Merge branch 'develop' into fix/backtest_toomanyopen
This commit is contained in:
commit
805f509498
@ -2,50 +2,52 @@
|
||||
|
||||
## Contribute to freqtrade
|
||||
|
||||
Feel like our bot is missing a feature? We welcome your pull requests! Few pointers for contributions:
|
||||
Feel like our bot is missing a feature? We welcome your pull requests!
|
||||
|
||||
Issues labeled [good first issue](https://github.com/freqtrade/freqtrade/labels/good%20first%20issue) can be good first contributions, and will help get you familiar with the codebase.
|
||||
|
||||
Few pointers for contributions:
|
||||
|
||||
- Create your PR against the `develop` branch, not `master`.
|
||||
- New features need to contain unit tests and must be PEP8
|
||||
|
||||
conformant (max-line-length = 100).
|
||||
- New features need to contain unit tests and must be PEP8 conformant (max-line-length = 100).
|
||||
|
||||
If you are unsure, discuss the feature on our [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE)
|
||||
or in a [issue](https://github.com/freqtrade/freqtrade/issues) before a PR.
|
||||
|
||||
**Before sending the PR:**
|
||||
## Before sending the PR:
|
||||
|
||||
## 1. Run unit tests
|
||||
### 1. Run unit tests
|
||||
|
||||
All unit tests must pass. If a unit test is broken, change your code to
|
||||
make it pass. It means you have introduced a regression.
|
||||
|
||||
### Test the whole project
|
||||
#### Test the whole project
|
||||
|
||||
```bash
|
||||
pytest freqtrade
|
||||
```
|
||||
|
||||
### Test only one file
|
||||
#### Test only one file
|
||||
|
||||
```bash
|
||||
pytest freqtrade/tests/test_<file_name>.py
|
||||
```
|
||||
|
||||
### Test only one method from one file
|
||||
#### Test only one method from one file
|
||||
|
||||
```bash
|
||||
pytest freqtrade/tests/test_<file_name>.py::test_<method_name>
|
||||
```
|
||||
|
||||
## 2. Test if your code is PEP8 compliant
|
||||
### 2. Test if your code is PEP8 compliant
|
||||
|
||||
### Install packages
|
||||
#### Install packages
|
||||
|
||||
```bash
|
||||
pip3.6 install flake8 coveralls
|
||||
```
|
||||
|
||||
### Run Flake8
|
||||
#### Run Flake8
|
||||
|
||||
```bash
|
||||
flake8 freqtrade
|
||||
@ -56,15 +58,15 @@ To help with that, we encourage you to install the git pre-commit
|
||||
hook that will warn you when you try to commit code that fails these checks.
|
||||
Guide for installing them is [here](http://flake8.pycqa.org/en/latest/user/using-hooks.html).
|
||||
|
||||
## 3. Test if all type-hints are correct
|
||||
### 3. Test if all type-hints are correct
|
||||
|
||||
### Install packages
|
||||
#### Install packages
|
||||
|
||||
``` bash
|
||||
pip3.6 install mypy
|
||||
```
|
||||
|
||||
### Run mypy
|
||||
#### Run mypy
|
||||
|
||||
``` bash
|
||||
mypy freqtrade
|
||||
|
@ -62,6 +62,7 @@ hesitate to read the source code and understand the mechanism of this bot.
|
||||
- [Requirements](#requirements)
|
||||
- [Min hardware required](#min-hardware-required)
|
||||
- [Software requirements](#software-requirements)
|
||||
- [Wanna help?]
|
||||
|
||||
|
||||
## Quick start
|
||||
@ -189,11 +190,15 @@ in the bug reports.
|
||||
|
||||
### [Pull Requests](https://github.com/freqtrade/freqtrade/pulls)
|
||||
|
||||
Feel like our bot is missing a feature? We welcome your pull requests!
|
||||
Feel like our bot is missing a feature? We welcome your pull requests!
|
||||
|
||||
Please read our
|
||||
[Contributing document](https://github.com/freqtrade/freqtrade/blob/develop/CONTRIBUTING.md)
|
||||
to understand the requirements before sending your pull-requests.
|
||||
|
||||
Coding is not a neccessity to contribute - maybe start with improving our documentation?
