Merge branch 'develop' into fix/backtest_toomanyopen
This commit is contained in:
commit
805f509498
@ -2,50 +2,52 @@
|
||||
|
||||
## Contribute to freqtrade
|
||||
|
||||
Feel like our bot is missing a feature? We welcome your pull requests! Few pointers for contributions:
|
||||
Feel like our bot is missing a feature? We welcome your pull requests!
|
||||
|
||||
Issues labeled [good first issue](https://github.com/freqtrade/freqtrade/labels/good%20first%20issue) can be good first contributions, and will help get you familiar with the codebase.
|
||||
|
||||
Few pointers for contributions:
|
||||
|
||||
- Create your PR against the `develop` branch, not `master`.
|
||||
- New features need to contain unit tests and must be PEP8
|
||||
|
||||
conformant (max-line-length = 100).
|
||||
- New features need to contain unit tests and must be PEP8 conformant (max-line-length = 100).
|
||||
|
||||
If you are unsure, discuss the feature on our [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE)
|
||||
or in a [issue](https://github.com/freqtrade/freqtrade/issues) before a PR.
|
||||
|
||||
**Before sending the PR:**
|
||||
## Before sending the PR:
|
||||
|
||||
## 1. Run unit tests
|
||||
### 1. Run unit tests
|
||||
|
||||
All unit tests must pass. If a unit test is broken, change your code to
|
||||
make it pass. It means you have introduced a regression.
|
||||
|
||||
### Test the whole project
|
||||
#### Test the whole project
|
||||
|
||||
```bash
|
||||
pytest freqtrade
|
||||
```
|
||||
|
||||
### Test only one file
|
||||
#### Test only one file
|
||||
|
||||
```bash
|
||||
pytest freqtrade/tests/test_<file_name>.py
|
||||
```
|
||||
|
||||
### Test only one method from one file
|
||||
#### Test only one method from one file
|
||||
|
||||
```bash
|
||||
pytest freqtrade/tests/test_<file_name>.py::test_<method_name>
|
||||
```
|
||||
|
||||
## 2. Test if your code is PEP8 compliant
|
||||
### 2. Test if your code is PEP8 compliant
|
||||
|
||||
### Install packages
|
||||
#### Install packages
|
||||
|
||||
```bash
|
||||
pip3.6 install flake8 coveralls
|
||||
```
|
||||
|
||||
### Run Flake8
|
||||
#### Run Flake8
|
||||
|
||||
```bash
|
||||
flake8 freqtrade
|
||||
@ -56,15 +58,15 @@ To help with that, we encourage you to install the git pre-commit
|
||||
hook that will warn you when you try to commit code that fails these checks.
|
||||
Guide for installing them is [here](http://flake8.pycqa.org/en/latest/user/using-hooks.html).
|
||||
|
||||
## 3. Test if all type-hints are correct
|
||||
### 3. Test if all type-hints are correct
|
||||
|
||||
### Install packages
|
||||
#### Install packages
|
||||
|
||||
``` bash
|
||||
pip3.6 install mypy
|
||||
```
|
||||
|
||||
### Run mypy
|
||||
#### Run mypy
|
||||
|
||||
``` bash
|
||||
mypy freqtrade
|
||||
|
@ -62,6 +62,7 @@ hesitate to read the source code and understand the mechanism of this bot.
|
||||
- [Requirements](#requirements)
|
||||
- [Min hardware required](#min-hardware-required)
|
||||
- [Software requirements](#software-requirements)
|
||||
- [Wanna help?]
|
||||
|
||||
|
||||
## Quick start
|
||||
@ -190,10 +191,14 @@ in the bug reports.
|
||||
### [Pull Requests](https://github.com/freqtrade/freqtrade/pulls)
|
||||
|
||||
Feel like our bot is missing a feature? We welcome your pull requests!
|
||||
|
||||
Please read our
|
||||
[Contributing document](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
|
||||
to understand the requirements before sending your pull-requests.
|
||||
|
||||
Coding is not a neccessity to contribute - maybe start with improving our documentation?
|
||||
Issues labeled [good first issue](https://github.com/freqtrade/freqtrade/labels/good%20first%20issue) can be good first contributions, and will help get you familiar with the codebase.
|
||||
|
||||
**Note** before starting any major new feature work, *please open an issue describing what you are planning to do* or talk to us on [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE). This will ensure that interested parties can give valuable feedback on the feature, and let others know that you are working on it.
|
||||
|
||||
**Important:** Always create your PR against the `develop` branch, not `master`.
|
||||
@ -218,3 +223,4 @@ To run this bot we recommend you a cloud instance with a minimum of:
|
||||
- [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html)
|
||||
- [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended)
|
||||
- [Docker](https://www.docker.com/products/docker) (Recommended)
|
||||
|
||||
|
@ -53,6 +53,21 @@
|
||||
"sell_profit_only": false,
|
||||
"ignore_roi_if_buy_signal": false
|
||||
},
|
||||
"edge": {
|
||||
"enabled": false,
|
||||
"process_throttle_secs": 3600,
|
||||
"calculate_since_number_of_days": 7,
|
||||
"total_capital_in_stake_currency": 0.5,
|
||||
"allowed_risk": 0.01,
|
||||
"stoploss_range_min": -0.01,
|
||||
"stoploss_range_max": -0.1,
|
||||
"stoploss_range_step": -0.01,
|
||||
"minimum_winrate": 0.60,
|
||||
"minimum_expectancy": 0.20,
|
||||
"min_trade_number": 10,
|
||||
"max_trade_duration_minute": 1440,
|
||||
"remove_pumps": false
|
||||
},
|
||||
"telegram": {
|
||||
"enabled": true,
|
||||
"token": "your_telegram_token",
|
||||
|
@ -33,6 +33,11 @@
|
||||
"order_book_min": 1,
|
||||
"order_book_max": 9
|
||||
},
|
||||
"order_types": {
|
||||
"buy": "limit",
|
||||
"sell": "limit",
|
||||
"stoploss": "market"
|
||||
},
|
||||
"exchange": {
|
||||
"name": "bittrex",
|
||||
"key": "your_exchange_key",
|
||||
@ -59,6 +64,20 @@
|
||||
],
|
||||
"outdated_offset": 5
|
||||
},
|
||||
"edge": {
|
||||
"enabled": false,
|
||||
"process_throttle_secs": 3600,
|
||||
"calculate_since_number_of_days": 2,
|
||||
"allowed_risk": 0.01,
|
||||
"stoploss_range_min": -0.01,
|
||||
"stoploss_range_max": -0.1,
|
||||
"stoploss_range_step": -0.01,
|
||||
"minimum_winrate": 0.60,
|
||||
"minimum_expectancy": 0.20,
|
||||
"min_trade_number": 10,
|
||||
"max_trade_duration_minute": 1440,
|
||||
"remove_pumps": false
|
||||
},
|
||||
"experimental": {
|
||||
"use_sell_signal": false,
|
||||
"sell_profit_only": false,
|
||||
|
@ -204,6 +204,8 @@ optional arguments:
|
||||
number)
|
||||
--timerange TIMERANGE
|
||||
specify what timerange of data to use.
|
||||
--hyperopt PATH specify hyperopt file (default:
|
||||
freqtrade/optimize/default_hyperopt.py)
|
||||
-e INT, --epochs INT specify number of epochs (default: 100)
|
||||
-s {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...], --spaces {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...]
|
||||
Specify which parameters to hyperopt. Space separate
|
||||
@ -211,6 +213,31 @@ optional arguments:
|
||||
|
||||
```
|
||||
|
||||
## Edge commands
|
||||
|
||||
To know your trade expectacny and winrate against historical data, you can use Edge.
|
||||
|
||||
```
|
||||
usage: main.py edge [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE] [-r]
|
||||
[--stoplosses STOPLOSS_RANGE]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
|
||||
specify ticker interval (1m, 5m, 30m, 1h, 1d)
|
||||
--timerange TIMERANGE
|
||||
specify what timerange of data to use.
|
||||
-r, --refresh-pairs-cached
|
||||
refresh the pairs files in tests/testdata with the
|
||||
latest data from the exchange. Use it if you want to
|
||||
run your edge with up-to-date data.
|
||||
--stoplosses STOPLOSS_RANGE
|
||||
defines a range of stoploss against which edge will
|
||||
assess the strategythe format is "min,max,step"
|
||||
(without any space).example:
|
||||
--stoplosses=-0.01,-0.1,-0.001
|
||||
```
|
||||
|
||||
## A parameter missing in the configuration?
|
||||
|
||||
All parameters for `main.py`, `backtesting`, `hyperopt` are referenced
|
||||
|
@ -17,7 +17,7 @@ The table below will list all configuration parameters.
|
||||
|
||||
| Command | Default | Mandatory | Description |
|
||||
|----------|---------|----------|-------------|
|
||||
| `max_open_trades` | 3 | Yes | Number of trades open your bot will have.
|
||||
| `max_open_trades` | 3 | Yes | Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades)
|
||||
| `stake_currency` | BTC | Yes | Crypto-currency used for trading.
|
||||
| `stake_amount` | 0.05 | Yes | Amount of crypto-currency your bot will use for each trade. Per default, the bot will use (0.05 BTC x 3) = 0.15 BTC in total will be always engaged. Set it to 'unlimited' to allow the bot to use all avaliable balance.
|
||||
| `ticker_interval` | [1m, 5m, 30m, 1h, 1d] | No | The ticker interval to use (1min, 5 min, 30 min, 1 hour or 1 day). Default is 5 minutes
|
||||
@ -39,6 +39,7 @@ The table below will list all configuration parameters.
|
||||
| `ask_strategy.use_order_book` | false | No | Allows selling of open traded pair using the rates in Order Book Asks.
|
||||
| `ask_strategy.order_book_min` | 0 | No | Bot will scan from the top min to max Order Book Asks searching for a profitable rate.
|
||||
| `ask_strategy.order_book_max` | 0 | No | Bot will scan from the top min to max Order Book Asks searching for a profitable rate.
|
||||
| `order_types` | None | No | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`).
|
||||
| `exchange.name` | bittrex | Yes | Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename).
|
||||
| `exchange.key` | key | No | API key to use for the exchange. Only required when you are in production mode.
|
||||
| `exchange.secret` | secret | No | API secret to use for the exchange. Only required when you are in production mode.
|
||||
@ -47,6 +48,7 @@ The table below will list all configuration parameters.
|
||||
| `exchange.ccxt_rate_limit` | True | No | DEPRECATED!! Have CCXT handle Exchange rate limits. Depending on the exchange, having this to false can lead to temporary bans from the exchange.
|
||||
| `exchange.ccxt_config` | None | No | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation)
|
||||
| `exchange.ccxt_async_config` | None | No | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation)
|
||||
| `edge` | false | No | Please refer to [edge configuration document](edge.md) for detailed explanation.
|
||||
| `experimental.use_sell_signal` | false | No | Use your sell strategy in addition of the `minimal_roi`.
|
||||
| `experimental.sell_profit_only` | false | No | waits until you have made a positive profit before taking a sell decision.
|
||||
| `experimental.ignore_roi_if_buy_signal` | false | No | Does not sell if the buy-signal is still active. Takes preference over `minimal_roi` and `use_sell_signal`
|
||||
@ -137,6 +139,22 @@ use the `last` price and values between those interpolate between ask and last
|
||||
price. Using `ask` price will guarantee quick success in bid, but bot will also
|
||||
end up paying more then would probably have been necessary.
|
||||
|
||||
### Understand order_types
|
||||
|
||||
`order_types` contains a dict mapping order-types to market-types. This allows to buy using limit orders, sell using limit-orders, and create stoploss orders using market.
|
||||
This can be set in the configuration or in the strategy. Configuration overwrites strategy configurations.
|
||||
|
||||
If this is configured, all 3 values (`"buy"`, `"sell"` and `"stoploss"`) need to be present, otherwise the bot warn about it and will fail to start.
|
||||
The below is the default which is used if this is not configured in either Strategy or configuration.
|
||||
|
||||
``` json
|
||||
"order_types": {
|
||||
"buy": "limit",
|
||||
"sell": "limit",
|
||||
"stoploss": "market"
|
||||
},
|
||||
```
|
||||
|
||||
### What values for exchange.name?
|
||||
|
||||
Freqtrade is based on [CCXT library](https://github.com/ccxt/ccxt) that supports 115 cryptocurrency
|
||||
|
207
docs/edge.md
Normal file
207
docs/edge.md
Normal file
@ -0,0 +1,207 @@
|
||||
# Edge positioning
|
||||
|
||||
This page explains how to use Edge Positioning module in your bot in order to enter into a trade only if the trade has a reasonable win rate and risk reward ratio, and consequently adjust your position size and stoploss.
|
||||
|
||||
**NOTICE:** Edge positioning is not compatible with dynamic whitelist. it overrides dynamic whitelist.
|
||||
**NOTICE2:** Edge won't consider anything else than buy/sell/stoploss signals. So trailing stoploss, ROI, and everything else will be ignored in its calculation.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Introduction](#introduction)
|
||||
- [How does it work?](#how-does-it-work?)
|
||||
- [Configurations](#configurations)
|
||||
- [Running Edge independently](#running-edge-independently)
|
||||
|
||||
## Introduction
|
||||
Trading is all about probability. No one can claim that he has a strategy working all the time. You have to assume that sometimes you lose.<br/><br/>
|
||||
But it doesn't mean there is no rule, it only means rules should work "most of the time". Let's play a game: we toss a coin, heads: I give you 10$, tails: You give me 10$. Is it an interesting game ? no, it is quite boring, isn't it?<br/><br/>
|
||||
But let's say the probability that we have heads is 80%, and the probability that we have tails is 20%. Now it is becoming interesting ...
|
||||
That means 10$ x 80% versus 10$ x 20%. 8$ versus 2$. That means over time you will win 8$ risking only 2$ on each toss of coin.<br/><br/>
|
||||
Let's complicate it more: you win 80% of the time but only 2$, I win 20% of the time but 8$. The calculation is: 80% * 2$ versus 20% * 8$. It is becoming boring again because overtime you win $1.6$ (80% x 2$) and me $1.6 (20% * 8$) too.<br/><br/>
|
||||
The question is: How do you calculate that? how do you know if you wanna play?
|
||||
The answer comes to two factors:
|
||||
- Win Rate
|
||||
- Risk Reward Ratio
|
||||
|
||||
|
||||
### Win Rate
|
||||
Means over X trades what is the percentage of winning trades to total number of trades (note that we don't consider how much you gained but only If you won or not).
|
||||
|
||||
|
||||
`W = (Number of winning trades) / (Number of losing trades)`
|
||||
|
||||
### Risk Reward Ratio
|
||||
Risk Reward Ratio is a formula used to measure the expected gains of a given investment against the risk of loss. It is basically what you potentially win divided by what you potentially lose:
|
||||
|
||||
`R = Profit / Loss`
|
||||
|
||||
Over time, on many trades, you can calculate your risk reward by dividing your average profit on winning trades by your average loss on losing trades:
|
||||
|
||||
`Average profit = (Sum of profits) / (Number of winning trades)`
|
||||
|
||||
`Average loss = (Sum of losses) / (Number of losing trades)`
|
||||
|
||||
`R = (Average profit) / (Average loss)`
|
||||
|
||||
### Expectancy
|
||||
|
||||
At this point we can combine W and R to create an expectancy ratio. This is a simple process of multiplying the risk reward ratio by the percentage of winning trades, and subtracting the percentage of losing trades, which is calculated as follows:
|
||||
|
||||
Expectancy Ratio = (Risk Reward Ratio x Win Rate) – Loss Rate
|
||||
|
||||
So lets say your Win rate is 28% and your Risk Reward Ratio is 5:
|
||||
|
||||
`Expectancy = (5 * 0.28) - 0.72 = 0.68`
|
||||
|
||||
Superficially, this means that on average you expect this strategy’s trades to return .68 times the size of your losers. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
|
||||
|
||||
It is important to remember that any system with an expectancy greater than 0 is profitable using past data. The key is finding one that will be profitable in the future.
|
||||
|
||||
You can also use this number to evaluate the effectiveness of modifications to this system.
|
||||
|
||||
**NOTICE:** It's important to keep in mind that Edge is testing your expectancy using historical data , there's no guarantee that you will have a similar edge in the future. It's still vital to do this testing in order to build confidence in your methodology, but be wary of "curve-fitting" your approach to the historical data as things are unlikely to play out the exact same way for future trades.
|
||||
|
||||
## How does it work?
|
||||
If enabled in config, Edge will go through historical data with a range of stoplosses in order to find buy and sell/stoploss signals. It then calculates win rate and expectancy over X trades for each stoploss. Here is an example:
|
||||
|
||||
| Pair | Stoploss | Win Rate | Risk Reward Ratio | Expectancy |
|
||||
|----------|:-------------:|-------------:|------------------:|-----------:|
|
||||
| XZC/ETH | -0.03 | 0.52 |1.359670 | 0.228 |
|
||||
| XZC/ETH | -0.01 | 0.50 |1.176384 | 0.088 |
|
||||
| XZC/ETH | -0.02 | 0.51 |1.115941 | 0.079 |
|
||||
|
||||
The goal here is to find the best stoploss for the strategy in order to have the maximum expectancy. In the above example stoploss at 3% leads to the maximum expectancy according to historical data.
|
||||
|
||||
Edge then forces stoploss to your strategy dynamically.
