t_t)) + st = s() + + ''' + 3 - Find candle STO is under Stop-Loss After Trade opened. + + where [np_sto] (stop tiggered on variable: "close", "low" etc) < np_t_stop_pri + + Requires: np_t_open_v_stop Numpy view of ticker_data after buy row +1 (when trade was opened) + Requires: np_sto User Var(STO)StopTriggeredOn. Typically set to "low" or "close" + Requires: np_t_stop_pri The stop-loss price STO must fall under to trigger stop + Provides: np_t_stop_ind The first candle after trade open where STO is under stop-loss + ''' + np_t_stop_ind = utf1st.find_1st(np_t_open_v_stop[:, np_sto], + np_t_stop_pri, + utf1st.cmp_smaller) + + # plus 1 as np_t_open_v_stop is 1 ahead of view np_t_open_v, used from here on out. + np_t_stop_ind = np_t_stop_ind + 1 + + if debug: + print("\n(3) numpy debug\nNext view index with STO (stop trigger on) under Stop-Loss is", + np_t_stop_ind - 1, + ". STO is using field", np_sto, + "\nFrom key: buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5\n") + + print( + "If -1 or 0 returned there is no stop found to end of view, then next two array lines are garbage") + print("Row", np_t_stop_ind - 1, np_t_open_v[np_t_stop_ind]) + print("Row", np_t_stop_ind, np_t_open_v[np_t_stop_ind + 1]) + if debug_timing: + t_t = f(st) + print("3-numpy", str.format('{0:.17f}', t_t)) + st = s() + + ''' + 4 - Find first sell index after trade open + + First index in the view np_t_open_v where ['sell'] = 1 + + Requires: np_t_open_v - view of ticker_data from buy onwards + Requires: no_sell - integer '3', the buy column in the array + Provides: np_t_sell_ind index of view where first sell=1 after buy + ''' + # Use numpy array for faster search for sell + # Sell uses column 3. + # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 + # Numpy searches 25-35x quicker than pandas on this data + + np_t_sell_ind = utf1st.find_1st(np_t_open_v[:, np_sell], + 1, utf1st.cmp_equal) + if debug: + print("\n(4) numpy debug\nNext view index with sell = 1 is ", np_t_sell_ind) + print("If 0 or less is returned there is no sell found to end of view, then next lines garbage") + print("Row", np_t_sell_ind, np_t_open_v[np_t_sell_ind]) + print("Row", np_t_sell_ind + 1, np_t_open_v[np_t_sell_ind + 1]) + if debug_timing: + t_t = f(st) + print("4-numpy", str.format('{0:.17f}', t_t)) + st = s() + + ''' + 5 - Determine which was hit first a stop or sell + To then use as exit index price-field (sell on buy, stop on stop) + + STOP takes priority over SELL as would be 'in candle' from tick data + Sell would use Open from Next candle. + So in a draw Stop would be hit first on ticker data in live + + Validity of when types of trades may be executed can be summarised as: + + Tick View + index index Buy Sell open low close high Stop price + open 2am 94 -1 0 0 ----- ------ ------ ----- ----- + open 3am 95 0 1 0 ----- ------ trg buy ----- ----- + open 4am 96 1 0 1 Enter trgstop trg sel ROI out Stop out + open 5am 97 2 0 0 Exit ------ ------- ----- ----- + open 6am 98 3 0 0 ----- ------ ------- ----- ----- + + -1 means not found till end of view i.e no valid Stop found. Exclude from match. + Stop tiggering and closing in 96-1, the candle we bought at OPEN in, is valid. + + Buys and sells are triggered at candle close + Both will open their postions at the open of the next candle. i/e + 1 index + + Stop and buy Indexes are on the view. To map to the ticker dataframe + the t_open_ind index should be summed. + + np_t_stop_ind: Stop Found index in view + t_exit_ind : Sell found in view + t_open_ind : Where view was started on ticker_data + + TODO: fix this frig for logic test,, case/switch/dictionary would be better... + more so when later testing many options, dynamic stop / roi etc + cludge - Setting np_t_sell_ind as 9999999999 when -1 (not found) + cludge - Setting np_t_stop_ind as 9999999999 when -1 (not found) + + ''' + if debug: + print("\n(5) numpy debug\nStop or Sell Logic Processing") + + # cludge for logic test (-1) means it was not found, set crazy high to lose < test + np_t_sell_ind = 99999999 if np_t_sell_ind <= 0 else np_t_sell_ind + np_t_stop_ind = 99999999 if np_t_stop_ind <= 0 else np_t_stop_ind + + # Stoploss trigger found before a sell =1 + if np_t_stop_ind < 99999999 and np_t_stop_ind <= np_t_sell_ind: + t_exit_ind = t_open_ind + np_t_stop_ind # Set Exit row index + t_exit_type = SellType.STOP_LOSS # Set Exit type (stop) + np_t_exit_pri = np_sco # The price field our STOP exit will use + if debug: + print("Type STOP is first exit condition. " + "At view index:", np_t_stop_ind, ". Ticker data exit index is", t_exit_ind) + + # Buy = 1 found before a stoploss triggered + elif np_t_sell_ind < 99999999 and np_t_sell_ind < np_t_stop_ind: + # move sell onto next candle, we only look back on sell + # will use the open price later. + t_exit_ind = t_open_ind + np_t_sell_ind + 1 # Set Exit row index + t_exit_type = SellType.SELL_SIGNAL # Set Exit type (sell) + np_t_exit_pri = np_open # The price field our SELL exit will use + if debug: + print("Type SELL is first exit condition. " + "At view index", np_t_sell_ind, ". Ticker data exit index is", t_exit_ind) + + # No stop or buy left in view - set t_exit_last -1 to handle gracefully + else: + t_exit_last: int = -1 # Signal loop to exit, no buys or sells found. + t_exit_type = SellType.NONE + np_t_exit_pri = 999 # field price should be calculated on. 999 a non-existent column + if debug: + print("No valid STOP or SELL found. Signalling t_exit_last to gracefully exit") + + # TODO: fix having to cludge/uncludge this .. + # Undo cludge + np_t_sell_ind = -1 if np_t_sell_ind == 99999999 else np_t_sell_ind + np_t_stop_ind = -1 if np_t_stop_ind == 99999999 else np_t_stop_ind + + if debug_timing: + t_t = f(st) + print("5-logic", str.format('{0:.17f}', t_t)) + st = s() + + if debug: + ''' + Print out the buys, stops, sells + Include Line before and after to for easy + Human verification + ''' + # Combine the np_t_stop_pri value to bslap dataframe to make debug + # life easy. This is the current stop price based on buy price_ + # This is slow but don't care about performance in debug + # + # When referencing equiv np_column, as example np_sto, its 5 in numpy and 6 in df, so +1 + # as there is no data column in the numpy array. + bslap['np_stop_pri'] = np_t_stop_pri + + # Buy + print("\n\nDATAFRAME DEBUG =================== BUY ", pair) + print("Numpy Array BUY Index is:", 0) + print("DataFrame BUY Index is:", t_open_ind, "displaying DF \n") + print("HINT, BUY trade should use OPEN price from next candle, i.e ", t_open_ind + 1) + op_is = t_open_ind - 1 # Print open index start, line before + op_if = t_open_ind + 3 # Print open index finish, line after + print(bslap.iloc[op_is:op_if], "\n") + + # Stop - Stops trigger price np_sto (+1 for pandas column), and price received np_sco +1. (Stop Trigger|Calculated On) + if np_t_stop_ind < 0: + print("DATAFRAME DEBUG =================== STOP ", pair) + print("No STOPS were found until the end of ticker data file\n") + else: + print("DATAFRAME DEBUG =================== STOP ", pair) + print("Numpy Array STOP Index is:", np_t_stop_ind, "View starts at index", t_open_ind) + df_stop_index = (t_open_ind + np_t_stop_ind) + + print("DataFrame STOP Index is:", df_stop_index, "displaying DF \n") + print("First Stoploss trigger after Trade entered at OPEN in candle", t_open_ind + 1, "is ", + df_stop_index, ": \n", + str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sto + 1]), + "is less than", str.format('{0:.17f}', np_t_stop_pri)) + + print("A stoploss exit will be calculated at rate:", + str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sco + 1])) + + print("\nHINT, STOPs should exit in-candle, i.e", df_stop_index, + ": As live STOPs are not linked to O-C times") + + st_is = df_stop_index - 1 # Print stop index start, line before + st_if = df_stop_index + 2 # Print stop index finish, line after + print(bslap.iloc[st_is:st_if], "\n") + + # Sell + if np_t_sell_ind < 0: + print("DATAFRAME DEBUG =================== SELL ", pair) + print("No SELLS were found till the end of ticker data file\n") + else: + print("DATAFRAME DEBUG =================== SELL ", pair) + print("Numpy View SELL Index is:", np_t_sell_ind, "View starts at index", t_open_ind) + df_sell_index = (t_open_ind + np_t_sell_ind) + + print("DataFrame SELL Index is:", df_sell_index, "displaying DF \n") + print("First Sell Index after Trade open is in candle", df_sell_index) + print("HINT, if exit is SELL (not stop) trade should use OPEN price from next candle", + df_sell_index + 1) + sl_is = df_sell_index - 1 # Print sell index start, line before + sl_if = df_sell_index + 3 # Print sell index finish, line after + print(bslap.iloc[sl_is:sl_if], "\n") + + # Chosen Exit (stop or sell) + + print("DATAFRAME DEBUG =================== EXIT ", pair) + print("Exit type is :", t_exit_type) + print("trade exit price field is", np_t_exit_pri, "\n") + + if debug_timing: + t_t = f(st) + print("6-depra", str.format('{0:.17f}', t_t)) + st = s() + + ## use numpy view "np_t_open_v" for speed. Columns are + # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 + # exception is 6 which is use the stop value. + + # TODO no! this is hard coded bleh fix this open + np_trade_enter_price = np_bslap[t_open_ind + 1, np_open] + if t_exit_type == SellType.STOP_LOSS: + if np_t_exit_pri == 6: + np_trade_exit_price = np_t_stop_pri + else: + np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri] + if t_exit_type == SellType.SELL_SIGNAL: + np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri] + + # Catch no exit found + if t_exit_type == SellType.NONE: + np_trade_exit_price = 0 + + if debug_timing: + t_t = f(st) + print("7-numpy", str.format('{0:.17f}', t_t)) + st = s() + + if debug: + print("//////////////////////////////////////////////") + print("+++++++++++++++++++++++++++++++++ Trade Enter ") + print("np_trade Enter Price is ", str.format('{0:.17f}', np_trade_enter_price)) + print("--------------------------------- Trade Exit ") + print("Trade Exit Type is ", t_exit_type) + print("np_trade Exit Price is", str.format('{0:.17f}', np_trade_exit_price)) + print("//////////////////////////////////////////////") + + else: # no buys were found, step 0 returned -1 + # Gracefully exit the loop + t_exit_last == -1 + if debug: + print("\n(E) No buys were found in remaining ticker file. Exiting", pair) + + # Loop control - catch no closed trades. + if debug: + print("---------------------------------------- end of loop", loop, + " Dataframe Exit Index is: ", t_exit_ind) + print("Exit Index Last, Exit Index Now Are: ", t_exit_last, t_exit_ind) + + if t_exit_last >= t_exit_ind or t_exit_last == -1: + """ + Break loop and go on to next pair. + + When last trade exit equals index of last exit, there is no + opportunity to close any more trades. + """ + # TODO :add handing here to record none closed open trades + + if debug: + print(bslap_pair_results) + break + else: + """ + Add trade to backtest looking results list of dicts + Loop back to look for more trades. + """ + # Build trade dictionary + ## In general if a field can be calculated later from other fields leave blank here + ## Its X(number of trades faster) to calc all in a single vector than 1 trade at a time + + # create a new dict + close_index: int = t_exit_ind + bslap_result = {} # Must have at start or we end up with a list of multiple same last result + bslap_result["pair"] = pair + bslap_result["profit_percent"] = "" # To be 1 vector calc across trades when loop complete + bslap_result["profit_abs"] = "" # To be 1 vector calc across trades when loop complete + bslap_result["open_time"] = np_bslap_dates[t_open_ind + 1] # use numpy array, pandas 20x slower + bslap_result["close_time"] = np_bslap_dates[close_index] # use numpy array, pandas 20x slower + bslap_result["open_index"] = t_open_ind + 1 # +1 as we buy on next. + bslap_result["close_index"] = close_index + bslap_result["trade_duration"] = "" # To be 1 vector calc across trades when loop complete + bslap_result["open_at_end"] = False + bslap_result["open_rate"] = round(np_trade_enter_price, 15) + bslap_result["close_rate"] = round(np_trade_exit_price, 15) + bslap_result["exit_type"] = t_exit_type + bslap_result["sell_reason"] = t_exit_type #duplicated, but I don't care + # append the dict to the list and print list + bslap_pair_results.append(bslap_result) + + if t_exit_type is SellType.STOP_LOSS: + stop_stops_count = stop_stops_count + 1 + + if debug: + print("The trade dict is: \n", bslap_result) + print("Trades dicts in list after append are: \n ", bslap_pair_results) + + """ + Loop back to start. t_exit_last becomes where loop + will seek to open new trades from. + Push index on 1 to not open on close + """ + t_exit_last = t_exit_ind + 1 + + if debug_timing: + t_t = f(st) + print("8+trade", str.format('{0:.17f}', t_t)) + + # Send back List of trade dicts + return bslap_pair_results \ No newline at end of file diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index 9e68318f7..56b1b2282 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -6,13 +6,11 @@ This module contains the backtesting logic import logging import operator from argparse import Namespace -from copy import deepcopy from datetime import datetime, timedelta -from pathlib import Path from typing import Any, Dict, List, NamedTuple, Optional, Tuple import arrow -from pandas import DataFrame +from pandas import DataFrame, to_datetime from tabulate import tabulate import freqtrade.optimize as optimize @@ -21,9 +19,15 @@ from freqtrade.arguments import Arguments from freqtrade.configuration import Configuration from freqtrade.exchange import Exchange from freqtrade.misc import file_dump_json +from freqtrade.optimize.backslapping import Backslapping from freqtrade.persistence import Trade from freqtrade.strategy.interface import SellType from freqtrade.strategy.resolver import