|
||||
Issues labeled [good first issue](https://github.com/freqtrade/freqtrade/labels/good%20first%20issue) can be good first contributions, and will help get you familiar with the codebase.
|
||||
|
||||
**Note** before starting any major new feature work, *please open an issue describing what you are planning to do* or talk to us on [Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE). This will ensure that interested parties can give valuable feedback on the feature, and let others know that you are working on it.
|
||||
|
||||
**Important:** Always create your PR against the `develop` branch, not `master`.
|
||||
@ -218,3 +223,4 @@ To run this bot we recommend you a cloud instance with a minimum of:
|
||||
- [TA-Lib](https://mrjbq7.github.io/ta-lib/install.html)
|
||||
- [virtualenv](https://virtualenv.pypa.io/en/stable/installation/) (Recommended)
|
||||
- [Docker](https://www.docker.com/products/docker) (Recommended)
|
||||
|
||||
|
@ -53,6 +53,21 @@
|
||||
"sell_profit_only": false,
|
||||
"ignore_roi_if_buy_signal": false
|
||||
},
|
||||
"edge": {
|
||||
"enabled": false,
|
||||
"process_throttle_secs": 3600,
|
||||
"calculate_since_number_of_days": 7,
|
||||
"total_capital_in_stake_currency": 0.5,
|
||||
"allowed_risk": 0.01,
|
||||
"stoploss_range_min": -0.01,
|
||||
"stoploss_range_max": -0.1,
|
||||
"stoploss_range_step": -0.01,
|
||||
"minimum_winrate": 0.60,
|
||||
"minimum_expectancy": 0.20,
|
||||
"min_trade_number": 10,
|
||||
"max_trade_duration_minute": 1440,
|
||||
"remove_pumps": false
|
||||
},
|
||||
"telegram": {
|
||||
"enabled": true,
|
||||
"token": "your_telegram_token",
|
||||
|
@ -33,6 +33,11 @@
|
||||
"order_book_min": 1,
|
||||
"order_book_max": 9
|
||||
},
|
||||
"order_types": {
|
||||
"buy": "limit",
|
||||
"sell": "limit",
|
||||
"stoploss": "market"
|
||||
},
|
||||
"exchange": {
|
||||
"name": "bittrex",
|
||||
"key": "your_exchange_key",
|
||||
@ -59,6 +64,20 @@
|
||||
],
|
||||
"outdated_offset": 5
|
||||
},
|
||||
"edge": {
|
||||
"enabled": false,
|
||||
"process_throttle_secs": 3600,
|
||||
"calculate_since_number_of_days": 2,
|
||||
"allowed_risk": 0.01,
|
||||
"stoploss_range_min": -0.01,
|
||||
"stoploss_range_max": -0.1,
|
||||
"stoploss_range_step": -0.01,
|
||||
"minimum_winrate": 0.60,
|
||||
"minimum_expectancy": 0.20,
|
||||
"min_trade_number": 10,
|
||||
"max_trade_duration_minute": 1440,
|
||||
"remove_pumps": false
|
||||
},
|
||||
"experimental": {
|
||||
"use_sell_signal": false,
|
||||
"sell_profit_only": false,
|
||||
|
@ -44,11 +44,11 @@ optional arguments:
|
||||
|
||||
### How to use a different config file?
|
||||
|
||||
The bot allows you to select which config file you want to use. Per
|
||||
The bot allows you to select which config file you want to use. Per
|
||||
default, the bot will load the file `./config.json`
|
||||
|
||||
```bash
|
||||
python3 ./freqtrade/main.py -c path/far/far/away/config.json
|
||||
python3 ./freqtrade/main.py -c path/far/far/away/config.json
|
||||
```
|
||||
|
||||
### How to use --strategy?
|
||||
@ -61,7 +61,7 @@ The bot will search your strategy file within `user_data/strategies` and `freqtr
|
||||
|
||||
To load a strategy, simply pass the class name (e.g.: `CustomStrategy`) in this parameter.