|
||||
|
||||
### Position size
|
||||
Edge dictates the stake amount for each trade to the bot according to the following factors:
|
||||
|
||||
- Allowed capital at risk
|
||||
- Stoploss
|
||||
|
||||
Allowed capital at risk is calculated as follows:
|
||||
|
||||
**allowed capital at risk** = **total capital** X **allowed risk per trade**
|
||||
|
||||
**total capital** is your stake amount.
|
||||
|
||||
**Stoploss** is calculated as described above against historical data.
|
||||
|
||||
Your position size then will be:
|
||||
|
||||
**position size** = **allowed capital at risk** / **stoploss**
|
||||
|
||||
Example:
|
||||
Let's say your stake amount is 3 ETH, you would allow 1% of risk for each trade. thus your allowed capital at risk would be **3 x 0.01 = 0.03 ETH**. Let's assume Edge has calculated that for **XLM/ETH** market your stoploss should be at 2%. So your position size will be **0.03 / 0.02= 1.5ETH**.<br/>
|
||||
|
||||
## Configurations
|
||||
Edge has following configurations:
|
||||
|
||||
#### enabled
|
||||
If true, then Edge will run periodically<br/>
|
||||
(default to false)
|
||||
|
||||
#### process_throttle_secs
|
||||
How often should Edge run in seconds? <br/>
|
||||
(default to 3600 so one hour)
|
||||
|
||||
#### calculate_since_number_of_days
|
||||
Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy
|
||||
Note that it downloads historical data so increasing this number would lead to slowing down the bot<br/>
|
||||
(default to 7)
|
||||
|
||||
#### allowed_risk
|
||||
Percentage of allowed risk per trade<br/>
|
||||
(default to 0.01 [1%])
|
||||
|
||||
#### stoploss_range_min
|
||||
Minimum stoploss <br/>
|
||||
(default to -0.01)
|
||||
|
||||
#### stoploss_range_max
|
||||
Maximum stoploss <br/>
|
||||
(default to -0.10)
|
||||
|
||||
#### stoploss_range_step
|
||||
As an example if this is set to -0.01 then Edge will test the strategy for [-0.01, -0,02, -0,03 ..., -0.09, -0.10] ranges.
|
||||
Note than having a smaller step means having a bigger range which could lead to slow calculation. <br/>
|
||||
if you set this parameter to -0.001, you then slow down the Edge calculation by a factor of 10. <br/>
|
||||
(default to -0.01)
|
||||
|
||||
#### minimum_winrate
|
||||
It filters pairs which don't have at least minimum_winrate.
|
||||
This comes handy if you want to be conservative and don't comprise win rate in favor of risk reward ratio.<br/>
|
||||
(default to 0.60)
|
||||
|
||||
#### minimum_expectancy
|
||||
It filters paris which have an expectancy lower than this number .
|
||||
Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return.<br/>
|
||||
(default to 0.20)
|
||||
|
||||
#### min_trade_number
|
||||
When calculating W and R and E (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable. Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something. <br/>
|
||||
(default to 10, it is highly recommended not to decrease this number)
|
||||
|
||||
#### max_trade_duration_minute
|
||||
Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br/>
|
||||
**NOTICE:** While configuring this value, you should take into consideration your ticker interval. as an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. default value is set assuming your strategy interval is relatively small (1m or 5m, etc).<br/>
|
||||
(default to 1 day, 1440 = 60 * 24)
|
||||
|
||||
#### remove_pumps
|
||||
Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.<br/>
|
||||
(default to false)
|
||||
|
||||
|
||||
## Running Edge independently
|
||||
You can run Edge independently in order to see in details the result. Here is an example:
|
||||
```bash
|
||||
python3 ./freqtrade/main.py edge
|
||||
```
|
||||
|
||||
An example of its output:
|
||||
|
||||
| pair | stoploss | win rate | risk reward ratio | required risk reward | expectancy | total number of trades | average duration (min) |
|
||||
|:----------|-----------:|-----------:|--------------------:|-----------------------:|-------------:|-------------------------:|-------------------------:|
|
||||
| AGI/BTC | -0.02 | 0.64 | 5.86 | 0.56 | 3.41 | 14 | 54 |
|
||||
| NXS/BTC | -0.03 | 0.64 | 2.99 | 0.57 | 1.54 | 11 | 26 |
|
||||
| LEND/BTC | -0.02 | 0.82 | 2.05 | 0.22 | 1.50 | 11 | 36 |
|
||||
| VIA/BTC | -0.01 | 0.55 | 3.01 | 0.83 | 1.19 | 11 | 48 |
|
||||
| MTH/BTC | -0.09 | 0.56 | 2.82 | 0.80 | 1.12 | 18 | 52 |
|
||||
| ARDR/BTC | -0.04 | 0.42 | 3.14 | 1.40 | 0.73 | 12 | 42 |
|
||||
| BCPT/BTC | -0.01 | 0.71 | 1.34 | 0.40 | 0.67 | 14 | 30 |
|
||||
| WINGS/BTC | -0.02 | 0.56 | 1.97 | 0.80 | 0.65 | 27 | 42 |
|
||||
| VIBE/BTC | -0.02 | 0.83 | 0.91 | 0.20 | 0.59 | 12 | 35 |
|
||||
| MCO/BTC | -0.02 | 0.79 | 0.97 | 0.27 | 0.55 | 14 | 31 |
|
||||
| GNT/BTC | -0.02 | 0.50 | 2.06 | 1.00 | 0.53 | 18 | 24 |
|
||||
| HOT/BTC | -0.01 | 0.17 | 7.72 | 4.81 | 0.50 | 209 | 7 |
|
||||
| SNM/BTC | -0.03 | 0.71 | 1.06 | 0.42 | 0.45 | 17 | 38 |
|
||||
| APPC/BTC | -0.02 | 0.44 | 2.28 | 1.27 | 0.44 | 25 | 43 |
|
||||
| NEBL/BTC | -0.03 | 0.63 | 1.29 | 0.58 | 0.44 | 19 | 59 |
|
||||
|
||||
### Update cached pairs with the latest data
|
||||
```bash
|
||||
python3 ./freqtrade/main.py edge --refresh-pairs-cached
|
||||
```
|
||||
|
||||
### Precising stoploss range
|
||||
```bash
|
||||
python3 ./freqtrade/main.py edge --stoplosses=-0.01,-0.1,-0.001 #min,max,step
|
||||
```
|
||||
|
||||
### Advanced use of timerange
|
||||
```bash
|
||||
python3 ./freqtrade/main.py edge --timerange=20181110-20181113
|
||||
```
|
||||
|
||||
Doing --timerange=-200 will get the last 200 timeframes from your inputdata. You can also specify specific dates, or a range span indexed by start and stop.
|
||||
|
||||
The full timerange specification:
|
||||
|
||||
* Use last 123 tickframes of data: --timerange=-123
|
||||
* Use first 123 tickframes of data: --timerange=123-
|
||||
* Use tickframes from line 123 through 456: --timerange=123-456
|
||||
* Use tickframes till 2018/01/31: --timerange=-20180131
|
||||
* Use tickframes since 2018/01/31: --timerange=20180131-
|
||||
* Use tickframes since 2018/01/31 till 2018/03/01 : --timerange=20180131-20180301
|
||||
* Use tickframes between POSIX timestamps 1527595200 1527618600: --timerange=1527595200-1527618600
|
@ -19,18 +19,27 @@ and still take a long time.
|
||||
|
||||
## Prepare Hyperopting
|
||||
|
||||
We recommend you start by taking a look at `hyperopt.py` file located in [freqtrade/optimize](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py)
|
||||
Before we start digging in Hyperopt, we recommend you to take a look at
|
||||
an example hyperopt file located into [user_data/hyperopts/](https://github.com/gcarq/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py)
|
||||
|
||||
### Configure your Guards and Triggers
|
||||
### 1. Install a Custom Hyperopt File
|
||||
This is very simple. Put your hyperopt file into the folder
|
||||
`user_data/hyperopts`.
|
||||
|
||||
There are two places you need to change to add a new buy strategy for testing:
|
||||
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L231-L264).
|
||||
- Inside [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L213-L224)
|
||||
and the associated methods `indicator_space`, `roi_space`, `stoploss_space`.
|
||||
Let assume you want a hyperopt file `awesome_hyperopt.py`:
|
||||
1. Copy the file `user_data/hyperopts/sample_hyperopt.py` into `user_data/hyperopts/awesome_hyperopt.py`
|
||||
|
||||
There you have two different type of indicators: 1. `guards` and 2. `triggers`.
|
||||
1. Guards are conditions like "never buy if ADX < 10", or "never buy if
|
||||
current price is over EMA10".
|
||||
|
||||
### 2. Configure your Guards and Triggers
|
||||
There are two places you need to change in your hyperopt file to add a
|
||||
new buy hyperopt for testing:
|
||||
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py#L230-L251).
|
||||
- Inside [indicator_space()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py#L207-L223).
|
||||
|
||||
There you have two different types of indicators: 1. `guards` and 2. `triggers`.
|
||||
|
||||
1. Guards are conditions like "never buy if ADX < 10", or never buy if
|
||||
current price is over EMA10.
|
||||
2. Triggers are ones that actually trigger buy in specific moment, like
|
||||
"buy when EMA5 crosses over EMA10" or "buy when close price touches lower
|
||||
bollinger band".
|
||||
@ -124,9 +133,12 @@ Because hyperopt tries a lot of combinations to find the best parameters it will
|
||||
We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
|
||||
|
||||
```bash
|
||||
python3 ./freqtrade/main.py -c config.json hyperopt -e 5000
|
||||
python3 ./freqtrade/main.py -s <strategyname> --hyperopt <hyperoptname> -c config.json hyperopt -e 5000
|
||||
```
|
||||
|
||||
Use `<strategyname>` and `<hyperoptname>` as the names of the custom strategy
|
||||
(only required for generating sells) and the custom hyperopt used.
|
||||
|
||||
The `-e` flag will set how many evaluations hyperopt will do. We recommend
|
||||
running at least several thousand evaluations.
|
||||
|
||||
|
@ -21,10 +21,12 @@ Pull-request. Do not hesitate to reach us on
|
||||
- [Bot commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
|
||||
- [Backtesting commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
|
||||
- [Hyperopt commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
|
||||
- [Edge commands](https://github.com/mishaker/freqtrade/blob/develop/docs/bot-usage.md#edge-commands)
|
||||
- [Bot Optimization](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md)
|
||||
- [Change your strategy](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#change-your-strategy)
|
||||
- [Add more Indicator](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#add-more-indicator)
|
||||
- [Test your strategy with Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md)
|
||||
- [Edge positioning](https://github.com/mishaker/freqtrade/blob/money_mgt/docs/edge.md)
|
||||
- [Find optimal parameters with Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)
|
||||
- [Control the bot with telegram](https://github.com/freqtrade/freqtrade/blob/develop/docs/telegram-usage.md)
|
||||
- [Receive notifications via webhook](https://github.com/freqtrade/freqtrade/blob/develop/docs/webhook-config.md)
|
||||
|
@ -104,6 +104,14 @@ class Arguments(object):
|
||||
type=str,
|
||||
metavar='PATH',
|
||||
)
|
||||
self.parser.add_argument(
|
||||
'--customhyperopt',
|
||||
help='specify hyperopt class name (default: %(default)s)',
|
||||
dest='hyperopt',
|
||||
default=constants.DEFAULT_HYPEROPT,
|
||||
type=str,
|
||||
metavar='NAME',
|
||||
)
|
||||
self.parser.add_argument(
|
||||
'--dynamic-whitelist',
|
||||
help='dynamically generate and update whitelist'
|
||||
@ -128,6 +136,22 @@ class Arguments(object):
|
||||
"""
|
||||
Parses given arguments for Backtesting scripts.
|
||||
"""
|
||||
parser.add_argument(
|
||||
'--eps', '--enable-position-stacking',
|
||||
help='Allow buying the same pair multiple times (position stacking)',
|
||||
action='store_true',
|
||||
dest='position_stacking',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--dmmp', '--disable-max-market-positions',
|
||||
help='Disable applying `max_open_trades` during backtest '
|
||||
'(same as setting `max_open_trades` to a very high number)',
|
||||
action='store_false',
|
||||
dest='use_max_market_positions',
|
||||
default=True
|
||||
)
|
||||
parser.add_argument(
|
||||
'-l', '--live',
|
||||
help='using live data',
|
||||
@ -171,6 +195,27 @@ class Arguments(object):
|
||||
metavar='PATH',
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def edge_options(parser: argparse.ArgumentParser) -> None:
|
||||
"""
|
||||
Parses given arguments for Backtesting scripts.
|
||||
"""
|
||||
parser.add_argument(
|
||||
'-r', '--refresh-pairs-cached',
|
||||
help='refresh the pairs files in tests/testdata with the latest data from the '
|
||||
'exchange. Use it if you want to run your edge with up-to-date data.',
|
||||
action='store_true',
|
||||
dest='refresh_pairs',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--stoplosses',
|
||||
help='defines a range of stoploss against which edge will assess the strategy '
|
||||
'the format is "min,max,step" (without any space).'
|
||||
'example: --stoplosses=-0.01,-0.1,-0.001',
|
||||
type=str,
|
||||
dest='stoploss_range',
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
|
||||
"""
|
||||
@ -184,6 +229,20 @@ class Arguments(object):
|
||||
dest='ticker_interval',
|
||||
type=str,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--timerange',
|
||||
help='specify what timerange of data to use.',
|
||||
default=None,
|
||||
type=str,
|
||||
dest='timerange',
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_options(parser: argparse.ArgumentParser) -> None:
|
||||
"""
|
||||
Parses given arguments for Hyperopt scripts.
|
||||
"""
|
||||
parser.add_argument(
|
||||
'--eps', '--enable-position-stacking',
|
||||
help='Allow buying the same pair multiple times (position stacking)',
|
||||
@ -200,20 +259,6 @@ class Arguments(object):
|
||||
dest='use_max_market_positions',
|
||||
default=True
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--timerange',
|
||||
help='specify what timerange of data to use.',
|
||||
default=None,
|
||||
type=str,
|
||||
dest='timerange',
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_options(parser: argparse.ArgumentParser) -> None:
|
||||
"""
|
||||
Parses given arguments for Hyperopt scripts.
|
||||
"""
|
||||
parser.add_argument(
|
||||
'-e', '--epochs',
|
||||
help='specify number of epochs (default: %(default)d)',
|
||||
@ -237,7 +282,7 @@ class Arguments(object):
|
||||
Builds and attaches all subcommands
|
||||
:return: None
|
||||
"""
|
||||
from freqtrade.optimize import backtesting, hyperopt
|
||||
from freqtrade.optimize import backtesting, hyperopt, edge_cli
|
||||
|
||||
subparsers = self.parser.add_subparsers(dest='subparser')
|
||||
|
||||
@ -247,6 +292,12 @@ class Arguments(object):
|
||||
self.optimizer_shared_options(backtesting_cmd)
|
||||
self.backtesting_options(backtesting_cmd)
|
||||
|
||||
# Add edge subcommand
|
||||
edge_cmd = subparsers.add_parser('edge', help='edge module')
|
||||
edge_cmd.set_defaults(func=edge_cli.start)
|
||||
self.optimizer_shared_options(edge_cmd)
|
||||
self.edge_options(edge_cmd)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='hyperopt module')
|
||||
hyperopt_cmd.set_defaults(func=hyperopt.start)
|
||||
|
@ -33,6 +33,7 @@ class Configuration(object):
|
||||
Class to read and init the bot configuration
|
||||
Reuse this class for the bot, backtesting, hyperopt and every script that required configuration
|
||||
"""
|
||||
|
||||
def __init__(self, args: Namespace) -> None:
|
||||
self.args = args
|
||||
self.config: Optional[Dict[str, Any]] = None
|
||||
@ -52,12 +53,18 @@ class Configuration(object):
|
||||
if self.args.strategy_path:
|
||||
config.update({'strategy_path': self.args.strategy_path})
|
||||
|
||||
# Add the hyperopt file to use
|
||||
config.update({'hyperopt': self.args.hyperopt})
|
||||
|
||||
# Load Common configuration
|
||||
config = self._load_common_config(config)
|
||||
|
||||
# Load Backtesting
|
||||
config = self._load_backtesting_config(config)
|
||||
|
||||
# Load Edge
|
||||
config = self._load_edge_config(config)
|
||||
|
||||
# Load Hyperopt
|
||||
config = self._load_hyperopt_config(config)
|
||||
|
||||
@ -130,6 +137,10 @@ class Configuration(object):
|
||||
if config.get('forcebuy_enable', False):
|
||||
logger.warning('`forcebuy` RPC message enabled.')
|
||||
|
||||
# Setting max_open_trades to infinite if -1
|
||||
if config.get('max_open_trades') == -1:
|
||||
config['max_open_trades'] = float('inf')
|
||||
|
||||
logger.info(f'Using DB: "{config["db_url"]}"')
|
||||
|
||||
# Check if the exchange set by the user is supported
|
||||
@ -213,6 +224,32 @@ class Configuration(object):
|
||||
|
||||
return config
|
||||
|
||||
def _load_edge_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Extract information for sys.argv and load Edge configuration
|
||||
:return: configuration as dictionary
|
||||
"""
|
||||
|
||||
# If --timerange is used we add it to the configuration
|
||||
if 'timerange' in self.args and self.args.timerange:
|
||||
config.update({'timerange': self.args.timerange})
|
||||
logger.info('Parameter --timerange detected: %s ...', self.args.timerange)
|
||||
|
||||
# If --timerange is used we add it to the configuration
|
||||
if 'stoploss_range' in self.args and self.args.stoploss_range:
|
||||
txt_range = eval(self.args.stoploss_range)
|
||||
config['edge'].update({'stoploss_range_min': txt_range[0]})
|
||||
config['edge'].update({'stoploss_range_max': txt_range[1]})
|
||||
config['edge'].update({'stoploss_range_step': txt_range[2]})
|
||||
logger.info('Parameter --stoplosses detected: %s ...', self.args.stoploss_range)
|
||||
|
||||
# If -r/--refresh-pairs-cached is used we add it to the configuration
|
||||
if 'refresh_pairs' in self.args and self.args.refresh_pairs:
|
||||
config.update({'refresh_pairs': True})
|
||||
logger.info('Parameter -r/--refresh-pairs-cached detected ...')