IStrategy, StrategyResolver +from collections import OrderedDict +import timeit +from time import sleep + +import pdb logger = logging.getLogger(__name__) @@ -57,6 +61,11 @@ class Backtesting(object): def __init__(self, config: Dict[str, Any]) -> None: self.config = config + self.strategy: IStrategy = StrategyResolver(self.config).strategy + self.ticker_interval = self.strategy.ticker_interval + self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe + self.advise_buy = self.strategy.advise_buy + self.advise_sell = self.strategy.advise_sell # Reset keys for backtesting self.config['exchange']['key'] = '' @@ -64,35 +73,51 @@ class Backtesting(object): self.config['exchange']['password'] = '' self.config['exchange']['uid'] = '' self.config['dry_run'] = True - self.strategylist: List[IStrategy] = [] - if self.config.get('strategy_list', None): - # Force one interval - self.ticker_interval = str(self.config.get('ticker_interval')) - for strat in list(self.config['strategy_list']): - stratconf = deepcopy(self.config) - stratconf['strategy'] = strat - self.strategylist.append(StrategyResolver(stratconf).strategy) - - else: - # only one strategy - strat = StrategyResolver(self.config).strategy - - self.strategylist.append(StrategyResolver(self.config).strategy) - # Load one strategy - self._set_strategy(self.strategylist[0]) - self.exchange = Exchange(self.config) self.fee = self.exchange.get_fee() - def _set_strategy(self, strategy): - """ - Load strategy into backtesting - """ - self.strategy = strategy - self.ticker_interval = self.config.get('ticker_interval') - self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe - self.advise_buy = strategy.advise_buy - self.advise_sell = strategy.advise_sell + self.stop_loss_value = self.strategy.stoploss + + #### backslap config + ''' + Numpy arrays are used for 100x speed up + We requires setting Int values for + buy stop triggers and stop calculated on + # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6 + ''' + self.np_buy: int = 0 + self.np_open: int = 1 + self.np_close: int = 2 + self.np_sell: int = 3 + self.np_high: int = 4 + self.np_low: int = 5 + self.np_stop: int = 6 + self.np_bto: int = self.np_close # buys_triggered_on - should be close + self.np_bco: int = self.np_open # buys calculated on - open of the next candle. + self.np_sto: int = self.np_low # stops_triggered_on - Should be low, FT uses close + self.np_sco: int = self.np_stop # stops_calculated_on - Should be stop, FT uses close + # self.np_sto: int = self.np_close # stops_triggered_on - Should be low, FT uses close + # self.np_sco: int = self.np_close # stops_calculated_on - Should be stop, FT uses close + + if 'backslap' in config: + self.use_backslap = config['backslap'] # Enable backslap - if false Orginal code is executed. + else: + self.use_backslap = False + + logger.info("using backslap: {}".format(self.use_backslap)) + + self.debug = False # Main debug enable, very print heavy, enable 2 loops recommended + self.debug_timing = False # Stages within Backslap + self.debug_2loops = False # Limit each pair to two loops, useful when debugging + self.debug_vector = False # Debug vector calcs + self.debug_timing_main_loop = False # print overall timing per pair - works in Backtest and Backslap + + self.backslap_show_trades = False # prints trades in addition to summary report + self.backslap_save_trades = True # saves trades as a pretty table to backslap.txt + + self.stop_stops: int = 9999 # stop back testing any pair with this many stops, set to 999999 to not hit + + self.backslap = Backslapping(config) @staticmethod def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]: @@ -106,7 +131,7 @@ class Backtesting(object): for frame in data.values() ] return min(timeframe, key=operator.itemgetter(0))[0], \ - max(timeframe, key=operator.itemgetter(1))[1] + max(timeframe, key=operator.itemgetter(1))[1] def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str: """ @@ -117,10 +142,13 @@ class Backtesting(object): floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f') tabular_data = [] + # headers = ['pair', 'buy count', 'avg profit %', 'cum profit %', + # 'total profit ' + stake_currency, 'avg duration', 'profit', 'loss', 'total loss ab', 'total profit ab', 'Risk Reward Ratio', 'Win Rate'] headers = ['pair', 'buy count', 'avg profit %', 'cum profit %', - 'total profit ' + stake_currency, 'avg duration', 'profit', 'loss'] + 'total profit ' + stake_currency, 'avg duration', 'profit', 'loss', 'RRR', 'Win Rate %', 'Required RR'] for pair in data: result = results[results.pair == pair] + win_rate = (len(result[result.profit_abs > 0]) / len(result.index)) if (len(result.index) > 0) else None tabular_data.append([ pair, len(result.index), @@ -130,7 +158,12 @@ class Backtesting(object): str(timedelta( minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00', len(result[result.profit_abs > 0]), - len(result[result.profit_abs < 0]) + len(result[result.profit_abs < 0]), + # result[result.profit_abs < 0]['profit_abs'].sum(), + # result[result.profit_abs > 0]['profit_abs'].sum(), + abs(1 / ((result[result.profit_abs < 0]['profit_abs'].sum() / len(result[result.profit_abs < 0])) / (result[result.profit_abs > 0]['profit_abs'].sum() / len(result[result.profit_abs > 0])))), + win_rate * 100 if win_rate else "nan", + ((1 / win_rate) - 1) if win_rate else "nan" ]) # Append Total @@ -147,42 +180,88 @@ class Backtesting(object): ]) return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe") + + def _generate_text_table_edge_positioning(self, data: Dict[str, Dict], results: DataFrame) -> str: + """ + This is a temporary version of edge positioning calculation. + The function will be eventually moved to a plugin called Edge in order to calculate necessary WR, RRR and + other indictaors related to money management periodically (each X minutes) and keep it in a storage. + The calulation will be done per pair and per strategy. + """ + + tabular_data = [] + headers = ['Number of trades', 'RRR', 'Win Rate %', 'Required RR'] + + ### + # The algorithm should be: + # 1) Removing outliers from dataframe. i.e. all profit_percent which are outside (mean -+ (2 * (standard deviation))). + # 2) Removing pairs with less than X trades (X defined in config). + # 3) Calculating RRR and WR. + # 4) Removing pairs for which WR and RRR are not in an acceptable range (e.x. WR > 95%). + # 5) Sorting the result based on the delta between required RR and RRR. + + # Here we assume initial data in order to calculate position size. + # these values will be replaced by exchange info or config + for pair in data: + result = results[results.pair == pair] + + # WinRate is calculated as follows: (Number of profitable trades) / (Total Trades) + win_rate = (len(result[result.profit_abs > 0]) / len(result.index)) if (len(result.index) > 0) else None + + # Risk Reward Ratio is calculated as follows: 1 / ((total loss on losing trades / number of losing trades) / (total gain on profitable trades / number of winning trades)) + risk_reward_ratio = abs(1 / ((result[result.profit_abs < 0]['profit_abs'].sum() / len(result[result.profit_abs < 0])) / (result[result.profit_abs > 0]['profit_abs'].sum() / len(result[result.profit_abs > 0])))) + + # Required Reward Ratio is (1 / WinRate) - 1 + required_risk_reward = ((1 / win_rate) - 1) if win_rate else None + + #pdb.set_trace() + + tabular_data.append([ + pair, + len(result.index), + risk_reward_ratio, + win_rate * 100 if win_rate else "nan", + required_risk_reward + ]) + + # for pair in data: + # result = results[results.pair == pair] + # win_rate = (len(result[result.profit_abs > 0]) / len(result.index)) if (len(result.index) > 0) else None + # tabular_data.append([ + # pair, + # #len(result.index), + # #result.profit_percent.mean() * 100.0, + # #result.profit_percent.sum() * 100.0, + # #result.profit_abs.sum(), + # str(timedelta( + # minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00', + # len(result[result.profit_abs > 0]), + # len(result[result.profit_abs < 0]), + # # result[result.profit_abs < 0]['profit_abs'].sum(), + # # result[result.profit_abs > 0]['profit_abs'].sum(), + # abs(1 / ((result[result.profit_abs < 0]['profit_abs'].sum() / len(result[result.profit_abs < 0])) / (result[result.profit_abs > 0]['profit_abs'].sum() / len(result[result.profit_abs > 0])))), + # win_rate * 100 if win_rate else "nan", + # ((1 / win_rate) - 1) if win_rate else "nan" + # ]) + + #return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe") + return tabulate(tabular_data, headers=headers, tablefmt="pipe") + + + + def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str: """ Generate small table outlining Backtest results """ + tabular_data = [] headers = ['Sell Reason', 'Count'] for reason, count in results['sell_reason'].value_counts().iteritems(): - tabular_data.append([reason.value, count]) + tabular_data.append([reason.value, count]) return tabulate(tabular_data, headers=headers, tablefmt="pipe") - def _generate_text_table_strategy(self, all_results: dict) -> str: - """ - Generate summary table per strategy - """ - stake_currency = str(self.config.get('stake_currency')) - - floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f') - tabular_data = [] - headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %', - 'total profit ' + stake_currency, 'avg duration', 'profit', 'loss'] - for strategy, results in all_results.items(): - tabular_data.append([ - strategy, - len(results.index), - results.profit_percent.mean() * 100.0, - results.profit_percent.sum() * 100.0, - results.profit_abs.sum(), - str(timedelta( - minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00', - len(results[results.profit_abs > 0]), - len(results[results.profit_abs < 0]) - ]) - return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe") - - def _store_backtest_result(self, recordfilename: str, results: DataFrame, - strategyname: Optional[str] = None) -> None: + def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None: records = [(t.pair, t.profit_percent, t.open_time.timestamp(), t.close_time.timestamp(), t.open_index - 1, t.trade_duration, @@ -190,11 +269,6 @@ class Backtesting(object): for index, t in results.iterrows()] if records: - if strategyname: - # Inject strategyname to filename - recname = Path(recordfilename) - recordfilename = str(Path.joinpath( - recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix)) logger.info('Dumping backtest results to %s', recordfilename) file_dump_json(recordfilename, records) @@ -223,14 +297,13 @@ class Backtesting(object): sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, buy_signal, sell_row.sell) if sell.sell_flag: - return BacktestResult(pair=pair, profit_percent=trade.calc_profit_percent(rate=sell_row.open), profit_abs=trade.calc_profit(rate=sell_row.open), open_time=buy_row.date, close_time=sell_row.date, trade_duration=int(( - sell_row.date - buy_row.date).total_seconds() // 60), + sell_row.date - buy_row.date).total_seconds() // 60), open_index=buy_row.Index, close_index=sell_row.Index, open_at_end=False, @@ -247,7 +320,7 @@ class Backtesting(object): open_time=buy_row.date, close_time=sell_row.date, trade_duration=int(( - sell_row.date - buy_row.date).total_seconds() // 60), + sell_row.date - buy_row.date).total_seconds() // 60), open_index=buy_row.Index, close_index=sell_row.Index, open_at_end=True, @@ -260,6 +333,13 @@ class Backtesting(object): return btr return None + def s(self): + st = timeit.default_timer() + return st + + def f(self, st): + return (timeit.default_timer() - st) + def backtest(self, args: Dict) -> DataFrame: """ Implements backtesting functionality @@ -275,32 +355,50 @@ class Backtesting(object): position_stacking: do we allow position stacking? (default: False) :return: DataFrame """ - headers = ['date', 'buy', 'open', 'close', 'sell'] - processed = args['processed'] - max_open_trades = args.get('max_open_trades', 0) - position_stacking = args.get('position_stacking', False) - trades = [] - trade_count_lock: Dict = {} - for pair, pair_data in processed.items(): - pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run - ticker_data = self.advise_sell( + use_backslap = self.use_backslap + debug_timing = self.debug_timing_main_loop + + if use_backslap: # Use Back Slap code + return self.backslap.run(args) + else: # use Original Back test code + ########################## Original BT loop + + headers = ['date', 'buy', 'open', 'close', 'sell'] + processed = args['processed'] + max_open_trades = args.get('max_open_trades', 0) + position_stacking = args.get('position_stacking', False) + trades = [] + trade_count_lock: Dict = {} + + for pair, pair_data in processed.items(): + if debug_timing: # Start timer + fl = self.s() + + pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run + + ticker_data = self.advise_sell( self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy() - # to avoid using data from future, we buy/sell with signal from previous candle - ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1) - ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1) + # to avoid using data from future, we buy/sell with signal from previous candle + ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1) + ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1) - ticker_data.drop(ticker_data.head(1).index, inplace=True) + ticker_data.drop(ticker_data.head(1).index, inplace=True) - # Convert from Pandas to list for performance reasons - # (Looping Pandas is slow.) - ticker = [x for x in ticker_data.itertuples()] + if debug_timing: # print time taken + flt = self.f(fl) + # print("populate_buy_trend:", pair, round(flt, 10)) + st = self.s() - lock_pair_until = None - for index, row in enumerate(ticker): - if row.buy == 0 or row.sell == 1: - continue # skip rows where no buy signal or that would immediately sell off + # Convert from Pandas to list for