|
||||
|
||||
**Example:**
|
||||
**Example:**
|
||||
In `user_data/strategies` you have a file `my_awesome_strategy.py` which has
|
||||
a strategy class called `AwesomeStrategy` to load it:
|
||||
|
||||
@ -69,7 +69,7 @@ a strategy class called `AwesomeStrategy` to load it:
|
||||
python3 ./freqtrade/main.py --strategy AwesomeStrategy
|
||||
```
|
||||
|
||||
If the bot does not find your strategy file, it will display in an error
|
||||
If the bot does not find your strategy file, it will display in an error
|
||||
message the reason (File not found, or errors in your code).
|
||||
|
||||
Learn more about strategy file in [optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).
|
||||
@ -84,37 +84,37 @@ python3 ./freqtrade/main.py --strategy AwesomeStrategy --strategy-path /some/fol
|
||||
|
||||
#### How to install a strategy?
|
||||
|
||||
This is very simple. Copy paste your strategy file into the folder
|
||||
This is very simple. Copy paste your strategy file into the folder
|
||||
`user_data/strategies` or use `--strategy-path`. And voila, the bot is ready to use it.
|
||||
|
||||
### How to use --dynamic-whitelist?
|
||||
|
||||
Per default `--dynamic-whitelist` will retrieve the 20 currencies based
|
||||
Per default `--dynamic-whitelist` will retrieve the 20 currencies based
|
||||
on BaseVolume. This value can be changed when you run the script.
|
||||
|
||||
**By Default**
|
||||
Get the 20 currencies based on BaseVolume.
|
||||
**By Default**
|
||||
Get the 20 currencies based on BaseVolume.
|
||||
|
||||
```bash
|
||||
python3 ./freqtrade/main.py --dynamic-whitelist
|
||||
```
|
||||
|
||||
**Customize the number of currencies to retrieve**
|
||||
Get the 30 currencies based on BaseVolume.
|
||||
**Customize the number of currencies to retrieve**
|
||||
Get the 30 currencies based on BaseVolume.
|
||||
|
||||
```bash
|
||||
python3 ./freqtrade/main.py --dynamic-whitelist 30
|
||||
```
|
||||
|
||||
**Exception**
|
||||
**Exception**
|
||||
`--dynamic-whitelist` must be greater than 0. If you enter 0 or a
|
||||
negative value (e.g -2), `--dynamic-whitelist` will use the default
|
||||
value (20).
|
||||
|
||||
### How to use --db-url?
|
||||
|
||||
When you run the bot in Dry-run mode, per default no transactions are
|
||||
stored in a database. If you want to store your bot actions in a DB
|
||||
When you run the bot in Dry-run mode, per default no transactions are
|
||||
stored in a database. If you want to store your bot actions in a DB
|
||||
using `--db-url`. This can also be used to specify a custom database
|
||||
in production mode. Example command:
|
||||
|
||||
@ -170,15 +170,15 @@ optional arguments:
|
||||
|
||||
### How to use --refresh-pairs-cached parameter?
|
||||
|
||||
The first time your run Backtesting, it will take the pairs you have
|
||||
set in your config file and download data from Bittrex.
|
||||
The first time your run Backtesting, it will take the pairs you have
|
||||
set in your config file and download data from Bittrex.
|
||||
|
||||
If for any reason you want to update your data set, you use
|
||||
`--refresh-pairs-cached` to force Backtesting to update the data it has.
|
||||
If for any reason you want to update your data set, you use
|
||||
`--refresh-pairs-cached` to force Backtesting to update the data it has.
|
||||
**Use it only if you want to update your data set. You will not be able
|
||||
to come back to the previous version.**
|
||||
|
||||
To test your strategy with latest data, we recommend continuing using
|
||||
To test your strategy with latest data, we recommend continuing using
|
||||
the parameter `-l` or `--live`.
|
||||
|
||||
## Hyperopt commands
|
||||
@ -204,6 +204,8 @@ optional arguments:
|
||||
number)
|
||||
--timerange TIMERANGE
|
||||
specify what timerange of data to use.
|
||||
--hyperopt PATH specify hyperopt file (default:
|
||||
freqtrade/optimize/default_hyperopt.py)
|
||||
-e INT, --epochs INT specify number of epochs (default: 100)
|
||||
-s {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...], --spaces {all,buy,roi,stoploss} [{all,buy,roi,stoploss} ...]
