commit
8ed8e1e103
68
analyze.py
68
analyze.py
@ -3,7 +3,6 @@ from datetime import timedelta
|
||||
import logging
|
||||
import arrow
|
||||
import requests
|
||||
from pandas.io.json import json_normalize
|
||||
from pandas import DataFrame
|
||||
import talib.abstract as ta
|
||||
|
||||
@ -23,7 +22,7 @@ def get_ticker(pair: str, minimum_date: arrow.Arrow) -> dict:
|
||||
}
|
||||
params = {
|
||||
'marketName': pair.replace('_', '-'),
|
||||
'tickInterval': 'OneMin',
|
||||
'tickInterval': 'fiveMin',
|
||||
'_': minimum_date.timestamp * 1000
|
||||
}
|
||||
data = requests.get(url, params=params, headers=headers).json()
|
||||
@ -49,19 +48,9 @@ def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
"""
|
||||
dataframe['close_30_ema'] = ta.EMA(dataframe, timeperiod=30)
|
||||
dataframe['close_90_ema'] = ta.EMA(dataframe, timeperiod=90)
|
||||
|
||||
dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.2)
|
||||
|
||||
# calculate StochRSI
|
||||
stochrsi = ta.STOCHRSI(dataframe)
|
||||
dataframe['stochrsi'] = stochrsi['fastd'] # values between 0-100, not 0-1
|
||||
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macds'] = macd['macdsignal']
|
||||
dataframe['macdh'] = macd['macdhist']
|
||||
dataframe['ema'] = ta.EMA(dataframe, timeperiod=33)
|
||||
dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.22)
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
return dataframe
|
||||
|
||||
@ -72,13 +61,29 @@ def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
prev_sar = dataframe['sar'].shift(1)
|
||||
prev_close = dataframe['close'].shift(1)
|
||||
prev_sar2 = dataframe['sar'].shift(2)
|
||||
prev_close2 = dataframe['close'].shift(2)
|
||||
|
||||
# wait for stable turn from bearish to bullish market
|
||||
dataframe.loc[
|
||||
(dataframe['stochrsi'] < 20)
|
||||
& (dataframe['macd'] > dataframe['macds'])
|
||||
& (dataframe['close'] > dataframe['sar']),
|
||||
'buy'
|
||||
(dataframe['close'] > dataframe['sar']) &
|
||||
(prev_close > prev_sar) &
|
||||
(prev_close2 < prev_sar2),
|
||||
'swap'
|
||||
] = 1
|
||||
|
||||
# consider prices above ema to be in upswing
|
||||
dataframe.loc[dataframe['ema'] <= dataframe['close'], 'upswing'] = 1
|
||||
|
||||
dataframe.loc[
|
||||
(dataframe['upswing'] == 1) &
|
||||
(dataframe['swap'] == 1) &
|
||||
(dataframe['adx'] > 25), # adx over 25 tells there's enough momentum
|
||||
'buy'] = 1
|
||||
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
||||
|
||||
return dataframe
|
||||
|
||||
|
||||
@ -127,27 +132,20 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
|
||||
matplotlib.use("Qt5Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Three subplots sharing x axe
|
||||
fig, (ax1, ax2, ax3) = plt.subplots(3, sharex=True)
|
||||
# Two subplots sharing x axis
|
||||
fig, (ax1, ax2) = plt.subplots(2, sharex=True)
|
||||
fig.suptitle(pair, fontsize=14, fontweight='bold')
|
||||
ax1.plot(dataframe.index.values, dataframe['sar'], 'g_', label='pSAR')
|
||||
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
|
||||
ax1.plot(dataframe.index.values, dataframe['close_30_ema'], label='EMA(30)')
|
||||
ax1.plot(dataframe.index.values, dataframe['close_90_ema'], label='EMA(90)')
|
||||
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
|
||||
ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy')
|
||||
ax1.plot(dataframe.index.values, dataframe['ema'], '--', label='EMA(20)')
|
||||
ax1.plot(dataframe.index.values, dataframe['buy'], 'bo', label='buy')
|
||||
ax1.legend()
|
||||
|
||||
ax2.plot(dataframe.index.values, dataframe['macd'], label='MACD')
|
||||
ax2.plot(dataframe.index.values, dataframe['macds'], label='MACDS')
|
||||
ax2.plot(dataframe.index.values, dataframe['macdh'], label='MACD Histogram')
|
||||
ax2.plot(dataframe.index.values, [0] * len(dataframe.index.values))
|
||||
ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
|
||||
ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
|
||||
ax2.legend()
|
||||
|
||||
ax3.plot(dataframe.index.values, dataframe['stochrsi'], label='StochRSI')
|
||||
ax3.plot(dataframe.index.values, [80] * len(dataframe.index.values))
|
||||
ax3.plot(dataframe.index.values, [20] * len(dataframe.index.values))
|
||||
ax3.legend()
|
||||
|
||||
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
||||
# all but bottom plot.
|
||||
fig.subplots_adjust(hspace=0)
|
||||
@ -158,8 +156,8 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
|
||||
if __name__ == '__main__':
|
||||
# Install PYQT5==5.9 manually if you want to test this helper function
|
||||
while True:
|
||||
pair = 'BTC_ANT'
|
||||
test_pair = 'BTC_ANT'
|
||||
#for pair in ['BTC_ANT', 'BTC_ETH', 'BTC_GNT', 'BTC_ETC']:
|
||||
# get_buy_signal(pair)
|
||||
plot_dataframe(analyze_ticker(pair), pair)
|
||||
plot_dataframe(analyze_ticker(test_pair), test_pair)
|
||||
time.sleep(60)
|
||||
|
Loading…
Reference in New Issue
Block a user