performance reasons + # (Looping Pandas is slow.) + ticker = [x for x in ticker_data.itertuples()] + + lock_pair_until = None + for index, row in enumerate(ticker): + if row.buy == 0 or row.sell == 1: + continue # skip rows where no buy signal or that would immediately sell off if not position_stacking: if lock_pair_until is not None and row.date <= lock_pair_until: @@ -310,20 +408,26 @@ class Backtesting(object): if not trade_count_lock.get(row.date, 0) < max_open_trades: continue - trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1 + trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1 - trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:], - trade_count_lock, args) + trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:], + trade_count_lock, args) - if trade_entry: - lock_pair_until = trade_entry.close_time - trades.append(trade_entry) - else: - # Set lock_pair_until to end of testing period if trade could not be closed - # This happens only if the buy-signal was with the last candle - lock_pair_until = ticker_data.iloc[-1].date + if trade_entry: + lock_pair_until = trade_entry.close_time + trades.append(trade_entry) + else: + # Set lock_pair_until to end of testing period if trade could not be closed + # This happens only if the buy-signal was with the last candle + lock_pair_until = ticker_data.iloc[-1].date - return DataFrame.from_records(trades, columns=BacktestResult._fields) + if debug_timing: # print time taken + tt = self.f(st) + print("Time to BackTest :", pair, round(tt, 10)) + print("-----------------------") + + return DataFrame.from_records(trades, columns=BacktestResult._fields) + ####################### Original BT loop end def start(self) -> None: """ @@ -338,12 +442,13 @@ class Backtesting(object): if self.config.get('live'): logger.info('Downloading data for all pairs in whitelist ...') for pair in pairs: - data[pair] = self.exchange.get_candle_history(pair, self.ticker_interval) + data[pair] = self.exchange.get_ticker_history(pair, self.ticker_interval) else: logger.info('Using local backtesting data (using whitelist in given config) ...') timerange = Arguments.parse_timerange(None if self.config.get( 'timerange') is None else str(self.config.get('timerange'))) + data = optimize.load_data( self.config['datadir'], pairs=pairs, @@ -353,6 +458,7 @@ class Backtesting(object): timerange=timerange ) + ld_files = self.s() if not data: logger.critical("No data found. Terminating.") return @@ -362,55 +468,109 @@ class Backtesting(object): else: logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...') max_open_trades = 0 - all_results = {} - for strat in self.strategylist: - logger.info("Running backtesting for Strategy %s", strat.get_strategy_name()) - self._set_strategy(strat) + preprocessed = self.tickerdata_to_dataframe(data) + t_t = self.f(ld_files) + print("Load from json to file to df in mem took", t_t) - # need to reprocess data every time to populate signals - preprocessed = self.tickerdata_to_dataframe(data) + # Print timeframe + min_date, max_date = self.get_timeframe(preprocessed) + logger.info( + 'Measuring data from %s up to %s (%s days)..', + min_date.isoformat(), + max_date.isoformat(), + (max_date - min_date).days + ) + + # Execute backtest and print results + results = self.backtest( + { + 'stake_amount': self.config.get('stake_amount'), + 'processed': preprocessed, + 'max_open_trades': max_open_trades, + 'position_stacking': self.config.get('position_stacking', False), + } + ) + + if self.config.get('export', False): + self._store_backtest_result(self.config.get('exportfilename'), results) + + if self.use_backslap: + # logger.info( + # '\n====================================================== ' + # 'BackSLAP REPORT' + # ' =======================================================\n' + # '%s', + # self._generate_text_table( + # data, + # results + # ) + # ) - # Print timeframe - min_date, max_date = self.get_timeframe(preprocessed) logger.info( - 'Measuring data from %s up to %s (%s days)..', - min_date.isoformat(), - max_date.isoformat(), - (max_date - min_date).days + '\n====================================================== ' + 'Edge positionning REPORT' + ' =======================================================\n' + '%s', + self._generate_text_table_edge_positioning( + data, + results + ) + ) + # optional print trades + if self.backslap_show_trades: + TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs', + 'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1) + + def to_fwf(df, fname): + content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql') + print(content) + + DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt") + + # optional