|
||||
Specify which parameters to hyperopt. Space separate
|
||||
@ -211,6 +213,31 @@ optional arguments:
|
||||
|
||||
```
|
||||
|
||||
## Edge commands
|
||||
|
||||
To know your trade expectacny and winrate against historical data, you can use Edge.
|
||||
|
||||
```
|
||||
usage: main.py edge [-h] [-i TICKER_INTERVAL] [--timerange TIMERANGE] [-r]
|
||||
[--stoplosses STOPLOSS_RANGE]
|
||||
|
||||
optional arguments:
|
||||
-h, --help show this help message and exit
|
||||
-i TICKER_INTERVAL, --ticker-interval TICKER_INTERVAL
|
||||
specify ticker interval (1m, 5m, 30m, 1h, 1d)
|
||||
--timerange TIMERANGE
|
||||
specify what timerange of data to use.
|
||||
-r, --refresh-pairs-cached
|
||||
refresh the pairs files in tests/testdata with the
|
||||
latest data from the exchange. Use it if you want to
|
||||
run your edge with up-to-date data.
|
||||
--stoplosses STOPLOSS_RANGE
|
||||
defines a range of stoploss against which edge will
|
||||
assess the strategythe format is "min,max,step"
|
||||
(without any space).example:
|
||||
--stoplosses=-0.01,-0.1,-0.001
|
||||
```
|
||||
|
||||
## A parameter missing in the configuration?
|
||||
|
||||
All parameters for `main.py`, `backtesting`, `hyperopt` are referenced
|
||||
@ -218,5 +245,5 @@ in [misc.py](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/misc.
|
||||
|
||||
## Next step
|
||||
|
||||
The optimal strategy of the bot will change with time depending of the market trends. The next step is to
|
||||
The optimal strategy of the bot will change with time depending of the market trends. The next step is to
|
||||
[optimize your bot](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md).
|
||||
|
@ -13,19 +13,19 @@ This page explains how to configure your `config.json` file.
|
||||
We recommend to copy and use the `config.json.example` as a template
|
||||
for your bot configuration.
|
||||
|
||||
The table below will list all configuration parameters.
|
||||
The table below will list all configuration parameters.
|
||||
|
||||
| Command | Default | Mandatory | Description |
|
||||
|----------|---------|----------|-------------|
|
||||
| `max_open_trades` | 3 | Yes | Number of trades open your bot will have.
|
||||
| `max_open_trades` | 3 | Yes | Number of trades open your bot will have. If -1 then it is ignored (i.e. potentially unlimited open trades)
|
||||
| `stake_currency` | BTC | Yes | Crypto-currency used for trading.
|
||||
| `stake_amount` | 0.05 | Yes | Amount of crypto-currency your bot will use for each trade. Per default, the bot will use (0.05 BTC x 3) = 0.15 BTC in total will be always engaged. Set it to 'unlimited' to allow the bot to use all avaliable balance.
|
||||
| `ticker_interval` | [1m, 5m, 30m, 1h, 1d] | No | The ticker interval to use (1min, 5 min, 30 min, 1 hour or 1 day). Default is 5 minutes
|
||||
| `fiat_display_currency` | USD | Yes | Fiat currency used to show your profits. More information below.
|
||||
| `fiat_display_currency` | USD | Yes | Fiat currency used to show your profits. More information below.
|
||||
| `dry_run` | true | Yes | Define if the bot must be in Dry-run or production mode.
|
||||
| `process_only_new_candles` | false | No | If set to true indicators are processed only once a new candle arrives. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. Can be set either in Configuration or in the strategy.
|
||||
| `minimal_roi` | See below | No | Set the threshold in percent the bot will use to sell a trade. More information below. If set, this parameter will override `minimal_roi` from your strategy file.
|
||||
| `stoploss` | -0.10 | No | Value of the stoploss in percent used by the bot. More information below. If set, this parameter will override `stoploss` from your strategy file.
|
||||
| `process_only_new_candles` | false | No | If set to true indicators are processed only once a new candle arrives. If false each loop populates the indicators, this will mean the same candle is processed many times creating system load but can be useful of your strategy depends on tick data not only candle. Can be set either in Configuration or in the strategy.
