add continual learning to catboost and friends
This commit is contained in:
@@ -86,6 +86,7 @@ class IFreqaiModel(ABC):
|
||||
self.begin_time: float = 0
|
||||
self.begin_time_train: float = 0
|
||||
self.base_tf_seconds = timeframe_to_seconds(self.config['timeframe'])
|
||||
self.continual_learning = self.freqai_info.get('continual_learning', False)
|
||||
|
||||
self._threads: List[threading.Thread] = []
|
||||
self._stop_event = threading.Event()
|
||||
@@ -674,7 +675,7 @@ class IFreqaiModel(ABC):
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def fit(self, data_dictionary: Dict[str, Any]) -> Any:
|
||||
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
Most regressors use the same function names and arguments e.g. user
|
||||
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
||||
|
@@ -61,7 +61,7 @@ class BaseClassifierModel(IFreqaiModel):
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
|
@@ -60,7 +60,7 @@ class BaseRegressionModel(IFreqaiModel):
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
|
@@ -57,7 +57,7 @@ class BaseTensorFlowModel(IFreqaiModel):
|
||||
)
|
||||
logger.info(f'Training model on {len(data_dictionary["train_features"])} data points')
|
||||
|
||||
model = self.fit(data_dictionary)
|
||||
model = self.fit(data_dictionary, dk)
|
||||
|
||||
logger.info(f"--------------------done training {pair}--------------------")
|
||||
|
||||
|
@@ -2,7 +2,7 @@ import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostClassifier, Pool
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
|
||||
|
||||
|
||||
@@ -16,7 +16,7 @@ class CatboostClassifier(BaseClassifierModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
@@ -36,6 +36,11 @@ class CatboostClassifier(BaseClassifierModel):
|
||||
**self.model_training_parameters,
|
||||
)
|
||||
|
||||
cbr.fit(train_data)
|
||||
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
|
||||
init_model = None
|
||||
else:
|
||||
init_model = self.dd.model_dictionary[dk.pair]
|
||||
|
||||
cbr.fit(train_data, init_model=init_model)
|
||||
|
||||
return cbr
|
||||
|
@@ -3,6 +3,7 @@ import logging
|
||||
from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostRegressor, Pool
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
@@ -17,7 +18,7 @@ class CatboostRegressor(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
@@ -38,16 +39,16 @@ class CatboostRegressor(BaseRegressionModel):
|
||||
weight=data_dictionary["test_weights"],
|
||||
)
|
||||
|
||||
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
|
||||
init_model = None
|
||||
else:
|
||||
init_model = self.dd.model_dictionary[dk.pair]
|
||||
|
||||
model = CatBoostRegressor(
|
||||
allow_writing_files=False,
|
||||
**self.model_training_parameters,
|
||||
)
|
||||
|
||||
model.fit(X=train_data, eval_set=test_data)
|
||||
|
||||
# some evidence that catboost pools have memory leaks:
|
||||
# https://github.com/catboost/catboost/issues/1835
|
||||
del train_data, test_data
|
||||
gc.collect()
|
||||
model.fit(X=train_data, eval_set=test_data, init_model=init_model)
|
||||
|
||||
return model
|
||||
|
@@ -3,7 +3,7 @@ from typing import Any, Dict
|
||||
|
||||
from catboost import CatBoostRegressor # , Pool
|
||||
from sklearn.multioutput import MultiOutputRegressor
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
@@ -34,6 +34,9 @@ class CatboostRegressorMultiTarget(BaseRegressionModel):
|
||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
if self.continual_learning:
|
||||
logger.warning('Continual learning not supported for MultiTarget models')
|
||||
|
||||
model = MultiOutputRegressor(estimator=cbr)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||||
|
||||
|
@@ -4,7 +4,7 @@ from typing import Any, Dict
|
||||
from lightgbm import LGBMClassifier
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseClassifierModel import BaseClassifierModel
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -16,7 +16,7 @@ class LightGBMClassifier(BaseClassifierModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:params:
|
||||
@@ -35,9 +35,14 @@ class LightGBMClassifier(BaseClassifierModel):
|
||||
y = data_dictionary["train_labels"].to_numpy()[:, 0]
|
||||
train_weights = data_dictionary["train_weights"]
|
||||
|
||||
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
|
||||
init_model = None
|
||||
else:
|
||||
init_model = self.dd.model_dictionary[dk.pair]
|
||||
|
||||
model = LGBMClassifier(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
||||
eval_sample_weight=[test_weights])
|
||||
eval_sample_weight=[test_weights], init_model=init_model)
|
||||
|
||||
return model
|
||||
|
@@ -4,7 +4,7 @@ from typing import Any, Dict
|
||||
from lightgbm import LGBMRegressor
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -16,7 +16,7 @@ class LightGBMRegressor(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
Most regressors use the same function names and arguments e.g. user
|
||||
can drop in LGBMRegressor in place of CatBoostRegressor and all data
|
||||
@@ -35,9 +35,14 @@ class LightGBMRegressor(BaseRegressionModel):
|
||||
y = data_dictionary["train_labels"]
|
||||
train_weights = data_dictionary["train_weights"]
|
||||
|
||||
if dk.pair not in self.dd.model_dictionary or not self.continual_learning:
|
||||
init_model = None
|
||||
else:
|
||||
init_model = self.dd.model_dictionary[dk.pair]
|
||||
|
||||
model = LGBMRegressor(**self.model_training_parameters)
|
||||
|
||||
model.fit(X=X, y=y, eval_set=eval_set, sample_weight=train_weights,
|
||||
eval_sample_weight=[eval_weights])
|
||||
eval_sample_weight=[eval_weights], init_model=init_model)
|
||||
|
||||
return model
|
||||
|
@@ -5,7 +5,7 @@ from lightgbm import LGBMRegressor
|
||||
from sklearn.multioutput import MultiOutputRegressor
|
||||
|
||||
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@@ -17,7 +17,7 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
|
||||
has its own DataHandler where data is held, saved, loaded, and managed.
|
||||
"""
|
||||
|
||||
def fit(self, data_dictionary: Dict) -> Any:
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
||||
@@ -31,6 +31,9 @@ class LightGBMRegressorMultiTarget(BaseRegressionModel):
|
||||
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
||||
sample_weight = data_dictionary["train_weights"]
|
||||
|
||||
if self.continual_learning:
|
||||
logger.warning('Continual learning not supported for MultiTarget models')
|
||||
|
||||
model = MultiOutputRegressor(estimator=lgb)
|
||||
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
||||
train_score = model.score(X, y)
|
||||
|
Reference in New Issue
Block a user