|
||||
|
||||
return config
|
||||
|
||||
def _load_hyperopt_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Extract information for sys.argv and load Hyperopt configuration
|
||||
|
@ -9,9 +9,12 @@ TICKER_INTERVAL = 5 # min
|
||||
HYPEROPT_EPOCH = 100 # epochs
|
||||
RETRY_TIMEOUT = 30 # sec
|
||||
DEFAULT_STRATEGY = 'DefaultStrategy'
|
||||
DEFAULT_HYPEROPT = 'DefaultHyperOpts'
|
||||
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
|
||||
DEFAULT_DB_DRYRUN_URL = 'sqlite://'
|
||||
UNLIMITED_STAKE_AMOUNT = 'unlimited'
|
||||
REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss']
|
||||
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
|
||||
|
||||
|
||||
TICKER_INTERVAL_MINUTES = {
|
||||
@ -37,13 +40,13 @@ SUPPORTED_FIAT = [
|
||||
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
|
||||
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD",
|
||||
"BTC", "XBT", "ETH", "XRP", "LTC", "BCH", "USDT"
|
||||
]
|
||||
]
|
||||
|
||||
# Required json-schema for user specified config
|
||||
CONF_SCHEMA = {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'max_open_trades': {'type': 'integer', 'minimum': 0},
|
||||
'max_open_trades': {'type': 'integer', 'minimum': -1},
|
||||
'ticker_interval': {'type': 'string', 'enum': list(TICKER_INTERVAL_MINUTES.keys())},
|
||||
'stake_currency': {'type': 'string', 'enum': ['BTC', 'XBT', 'ETH', 'USDT', 'EUR', 'USD']},
|
||||
'stake_amount': {
|
||||
@ -101,7 +104,17 @@ CONF_SCHEMA = {
|
||||
'order_book_max': {'type': 'number', 'minimum': 1, 'maximum': 50}
|
||||
}
|
||||
},
|
||||
'order_types': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'buy': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
||||
'sell': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
||||
'stoploss': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES}
|
||||
},
|
||||
'required': ['buy', 'sell', 'stoploss']
|
||||
},
|
||||
'exchange': {'$ref': '#/definitions/exchange'},
|
||||
'edge': {'$ref': '#/definitions/edge'},
|
||||
'experimental': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
@ -170,6 +183,23 @@ CONF_SCHEMA = {
|
||||
'ccxt_async_config': {'type': 'object'}
|
||||
},
|
||||
'required': ['name', 'key', 'secret', 'pair_whitelist']
|
||||
},
|
||||
'edge': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
"enabled": {'type': 'boolean'},
|
||||
"process_throttle_secs": {'type': 'integer', 'minimum': 600},
|
||||
"calculate_since_number_of_days": {'type': 'integer'},
|
||||
"allowed_risk": {'type': 'number'},
|
||||
"stoploss_range_min": {'type': 'number'},
|
||||
"stoploss_range_max": {'type': 'number'},
|
||||
"stoploss_range_step": {'type': 'number'},
|
||||
"minimum_winrate": {'type': 'number'},
|
||||
"minimum_expectancy": {'type': 'number'},
|
||||
"min_trade_number": {'type': 'number'},
|
||||
"max_trade_duration_minute": {'type': 'integer'},
|
||||
"remove_pumps": {'type': 'boolean'}
|
||||
}
|
||||
}
|
||||
},
|
||||
'anyOf': [
|
||||
|
414
freqtrade/edge/__init__.py
Normal file
414
freqtrade/edge/__init__.py
Normal file
@ -0,0 +1,414 @@
|
||||
# pragma pylint: disable=W0603
|
||||
""" Edge positioning package """
|
||||
import logging
|
||||
from typing import Any, Dict, NamedTuple
|
||||
import arrow
|
||||
|
||||
import numpy as np
|
||||
import utils_find_1st as utf1st
|
||||
from pandas import DataFrame
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.strategy.interface import SellType
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PairInfo(NamedTuple):
|
||||
stoploss: float
|
||||
winrate: float
|
||||
risk_reward_ratio: float
|
||||
required_risk_reward: float
|
||||
expectancy: float
|
||||
nb_trades: int
|
||||
avg_trade_duration: float
|
||||
|
||||
|
||||
class Edge():
|
||||
"""
|
||||
Calculates Win Rate, Risk Reward Ratio, Expectancy
|
||||
against historical data for a give set of markets and a strategy
|
||||
it then adjusts stoploss and position size accordingly
|
||||
and force it into the strategy
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
config: Dict = {}
|
||||
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
|
||||
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
|
||||
|
||||
self.config = config
|
||||
self.exchange = exchange
|
||||
self.strategy = strategy
|
||||
self.ticker_interval = self.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||
self.get_timeframe = optimize.get_timeframe
|
||||
self.advise_sell = self.strategy.advise_sell
|
||||
self.advise_buy = self.strategy.advise_buy
|
||||
|
||||
self.edge_config = self.config.get('edge', {})
|
||||
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
|
||||
self._total_capital: float = self.config['stake_amount']
|
||||
self._allowed_risk: float = self.edge_config.get('allowed_risk')
|
||||
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
|
||||
self._last_updated: int = 0 # Timestamp of pairs last updated time
|
||||
self._refresh_pairs = True
|
||||
|
||||
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
|
||||
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
|
||||
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
|
||||
|
||||
# calculating stoploss range
|
||||
self._stoploss_range = np.arange(
|
||||
self._stoploss_range_min,
|
||||
self._stoploss_range_max,
|
||||
self._stoploss_range_step
|
||||
)
|
||||
|
||||
self._timerange: TimeRange = Arguments.parse_timerange("%s-" % arrow.now().shift(
|
||||
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
|
||||
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
def calculate(self) -> bool:
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
heartbeat = self.edge_config.get('process_throttle_secs')
|
||||
|
||||
if (self._last_updated > 0) and (
|
||||
self._last_updated + heartbeat > arrow.utcnow().timestamp):
|
||||
return False
|
||||
|
||||
data: Dict[str, Any] = {}
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=self._refresh_pairs,
|
||||
exchange=self.exchange,
|
||||
timerange=self._timerange
|
||||
)
|
||||
|
||||
if not data:
|
||||
# Reinitializing cached pairs
|
||||
self._cached_pairs = {}
|
||||
logger.critical("No data found. Edge is stopped ...")
|
||||
return False
|
||||
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days) ...',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
|
||||
trades: list = []
|
||||
for pair, pair_data in preprocessed.items():
|
||||
# Sorting dataframe by date and reset index
|
||||
pair_data = pair_data.sort_values(by=['date'])
|
||||
pair_data = pair_data.reset_index(drop=True)
|
||||
|
||||
ticker_data = self.advise_sell(
|
||||
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
|
||||
|
||||
# If no trade found then exit
|
||||
if len(trades) == 0:
|
||||
return False
|
||||
|
||||
# Fill missing, calculable columns, profit, duration , abs etc.
|
||||
trades_df = self._fill_calculable_fields(DataFrame(trades))
|
||||
self._cached_pairs = self._process_expectancy(trades_df)
|
||||
self._last_updated = arrow.utcnow().timestamp
|
||||
|
||||
# Not a nice hack but probably simplest solution:
|
||||
# When backtest load data it loads the delta between disk and exchange
|
||||
# The problem is that exchange consider that recent.
|
||||
# it is but it is incomplete (c.f. _async_get_candle_history)
|
||||
# So it causes get_signal to exit cause incomplete ticker_hist
|
||||
# A patch to that would be update _pairs_last_refresh_time of exchange
|
||||
# so it will download again all pairs
|
||||
# Another solution is to add new data to klines instead of reassigning it:
|
||||
# self.klines[pair].update(data) instead of self.klines[pair] = data in exchange package.
|
||||
# But that means indexing timestamp and having a verification so that
|
||||
# there is no empty range between two timestaps (recently added and last
|
||||
# one)
|
||||
self.exchange._pairs_last_refresh_time = {}
|
||||
|
||||
return True
|
||||
|
||||
def stake_amount(self, pair: str) -> float:
|
||||
stoploss = self._cached_pairs[pair].stoploss
|
||||
allowed_capital_at_risk = round(self._total_capital * self._allowed_risk, 5)
|
||||
position_size = abs(round((allowed_capital_at_risk / stoploss), 5))
|
||||
return position_size
|
||||
|
||||
def stoploss(self, pair: str) -> float:
|
||||
return self._cached_pairs[pair].stoploss
|
||||
|
||||
def adjust(self, pairs) -> list:
|
||||
"""
|
||||
Filters out and sorts "pairs" according to Edge calculated pairs
|
||||
"""
|
||||
|
||||
final = []
|
||||
for pair, info in self._cached_pairs.items():
|
||||
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
|
||||
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
|
||||
pair in pairs:
|
||||
final.append(pair)
|
||||
|
||||
if final:
|
||||
logger.info('Edge validated only %s', final)
|
||||
else:
|
||||
logger.info('Edge removed all pairs as no pair with minimum expectancy was found !')
|
||||
|
||||
return final
|
||||
|
||||
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
|
||||
"""
|
||||
The result frame contains a number of columns that are calculable
|
||||
from other columns. These are left blank till all rows are added,
|
||||
to be populated in single vector calls.
|
||||
|
||||
Columns to be populated are:
|
||||
- Profit
|
||||
- trade duration
|
||||
- profit abs
|
||||
:param result Dataframe
|
||||
:return: result Dataframe
|
||||
"""
|
||||
|
||||
# stake and fees
|
||||
# stake = 0.015
|
||||
# 0.05% is 0.0005
|
||||
# fee = 0.001
|
||||
|
||||
stake = self.config.get('stake_amount')
|
||||
fee = self.fee
|
||||
|
||||
open_fee = fee / 2
|
||||
close_fee = fee / 2
|
||||
|
||||
result['trade_duration'] = result['close_time'] - result['open_time']
|
||||
|
||||
result['trade_duration'] = result['trade_duration'].map(
|
||||
lambda x: int(x.total_seconds() / 60))
|
||||
|
||||
# Spends, Takes, Profit, Absolute Profit
|
||||
|
||||
# Buy Price
|
||||
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
|
||||
result['buy_fee'] = stake * open_fee
|
||||
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
|
||||
|
||||
# Sell price
|
||||
result['sell_sum'] = result['buy_vol'] * result['close_rate']
|
||||
result['sell_fee'] = result['sell_sum'] * close_fee
|
||||
result['sell_take'] = result['sell_sum'] - result['sell_fee']
|
||||
|
||||
# profit_percent
|
||||
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
|
||||
|
||||
# Absolute profit
|
||||
result['profit_abs'] = result['sell_take'] - result['buy_spend']
|
||||
|
||||
return result
|
||||
|
||||
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
|
||||
"""
|
||||
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
|
||||
The calulation will be done per pair and per strategy.
|
||||
"""
|
||||
# Removing pairs having less than min_trades_number
|
||||
min_trades_number = self.edge_config.get('min_trade_number', 10)
|
||||
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
|
||||
###################################
|
||||
|
||||
# Removing outliers (Only Pumps) from the dataset
|
||||
# The method to detect outliers is to calculate standard deviation
|
||||
# Then every value more than (standard deviation + 2*average) is out (pump)
|
||||
#
|
||||
# Removing Pumps
|
||||
if self.edge_config.get('remove_pumps', False):
|
||||
results = results.groupby(['pair', 'stoploss']).apply(
|
||||
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
|
||||
##########################################################################
|
||||
|
||||
# Removing trades having a duration more than X minutes (set in config)
|
||||
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
|
||||
results = results[results.trade_duration < max_trade_duration]
|
||||
#######################################################################
|
||||
|
||||
if results.empty:
|
||||
return {}
|
||||
|
||||
groupby_aggregator = {
|
||||
'profit_abs': [
|
||||
('nb_trades', 'count'), # number of all trades
|
||||
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
|
||||
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
|
||||
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
|
||||
],
|
||||
'trade_duration': [('avg_trade_duration', 'mean')]
|
||||
}
|
||||
|
||||
# Group by (pair and stoploss) by applying above aggregator
|
||||
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
|
||||
groupby_aggregator).reset_index(col_level=1)
|
||||
|
||||
# Dropping level 0 as we don't need it
|
||||
df.columns = df.columns.droplevel(0)
|
||||
|
||||
# Calculating number of losing trades, average win and average loss
|
||||
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
|
||||
df['average_win'] = df['profit_sum'] / df['nb_win_trades']
|
||||
df['average_loss'] = df['loss_sum'] / df['nb_loss_trades']
|
||||
|
||||
# Win rate = number of profitable trades / number of trades
|
||||
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
|
||||
|
||||
# risk_reward_ratio = average win / average loss
|
||||
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
|
||||
|
||||
# required_risk_reward = (1 / winrate) - 1
|
||||
df['required_risk_reward'] = (1 / df['winrate']) - 1
|
||||
|
||||
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
|
||||
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
|
||||
|
||||
# sort by expectancy and stoploss
|
||||
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
|
||||
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
|
||||
|
||||
final = {}
|
||||
for x in df.itertuples():
|
||||
final[x.pair] = PairInfo(
|
||||
x.stoploss,
|
||||
x.winrate,
|
||||
x.risk_reward_ratio,
|
||||
x.required_risk_reward,
|
||||
x.expectancy,
|
||||
x.nb_trades,
|
||||
x.avg_trade_duration
|
||||
)
|
||||
|
||||
# Returning a list of pairs in order of "expectancy"
|
||||
return final
|
||||
|
||||
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
|
||||
buy_column = ticker_data['buy'].values
|
||||
sell_column = ticker_data['sell'].values
|
||||
date_column = ticker_data['date'].values
|
||||
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
|
||||
|
||||
result: list = []
|
||||
for stoploss in stoploss_range:
|
||||
result += self._detect_next_stop_or_sell_point(
|
||||
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
|
||||
ohlc_columns, stoploss, pair, start_point=0):
|
||||
"""
|
||||
Iterate through ohlc_columns recursively in order to find the next trade
|
||||
Next trade opens from the first buy signal noticed to
|
||||
The sell or stoploss signal after it.
|
||||
It then calls itself cutting OHLC, buy_column, sell_colum and date_column
|
||||
Cut from (the exit trade index) + 1
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
result: list = []
|
||||
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
|
||||
|
||||
# return empty if we don't find trade entry (i.e. buy==1) or
|
||||
# we find a buy but at the of array
|
||||
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
|
||||
return []
|
||||
else:
|
||||
open_trade_index += 1 # when a buy signal is seen,
|
||||
# trade opens in reality on the next candle
|
||||
|
||||
stop_price_percentage = stoploss + 1
|
||||
open_price = ohlc_columns[open_trade_index, 0]
|
||||
stop_price = (open_price * stop_price_percentage)
|
||||
|
||||
# Searching for the index where stoploss is hit
|
||||
stop_index = utf1st.find_1st(
|
||||
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
|
||||
|
||||
# If we don't find it then we assume stop_index will be far in future (infinite number)
|
||||
if stop_index == -1:
|
||||
stop_index = float('inf')
|
||||
|
||||
# Searching for the index where sell is hit
|
||||
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
|
||||
|
||||
# If we don't find it then we assume sell_index will be far in future (infinite number)
|
||||
if sell_index == -1:
|
||||
sell_index = float('inf')
|
||||
|
||||
# Check if we don't find any stop or sell point (in that case trade remains open)
|
||||
# It is not interesting for Edge to consider it so we simply ignore the trade
|
||||
# And stop iterating there is no more entry
|
||||
if stop_index == sell_index == float('inf'):
|
||||
return []
|
||||
|
||||
if stop_index <= sell_index:
|
||||
exit_index = open_trade_index + stop_index
|
||||
exit_type = SellType.STOP_LOSS
|
||||
exit_price = stop_price
|
||||
elif stop_index > sell_index:
|
||||
# if exit is SELL then we exit at the next candle
|
||||
exit_index = open_trade_index + sell_index + 1
|
||||
|
||||
# check if we have the next candle
|
||||
if len(ohlc_columns) - 1 < exit_index:
|
||||
return []
|
||||
|
||||
exit_type = SellType.SELL_SIGNAL
|
||||
exit_price = ohlc_columns[exit_index, 0]
|
||||
|
||||
trade = {'pair': pair,
|
||||
'stoploss': stoploss,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': date_column[open_trade_index],
|
||||
'close_time': date_column[exit_index],
|
||||
'open_index': start_point + open_trade_index,
|
||||
'close_index': start_point + exit_index,
|
||||
'trade_duration': '',
|
||||
'open_rate': round(open_price, 15),
|
||||
'close_rate': round(exit_price, 15),
|
||||
'exit_type': exit_type
|
||||
}
|
||||
|
||||
result.append(trade)
|
||||
|
||||
# Calling again the same function recursively but giving
|
||||
# it a view of exit_index till the end of array
|
||||
return result + self._detect_next_stop_or_sell_point(
|
||||
buy_column[exit_index:],
|
||||
sell_column[exit_index:],
|
||||
date_column[exit_index:],
|
||||
ohlc_columns[exit_index:],
|
||||
stoploss,
|
||||
pair,
|
||||
(start_point + exit_index)
|
||||
)
|
@ -102,7 +102,7 @@ class Exchange(object):
|
||||
self.markets = self._load_markets()
|
||||
# Check if all pairs are available
|
||||
self.validate_pairs(config['exchange']['pair_whitelist'])
|
||||
|
||||
self.validate_ordertypes(config.get('order_types', {}))
|
||||
if config.get('ticker_interval'):
|
||||
# Check if timeframe is available
|
||||
self.validate_timeframes(config['ticker_interval'])
|
||||
@ -218,6 +218,15 @@ class Exchange(object):
|
||||
raise OperationalException(
|
||||
f'Invalid ticker {timeframe}, this Exchange supports {timeframes}')
|
||||
|
||||
def validate_ordertypes(self, order_types: Dict) -> None:
|
||||
"""
|
||||
Checks if order-types configured in strategy/config are supported
|
||||
"""
|
||||
if any(v == 'market' for k, v in order_types.items()):
|
||||
if not self.exchange_has('createMarketOrder'):
|
||||
raise OperationalException(
|
||||
f'Exchange {self.name} does not support market orders.')