|
||||
| `minimal_roi` | See below | No | Set the threshold in percent the bot will use to sell a trade. More information below. If set, this parameter will override `minimal_roi` from your strategy file.
|
||||
| `stoploss` | -0.10 | No | Value of the stoploss in percent used by the bot. More information below. If set, this parameter will override `stoploss` from your strategy file.
|
||||
| `trailing_stop` | false | No | Enables trailing stop-loss (based on `stoploss` in either configuration or strategy file).
|
||||
| `trailing_stop_positve` | 0 | No | Changes stop-loss once profit has been reached.
|
||||
| `trailing_stop_positve_offset` | 0 | No | Offset on when to apply `trailing_stop_positive`. Percentage value which should be positive.
|
||||
@ -39,6 +39,7 @@ The table below will list all configuration parameters.
|
||||
| `ask_strategy.use_order_book` | false | No | Allows selling of open traded pair using the rates in Order Book Asks.
|
||||
| `ask_strategy.order_book_min` | 0 | No | Bot will scan from the top min to max Order Book Asks searching for a profitable rate.
|
||||
| `ask_strategy.order_book_max` | 0 | No | Bot will scan from the top min to max Order Book Asks searching for a profitable rate.
|
||||
| `order_types` | None | No | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`).
|
||||
| `exchange.name` | bittrex | Yes | Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename).
|
||||
| `exchange.key` | key | No | API key to use for the exchange. Only required when you are in production mode.
|
||||
| `exchange.secret` | secret | No | API secret to use for the exchange. Only required when you are in production mode.
|
||||
@ -47,6 +48,7 @@ The table below will list all configuration parameters.
|
||||
| `exchange.ccxt_rate_limit` | True | No | DEPRECATED!! Have CCXT handle Exchange rate limits. Depending on the exchange, having this to false can lead to temporary bans from the exchange.
|
||||
| `exchange.ccxt_config` | None | No | Additional CCXT parameters passed to the regular ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation)
|
||||
| `exchange.ccxt_async_config` | None | No | Additional CCXT parameters passed to the async ccxt instance. Parameters may differ from exchange to exchange and are documented in the [ccxt documentation](https://ccxt.readthedocs.io/en/latest/manual.html#instantiation)
|
||||
| `edge` | false | No | Please refer to [edge configuration document](edge.md) for detailed explanation.
|
||||
| `experimental.use_sell_signal` | false | No | Use your sell strategy in addition of the `minimal_roi`.
|
||||
| `experimental.sell_profit_only` | false | No | waits until you have made a positive profit before taking a sell decision.
|
||||
| `experimental.ignore_roi_if_buy_signal` | false | No | Does not sell if the buy-signal is still active. Takes preference over `minimal_roi` and `use_sell_signal`
|
||||
@ -70,7 +72,7 @@ The definition of each config parameters is in [misc.py](https://github.com/freq
|
||||
### Understand stake_amount
|
||||
|
||||
`stake_amount` is an amount of crypto-currency your bot will use for each trade.
|
||||
The minimal value is 0.0005. If there is not enough crypto-currency in
|
||||
The minimal value is 0.0005. If there is not enough crypto-currency in
|
||||
the account an exception is generated.
|
||||
To allow the bot to trade all the avaliable `stake_currency` in your account set `stake_amount` = `unlimited`.
|
||||
In this case a trade amount is calclulated as `currency_balanse / (max_open_trades - current_open_trades)`.
|
||||
@ -137,6 +139,22 @@ use the `last` price and values between those interpolate between ask and last
|
||||
price. Using `ask` price will guarantee quick success in bid, but bot will also
|
||||
end up paying more then would probably have been necessary.
|
||||
|
||||
### Understand order_types
|
||||
|
||||
`order_types` contains a dict mapping order-types to market-types. This allows to buy using limit orders, sell using limit-orders, and create stoploss orders using market.
|
||||
This can be set in the configuration or in the strategy. Configuration overwrites strategy configurations.
|
||||
|
||||
If this is configured, all 3 values (`"buy"`, `"sell"` and `"stoploss"`) need to be present, otherwise the bot warn about it and will fail to start.
|
||||
The below is the default which is used if this is not configured in either Strategy or configuration.
