Merge pull request #20 from vertti/newer-strategy

New buy strategy
This commit is contained in:
Michael Egger 2017-09-12 16:01:18 +02:00 committed by GitHub
commit 8ed8e1e103

View File

@ -3,7 +3,6 @@ from datetime import timedelta
import logging import logging
import arrow import arrow
import requests import requests
from pandas.io.json import json_normalize
from pandas import DataFrame from pandas import DataFrame
import talib.abstract as ta import talib.abstract as ta
@ -23,7 +22,7 @@ def get_ticker(pair: str, minimum_date: arrow.Arrow) -> dict:
} }
params = { params = {
'marketName': pair.replace('_', '-'), 'marketName': pair.replace('_', '-'),
'tickInterval': 'OneMin', 'tickInterval': 'fiveMin',
'_': minimum_date.timestamp * 1000 '_': minimum_date.timestamp * 1000
} }
data = requests.get(url, params=params, headers=headers).json() data = requests.get(url, params=params, headers=headers).json()
@ -49,19 +48,9 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame:
""" """
Adds several different TA indicators to the given DataFrame Adds several different TA indicators to the given DataFrame
""" """
dataframe['close_30_ema'] = ta.EMA(dataframe, timeperiod=30) dataframe['ema'] = ta.EMA(dataframe, timeperiod=33)
dataframe['close_90_ema'] = ta.EMA(dataframe, timeperiod=90) dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.22)
dataframe['adx'] = ta.ADX(dataframe)
dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.2)
# calculate StochRSI
stochrsi = ta.STOCHRSI(dataframe)
dataframe['stochrsi'] = stochrsi['fastd'] # values between 0-100, not 0-1
macd = ta.MACD(dataframe)
dataframe['macd'] = macd['macd']
dataframe['macds'] = macd['macdsignal']
dataframe['macdh'] = macd['macdhist']
return dataframe return dataframe
@ -72,13 +61,29 @@ def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
:param dataframe: DataFrame :param dataframe: DataFrame
:return: DataFrame with buy column :return: DataFrame with buy column
""" """
prev_sar = dataframe['sar'].shift(1)
prev_close = dataframe['close'].shift(1)
prev_sar2 = dataframe['sar'].shift(2)
prev_close2 = dataframe['close'].shift(2)
# wait for stable turn from bearish to bullish market
dataframe.loc[ dataframe.loc[
(dataframe['stochrsi'] < 20) (dataframe['close'] > dataframe['sar']) &
& (dataframe['macd'] > dataframe['macds']) (prev_close > prev_sar) &
& (dataframe['close'] > dataframe['sar']), (prev_close2 < prev_sar2),
'buy' 'swap'
] = 1 ] = 1
# consider prices above ema to be in upswing
dataframe.loc[dataframe['ema'] <= dataframe['close'], 'upswing'] = 1
dataframe.loc[
(dataframe['upswing'] == 1) &
(dataframe['swap'] == 1) &
(dataframe['adx'] > 25), # adx over 25 tells there's enough momentum
'buy'] = 1
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close'] dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
return dataframe return dataframe
@ -127,27 +132,20 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
matplotlib.use("Qt5Agg") matplotlib.use("Qt5Agg")
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
# Three subplots sharing x axe # Two subplots sharing x axis
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True) fig, (ax1, ax2) = plt.subplots(2, sharex=True)
fig.suptitle(pair, fontsize=14, fontweight='bold') fig.suptitle(pair, fontsize=14, fontweight='bold')
ax1.plot(dataframe.index.values, dataframe['sar'], 'g_', label='pSAR')
ax1.plot(dataframe.index.values, dataframe['close'], label='close') ax1.plot(dataframe.index.values, dataframe['close'], label='close')
ax1.plot(dataframe.index.values, dataframe['close_30_ema'], label='EMA(30)')
ax1.plot(dataframe.index.values, dataframe['close_90_ema'], label='EMA(90)')
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell') # ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy') ax1.plot(dataframe.index.values, dataframe['ema'], '--', label='EMA(20)')
ax1.plot(dataframe.index.values, dataframe['buy'], 'bo', label='buy')
ax1.legend() ax1.legend()
ax2.plot(dataframe.index.values, dataframe['macd'], label='MACD') ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
ax2.plot(dataframe.index.values, dataframe['macds'], label='MACDS') ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
ax2.plot(dataframe.index.values, dataframe['macdh'], label='MACD Histogram')
ax2.plot(dataframe.index.values, [0] * len(dataframe.index.values))
ax2.legend() ax2.legend()
ax3.plot(dataframe.index.values, dataframe['stochrsi'], label='StochRSI')
ax3.plot(dataframe.index.values, [80] * len(dataframe.index.values))
ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
ax3.legend()
# Fine-tune figure; make subplots close to each other and hide x ticks for # Fine-tune figure; make subplots close to each other and hide x ticks for
# all but bottom plot. # all but bottom plot.
fig.subplots_adjust(hspace=0) fig.subplots_adjust(hspace=0)
@ -158,8 +156,8 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
if __name__ == '__main__': if __name__ == '__main__':
# Install PYQT5==5.9 manually if you want to test this helper function # Install PYQT5==5.9 manually if you want to test this helper function
while True: while True:
pair = 'BTC_ANT' test_pair = 'BTC_ANT'
#for pair in ['BTC_ANT', 'BTC_ETH', 'BTC_GNT', 'BTC_ETC']: #for pair in ['BTC_ANT', 'BTC_ETH', 'BTC_GNT', 'BTC_ETC']:
# get_buy_signal(pair) # get_buy_signal(pair)
plot_dataframe(analyze_ticker(pair), pair) plot_dataframe(analyze_ticker(test_pair), test_pair)
time.sleep(60) time.sleep(60)