save trades + if self.backslap_save_trades: + TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs', + 'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1) + + def to_fwf(df, fname): + content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql') + open(fname, "w").write(content) + + DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt") + + else: + logger.info( + '\n================================================= ' + 'BACKTEST REPORT' + ' ==================================================\n' + '%s', + self._generate_text_table( + data, + results + ) ) - # Execute backtest and print results - all_results[self.strategy.get_strategy_name()] = self.backtest( - { - 'stake_amount': self.config.get('stake_amount'), - 'processed': preprocessed, - 'max_open_trades': max_open_trades, - 'position_stacking': self.config.get('position_stacking', False), - } + if 'sell_reason' in results.columns: + logger.info( + '\n' + + ' SELL READON STATS '.center(119, '=') + + '\n%s \n', + self._generate_text_table_sell_reason(data, results) + ) + else: + logger.info("no sell reasons available!") - for strategy, results in all_results.items(): - - if self.config.get('export', False): - self._store_backtest_result(self.config['exportfilename'], results, - strategy if len(self.strategylist) > 1 else None) - - print(f"Result for strategy {strategy}") - print(' BACKTESTING REPORT '.center(119, '=')) - print(self._generate_text_table(data, results)) - - print(' SELL REASON STATS '.center(119, '=')) - print(self._generate_text_table_sell_reason(data, results)) - - print(' LEFT OPEN TRADES REPORT '.center(119, '=')) - print(self._generate_text_table(data, results.loc[results.open_at_end])) - print() - if len(all_results) > 1: - # Print Strategy summary table - print(' Strategy Summary '.center(119, '=')) - print(self._generate_text_table_strategy(all_results)) - print('\nFor more details, please look at the detail tables above') + logger.info( + '\n' + + ' LEFT OPEN TRADES REPORT '.center(119, '=') + + '\n%s', + self._generate_text_table( + data, + results.loc[results.open_at_end] + ) + ) def setup_configuration(args: Namespace) -> Dict[str, Any]: @@ -425,7 +585,7 @@ def setup_configuration(args: Namespace) -> Dict[str, Any]: # Ensure we do not use Exchange credentials config['exchange']['key'] = '' config['exchange']['secret'] = '' - + config['backslap'] = args.backslap if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT: raise DependencyException('stake amount could not be "%s" for backtesting' % constants.UNLIMITED_STAKE_AMOUNT) @@ -445,4 +605,4 @@ def start(args: Namespace) -> None: # Initialize backtesting object backtesting = Backtesting(config) - backtesting.start() + backtesting.start() \ No newline at end of file diff --git a/freqtrade/strategy/default_strategy.py b/freqtrade/strategy/default_strategy.py index f1646779b..323a7d95f 100644 --- a/freqtrade/strategy/default_strategy.py +++ b/freqtrade/strategy/default_strategy.py @@ -28,7 +28,7 @@ class DefaultStrategy(IStrategy): # Optimal ticker interval for the strategy ticker_interval = '5m' - def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame: + def populate_indicators(self, dataframe: DataFrame, metadata: dict = {}) -> DataFrame: """ Adds several different TA indicators to the given DataFrame @@ -199,7 +199,7 @@ class DefaultStrategy(IStrategy): return dataframe - def populate_buy_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: + def populate_buy_trend(self, dataframe: DataFrame, metadata: dict = {}) -> DataFrame: """ Based on TA indicators, populates the buy signal for the given dataframe :param dataframe: DataFrame @@ -221,7 +221,7 @@ class DefaultStrategy(IStrategy): return dataframe - def populate_sell_trend(self, dataframe: DataFrame, metadata: dict) -> DataFrame: + def populate_sell_trend(self, dataframe: DataFrame, metadata: dict = {}) -> DataFrame: """ Based on TA indicators, populates the sell signal for the given dataframe :param dataframe: DataFrame diff --git a/requirements.txt b/requirements.txt index e10f88b43..76b8f508f 100644 --- a/requirements.txt +++ b/requirements.txt @@ -23,3 +23,10 @@ scikit-optimize==0.5.2 # Required for plotting data #plotly==3.1.1 + +# find first, C search in arrays +py_find_1st==1.1.1 + +#Load ticker files 30% faster +ujson==1.35 + diff --git a/setup.py b/setup.py index 8853ef7f8..c5f61c34d 100644 --- a/setup.py +++ b/setup.py @@ -37,6 +37,8 @@ setup(name='freqtrade', 'cachetools', 'coinmarketcap', 'scikit-optimize', + 'ujson', + 'py_find_1st' ], include_package_data=True, zip_safe=False,