|
||||
|
||||
``` json
|
||||
"order_types": {
|
||||
"buy": "limit",
|
||||
"sell": "limit",
|
||||
"stoploss": "market"
|
||||
},
|
||||
```
|
||||
|
||||
### What values for exchange.name?
|
||||
|
||||
Freqtrade is based on [CCXT library](https://github.com/ccxt/ccxt) that supports 115 cryptocurrency
|
||||
@ -186,13 +204,13 @@ creating trades.
|
||||
}
|
||||
```
|
||||
|
||||
Once you will be happy with your bot performance, you can switch it to
|
||||
Once you will be happy with your bot performance, you can switch it to
|
||||
production mode.
|
||||
|
||||
## Switch to production mode
|
||||
|
||||
In production mode, the bot will engage your money. Be careful a wrong
|
||||
strategy can lose all your money. Be aware of what you are doing when
|
||||
In production mode, the bot will engage your money. Be careful a wrong
|
||||
strategy can lose all your money. Be aware of what you are doing when
|
||||
you run it in production mode.
|
||||
|
||||
### To switch your bot in production mode:
|
||||
@ -242,7 +260,7 @@ freqtrade
|
||||
|
||||
### Embedding Strategies
|
||||
|
||||
FreqTrade provides you with with an easy way to embed the strategy into your configuration file.
|
||||
FreqTrade provides you with with an easy way to embed the strategy into your configuration file.
|
||||
This is done by utilizing BASE64 encoding and providing this string at the strategy configuration field,
|
||||
in your chosen config file.
|
||||
|
||||
|
207
docs/edge.md
Normal file
207
docs/edge.md
Normal file
@ -0,0 +1,207 @@
|
||||
# Edge positioning
|
||||
|
||||
This page explains how to use Edge Positioning module in your bot in order to enter into a trade only if the trade has a reasonable win rate and risk reward ratio, and consequently adjust your position size and stoploss.
|
||||
|
||||
**NOTICE:** Edge positioning is not compatible with dynamic whitelist. it overrides dynamic whitelist.
|
||||
**NOTICE2:** Edge won't consider anything else than buy/sell/stoploss signals. So trailing stoploss, ROI, and everything else will be ignored in its calculation.
|
||||
|
||||
## Table of Contents
|
||||
|
||||
- [Introduction](#introduction)
|
||||
- [How does it work?](#how-does-it-work?)
|
||||
- [Configurations](#configurations)
|
||||
- [Running Edge independently](#running-edge-independently)
|
||||
|
||||
## Introduction
|
||||
Trading is all about probability. No one can claim that he has a strategy working all the time. You have to assume that sometimes you lose.<br/><br/>
|
||||
But it doesn't mean there is no rule, it only means rules should work "most of the time". Let's play a game: we toss a coin, heads: I give you 10$, tails: You give me 10$. Is it an interesting game ? no, it is quite boring, isn't it?<br/><br/>
|
||||
But let's say the probability that we have heads is 80%, and the probability that we have tails is 20%. Now it is becoming interesting ...
|
||||
That means 10$ x 80% versus 10$ x 20%. 8$ versus 2$. That means over time you will win 8$ risking only 2$ on each toss of coin.<br/><br/>
|
||||
Let's complicate it more: you win 80% of the time but only 2$, I win 20% of the time but 8$. The calculation is: 80% * 2$ versus 20% * 8$. It is becoming boring again because overtime you win $1.6$ (80% x 2$) and me $1.6 (20% * 8$) too.<br/><br/>
|
||||
The question is: How do you calculate that? how do you know if you wanna play?
|
||||
The answer comes to two factors:
|
||||
- Win Rate
|
||||
- Risk Reward Ratio
|
||||
|
||||
|
||||
### Win Rate
|
||||
Means over X trades what is the percentage of winning trades to total number of trades (note that we don't consider how much you gained but only If you won or not).
