Merge pull request #291 from gcarq/backtesting_speed_opt
Backtesting speed optimizations
This commit is contained in:
commit
9b09b5aa29
@ -5,7 +5,7 @@ import logging
|
||||
from typing import Tuple, Dict
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
from pandas import DataFrame, Series
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade import exchange
|
||||
@ -19,20 +19,17 @@ from freqtrade.persistence import Trade
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def get_timeframe(data: Dict[str, Dict]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with backtesting data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
min_date, max_date = None, None
|
||||
for values in data.values():
|
||||
sorted_values = sorted(values, key=lambda d: arrow.get(d['T']))
|
||||
if not min_date or sorted_values[0]['T'] < min_date:
|
||||
min_date = sorted_values[0]['T']
|
||||
if not max_date or sorted_values[-1]['T'] > max_date:
|
||||
max_date = sorted_values[-1]['T']
|
||||
return arrow.get(min_date), arrow.get(max_date)
|
||||
all_dates = Series([])
|
||||
for pair, pair_data in data.items():
|
||||
all_dates = all_dates.append(pair_data['date'])
|
||||
all_dates.sort_values(inplace=True)
|
||||
return arrow.get(all_dates.iloc[0]), arrow.get(all_dates.iloc[-1])
|
||||
|
||||
|
||||
def generate_text_table(
|
||||
@ -84,7 +81,8 @@ def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
||||
ticker = populate_sell_trend(populate_buy_trend(pair_data))
|
||||
# for each buy point
|
||||
lock_pair_until = None
|
||||
for row in ticker[ticker.buy == 1].itertuples(index=True):
|
||||
buy_subset = ticker[ticker.buy == 1][['buy', 'open', 'close', 'date', 'sell']]
|
||||
for row in buy_subset.itertuples(index=True):
|
||||
if realistic:
|
||||
if lock_pair_until is not None and row.Index <= lock_pair_until:
|
||||
continue
|
||||
@ -106,7 +104,8 @@ def backtest(stake_amount: float, processed: Dict[str, DataFrame],
|
||||
)
|
||||
|
||||
# calculate win/lose forwards from buy point
|
||||
for row2 in ticker[row.Index + 1:].itertuples(index=True):
|
||||
sell_subset = ticker[row.Index + 1:][['close', 'date', 'sell']]
|
||||
for row2 in sell_subset.itertuples(index=True):
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1
|
||||
@ -157,10 +156,6 @@ def start(args):
|
||||
logger.info('Using stake_currency: %s ...', config['stake_currency'])
|
||||
logger.info('Using stake_amount: %s ...', config['stake_amount'])
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = get_timeframe(data)
|
||||
logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat())
|
||||
|
||||
max_open_trades = 0
|
||||
if args.realistic_simulation:
|
||||
logger.info('Using max_open_trades: %s ...', config['max_open_trades'])
|
||||
@ -170,9 +165,14 @@ def start(args):
|
||||
from freqtrade import main
|
||||
main._CONF = config
|
||||
|
||||
preprocessed = preprocess(data)
|
||||
# Print timeframe
|
||||
min_date, max_date = get_timeframe(preprocessed)
|
||||
logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat())
|
||||
|
||||
# Execute backtest and print results
|
||||
results = backtest(
|
||||
config['stake_amount'], preprocess(data), max_open_trades, args.realistic_simulation
|
||||
config['stake_amount'], preprocessed, max_open_trades, args.realistic_simulation
|
||||
)
|
||||
logger.info(
|
||||
'\n====================== BACKTESTING REPORT ================================\n%s',
|
||||
|
@ -5,6 +5,7 @@ import pandas as pd
|
||||
# from unittest.mock import MagicMock
|
||||
from freqtrade import exchange, optimize
|
||||
from freqtrade.exchange import Bittrex
|
||||
from freqtrade.optimize import preprocess
|
||||
from freqtrade.optimize.backtesting import backtest, generate_text_table, get_timeframe
|
||||
# import freqtrade.optimize.backtesting as backtesting
|
||||
|
||||
@ -27,7 +28,7 @@ def test_generate_text_table():
|
||||
|
||||
|
||||
def test_get_timeframe():
|
||||
data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST'])
|
||||
data = preprocess(optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST']))
|
||||
min_date, max_date = get_timeframe(data)
|
||||
assert min_date.isoformat() == '2017-11-04T23:02:00+00:00'
|
||||
assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'
|
||||
|
Loading…
Reference in New Issue
Block a user