|
||||
|
||||
def exchange_has(self, endpoint: str) -> bool:
|
||||
"""
|
||||
Checks if exchange implements a specific API endpoint.
|
||||
@ -249,14 +258,14 @@ class Exchange(object):
|
||||
price = ceil(big_price) / pow(10, symbol_prec)
|
||||
return price
|
||||
|
||||
def buy(self, pair: str, rate: float, amount: float) -> Dict:
|
||||
def buy(self, pair: str, ordertype: str, amount: float, rate: float) -> Dict:
|
||||
if self._conf['dry_run']:
|
||||
order_id = f'dry_run_buy_{randint(0, 10**6)}'
|
||||
self._dry_run_open_orders[order_id] = {
|
||||
'pair': pair,
|
||||
'price': rate,
|
||||
'amount': amount,
|
||||
'type': 'limit',
|
||||
'type': ordertype,
|
||||
'side': 'buy',
|
||||
'remaining': 0.0,
|
||||
'datetime': arrow.utcnow().isoformat(),
|
||||
@ -268,9 +277,9 @@ class Exchange(object):
|
||||
try:
|
||||
# Set the precision for amount and price(rate) as accepted by the exchange
|
||||
amount = self.symbol_amount_prec(pair, amount)
|
||||
rate = self.symbol_price_prec(pair, rate)
|
||||
rate = self.symbol_price_prec(pair, rate) if ordertype != 'market' else None
|
||||
|
||||
return self._api.create_limit_buy_order(pair, amount, rate)
|
||||
return self._api.create_order(pair, ordertype, 'buy', amount, rate)
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
f'Insufficient funds to create limit buy order on market {pair}.'
|
||||
@ -287,14 +296,14 @@ class Exchange(object):
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e)
|
||||
|
||||
def sell(self, pair: str, rate: float, amount: float) -> Dict:
|
||||
def sell(self, pair: str, ordertype: str, amount: float, rate: float) -> Dict:
|
||||
if self._conf['dry_run']:
|
||||
order_id = f'dry_run_sell_{randint(0, 10**6)}'
|
||||
self._dry_run_open_orders[order_id] = {
|
||||
'pair': pair,
|
||||
'price': rate,
|
||||
'amount': amount,
|
||||
'type': 'limit',
|
||||
'type': ordertype,
|
||||
'side': 'sell',
|
||||
'remaining': 0.0,
|
||||
'datetime': arrow.utcnow().isoformat(),
|
||||
@ -305,9 +314,9 @@ class Exchange(object):
|
||||
try:
|
||||
# Set the precision for amount and price(rate) as accepted by the exchange
|
||||
amount = self.symbol_amount_prec(pair, amount)
|
||||
rate = self.symbol_price_prec(pair, rate)
|
||||
rate = self.symbol_price_prec(pair, rate) if ordertype != 'market' else None
|
||||
|
||||
return self._api.create_limit_sell_order(pair, amount, rate)
|
||||
return self._api.create_order(pair, ordertype, 'sell', amount, rate)
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
f'Insufficient funds to create limit sell order on market {pair}.'
|
||||
|
@ -17,6 +17,8 @@ from cachetools import TTLCache, cached
|
||||
from freqtrade import (DependencyException, OperationalException,
|
||||
TemporaryError, __version__, constants, persistence)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.wallets import Wallets
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.rpc import RPCManager, RPCMessageType
|
||||
from freqtrade.state import State
|
||||
@ -24,6 +26,7 @@ from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
from freqtrade.exchange.exchange_helpers import order_book_to_dataframe
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -54,6 +57,12 @@ class FreqtradeBot(object):
|
||||
self.rpc: RPCManager = RPCManager(self)
|
||||
self.persistence = None
|
||||
self.exchange = Exchange(self.config)
|
||||
self.wallets = Wallets(self.exchange)
|
||||
|
||||
# Initializing Edge only if enabled
|
||||
self.edge = Edge(self.config, self.exchange, self.strategy) if \
|
||||
self.config.get('edge', {}).get('enabled', False) else None
|
||||
|
||||
self.active_pair_whitelist: List[str] = self.config['exchange']['pair_whitelist']
|
||||
self._init_modules()
|
||||
|
||||
@ -133,7 +142,7 @@ class FreqtradeBot(object):
|
||||
f'*Strategy:* `{strategy_name}`'
|
||||
})
|
||||
if self.config.get('dynamic_whitelist', False):
|
||||
top_pairs = 'top ' + str(self.config.get('dynamic_whitelist', 20))
|
||||
top_pairs = 'top volume ' + str(self.config.get('dynamic_whitelist', 20))
|
||||
specific_pairs = ''
|
||||
else:
|
||||
top_pairs = 'whitelisted'
|
||||
@ -179,6 +188,14 @@ class FreqtradeBot(object):
|
||||
# Keep only the subsets of pairs wanted (up to nb_assets)
|
||||
self.active_pair_whitelist = sanitized_list[:nb_assets] if nb_assets else sanitized_list
|
||||
|
||||
# Calculating Edge positiong
|
||||
# Should be called before refresh_tickers
|
||||
# Otherwise it will override cached klines in exchange
|
||||
# with delta value (klines only from last refresh_pairs)
|
||||
if self.edge:
|
||||
self.edge.calculate()
|
||||
self.active_pair_whitelist = self.edge.adjust(self.active_pair_whitelist)
|
||||
|
||||
# Query trades from persistence layer
|
||||
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
|
||||
|
||||
@ -309,14 +326,20 @@ class FreqtradeBot(object):
|
||||
|
||||
return used_rate
|
||||
|
||||
def _get_trade_stake_amount(self) -> Optional[float]:
|
||||
def _get_trade_stake_amount(self, pair) -> Optional[float]:
|
||||
"""
|
||||
Check if stake amount can be fulfilled with the available balance
|
||||
for the stake currency
|
||||
:return: float: Stake Amount
|
||||
"""
|
||||
stake_amount = self.config['stake_amount']
|
||||
if self.edge:
|
||||
stake_amount = self.edge.stake_amount(pair)
|
||||
else:
|
||||
stake_amount = self.config['stake_amount']
|
||||
|
||||
# TODO: should come from the wallet
|
||||
avaliable_amount = self.exchange.get_balance(self.config['stake_currency'])
|
||||
# avaliable_amount = self.wallets.wallets[self.config['stake_currency']].free
|
||||
|
||||
if stake_amount == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
open_trades = len(Trade.query.filter(Trade.is_open.is_(True)).all())
|
||||
@ -373,15 +396,6 @@ class FreqtradeBot(object):
|
||||
:return: True if a trade object has been created and persisted, False otherwise
|
||||
"""
|
||||
interval = self.strategy.ticker_interval
|
||||
stake_amount = self._get_trade_stake_amount()
|
||||
|
||||
if not stake_amount:
|
||||
return False
|
||||
|
||||
logger.info(
|
||||
'Checking buy signals to create a new trade with stake_amount: %f ...',
|
||||
stake_amount
|
||||
)
|
||||
whitelist = copy.deepcopy(self.active_pair_whitelist)
|
||||
|
||||
# Remove currently opened and latest pairs from whitelist
|
||||
@ -394,10 +408,18 @@ class FreqtradeBot(object):
|
||||
raise DependencyException('No currency pairs in whitelist')
|
||||
|
||||
# running get_signal on historical data fetched
|
||||
# to find buy signals
|
||||
for _pair in whitelist:
|
||||
(buy, sell) = self.strategy.get_signal(_pair, interval, self.exchange.klines.get(_pair))
|
||||
if buy and not sell:
|
||||
stake_amount = self._get_trade_stake_amount(_pair)
|
||||
if not stake_amount:
|
||||
return False
|
||||
|
||||
logger.info(
|
||||
'Buy signal found: about create a new trade with stake_amount: %f ...',
|
||||
stake_amount
|
||||
)
|
||||
|
||||
bidstrat_check_depth_of_market = self.config.get('bid_strategy', {}).\
|
||||
get('check_depth_of_market', {})
|
||||
if (bidstrat_check_depth_of_market.get('enabled', False)) and\
|
||||
@ -454,7 +476,8 @@ class FreqtradeBot(object):
|
||||
|
||||
amount = stake_amount / buy_limit
|
||||
|
||||
order_id = self.exchange.buy(pair, buy_limit, amount)['id']
|
||||
order_id = self.exchange.buy(pair=pair, ordertype=self.strategy.order_types['buy'],
|
||||
amount=amount, rate=buy_limit)['id']
|
||||
|
||||
self.rpc.send_msg({
|
||||
'type': RPCMessageType.BUY_NOTIFICATION,
|
||||
@ -484,6 +507,10 @@ class FreqtradeBot(object):
|
||||
)
|
||||
Trade.session.add(trade)
|
||||
Trade.session.flush()
|
||||
|
||||
# Updating wallets
|
||||
self.wallets.update()
|
||||
|
||||
return True
|
||||
|
||||
def process_maybe_execute_buy(self) -> bool:
|
||||
@ -528,7 +555,14 @@ class FreqtradeBot(object):
|
||||
|
||||
if trade.is_open and trade.open_order_id is None:
|
||||
# Check if we can sell our current pair
|
||||
return self.handle_trade(trade)
|
||||
result = self.handle_trade(trade)
|
||||
|
||||
# Updating wallets if any trade occured
|
||||
if result:
|
||||
self.wallets.update()
|
||||
|
||||
return result
|
||||
|
||||
except DependencyException as exception:
|
||||
logger.warning('Unable to sell trade: %s', exception)
|
||||
return False
|
||||
@ -624,10 +658,16 @@ class FreqtradeBot(object):
|
||||
return False
|
||||
|
||||
def check_sell(self, trade: Trade, sell_rate: float, buy: bool, sell: bool) -> bool:
|
||||
should_sell = self.strategy.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell)
|
||||
if self.edge:
|
||||
stoploss = self.edge.stoploss(trade.pair)
|
||||
should_sell = self.strategy.should_sell(
|
||||
trade, sell_rate, datetime.utcnow(), buy, sell, force_stoploss=stoploss)
|
||||
else:
|
||||
should_sell = self.strategy.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell)
|
||||
|
||||
if should_sell.sell_flag:
|
||||
self.execute_sell(trade, sell_rate, should_sell.sell_type)
|
||||
logger.info('excuted sell')
|
||||
logger.info('executed sell, reason: %s', should_sell.sell_type)
|
||||
return True
|
||||
return False
|
||||
|
||||
@ -661,14 +701,17 @@ class FreqtradeBot(object):
|
||||
|
||||
# Check if trade is still actually open
|
||||
if int(order['remaining']) == 0:
|
||||
self.wallets.update()
|
||||
continue
|
||||
|
||||
# Check if trade is still actually open
|
||||
if order['status'] == 'open':
|
||||
if order['side'] == 'buy' and ordertime < buy_timeoutthreashold:
|
||||
self.handle_timedout_limit_buy(trade, order)
|
||||
self.wallets.update()
|
||||
elif order['side'] == 'sell' and ordertime < sell_timeoutthreashold:
|
||||
self.handle_timedout_limit_sell(trade, order)
|
||||
self.wallets.update()
|
||||
|
||||
# FIX: 20180110, why is cancel.order unconditionally here, whereas
|
||||
# it is conditionally called in the
|
||||
@ -735,8 +778,13 @@ class FreqtradeBot(object):
|
||||
:param sellreason: Reason the sell was triggered
|
||||
:return: None
|
||||
"""
|
||||
sell_type = 'sell'
|
||||
if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
|
||||
sell_type = 'stoploss'
|
||||
# Execute sell and update trade record
|
||||
order_id = self.exchange.sell(str(trade.pair), limit, trade.amount)['id']
|
||||
order_id = self.exchange.sell(pair=str(trade.pair),
|
||||
ordertype=self.strategy.order_types[sell_type],
|
||||
amount=trade.amount, rate=limit)['id']
|
||||
trade.open_order_id = order_id
|
||||
trade.close_rate_requested = limit
|
||||
trade.sell_reason = sell_reason.value
|
||||
|
@ -20,6 +20,7 @@ from pandas import DataFrame
|
||||
from freqtrade import misc, constants, OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts # noqa: F401
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
130
freqtrade/optimize/default_hyperopt.py
Normal file
130
freqtrade/optimize/default_hyperopt.py
Normal file
@ -0,0 +1,130 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from typing import Dict, Any, Callable, List
|
||||
from functools import reduce
|
||||
|
||||
from skopt.space import Categorical, Dimension, Integer, Real
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
|
||||
class_name = 'DefaultHyperOpts'
|
||||
|
||||
|
||||
class DefaultHyperOpts(IHyperOpt):
|
||||
"""
|
||||
Default hyperopt provided by freqtrade bot.
