From dc2f048c98ffd685803b7c209273c8bd3821ecf7 Mon Sep 17 00:00:00 2001 From: Janne Sinivirta Date: Tue, 2 Jan 2018 20:51:07 +0200 Subject: [PATCH 1/2] make tuples smaller in backtesting loops --- freqtrade/optimize/backtesting.py | 6 ++++-- 1 file changed, 4 insertions(+), 2 deletions(-) diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index 47be60802..41e29ca52 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -84,7 +84,8 @@ def backtest(stake_amount: float, processed: Dict[str, DataFrame], ticker = populate_sell_trend(populate_buy_trend(pair_data)) # for each buy point lock_pair_until = None - for row in ticker[ticker.buy == 1].itertuples(index=True): + buy_subset = ticker[ticker.buy == 1][['buy', 'open', 'close', 'date', 'sell']] + for row in buy_subset.itertuples(index=True): if realistic: if lock_pair_until is not None and row.Index <= lock_pair_until: continue @@ -106,7 +107,8 @@ def backtest(stake_amount: float, processed: Dict[str, DataFrame], ) # calculate win/lose forwards from buy point - for row2 in ticker[row.Index + 1:].itertuples(index=True): + sell_subset = ticker[row.Index + 1:][['close', 'date', 'sell']] + for row2 in sell_subset.itertuples(index=True): if max_open_trades > 0: # Increase trade_count_lock for every iteration trade_count_lock[row2.date] = trade_count_lock.get(row2.date, 0) + 1 From fed3024302fd8afc9075b75242d5b52a5b25377e Mon Sep 17 00:00:00 2001 From: Janne Sinivirta Date: Tue, 2 Jan 2018 21:32:11 +0200 Subject: [PATCH 2/2] rewrite get_timeframe in backtesting --- freqtrade/optimize/backtesting.py | 30 +++++++++----------- freqtrade/tests/optimize/test_backtesting.py | 3 +- 2 files changed, 16 insertions(+), 17 deletions(-) diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index 41e29ca52..6f7f14b8c 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -5,7 +5,7 @@ import logging from typing import Tuple, Dict import arrow -from pandas import DataFrame +from pandas import DataFrame, Series from tabulate import tabulate from freqtrade import exchange @@ -19,20 +19,17 @@ from freqtrade.persistence import Trade logger = logging.getLogger(__name__) -def get_timeframe(data: Dict[str, Dict]) -> Tuple[arrow.Arrow, arrow.Arrow]: +def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]: """ Get the maximum timeframe for the given backtest data - :param data: dictionary with backtesting data + :param data: dictionary with preprocessed backtesting data :return: tuple containing min_date, max_date """ - min_date, max_date = None, None - for values in data.values(): - sorted_values = sorted(values, key=lambda d: arrow.get(d['T'])) - if not min_date or sorted_values[0]['T'] < min_date: - min_date = sorted_values[0]['T'] - if not max_date or sorted_values[-1]['T'] > max_date: - max_date = sorted_values[-1]['T'] - return arrow.get(min_date), arrow.get(max_date) + all_dates = Series([]) + for pair, pair_data in data.items(): + all_dates = all_dates.append(pair_data['date']) + all_dates.sort_values(inplace=True) + return arrow.get(all_dates.iloc[0]), arrow.get(all_dates.iloc[-1]) def generate_text_table( @@ -159,10 +156,6 @@ def start(args): logger.info('Using stake_currency: %s ...', config['stake_currency']) logger.info('Using stake_amount: %s ...', config['stake_amount']) - # Print timeframe - min_date, max_date = get_timeframe(data) - logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat()) - max_open_trades = 0 if args.realistic_simulation: logger.info('Using max_open_trades: %s ...', config['max_open_trades']) @@ -172,9 +165,14 @@ def start(args): from freqtrade import main main._CONF = config + preprocessed = preprocess(data) + # Print timeframe + min_date, max_date = get_timeframe(preprocessed) + logger.info('Measuring data from %s up to %s ...', min_date.isoformat(), max_date.isoformat()) + # Execute backtest and print results results = backtest( - config['stake_amount'], preprocess(data), max_open_trades, args.realistic_simulation + config['stake_amount'], preprocessed, max_open_trades, args.realistic_simulation ) logger.info( '\n====================== BACKTESTING REPORT ================================\n%s', diff --git a/freqtrade/tests/optimize/test_backtesting.py b/freqtrade/tests/optimize/test_backtesting.py index e3e34de1d..8b416e64e 100644 --- a/freqtrade/tests/optimize/test_backtesting.py +++ b/freqtrade/tests/optimize/test_backtesting.py @@ -5,6 +5,7 @@ import pandas as pd # from unittest.mock import MagicMock from freqtrade import exchange, optimize from freqtrade.exchange import Bittrex +from freqtrade.optimize import preprocess from freqtrade.optimize.backtesting import backtest, generate_text_table, get_timeframe # import freqtrade.optimize.backtesting as backtesting @@ -27,7 +28,7 @@ def test_generate_text_table(): def test_get_timeframe(): - data = optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST']) + data = preprocess(optimize.load_data(ticker_interval=1, pairs=['BTC_UNITEST'])) min_date, max_date = get_timeframe(data) assert min_date.isoformat() == '2017-11-04T23:02:00+00:00' assert max_date.isoformat() == '2017-11-14T22:59:00+00:00'