48 lines
1.8 KiB
Python
48 lines
1.8 KiB
Python
import logging
|
|
from typing import Any, Dict
|
|
|
|
from catboost import CatBoostRegressor # , Pool
|
|
from sklearn.multioutput import MultiOutputRegressor
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
from freqtrade.freqai.prediction_models.BaseRegressionModel import BaseRegressionModel
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class CatboostRegressorMultiTarget(BaseRegressionModel):
|
|
"""
|
|
User created prediction model. The class needs to override three necessary
|
|
functions, predict(), train(), fit(). The class inherits ModelHandler which
|
|
has its own DataHandler where data is held, saved, loaded, and managed.
|
|
"""
|
|
|
|
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen) -> Any:
|
|
"""
|
|
User sets up the training and test data to fit their desired model here
|
|
:param data_dictionary: the dictionary constructed by DataHandler to hold
|
|
all the training and test data/labels.
|
|
"""
|
|
|
|
cbr = CatBoostRegressor(
|
|
allow_writing_files=False,
|
|
**self.model_training_parameters,
|
|
)
|
|
|
|
X = data_dictionary["train_features"]
|
|
y = data_dictionary["train_labels"]
|
|
eval_set = (data_dictionary["test_features"], data_dictionary["test_labels"])
|
|
sample_weight = data_dictionary["train_weights"]
|
|
|
|
if self.continual_learning:
|
|
logger.warning('Continual learning not supported for MultiTarget models')
|
|
|
|
model = MultiOutputRegressor(estimator=cbr)
|
|
model.fit(X=X, y=y, sample_weight=sample_weight) # , eval_set=eval_set)
|
|
|
|
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
|
|
train_score = model.score(X, y)
|
|
test_score = model.score(*eval_set)
|
|
logger.info(f"Train score {train_score}, Test score {test_score}")
|
|
return model
|