|
||||
You can override it with your own hyperopt
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
return dataframe
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by hyperopt
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use
|
||||
"""
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
@staticmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return [
|
||||
Integer(10, 25, name='mfi-value'),
|
||||
Integer(15, 45, name='fastd-value'),
|
||||
Integer(20, 50, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
Generate the ROI table that will be used by Hyperopt
|
||||
"""
|
||||
roi_table = {}
|
||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||
|
||||
return roi_table
|
||||
|
||||
@staticmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
Stoploss Value to search
|
||||
"""
|
||||
return [
|
||||
Real(-0.5, -0.02, name='stoploss'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
Values to search for each ROI steps
|
||||
"""
|
||||
return [
|
||||
Integer(10, 120, name='roi_t1'),
|
||||
Integer(10, 60, name='roi_t2'),
|
||||
Integer(10, 40, name='roi_t3'),
|
||||
Real(0.01, 0.04, name='roi_p1'),
|
||||
Real(0.01, 0.07, name='roi_p2'),
|
||||
Real(0.01, 0.20, name='roi_p3'),
|
||||
]
|
106
freqtrade/optimize/edge_cli.py
Normal file
106
freqtrade/optimize/edge_cli.py
Normal file
@ -0,0 +1,106 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
|
||||
|
||||
"""
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
import logging
|
||||
from argparse import Namespace
|
||||
from typing import Dict, Any
|
||||
from tabulate import tabulate
|
||||
from freqtrade.edge import Edge
|
||||
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.strategy.resolver import StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class EdgeCli(object):
|
||||
"""
|
||||
Backtesting class, this class contains all the logic to run a backtest
|
||||
|
||||
To run a backtest:
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
|
||||
# Reset keys for edge
|
||||
self.config['exchange']['key'] = ''
|
||||
self.config['exchange']['secret'] = ''
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.exchange = Exchange(self.config)
|
||||
self.strategy = StrategyResolver(self.config).strategy
|
||||
|
||||
self.edge = Edge(config, self.exchange, self.strategy)
|
||||
self.edge._refresh_pairs = self.config.get('refresh_pairs', False)
|
||||
|
||||
self.timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
self.edge._timerange = self.timerange
|
||||
|
||||
def _generate_edge_table(self, results: dict) -> str:
|
||||
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'stoploss', 'win rate', 'risk reward ratio',
|
||||
'required risk reward', 'expectancy', 'total number of trades',
|
||||
'average duration (min)']
|
||||
|
||||
for result in results.items():
|
||||
if result[1].nb_trades > 0:
|
||||
tabular_data.append([
|
||||
result[0],
|
||||
result[1].stoploss,
|
||||
result[1].winrate,
|
||||
result[1].risk_reward_ratio,
|
||||
result[1].required_risk_reward,
|
||||
result[1].expectancy,
|
||||
result[1].nb_trades,
|
||||
round(result[1].avg_trade_duration)
|
||||
])
|
||||
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
def start(self) -> None:
|
||||
self.edge.calculate()
|
||||
print('') # blank like for readability
|
||||
print(self._generate_edge_table(self.edge._cached_pairs))
|
||||
|
||||
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the backtesting
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def start(args: Namespace) -> None:
|
||||
"""
|
||||
Start Edge script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args)
|
||||
logger.info('Starting freqtrade in Edge mode')
|
||||
|
||||
# Initialize Edge object
|
||||
edge_cli = EdgeCli(config)
|
||||
edge_cli.start()
|
@ -9,22 +9,21 @@ import multiprocessing
|
||||
import os
|
||||
import sys
|
||||
from argparse import Namespace
|
||||
from functools import reduce
|
||||
from math import exp
|
||||
from operator import itemgetter
|
||||
from typing import Any, Callable, Dict, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from sklearn.externals.joblib import Parallel, delayed, dump, load
|
||||
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects
|
||||
from skopt import Optimizer
|
||||
from skopt.space import Categorical, Dimension, Integer, Real
|
||||
from skopt.space import Dimension
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.optimize import load_data, get_timeframe
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
from freqtrade.optimize.hyperopt_resolver import HyperOptResolver
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -42,6 +41,9 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
|
||||
|
||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||
# to the number of days
|
||||
self.target_trades = 600
|
||||
@ -74,24 +76,6 @@ class Hyperopt(Backtesting):
|
||||
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
|
||||
return arg_dict
|
||||
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
return dataframe
|
||||
|
||||
def save_trials(self) -> None:
|
||||
"""
|
||||
Save hyperopt trials to file
|
||||
@ -121,7 +105,8 @@ class Hyperopt(Backtesting):
|
||||
best_result['params']
|
||||
)
|
||||
if 'roi_t1' in best_result['params']:
|
||||
logger.info('ROI table:\n%s', self.generate_roi_table(best_result['params']))
|
||||
logger.info('ROI table:\n%s',
|
||||
self.custom_hyperopt.generate_roi_table(best_result['params']))
|
||||
|
||||
def log_results(self, results) -> None:
|
||||
"""
|
||||
@ -149,59 +134,6 @@ class Hyperopt(Backtesting):
|
||||
result = trade_loss + profit_loss + duration_loss
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
Generate the ROI table that will be used by Hyperopt
|
||||
"""
|
||||
roi_table = {}
|
||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||
|
||||
return roi_table
|
||||
|
||||
@staticmethod
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
Values to search for each ROI steps
|
||||
"""
|
||||
return [
|
||||
Integer(10, 120, name='roi_t1'),
|
||||
Integer(10, 60, name='roi_t2'),
|
||||
Integer(10, 40, name='roi_t3'),
|
||||
Real(0.01, 0.04, name='roi_p1'),
|
||||
Real(0.01, 0.07, name='roi_p2'),
|
||||
Real(0.01, 0.20, name='roi_p3'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
Stoploss search space
|
||||
"""
|
||||
return [
|
||||
Real(-0.5, -0.02, name='stoploss'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return [
|
||||
Integer(10, 25, name='mfi-value'),
|
||||
Integer(15, 45, name='fastd-value'),
|
||||
Integer(20, 50, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
def has_space(self, space: str) -> bool:
|
||||
"""
|
||||
Tell if a space value is contained in the configuration
|
||||
@ -216,61 +148,20 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
spaces: List[Dimension] = []
|
||||
if self.has_space('buy'):
|
||||
spaces += Hyperopt.indicator_space()
|
||||
spaces += self.custom_hyperopt.indicator_space()
|
||||
if self.has_space('roi'):
|
||||
spaces += Hyperopt.roi_space()
|
||||
spaces += self.custom_hyperopt.roi_space()
|
||||
if self.has_space('stoploss'):
|
||||
spaces += Hyperopt.stoploss_space()
|
||||
spaces += self.custom_hyperopt.stoploss_space()
|
||||
return spaces
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by hyperopt
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use
|
||||
"""
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
def generate_optimizer(self, _params) -> Dict:
|
||||
def generate_optimizer(self, _params: Dict) -> Dict:
|
||||
params = self.get_args(_params)
|
||||
|
||||
if self.has_space('roi'):
|
||||
self.strategy.minimal_roi = self.generate_roi_table(params)
|
||||
self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params)
|
||||
|
||||
if self.has_space('buy'):
|
||||
self.advise_buy = self.buy_strategy_generator(params)
|
||||
self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params)
|
||||
|
||||
if self.has_space('stoploss'):
|
||||
self.strategy.stoploss = params['stoploss']
|
||||
@ -332,7 +223,8 @@ class Hyperopt(Backtesting):
|
||||
)
|
||||
|
||||
def run_optimizer_parallel(self, parallel, asked) -> List:
|
||||
return parallel(delayed(self.generate_optimizer)(v) for v in asked)
|
||||
return parallel(delayed(
|
||||
wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked)
|
||||
|
||||
def load_previous_results(self):
|
||||
""" read trials file if we have one """
|
||||
@ -354,7 +246,8 @@ class Hyperopt(Backtesting):
|
||||
)
|
||||
|
||||
if self.has_space('buy'):
|
||||
self.strategy.advise_indicators = Hyperopt.populate_indicators # type: ignore
|
||||
self.strategy.advise_indicators = \
|
||||
self.custom_hyperopt.populate_indicators # type: ignore
|
||||
dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
|
||||
self.exchange = None # type: ignore
|
||||
self.load_previous_results()
|
||||
|
66
freqtrade/optimize/hyperopt_interface.py
Normal file
66
freqtrade/optimize/hyperopt_interface.py
Normal file
@ -0,0 +1,66 @@
|
||||
"""
|
||||
IHyperOpt interface
|
||||
This module defines the interface to apply for hyperopts
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Any, Callable, List
|
||||
|
||||
from pandas import DataFrame
|
||||
from skopt.space import Dimension
|
||||
|
||||
|
||||
class IHyperOpt(ABC):
|
||||
"""
|
||||
Interface for freqtrade hyperopts
|
||||
Defines the mandatory structure must follow any custom strategies
|
||||
|
||||
Attributes you can use:
|
||||
minimal_roi -> Dict: Minimal ROI designed for the strategy
|
||||
stoploss -> float: optimal stoploss designed for the strategy
|
||||
ticker_interval -> int: value of the ticker interval to use for the strategy
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Populate indicators that will be used in the Buy and Sell strategy
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Create a buy strategy generator
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Create an indicator space
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
Create an roi table
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
Create a stoploss space
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
Create a roi space
|
||||
"""
|
104
freqtrade/optimize/hyperopt_resolver.py
Normal file
104
freqtrade/optimize/hyperopt_resolver.py
Normal file
@ -0,0 +1,104 @@
|
||||
# pragma pylint: disable=attribute-defined-outside-init
|
||||
|
||||
"""
|
||||
This module load custom hyperopts
|
||||
"""
|
||||
import importlib.util
|
||||
import inspect
|
||||
import logging
|
||||
import os
|
||||
from typing import Optional, Dict, Type
|
||||
|
||||
from freqtrade.constants import DEFAULT_HYPEROPT
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HyperOptResolver(object):
|
||||
"""
|
||||
This class contains all the logic to load custom hyperopt class
|
||||
"""
|
||||
|
||||
__slots__ = ['hyperopt']
|
||||
|
||||
def __init__(self, config: Optional[Dict] = None) -> None:
|
||||
"""
|
||||
Load the custom class from config parameter
|
||||
:param config: configuration dictionary or None
|
||||
"""
|
||||
config = config or {}
|
||||
|
||||
# Verify the hyperopt is in the configuration, otherwise fallback to the default hyperopt
|
||||
hyperopt_name = config.get('hyperopt') or DEFAULT_HYPEROPT
|
||||
self.hyperopt = self._load_hyperopt(hyperopt_name, extra_dir=config.get('hyperopt_path'))
|
||||
|
||||
def _load_hyperopt(
|
||||
self, hyperopt_name: str, extra_dir: Optional[str] = None) -> IHyperOpt:
|
||||
"""
|
||||
Search and loads the specified hyperopt.
|
||||
:param hyperopt_name: name of the module to import
|
||||
:param extra_dir: additional directory to search for the given hyperopt
|
||||
:return: HyperOpt instance or None
|
||||
"""
|
||||
current_path = os.path.dirname(os.path.realpath(__file__))
|
||||
abs_paths = [
|
||||
os.path.join(current_path, '..', '..', 'user_data', 'hyperopts'),
|
||||
current_path,
|
||||
]
|
||||
|
||||
if extra_dir:
|
||||
# Add extra hyperopt directory on top of search paths
|
||||
abs_paths.insert(0, extra_dir)
|
||||
|
||||
for path in abs_paths:
|
||||
hyperopt = self._search_hyperopt(path, hyperopt_name)
|
||||
if hyperopt:
|
||||
logger.info('Using resolved hyperopt %s from \'%s\'', hyperopt_name, path)
|
||||
return hyperopt
|
||||
|
||||
raise ImportError(
|
||||
"Impossible to load Hyperopt '{}'. This class does not exist"
|
||||
" or contains Python code errors".format(hyperopt_name)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _get_valid_hyperopts(module_path: str, hyperopt_name: str) -> Optional[Type[IHyperOpt]]:
|
||||
"""
|
||||
Returns a list of all possible hyperopts for the given module_path
|
||||
:param module_path: absolute path to the module
|
||||
:param hyperopt_name: Class name of the hyperopt
|
||||
:return: Tuple with (name, class) or None
|
||||
"""
|
||||
|
||||
# Generate spec based on absolute path
|
||||
spec = importlib.util.spec_from_file_location('user_data.hyperopts', module_path)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
|
||||
|
||||
valid_hyperopts_gen = (
|
||||
obj for name, obj in inspect.getmembers(module, inspect.isclass)
|
||||
if hyperopt_name == name and IHyperOpt in obj.__bases__
|
||||
)
|
||||
return next(valid_hyperopts_gen, None)
|
||||
|
||||
@staticmethod
|
||||
def _search_hyperopt(directory: str, hyperopt_name: str) -> Optional[IHyperOpt]:
|
||||
"""
|
||||
Search for the hyperopt_name in the given directory
|
||||
:param directory: relative or absolute directory path
|
||||
:return: name of the hyperopt class
|
||||
"""
|
||||
logger.debug('Searching for hyperopt %s in \'%s\'', hyperopt_name, directory)
|
||||
for entry in os.listdir(directory):
|
||||
# Only consider python files
|
||||
if not entry.endswith('.py'):
|
||||
logger.debug('Ignoring %s', entry)
|
||||
continue
|
||||
hyperopt = HyperOptResolver._get_valid_hyperopts(
|
||||
os.path.abspath(os.path.join(directory, entry)), hyperopt_name
|
||||
)
|
||||
if hyperopt:
|
||||
return hyperopt()
|
||||
return None
|
@ -410,7 +410,7 @@ class RPC(object):
|
||||
raise RPCException(f'position for {pair} already open - id: {trade.id}')
|
||||
|
||||
# gen stake amount
|
||||
stakeamount = self._freqtrade._get_trade_stake_amount()
|
||||
stakeamount = self._freqtrade._get_trade_stake_amount(pair)
|
||||
|
||||
# execute buy
|
||||
if self._freqtrade.execute_buy(pair, stakeamount, price):
|
||||
@ -443,3 +443,10 @@ class RPC(object):
|
||||
raise RPCException('trader is not running')
|
||||
|
||||
return Trade.query.filter(Trade.is_open.is_(True)).all()
|
||||
|
||||
def _rpc_whitelist(self) -> Dict:
|
||||
""" Returns the currently active whitelist"""
|
||||
res = {'method': self._freqtrade.config.get('dynamic_whitelist', 0) or 'static',
|
||||
'whitelist': self._freqtrade.active_pair_whitelist
|
||||
}
|
||||
return res
|
||||
|
@ -91,6 +91,7 @@ class Telegram(RPC):
|
||||
CommandHandler('daily', self._daily),
|
||||
CommandHandler('count', self._count),
|
||||
CommandHandler('reload_conf', self._reload_conf),
|
||||
CommandHandler('whitelist', self._whitelist),
|
||||
CommandHandler('help', self._help),
|
||||
CommandHandler('version', self._version),
|
||||
]
|
||||
@ -438,6 +439,25 @@ class Telegram(RPC):
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e), bot=bot)
|
||||
|
||||
@authorized_only
|
||||
def _whitelist(self, bot: Bot, update: Update) -> None:
|
||||
"""
|
||||
Handler for /whitelist
|
||||
Shows the currently active whitelist
|
||||
"""
|
||||
try:
|
||||
whitelist = self._rpc_whitelist()
|
||||
if whitelist['method'] == 'static':
|
||||
message = f"Using static whitelist with `{len(whitelist['whitelist'])}` pairs \n"
|
||||
else:
|
||||
message = f"Dynamic whitelist with `{whitelist['method']}` pairs\n"
|
||||
message += f"`{', '.join(whitelist['whitelist'])}`"
|
||||
|
||||
logger.debug(message)
|
||||
self._send_msg(message)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e), bot=bot)
|
||||
|
||||
@authorized_only
|
||||
def _help(self, bot: Bot, update: Update) -> None:
|
||||
"""
|
||||
@ -460,6 +480,7 @@ class Telegram(RPC):
|
||||
"\n" \
|
||||
"*/balance:* `Show account balance per currency`\n" \
|
||||
"*/reload_conf:* `Reload configuration file` \n" \
|
||||
"*/whitelist:* `Show current whitelist` \n" \
|
||||
"*/help:* `This help message`\n" \
|
||||
"*/version:* `Show version`"
|
||||
|
||||
|
@ -28,6 +28,13 @@ class DefaultStrategy(IStrategy):
|
||||
# Optimal ticker interval for the strategy
|
||||
ticker_interval = '5m'
|
||||
|
||||
# Optional order type mapping
|
||||
order_types = {
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'limit'
|
||||
}
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
@ -70,6 +70,13 @@ class IStrategy(ABC):
|
||||
# associated ticker interval
|
||||
ticker_interval: str
|
||||
|
||||
# Optional order types
|
||||
order_types: Dict = {
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'limit'
|
||||
}
|
||||
|
||||
# run "populate_indicators" only for new candle
|
||||
process_only_new_candles: bool = False
|
||||
|
||||
@ -203,17 +210,20 @@ class IStrategy(ABC):
|
||||
return buy, sell
|
||||
|
||||
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool,
|
||||
sell: bool, low: float = None, high: float = None) -> SellCheckTuple:
|
||||
sell: bool, low: float = None, high: float = None,
|
||||
force_stoploss: float = 0) -> SellCheckTuple:
|
||||
"""
|
||||
This function evaluate if on the condition required to trigger a sell has been reached
|
||||
if the threshold is reached and updates the trade record.
|
||||
:return: True if trade should be sold, False otherwise
|
||||
"""
|
||||
|
||||
# Set current rate to low for backtesting sell
|
||||
current_rate = low or rate
|
||||
current_profit = trade.calc_profit_percent(current_rate)
|
||||
stoplossflag = self.stop_loss_reached(current_rate=current_rate, trade=trade,
|
||||
current_time=date, current_profit=current_profit)
|
||||
current_time=date, current_profit=current_profit,
|
||||
force_stoploss=force_stoploss)
|
||||
if stoplossflag.sell_flag:
|
||||
return stoplossflag
|
||||
# Set current rate to low for backtesting sell
|
||||
@ -241,7 +251,7 @@ class IStrategy(ABC):
|
||||
return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE)
|
||||
|
||||
def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime,
|
||||
current_profit: float) -> SellCheckTuple:
|
||||
current_profit: float, force_stoploss: float) -> SellCheckTuple:
|
||||
"""
|
||||
Based on current profit of the trade and configured (trailing) stoploss,
|
||||
decides to sell or not
|
||||
@ -250,7 +260,8 @@ class IStrategy(ABC):
|
||||
|
||||
trailing_stop = self.config.get('trailing_stop', False)
|
||||
|
||||
trade.adjust_stop_loss(trade.open_rate, self.stoploss, initial=True)
|
||||
trade.adjust_stop_loss(trade.open_rate, force_stoploss if force_stoploss
|
||||
else self.stoploss, initial=True)
|
||||
|
||||
# evaluate if the stoploss was hit
|
||||
if self.stoploss is not None and trade.stop_loss >= current_rate:
|
||||
|
@ -75,6 +75,19 @@ class StrategyResolver(object):
|
||||
else:
|
||||
config['process_only_new_candles'] = self.strategy.process_only_new_candles
|
||||
|
||||
if 'order_types' in config:
|
||||
self.strategy.order_types = config['order_types']
|
||||
logger.info(
|
||||
"Override strategy 'order_types' with value in config file: %s.",
|
||||
config['order_types']
|
||||
)
|
||||
else:
|
||||
config['order_types'] = self.strategy.order_types
|
||||
|
||||
if not all(k in self.strategy.order_types for k in constants.REQUIRED_ORDERTYPES):
|
||||
raise ImportError(f"Impossible to load Strategy '{self.strategy.__class__.__name__}'. "
|
||||
f"Order-types mapping is incomplete.")
|
||||
|
||||
# Sort and apply type conversions
|
||||
self.strategy.minimal_roi = OrderedDict(sorted(
|
||||
{int(key): value for (key, value) in self.strategy.minimal_roi.items()}.items(),
|
||||
|
@ -4,6 +4,7 @@ import logging
|
||||
from datetime import datetime
|
||||
from functools import reduce
|
||||
from typing import Dict, Optional
|
||||
from collections import namedtuple
|
||||
from unittest.mock import MagicMock, PropertyMock
|
||||
|
||||
import arrow
|
||||
@ -12,6 +13,7 @@ from telegram import Chat, Message, Update
|
||||
|
||||
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.freqtradebot import FreqtradeBot
|
||||
|
||||
logging.getLogger('').setLevel(logging.INFO)
|
||||
@ -28,6 +30,7 @@ def log_has(line, logs):
|
||||
def patch_exchange(mocker, api_mock=None) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange._load_markets', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_ordertypes', MagicMock())
|
||||
mocker.patch('freqtrade.exchange.Exchange.name', PropertyMock(return_value="Bittrex"))
|
||||
mocker.patch('freqtrade.exchange.Exchange.id', PropertyMock(return_value="bittrex"))
|
||||
if api_mock:
|
||||
@ -42,7 +45,32 @@ def get_patched_exchange(mocker, config, api_mock=None) -> Exchange:
|
||||
return exchange
|
||||
|
||||
|
||||
def patch_edge(mocker) -> None:
|
||||
# "ETH/BTC",
|
||||
# "LTC/BTC",
|
||||
# "XRP/BTC",
|
||||
# "NEO/BTC"
|
||||
pair_info = namedtuple(
|
||||
'pair_info',
|
||||
'stoploss, winrate, risk_reward_ratio, required_risk_reward, expectancy')
|
||||
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
||||
return_value={
|
||||
'NEO/BTC': pair_info(-0.20, 0.66, 3.71, 0.50, 1.71),
|
||||
'LTC/BTC': pair_info(-0.21, 0.66, 3.71, 0.50, 1.71),
|
||||
}
|
||||
))
|
||||
mocker.patch('freqtrade.edge.Edge.stoploss', MagicMock(return_value=-0.20))
|
||||
mocker.patch('freqtrade.edge.Edge.calculate', MagicMock(return_value=True))
|
||||
|
||||
|
||||
def get_patched_edge(mocker, config) -> Edge:
|
||||
patch_edge(mocker)
|
||||
edge = Edge(config)
|
||||
return edge
|
||||
|
||||
# Functions for recurrent object patching
|
||||
|
||||
|
||||
def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
|
||||
"""
|
||||
This function patch _init_modules() to not call dependencies
|
||||
@ -752,3 +780,23 @@ def buy_order_fee():
|
||||
'status': 'closed',
|
||||
'fee': None
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def edge_conf(default_conf):
|
||||
default_conf['edge'] = {
|
||||
"enabled": True,
|
||||
"process_throttle_secs": 1800,
|
||||
"calculate_since_number_of_days": 14,
|
||||
"allowed_risk": 0.01,
|
||||
"stoploss_range_min": -0.01,
|
||||
"stoploss_range_max": -0.1,
|
||||
"stoploss_range_step": -0.01,
|
||||
"maximum_winrate": 0.80,
|
||||
"minimum_expectancy": 0.20,
|
||||
"min_trade_number": 15,
|
||||
"max_trade_duration_minute": 1440,
|
||||
"remove_pumps": False
|
||||
}
|
||||
|
||||
return default_conf
|
||||
|
0
freqtrade/tests/edge/__init__.py
Normal file
0
freqtrade/tests/edge/__init__.py
Normal file
310
freqtrade/tests/edge/test_edge.py
Normal file
310
freqtrade/tests/edge/test_edge.py
Normal file
@ -0,0 +1,310 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103, C0330
|
||||
# pragma pylint: disable=protected-access, too-many-lines, invalid-name, too-many-arguments
|
||||
|
||||
import pytest
|
||||
import logging
|
||||
from freqtrade.tests.conftest import get_patched_freqtradebot
|
||||
from freqtrade.edge import Edge, PairInfo
|
||||
from pandas import DataFrame, to_datetime
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.tests.optimize import (BTrade, BTContainer, _build_backtest_dataframe,
|
||||
_get_frame_time_from_offset)
|
||||
import arrow
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
# Cases to be tested:
|
||||
# 1) Open trade should be removed from the end
|
||||
# 2) Two complete trades within dataframe (with sell hit for all)
|
||||
# 3) Entered, sl 1%, candle drops 8% => Trade closed, 1% loss
|
||||
# 4) Entered, sl 3%, candle drops 4%, recovers to 1% => Trade closed, 3% loss
|
||||
# 5) Stoploss and sell are hit. should sell on stoploss
|
||||
####################################################################
|
||||
|
||||
ticker_start_time = arrow.get(2018, 10, 3)
|
||||
ticker_interval_in_minute = 60
|
||||
_ohlc = {'date': 0, 'buy': 1, 'open': 2, 'high': 3, 'low': 4, 'close': 5, 'sell': 6, 'volume': 7}
|
||||
|
||||
|
||||
# Open trade should be removed from the end
|
||||
tc0 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 1]], # enter trade (signal on last candle)
|
||||
stop_loss=-0.99, roi=float('inf'), profit_perc=0.00,
|
||||
trades=[]
|
||||
)
|
||||
|
||||
# Two complete trades within dataframe(with sell hit for all)
|
||||
tc1 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 1], # enter trade (signal on last candle)
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0], # exit at open
|
||||
[3, 5000, 5025, 4975, 4987, 6172, 1, 0], # no action
|
||||
[4, 5000, 5025, 4975, 4987, 6172, 0, 0], # should enter the trade
|
||||
[5, 5000, 5025, 4975, 4987, 6172, 0, 1], # no action
|
||||
[6, 5000, 5025, 4975, 4987, 6172, 0, 0], # should sell
|
||||
],
|
||||
stop_loss=-0.99, roi=float('inf'), profit_perc=0.00,
|
||||
trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=2),
|
||||
BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=4, close_tick=6)]
|
||||
)
|
||||
|
||||
# 3) Entered, sl 1%, candle drops 8% => Trade closed, 1% loss
|
||||
tc2 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4600, 4987, 6172, 0, 0], # enter trade, stoploss hit
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
],
|
||||
stop_loss=-0.01, roi=float('inf'), profit_perc=-0.01,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
# 4) Entered, sl 3 %, candle drops 4%, recovers to 1 % = > Trade closed, 3 % loss
|
||||
tc3 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4800, 4987, 6172, 0, 0], # enter trade, stoploss hit
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
],
|
||||
stop_loss=-0.03, roi=float('inf'), profit_perc=-0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
# 5) Stoploss and sell are hit. should sell on stoploss
|
||||
tc4 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4800, 4987, 6172, 0, 1], # enter trade, stoploss hit, sell signal
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
],
|
||||
stop_loss=-0.03, roi=float('inf'), profit_perc=-0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
TESTS = [
|
||||
tc0,
|
||||
tc1,
|
||||
tc2,
|
||||
tc3,
|
||||
tc4
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("data", TESTS)
|
||||
def test_edge_results(edge_conf, mocker, caplog, data) -> None:
|
||||
"""
|
||||
run functional tests
|
||||
"""
|
||||
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
|
||||
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
frame = _build_backtest_dataframe(data.data)
|
||||
caplog.set_level(logging.DEBUG)
|
||||
edge.fee = 0
|
||||
|
||||
trades = edge._find_trades_for_stoploss_range(frame, 'TEST/BTC', [data.stop_loss])
|
||||
results = edge._fill_calculable_fields(DataFrame(trades)) if trades else DataFrame()
|
||||
|
||||
print(results)
|
||||
|
||||
assert len(trades) == len(data.trades)
|
||||
|
||||
if not results.empty:
|
||||
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
|
||||
|
||||
for c, trade in enumerate(data.trades):
|
||||
res = results.iloc[c]
|
||||
assert res.exit_type == trade.sell_reason
|
||||
assert res.open_time == _get_frame_time_from_offset(trade.open_tick)
|
||||
assert res.close_time == _get_frame_time_from_offset(trade.close_tick)
|
||||
|
||||
|
||||
def test_adjust(mocker, default_conf):
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
edge = Edge(default_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
||||
return_value={
|
||||
'E/F': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60),
|
||||
'C/D': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60),
|
||||
'N/O': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60)
|
||||
}
|
||||
))
|
||||
|
||||
pairs = ['A/B', 'C/D', 'E/F', 'G/H']
|
||||
assert(edge.adjust(pairs) == ['E/F', 'C/D'])
|
||||
|
||||
|
||||
def test_stoploss(mocker, default_conf):
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
edge = Edge(default_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
||||
return_value={
|
||||
'E/F': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60),
|
||||
'C/D': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60),
|
||||
'N/O': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60)
|
||||
}
|
||||
))
|
||||
|
||||
assert edge.stoploss('E/F') == -0.01
|
||||
|
||||
|
||||
def _validate_ohlc(buy_ohlc_sell_matrice):
|
||||
for index, ohlc in enumerate(buy_ohlc_sell_matrice):
|
||||
# if not high < open < low or not high < close < low
|
||||
if not ohlc[3] >= ohlc[2] >= ohlc[4] or not ohlc[3] >= ohlc[5] >= ohlc[4]:
|
||||
raise Exception('Line ' + str(index + 1) + ' of ohlc has invalid values!')
|
||||
return True
|
||||
|
||||
|
||||
def _build_dataframe(buy_ohlc_sell_matrice):
|
||||
_validate_ohlc(buy_ohlc_sell_matrice)
|
||||
tickers = []
|
||||
for ohlc in buy_ohlc_sell_matrice:
|
||||
ticker = {
|
||||
'date': ticker_start_time.shift(
|
||||
minutes=(
|
||||
ohlc[0] *
|
||||
ticker_interval_in_minute)).timestamp *
|
||||
1000,
|
||||
'buy': ohlc[1],
|
||||
'open': ohlc[2],
|
||||
'high': ohlc[3],
|
||||
'low': ohlc[4],
|
||||
'close': ohlc[5],
|
||||
'sell': ohlc[6]}
|
||||
tickers.append(ticker)
|
||||
|
||||
frame = DataFrame(tickers)
|
||||
frame['date'] = to_datetime(frame['date'],
|
||||
unit='ms',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
def _time_on_candle(number):
|
||||
return np.datetime64(ticker_start_time.shift(
|
||||
minutes=(number * ticker_interval_in_minute)).timestamp * 1000, 'ms')
|
||||
|
||||
|
||||
def test_edge_heartbeat_calculate(mocker, edge_conf):
|
||||
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
|
||||
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
heartbeat = edge_conf['edge']['process_throttle_secs']
|
||||
|
||||
# should not recalculate if heartbeat not reached
|
||||
edge._last_updated = arrow.utcnow().timestamp - heartbeat + 1
|
||||
|
||||
assert edge.calculate() is False
|
||||
|
||||
|
||||
def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=False,
|
||||
timerange=None, exchange=None):
|
||||
hz = 0.1
|
||||
base = 0.001
|
||||
|
||||
ETHBTC = [
|
||||
[
|
||||
ticker_start_time.shift(minutes=(x * ticker_interval_in_minute)).timestamp * 1000,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
math.sin(x * hz) / 1000 + base + 0.0001,
|
||||
math.sin(x * hz) / 1000 + base - 0.0001,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
123.45
|
||||
] for x in range(0, 500)]
|
||||
|
||||
hz = 0.2
|
||||
base = 0.002
|
||||
LTCBTC = [
|
||||
[
|
||||
ticker_start_time.shift(minutes=(x * ticker_interval_in_minute)).timestamp * 1000,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
math.sin(x * hz) / 1000 + base + 0.0001,
|
||||
math.sin(x * hz) / 1000 + base - 0.0001,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
123.45
|
||||
] for x in range(0, 500)]
|
||||
|
||||
pairdata = {'NEO/BTC': ETHBTC, 'LTC/BTC': LTCBTC}
|
||||
return pairdata
|
||||
|
||||
|
||||
def test_edge_process_downloaded_data(mocker, default_conf):
|
||||
default_conf['datadir'] = None
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001))
|
||||
mocker.patch('freqtrade.optimize.load_data', mocked_load_data)
|
||||
edge = Edge(default_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
|
||||
assert edge.calculate()
|
||||
assert len(edge._cached_pairs) == 2
|
||||
assert edge._last_updated <= arrow.utcnow().timestamp + 2
|
||||
|
||||
|
||||
def test_process_expectancy(mocker, edge_conf):
|
||||
edge_conf['edge']['min_trade_number'] = 2
|
||||
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
|
||||
|
||||
def get_fee():
|
||||
return 0.001
|
||||
|
||||
freqtrade.exchange.get_fee = get_fee
|
||||
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
|
||||
trades = [
|
||||
{'pair': 'TEST/BTC',
|
||||
'stoploss': -0.9,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': np.datetime64('2018-10-03T00:05:00.000000000'),
|
||||
'close_time': np.datetime64('2018-10-03T00:10:00.000000000'),
|
||||
'open_index': 1,
|
||||
'close_index': 1,
|
||||
'trade_duration': '',
|
||||
'open_rate': 17,
|
||||
'close_rate': 17,
|
||||
'exit_type': 'sell_signal'},
|
||||
|
||||
{'pair': 'TEST/BTC',
|
||||
'stoploss': -0.9,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': np.datetime64('2018-10-03T00:20:00.000000000'),
|
||||
'close_time': np.datetime64('2018-10-03T00:25:00.000000000'),
|
||||
'open_index': 4,
|
||||
'close_index': 4,
|
||||
'trade_duration': '',
|
||||
'open_rate': 20,
|
||||
'close_rate': 20,
|
||||
'exit_type': 'sell_signal'},
|
||||
|
||||
{'pair': 'TEST/BTC',
|
||||
'stoploss': -0.9,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': np.datetime64('2018-10-03T00:30:00.000000000'),
|
||||
'close_time': np.datetime64('2018-10-03T00:40:00.000000000'),
|
||||
'open_index': 6,
|
||||
'close_index': 7,
|
||||
'trade_duration': '',
|
||||
'open_rate': 26,
|
||||
'close_rate': 34,
|
||||
'exit_type': 'sell_signal'}
|
||||
]
|
||||
|
||||
trades_df = DataFrame(trades)
|
||||
trades_df = edge._fill_calculable_fields(trades_df)
|
||||
final = edge._process_expectancy(trades_df)
|
||||
assert len(final) == 1
|
||||
|
||||
assert 'TEST/BTC' in final
|
||||
assert final['TEST/BTC'].stoploss == -0.9
|
||||
assert round(final['TEST/BTC'].winrate, 10) == 0.3333333333
|
||||
assert round(final['TEST/BTC'].risk_reward_ratio, 10) == 306.5384615384
|
||||
assert round(final['TEST/BTC'].required_risk_reward, 10) == 2.0
|
||||
assert round(final['TEST/BTC'].expectancy, 10) == 101.5128205128
|
@ -355,6 +355,36 @@ def test_validate_timeframes_not_in_config(default_conf, mocker):
|
||||
Exchange(default_conf)
|
||||
|
||||
|
||||
def test_validate_order_types(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
|
||||
type(api_mock).has = PropertyMock(return_value={'createMarketOrder': True})
|
||||
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
|
||||
mocker.patch('freqtrade.exchange.Exchange._load_markets', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
|
||||
default_conf['order_types'] = {'buy': 'limit', 'sell': 'limit', 'stoploss': 'market'}
|
||||
Exchange(default_conf)
|
||||
|
||||
type(api_mock).has = PropertyMock(return_value={'createMarketOrder': False})
|
||||
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
|
||||
|
||||
default_conf['order_types'] = {'buy': 'limit', 'sell': 'limit', 'stoploss': 'market'}
|
||||
|
||||
with pytest.raises(OperationalException,
|
||||
match=r'Exchange .* does not support market orders.'):
|
||||
Exchange(default_conf)
|
||||
|
||||
|
||||
def test_validate_order_types_not_in_config(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
|
||||
mocker.patch('freqtrade.exchange.Exchange._load_markets', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
|
||||
|
||||
conf = copy.deepcopy(default_conf)
|
||||
Exchange(conf)
|
||||
|
||||
|
||||
def test_exchange_has(default_conf, mocker):
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
assert not exchange.exchange_has('ASDFASDF')
|
||||
@ -373,7 +403,7 @@ def test_buy_dry_run(default_conf, mocker):
|
||||
default_conf['dry_run'] = True
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
|
||||
order = exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
order = exchange.buy(pair='ETH/BTC', ordertype='limit', amount=1, rate=200)
|
||||
assert 'id' in order
|
||||
assert 'dry_run_buy_' in order['id']
|
||||
|
||||
@ -381,47 +411,64 @@ def test_buy_dry_run(default_conf, mocker):
|
||||
def test_buy_prod(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
order_id = 'test_prod_buy_{}'.format(randint(0, 10 ** 6))
|
||||
api_mock.create_limit_buy_order = MagicMock(return_value={
|
||||
order_type = 'market'
|
||||
api_mock.create_order = MagicMock(return_value={
|
||||
'id': order_id,
|
||||
'info': {
|
||||
'foo': 'bar'
|
||||
}
|
||||
})
|
||||
default_conf['dry_run'] = False
|
||||
mocker.patch('freqtrade.exchange.Exchange.symbol_amount_prec', lambda s, x, y: y)
|
||||
mocker.patch('freqtrade.exchange.Exchange.symbol_price_prec', lambda s, x, y: y)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
|
||||
order = exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
order = exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
assert 'id' in order
|
||||
assert 'info' in order
|
||||
assert order['id'] == order_id
|
||||
assert api_mock.create_order.call_args[0][0] == 'ETH/BTC'
|
||||
assert api_mock.create_order.call_args[0][1] == order_type
|
||||
assert api_mock.create_order.call_args[0][2] == 'buy'
|
||||
assert api_mock.create_order.call_args[0][3] == 1
|
||||
assert api_mock.create_order.call_args[0][4] is None
|
||||
|
||||
api_mock.create_order.reset_mock()
|
||||
order_type = 'limit'
|
||||
order = exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
assert api_mock.create_order.call_args[0][0] == 'ETH/BTC'
|
||||
assert api_mock.create_order.call_args[0][1] == order_type
|
||||
assert api_mock.create_order.call_args[0][2] == 'buy'
|
||||
assert api_mock.create_order.call_args[0][3] == 1
|
||||
assert api_mock.create_order.call_args[0][4] == 200
|
||||
|
||||
# test exception handling
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.InsufficientFunds)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.InsufficientFunds)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
|
||||
def test_sell_dry_run(default_conf, mocker):
|
||||
default_conf['dry_run'] = True
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
|
||||
order = exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
order = exchange.sell(pair='ETH/BTC', ordertype='limit', amount=1, rate=200)
|
||||
assert 'id' in order
|
||||
assert 'dry_run_sell_' in order['id']
|
||||
|
||||
@ -429,7 +476,8 @@ def test_sell_dry_run(default_conf, mocker):
|
||||
def test_sell_prod(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
order_id = 'test_prod_sell_{}'.format(randint(0, 10 ** 6))
|
||||
api_mock.create_limit_sell_order = MagicMock(return_value={
|
||||
order_type = 'market'
|
||||
api_mock.create_order = MagicMock(return_value={
|
||||
'id': order_id,
|
||||
'info': {
|
||||
'foo': 'bar'
|
||||
@ -438,32 +486,48 @@ def test_sell_prod(default_conf, mocker):
|
||||
default_conf['dry_run'] = False
|
||||
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
mocker.patch('freqtrade.exchange.Exchange.symbol_amount_prec', lambda s, x, y: y)
|
||||
mocker.patch('freqtrade.exchange.Exchange.symbol_price_prec', lambda s, x, y: y)
|
||||
|
||||
order = exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
order = exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
assert 'id' in order
|
||||
assert 'info' in order
|
||||
assert order['id'] == order_id
|
||||
assert api_mock.create_order.call_args[0][0] == 'ETH/BTC'
|
||||
assert api_mock.create_order.call_args[0][1] == order_type
|
||||
assert api_mock.create_order.call_args[0][2] == 'sell'
|
||||
assert api_mock.create_order.call_args[0][3] == 1
|
||||
assert api_mock.create_order.call_args[0][4] is None
|
||||
|
||||
api_mock.create_order.reset_mock()
|
||||
order_type = 'limit'
|
||||
order = exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
assert api_mock.create_order.call_args[0][0] == 'ETH/BTC'
|
||||
assert api_mock.create_order.call_args[0][1] == order_type
|
||||
assert api_mock.create_order.call_args[0][2] == 'sell'
|
||||
assert api_mock.create_order.call_args[0][3] == 1
|
||||
assert api_mock.create_order.call_args[0][4] == 200
|
||||
|
||||
# test exception handling
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.InsufficientFunds)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.InsufficientFunds)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
|
||||
def test_get_balance_dry_run(default_conf, mocker):
|
||||
|
@ -31,8 +31,8 @@ class BTContainer(NamedTuple):
|
||||
|
||||
|
||||
def _get_frame_time_from_offset(offset):
|
||||
return ticker_start_time.shift(
|
||||
minutes=(offset * TICKER_INTERVAL_MINUTES[tests_ticker_interval])).datetime
|
||||
return ticker_start_time.shift(minutes=(offset * TICKER_INTERVAL_MINUTES[tests_ticker_interval])
|
||||
).datetime.replace(tzinfo=None)
|
||||
|
||||
|
||||
def _build_backtest_dataframe(ticker_with_signals):
|
||||
|
@ -1,4 +1,4 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, C0330, unused-argument
|
||||
import logging
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
@ -35,15 +35,15 @@ tc0 = BTContainer(data=[
|
||||
# TC2: Stop-Loss Triggered 3% Loss
|
||||
tc1 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5012, 4962, 4975, 6172, 0, 0],
|
||||
[3, 4975, 5000, 4800, 4962, 6172, 0, 0], # exit with stoploss hit
|
||||
[4, 4962, 4987, 4937, 4950, 6172, 0, 0],
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5012, 4962, 4975, 6172, 0, 0],
|
||||
[3, 4975, 5000, 4800, 4962, 6172, 0, 0], # exit with stoploss hit
|
||||
[4, 4962, 4987, 4937, 4950, 6172, 0, 0],
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.03, roi=1, profit_perc=-0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=3)]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# Test 3 Candle drops 4%, Recovers 1%.
|
||||
@ -128,7 +128,7 @@ tc6 = BTContainer(data=[
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.02, roi=0.03, profit_perc=0.03,
|
||||
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=2)]
|
||||
)
|
||||
)
|
||||
|
||||
TESTS = [
|
||||
tc0,
|
||||
|
@ -638,6 +638,7 @@ def test_backtest_only_sell(mocker, default_conf):
|
||||
|
||||
def test_backtest_alternate_buy_sell(default_conf, fee, mocker):
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
mocker.patch('freqtrade.optimize.backtesting.file_dump_json', MagicMock())
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, pair='UNITTEST/BTC')
|
||||
# We need to enable sell-signal - otherwise it sells on ROI!!
|
||||
default_conf['experimental'] = {"use_sell_signal": True}
|
||||
|
131
freqtrade/tests/optimize/test_edge_cli.py
Normal file
131
freqtrade/tests/optimize/test_edge_cli.py
Normal file
@ -0,0 +1,131 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103, C0330
|
||||
# pragma pylint: disable=protected-access, too-many-lines, invalid-name, too-many-arguments
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
import json
|
||||
from typing import List
|
||||
from freqtrade.edge import PairInfo
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.optimize.edge_cli import (EdgeCli, setup_configuration, start)
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange
|
||||
|
||||
|
||||
def get_args(args) -> List[str]:
|
||||
return Arguments(args, '').get_parsed_arg()
|
||||
|
||||
|
||||
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'edge'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args))
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has(
|
||||
'Using data folder: {} ...'.format(config['datadir']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert 'ticker_interval' in config
|
||||
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
|
||||
|
||||
assert 'refresh_pairs' not in config
|
||||
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
|
||||
|
||||
assert 'timerange' not in config
|
||||
assert 'stoploss_range' not in config
|
||||
|
||||
|
||||
def test_setup_configuration_with_arguments(mocker, edge_conf, caplog) -> None:
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(edge_conf)
|
||||
))
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'--datadir', '/foo/bar',
|
||||
'edge',
|
||||
'--ticker-interval', '1m',
|
||||
'--refresh-pairs-cached',
|
||||
'--timerange', ':100',
|
||||
'--stoplosses=-0.01,-0.10,-0.001'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args))
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has(
|
||||
'Using data folder: {} ...'.format(config['datadir']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert 'ticker_interval' in config
|
||||
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
|
||||
assert log_has(
|
||||
'Using ticker_interval: 1m ...',
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
assert 'refresh_pairs' in config
|
||||
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
|
||||
assert 'timerange' in config
|
||||
assert log_has(
|
||||
'Parameter --timerange detected: {} ...'.format(config['timerange']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
|
||||
def test_start(mocker, fee, edge_conf, caplog) -> None:
|
||||
start_mock = MagicMock()
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.edge_cli.EdgeCli.start', start_mock)
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(edge_conf)
|
||||
))
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'edge'
|
||||
]
|
||||
args = get_args(args)
|
||||
start(args)
|
||||
assert log_has(
|
||||
'Starting freqtrade in Edge mode',
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert start_mock.call_count == 1
|
||||
|
||||
|
||||
def test_edge_init(mocker, edge_conf) -> None:
|
||||
patch_exchange(mocker)
|
||||
edge_cli = EdgeCli(edge_conf)
|
||||
assert edge_cli.config == edge_conf
|
||||
assert callable(edge_cli.edge.calculate)
|
||||
|
||||
|
||||
def test_generate_edge_table(edge_conf, mocker):
|
||||
patch_exchange(mocker)
|
||||
edge_cli = EdgeCli(edge_conf)
|
||||
|
||||
results = {}
|
||||
results['ETH/BTC'] = PairInfo(-0.01, 0.60, 2, 1, 3, 10, 60)
|
||||
|
||||
assert edge_cli._generate_edge_table(results).count(':|') == 7
|
||||
assert edge_cli._generate_edge_table(results).count('| ETH/BTC |') == 1
|
||||
assert edge_cli._generate_edge_table(results).count(
|
||||
'| risk reward ratio | required risk reward | expectancy |') == 1
|
@ -176,7 +176,7 @@ def test_roi_table_generation(hyperopt) -> None:
|
||||
'roi_p3': 3,
|
||||
}
|
||||
|
||||
assert hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
||||
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
||||
|
||||
|
||||
def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
|
||||
@ -244,7 +244,8 @@ def test_populate_indicators(hyperopt) -> None:
|
||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
||||
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
|
||||
{'pair': 'UNITTEST/BTC'})
|
||||
|
||||
# Check if some indicators are generated. We will not test all of them
|
||||
assert 'adx' in dataframe
|
||||
@ -256,9 +257,10 @@ def test_buy_strategy_generator(hyperopt) -> None:
|
||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
||||
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
|
||||
{'pair': 'UNITTEST/BTC'})
|
||||
|
||||
populate_buy_trend = hyperopt.buy_strategy_generator(
|
||||
populate_buy_trend = hyperopt.custom_hyperopt.buy_strategy_generator(
|
||||
{
|
||||
'adx-value': 20,
|
||||
'fastd-value': 20,
|
||||
|
@ -645,3 +645,28 @@ def test_rpcforcebuy_disabled(mocker, default_conf) -> None:
|
||||
pair = 'ETH/BTC'
|
||||
with pytest.raises(RPCException, match=r'Forcebuy not enabled.'):
|
||||
rpc._rpc_forcebuy(pair, None)
|
||||
|
||||
|
||||
def test_rpc_whitelist(mocker, default_conf) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
|
||||
|
||||
freqtradebot = FreqtradeBot(default_conf)
|
||||
rpc = RPC(freqtradebot)
|
||||
ret = rpc._rpc_whitelist()
|
||||
assert ret['method'] == 'static'
|
||||
assert ret['whitelist'] == default_conf['exchange']['pair_whitelist']
|
||||
|
||||
|
||||
def test_rpc_whitelist_dynamic(mocker, default_conf) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
patch_exchange(mocker)
|
||||
default_conf['dynamic_whitelist'] = 4
|
||||
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
|
||||
|
||||
freqtradebot = FreqtradeBot(default_conf)
|
||||
rpc = RPC(freqtradebot)
|
||||
ret = rpc._rpc_whitelist()
|
||||
assert ret['method'] == 4
|
||||
assert ret['whitelist'] == default_conf['exchange']['pair_whitelist']
|
||||
|
@ -72,7 +72,8 @@ def test_init(default_conf, mocker, caplog) -> None:
|
||||
|
||||
message_str = "rpc.telegram is listening for following commands: [['status'], ['profit'], " \
|
||||
"['balance'], ['start'], ['stop'], ['forcesell'], ['forcebuy'], " \
|
||||
"['performance'], ['daily'], ['count'], ['reload_conf'], ['help'], ['version']]"
|
||||
"['performance'], ['daily'], ['count'], ['reload_conf'], " \
|
||||
"['whitelist'], ['help'], ['version']]"
|
||||
|
||||
assert log_has(message_str, caplog.record_tuples)
|
||||
|
||||
@ -1006,6 +1007,43 @@ def test_count_handle(default_conf, update, ticker, fee, markets, mocker) -> Non
|
||||
assert msg in msg_mock.call_args_list[0][0][0]
|
||||
|
||||
|
||||
def test_whitelist_static(default_conf, update, mocker) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
msg_mock = MagicMock()
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.rpc.telegram.Telegram',
|
||||
_init=MagicMock(),
|
||||
_send_msg=msg_mock
|
||||
)
|
||||
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
telegram = Telegram(freqtradebot)
|
||||
|
||||
telegram._whitelist(bot=MagicMock(), update=update)
|
||||
assert msg_mock.call_count == 1
|
||||
assert ('Using static whitelist with `4` pairs \n`ETH/BTC, LTC/BTC, XRP/BTC, NEO/BTC`'
|
||||
in msg_mock.call_args_list[0][0][0])
|
||||
|
||||
|
||||
def test_whitelist_dynamic(default_conf, update, mocker) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
msg_mock = MagicMock()
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.rpc.telegram.Telegram',
|
||||
_init=MagicMock(),
|
||||
_send_msg=msg_mock
|
||||
)
|
||||
default_conf['dynamic_whitelist'] = 4
|
||||
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
telegram = Telegram(freqtradebot)
|
||||
|
||||
telegram._whitelist(bot=MagicMock(), update=update)
|
||||
assert msg_mock.call_count == 1
|
||||
assert ('Dynamic whitelist with `4` pairs\n`ETH/BTC, LTC/BTC, XRP/BTC, NEO/BTC`'
|
||||
in msg_mock.call_args_list[0][0][0])
|
||||
|
||||
|
||||
def test_help_handle(default_conf, update, mocker) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
msg_mock = MagicMock()
|
||||
|
@ -88,8 +88,8 @@ def test_load_strategy_invalid_directory(result, caplog):
|
||||
def test_load_not_found_strategy():
|
||||
strategy = StrategyResolver()
|
||||
with pytest.raises(ImportError,
|
||||
match=r'Impossible to load Strategy \'NotFoundStrategy\'.'
|
||||
r' This class does not exist or contains Python code errors'):
|
||||
match=r"Impossible to load Strategy 'NotFoundStrategy'."
|
||||
r" This class does not exist or contains Python code errors"):
|
||||
strategy._load_strategy(strategy_name='NotFoundStrategy', config={})
|
||||
|
||||
|
||||
@ -182,6 +182,42 @@ def test_strategy_override_process_only_new_candles(caplog):
|
||||
) in caplog.record_tuples
|
||||
|
||||
|
||||
def test_strategy_override_order_types(caplog):
|
||||
caplog.set_level(logging.INFO)
|
||||
|
||||
order_types = {
|
||||
'buy': 'market',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'limit'
|
||||
}
|
||||
|
||||
config = {
|
||||
'strategy': 'DefaultStrategy',
|
||||
'order_types': order_types
|
||||
}
|
||||
resolver = StrategyResolver(config)
|
||||
|
||||
assert resolver.strategy.order_types
|
||||
for method in ['buy', 'sell', 'stoploss']:
|
||||
assert resolver.strategy.order_types[method] == order_types[method]
|
||||
|
||||
assert ('freqtrade.strategy.resolver',
|
||||
logging.INFO,
|
||||
"Override strategy 'order_types' with value in config file:"
|
||||
" {'buy': 'market', 'sell': 'limit', 'stoploss': 'limit'}."
|
||||
) in caplog.record_tuples
|
||||
|
||||
config = {
|
||||
'strategy': 'DefaultStrategy',
|
||||
'order_types': {'buy': 'market'}
|
||||
}
|
||||
# Raise error for invalid configuration
|
||||
with pytest.raises(ImportError,
|
||||
match=r"Impossible to load Strategy 'DefaultStrategy'. "
|
||||
r"Order-types mapping is incomplete."):
|
||||
StrategyResolver(config)
|
||||
|
||||
|
||||
def test_deprecate_populate_indicators(result):
|
||||
default_location = path.join(path.dirname(path.realpath(__file__)))
|
||||
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
|
||||
|
@ -64,6 +64,22 @@ def test_load_config_max_open_trades_zero(default_conf, mocker, caplog) -> None:
|
||||
assert log_has('Validating configuration ...', caplog.record_tuples)
|
||||
|
||||
|
||||
def test_load_config_max_open_trades_minus_one(default_conf, mocker, caplog) -> None:
|
||||
default_conf['max_open_trades'] = -1
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
|
||||
args = Arguments([], '').get_parsed_arg()
|
||||
configuration = Configuration(args)
|
||||
validated_conf = configuration.load_config()
|
||||
print(validated_conf)
|
||||
|
||||
assert validated_conf['max_open_trades'] > 999999999
|
||||
assert validated_conf['max_open_trades'] == float('inf')
|
||||
assert log_has('Validating configuration ...', caplog.record_tuples)
|
||||
|
||||
|
||||
def test_load_config_file_exception(mocker) -> None:
|
||||
mocker.patch(
|
||||
'freqtrade.configuration.open',
|
||||
|
@ -18,7 +18,7 @@ from freqtrade.persistence import Trade
|
||||
from freqtrade.rpc import RPCMessageType
|
||||
from freqtrade.state import State
|
||||
from freqtrade.strategy.interface import SellType, SellCheckTuple
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange, patch_edge
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
@ -177,7 +177,7 @@ def test_get_trade_stake_amount(default_conf, ticker, limit_buy_order, fee, mock
|
||||
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('ETH/BTC')
|
||||
assert result == default_conf['stake_amount']
|
||||
|
||||
|
||||
@ -195,7 +195,7 @@ def test_get_trade_stake_amount_no_stake_amount(default_conf,
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
|
||||
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
|
||||
freqtrade._get_trade_stake_amount()
|
||||
freqtrade._get_trade_stake_amount('ETH/BTC')
|
||||
|
||||
|
||||
def test_get_trade_stake_amount_unlimited_amount(default_conf,
|
||||
@ -224,28 +224,131 @@ def test_get_trade_stake_amount_unlimited_amount(default_conf,
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
# no open trades, order amount should be 'balance / max_open_trades'
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('ETH/BTC')
|
||||
assert result == default_conf['stake_amount'] / conf['max_open_trades']
|
||||
|
||||
# create one trade, order amount should be 'balance / (max_open_trades - num_open_trades)'
|
||||
freqtrade.create_trade()
|
||||
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('LTC/BTC')
|
||||
assert result == default_conf['stake_amount'] / (conf['max_open_trades'] - 1)
|
||||
|
||||
# create 2 trades, order amount should be None
|
||||
freqtrade.create_trade()
|
||||
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('XRP/BTC')
|
||||
assert result is None
|
||||
|
||||
# set max_open_trades = None, so do not trade
|
||||
conf['max_open_trades'] = 0
|
||||
freqtrade = FreqtradeBot(conf)
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('NEO/BTC')
|
||||
assert result is None
|
||||
|
||||
|
||||
def test_edge_called_in_process(mocker, edge_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_edge(mocker)
|
||||
|
||||
def _refresh_whitelist(list):
|
||||
return ['ETH/BTC', 'LTC/BTC', 'XRP/BTC', 'NEO/BTC']
|
||||
|
||||
patch_exchange(mocker)
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
freqtrade._refresh_whitelist = _refresh_whitelist
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade._process()
|
||||
assert freqtrade.active_pair_whitelist == ['NEO/BTC', 'LTC/BTC']
|
||||
|
||||
|
||||
def test_edge_overrides_stake_amount(mocker, edge_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
patch_edge(mocker)
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
|
||||
assert freqtrade._get_trade_stake_amount('NEO/BTC') == (0.001 * 0.01) / 0.20
|
||||
assert freqtrade._get_trade_stake_amount('LTC/BTC') == (0.001 * 0.01) / 0.20
|
||||
|
||||
|
||||
def test_edge_overrides_stoploss(limit_buy_order, fee, markets, caplog, mocker, edge_conf) -> None:
|
||||
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
patch_edge(mocker)
|
||||
|
||||
# Strategy stoploss is -0.1 but Edge imposes a stoploss at -0.2
|
||||
# Thus, if price falls 21%, stoploss should be triggered
|
||||
#
|
||||
# mocking the ticker: price is falling ...
|
||||
buy_price = limit_buy_order['price']
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_ticker=MagicMock(return_value={
|
||||
'bid': buy_price * 0.79,
|
||||
'ask': buy_price * 0.79,
|
||||
'last': buy_price * 0.79
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
get_markets=markets,
|
||||
)
|
||||
#############################################
|
||||
|
||||
# Create a trade with "limit_buy_order" price
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
freqtrade.active_pair_whitelist = ['NEO/BTC']
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade.strategy.min_roi_reached = lambda trade, current_profit, current_time: False
|
||||
freqtrade.create_trade()
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
#############################################
|
||||
|
||||
# stoploss shoud be hit
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert log_has('executed sell, reason: SellType.STOP_LOSS', caplog.record_tuples)
|
||||
assert trade.sell_reason == SellType.STOP_LOSS.value
|
||||
|
||||
|
||||
def test_edge_should_ignore_strategy_stoploss(limit_buy_order, fee, markets,
|
||||
mocker, edge_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
patch_edge(mocker)
|
||||
|
||||
# Strategy stoploss is -0.1 but Edge imposes a stoploss at -0.2
|
||||
# Thus, if price falls 15%, stoploss should not be triggered
|
||||
#
|
||||
# mocking the ticker: price is falling ...
|
||||
buy_price = limit_buy_order['price']
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_ticker=MagicMock(return_value={
|
||||
'bid': buy_price * 0.85,
|
||||
'ask': buy_price * 0.85,
|
||||
'last': buy_price * 0.85
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
get_markets=markets,
|
||||
)
|
||||
#############################################
|
||||
|
||||
# Create a trade with "limit_buy_order" price
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
freqtrade.active_pair_whitelist = ['NEO/BTC']
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade.strategy.min_roi_reached = lambda trade, current_profit, current_time: False
|
||||
freqtrade.create_trade()
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
#############################################
|
||||
|
||||
# stoploss shoud not be hit
|
||||
assert freqtrade.handle_trade(trade) is False
|
||||
|
||||
|
||||
def test_get_min_pair_stake_amount(mocker, default_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
@ -450,7 +553,7 @@ def test_create_trade_minimal_amount(default_conf, ticker, limit_buy_order,
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
freqtrade.create_trade()
|
||||
rate, amount = buy_mock.call_args[0][1], buy_mock.call_args[0][2]
|
||||
rate, amount = buy_mock.call_args[1]['rate'], buy_mock.call_args[1]['amount']
|
||||
assert rate * amount >= default_conf['stake_amount']
|
||||
|
||||
|
||||
@ -494,7 +597,7 @@ def test_create_trade_limit_reached(default_conf, ticker, limit_buy_order,
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
assert freqtrade.create_trade() is False
|
||||
assert freqtrade._get_trade_stake_amount() is None
|
||||
assert freqtrade._get_trade_stake_amount('ETH/BTC') is None
|
||||
|
||||
|
||||
def test_create_trade_no_pairs(default_conf, ticker, limit_buy_order, fee, markets, mocker) -> None:
|
||||
@ -593,7 +696,7 @@ def test_process_trade_creation(default_conf, ticker, limit_buy_order,
|
||||
assert trade.amount == 90.99181073703367
|
||||
|
||||
assert log_has(
|
||||
'Checking buy signals to create a new trade with stake_amount: 0.001000 ...',
|
||||
'Buy signal found: about create a new trade with stake_amount: 0.001000 ...',
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
@ -760,10 +863,10 @@ def test_execute_buy(mocker, default_conf, fee, markets, limit_buy_order) -> Non
|
||||
assert freqtrade.execute_buy(pair, stake_amount)
|
||||
assert get_bid.call_count == 1
|
||||
assert buy_mm.call_count == 1
|
||||
call_args = buy_mm.call_args_list[0][0]
|
||||
assert call_args[0] == pair
|
||||
assert call_args[1] == bid
|
||||
assert call_args[2] == stake_amount / bid
|
||||
call_args = buy_mm.call_args_list[0][1]
|
||||
assert call_args['pair'] == pair
|
||||
assert call_args['rate'] == bid
|
||||
assert call_args['amount'] == stake_amount / bid
|
||||
|
||||
# Test calling with price
|
||||
fix_price = 0.06
|
||||
@ -772,10 +875,10 @@ def test_execute_buy(mocker, default_conf, fee, markets, limit_buy_order) -> Non
|
||||
assert get_bid.call_count == 1
|
||||
|
||||
assert buy_mm.call_count == 2
|
||||
call_args = buy_mm.call_args_list[1][0]
|
||||
assert call_args[0] == pair
|
||||
assert call_args[1] == fix_price
|
||||
assert call_args[2] == stake_amount / fix_price
|
||||
call_args = buy_mm.call_args_list[1][1]
|
||||
assert call_args['pair'] == pair
|
||||
assert call_args['rate'] == fix_price
|
||||
assert call_args['amount'] == stake_amount / fix_price
|
||||
|
||||
|
||||
def test_process_maybe_execute_buy(mocker, default_conf) -> None:
|
||||
@ -1547,7 +1650,7 @@ def test_sell_profit_only_enable_loss(default_conf, limit_buy_order, fee, market
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade.strategy.stop_loss_reached = \
|
||||
lambda current_rate, trade, current_time, current_profit: SellCheckTuple(
|
||||
lambda current_rate, trade, current_time, force_stoploss, current_profit: SellCheckTuple(
|
||||
sell_flag=False, sell_type=SellType.NONE)
|
||||
freqtrade.create_trade()
|
||||
|
||||
@ -1821,7 +1924,7 @@ def test_get_real_amount_quote(default_conf, trades_for_order, buy_order_fee, ca
|
||||
exchange='binance',
|
||||
open_rate=0.245441,
|
||||
open_order_id="123456"
|
||||
)
|
||||
)
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
@ -2097,9 +2200,9 @@ def test_order_book_bid_strategy2(mocker, default_conf, order_book_l2, markets)
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_markets=markets,
|
||||
get_order_book=order_book_l2
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_markets=markets,
|
||||
get_order_book=order_book_l2
|
||||
)
|
||||
default_conf['exchange']['name'] = 'binance'
|
||||
default_conf['bid_strategy']['use_order_book'] = True
|
||||
|
84
freqtrade/tests/test_wallets.py
Normal file
84
freqtrade/tests/test_wallets.py
Normal file
@ -0,0 +1,84 @@
|
||||
# pragma pylint: disable=missing-docstring
|
||||
from freqtrade.tests.conftest import get_patched_freqtradebot
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
|
||||
def test_sync_wallet_at_boot(mocker, default_conf):
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_balances=MagicMock(return_value={
|
||||
"BNT": {
|
||||
"free": 1.0,
|
||||
"used": 2.0,
|
||||
"total": 3.0
|
||||
},
|
||||
"GAS": {
|
||||
"free": 0.260739,
|
||||
"used": 0.0,
|
||||
"total": 0.260739
|
||||
},
|
||||
})
|
||||
)
|
||||
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
assert len(freqtrade.wallets.wallets) == 2
|
||||
assert freqtrade.wallets.wallets['BNT'].free == 1.0
|
||||
assert freqtrade.wallets.wallets['BNT'].used == 2.0
|
||||
assert freqtrade.wallets.wallets['BNT'].total == 3.0
|
||||
assert freqtrade.wallets.wallets['GAS'].free == 0.260739
|
||||
assert freqtrade.wallets.wallets['GAS'].used == 0.0
|
||||
assert freqtrade.wallets.wallets['GAS'].total == 0.260739
|
||||
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_balances=MagicMock(return_value={
|
||||
"BNT": {
|
||||
"free": 1.2,
|
||||
"used": 1.9,
|
||||
"total": 3.5
|
||||
},
|
||||
"GAS": {
|
||||
"free": 0.270739,
|
||||
"used": 0.1,
|
||||
"total": 0.260439
|
||||
},
|
||||
})
|
||||
)
|
||||
|
||||
freqtrade.wallets.update()
|
||||
|
||||
assert len(freqtrade.wallets.wallets) == 2
|
||||
assert freqtrade.wallets.wallets['BNT'].free == 1.2
|
||||
assert freqtrade.wallets.wallets['BNT'].used == 1.9
|
||||
assert freqtrade.wallets.wallets['BNT'].total == 3.5
|
||||
assert freqtrade.wallets.wallets['GAS'].free == 0.270739
|
||||
assert freqtrade.wallets.wallets['GAS'].used == 0.1
|
||||
assert freqtrade.wallets.wallets['GAS'].total == 0.260439
|
||||
|
||||
|
||||
def test_sync_wallet_missing_data(mocker, default_conf):
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_balances=MagicMock(return_value={
|
||||
"BNT": {
|
||||
"free": 1.0,
|
||||
"used": 2.0,
|
||||
"total": 3.0
|
||||
},
|
||||
"GAS": {
|
||||
"free": 0.260739,
|
||||
"total": 0.260739
|
||||
},
|
||||
})
|
||||
)
|
||||
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
assert len(freqtrade.wallets.wallets) == 2
|
||||
assert freqtrade.wallets.wallets['BNT'].free == 1.0
|
||||
assert freqtrade.wallets.wallets['BNT'].used == 2.0
|
||||
assert freqtrade.wallets.wallets['BNT'].total == 3.0
|
||||
assert freqtrade.wallets.wallets['GAS'].free == 0.260739
|
||||
assert freqtrade.wallets.wallets['GAS'].used is None
|
||||
assert freqtrade.wallets.wallets['GAS'].total == 0.260739
|
44
freqtrade/wallets.py
Normal file
44
freqtrade/wallets.py
Normal file
@ -0,0 +1,44 @@
|
||||
# pragma pylint: disable=W0603
|
||||
""" Wallet """
|
||||
import logging
|
||||
from typing import Dict, Any, NamedTuple
|
||||
from collections import namedtuple
|
||||
from freqtrade.exchange import Exchange
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Wallet(NamedTuple):
|
||||
exchange: str
|
||||
currency: str
|
||||
free: float = 0
|
||||
used: float = 0
|
||||
total: float = 0
|
||||
|
||||
|
||||
class Wallets(object):
|
||||
|
||||
# wallet data structure
|
||||
wallet = namedtuple(
|
||||
'wallet',
|
||||
['exchange', 'currency', 'free', 'used', 'total']
|
||||
)
|
||||
|
||||
def __init__(self, exchange: Exchange) -> None:
|
||||
self.exchange = exchange
|
||||
self.wallets: Dict[str, Any] = {}
|
||||
self.update()
|
||||
|
||||
def update(self) -> None:
|
||||
balances = self.exchange.get_balances()
|
||||
|
||||
for currency in balances:
|
||||
self.wallets[currency] = Wallet(
|
||||
self.exchange.id,
|
||||
currency,
|
||||
balances[currency].get('free', None),
|
||||
balances[currency].get('used', None),
|
||||
balances[currency].get('total', None)
|
||||
)
|
||||
|
||||
logger.info('Wallets synced ...')
|
@ -1,18 +1,19 @@
|
||||
ccxt==1.17.481
|
||||
SQLAlchemy==1.2.13
|
||||
ccxt==1.17.529
|
||||
SQLAlchemy==1.2.14
|
||||
python-telegram-bot==11.1.0
|
||||
arrow==0.12.1
|
||||
cachetools==3.0.0
|
||||
requests==2.20.0
|
||||
requests==2.20.1
|
||||
urllib3==1.24.1
|
||||
wrapt==1.10.11
|
||||
pandas==0.23.4
|
||||
scikit-learn==0.20.0
|
||||
joblib==0.13.0
|
||||
scipy==1.1.0
|
||||
jsonschema==2.6.0
|
||||
numpy==1.15.4
|
||||
TA-Lib==0.4.17
|
||||
pytest==3.10.0
|
||||
pytest==4.0.0
|
||||
pytest-mock==1.10.0
|
||||
pytest-asyncio==0.9.0
|
||||
pytest-cov==2.6.0
|
||||
@ -24,3 +25,9 @@ scikit-optimize==0.5.2
|
||||
|
||||
# Required for plotting data
|
||||
#plotly==3.1.1
|
||||
|
||||
# find first, C search in arrays
|
||||
py_find_1st==1.1.3
|
||||
|
||||
#Load ticker files 30% faster
|
||||
ujson==1.35
|
||||
|
3
setup.py
3
setup.py
@ -31,12 +31,15 @@ setup(name='freqtrade',
|
||||
'pandas',
|
||||
'scikit-learn',
|
||||
'scipy',
|
||||
'joblib',
|
||||
'jsonschema',
|
||||
'TA-Lib',
|
||||
'tabulate',
|
||||
'cachetools',
|
||||
'coinmarketcap',
|
||||
'scikit-optimize',
|
||||
'ujson',
|
||||
'py_find_1st'
|
||||
],
|
||||
include_package_data=True,
|
||||
zip_safe=False,
|
||||
|
0
user_data/hyperopts/__init__.py
Normal file
0
user_data/hyperopts/__init__.py
Normal file
139
user_data/hyperopts/sample_hyperopt.py
Normal file
139
user_data/hyperopts/sample_hyperopt.py
Normal file
@ -0,0 +1,139 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from typing import Dict, Any, Callable, List
|
||||
from functools import reduce
|
||||
|
||||
import numpy
|
||||
from skopt.space import Categorical, Dimension, Integer, Real
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
|
||||
class_name = 'SampleHyperOpts'
|
||||
|
||||
|
||||
# This class is a sample. Feel free to customize it.
|
||||
class SampleHyperOpts(IHyperOpt):
|
||||
"""
|
||||
This is a test hyperopt to inspire you.
|
||||
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
|
||||
You can:
|
||||
- Rename the class name (Do not forget to update class_name)
|
||||
- Add any methods you want to build your hyperopt
|
||||
- Add any lib you need to build your hyperopt
|
||||
You must keep:
|
||||
- the prototype for the methods: populate_indicators, indicator_space, buy_strategy_generator,
|
||||
roi_space, generate_roi_table, stoploss_space
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
return dataframe
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by hyperopt
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use
|
||||
"""
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
@staticmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return [
|
||||
Integer(10, 25, name='mfi-value'),
|
||||
Integer(15, 45, name='fastd-value'),
|
||||
Integer(20, 50, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
Generate the ROI table that will be used by Hyperopt
|
||||
"""
|
||||
roi_table = {}
|
||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||
|
||||
return roi_table
|
||||
|
||||
@staticmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
Stoploss Value to search
|
||||
"""
|
||||
return [
|
||||
Real(-0.5, -0.02, name='stoploss'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
Values to search for each ROI steps
|
||||
"""
|
||||
return [
|
||||
Integer(10, 120, name='roi_t1'),
|
||||
Integer(10, 60, name='roi_t2'),
|
||||
Integer(10, 40, name='roi_t3'),
|
||||
Real(0.01, 0.04, name='roi_p1'),
|
||||
Real(0.01, 0.07, name='roi_p2'),
|
||||
Real(0.01, 0.20, name='roi_p3'),
|
||||
]
|
@ -48,6 +48,13 @@ class TestStrategy(IStrategy):
|
||||
# run "populate_indicators" only for new candle
|
||||
ta_on_candle = False
|
||||
|
||||
# Optional order type mapping
|
||||
order_types = {
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'market'
|
||||
}
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
Loading…
Reference in New Issue
Block a user