|
||||
|
||||
|
||||
`W = (Number of winning trades) / (Number of losing trades)`
|
||||
|
||||
### Risk Reward Ratio
|
||||
Risk Reward Ratio is a formula used to measure the expected gains of a given investment against the risk of loss. It is basically what you potentially win divided by what you potentially lose:
|
||||
|
||||
`R = Profit / Loss`
|
||||
|
||||
Over time, on many trades, you can calculate your risk reward by dividing your average profit on winning trades by your average loss on losing trades:
|
||||
|
||||
`Average profit = (Sum of profits) / (Number of winning trades)`
|
||||
|
||||
`Average loss = (Sum of losses) / (Number of losing trades)`
|
||||
|
||||
`R = (Average profit) / (Average loss)`
|
||||
|
||||
### Expectancy
|
||||
|
||||
At this point we can combine W and R to create an expectancy ratio. This is a simple process of multiplying the risk reward ratio by the percentage of winning trades, and subtracting the percentage of losing trades, which is calculated as follows:
|
||||
|
||||
Expectancy Ratio = (Risk Reward Ratio x Win Rate) – Loss Rate
|
||||
|
||||
So lets say your Win rate is 28% and your Risk Reward Ratio is 5:
|
||||
|
||||
`Expectancy = (5 * 0.28) - 0.72 = 0.68`
|
||||
|
||||
Superficially, this means that on average you expect this strategy’s trades to return .68 times the size of your losers. This is important for two reasons: First, it may seem obvious, but you know right away that you have a positive return. Second, you now have a number you can compare to other candidate systems to make decisions about which ones you employ.
|
||||
|
||||
It is important to remember that any system with an expectancy greater than 0 is profitable using past data. The key is finding one that will be profitable in the future.
|
||||
|
||||
You can also use this number to evaluate the effectiveness of modifications to this system.
|
||||
|
||||
**NOTICE:** It's important to keep in mind that Edge is testing your expectancy using historical data , there's no guarantee that you will have a similar edge in the future. It's still vital to do this testing in order to build confidence in your methodology, but be wary of "curve-fitting" your approach to the historical data as things are unlikely to play out the exact same way for future trades.
|
||||
|
||||
## How does it work?
|
||||
If enabled in config, Edge will go through historical data with a range of stoplosses in order to find buy and sell/stoploss signals. It then calculates win rate and expectancy over X trades for each stoploss. Here is an example:
|
||||
|
||||
| Pair | Stoploss | Win Rate | Risk Reward Ratio | Expectancy |
|
||||
|----------|:-------------:|-------------:|------------------:|-----------:|
|
||||
| XZC/ETH | -0.03 | 0.52 |1.359670 | 0.228 |
|
||||
| XZC/ETH | -0.01 | 0.50 |1.176384 | 0.088 |
|
||||
| XZC/ETH | -0.02 | 0.51 |1.115941 | 0.079 |
|
||||
|
||||
The goal here is to find the best stoploss for the strategy in order to have the maximum expectancy. In the above example stoploss at 3% leads to the maximum expectancy according to historical data.
|
||||
|
||||
Edge then forces stoploss to your strategy dynamically.
|
||||
|
||||
### Position size
|
||||
Edge dictates the stake amount for each trade to the bot according to the following factors:
|
||||
|
||||
- Allowed capital at risk
|
||||
- Stoploss
|
||||
|
||||
Allowed capital at risk is calculated as follows:
|
||||
|
||||
**allowed capital at risk** = **total capital** X **allowed risk per trade**
|
||||
|
||||
**total capital** is your stake amount.
|
||||
|
||||
**Stoploss** is calculated as described above against historical data.
|
||||
|
||||
Your position size then will be:
|
||||
|
||||
**position size** = **allowed capital at risk** / **stoploss**
|
||||
|
||||
Example:
|
||||
Let's say your stake amount is 3 ETH, you would allow 1% of risk for each trade. thus your allowed capital at risk would be **3 x 0.01 = 0.03 ETH**. Let's assume Edge has calculated that for **XLM/ETH** market your stoploss should be at 2%. So your position size will be **0.03 / 0.02= 1.5ETH**.<br/>
|
||||
|
||||
## Configurations
|
||||
Edge has following configurations:
|
||||
|
||||
#### enabled
|
||||
If true, then Edge will run periodically<br/>
|
||||
(default to false)
|
||||
|
||||
#### process_throttle_secs
|
||||
How often should Edge run in seconds? <br/>
|
||||
(default to 3600 so one hour)
|
||||
|
||||
#### calculate_since_number_of_days
|
||||
Number of days of data against which Edge calculates Win Rate, Risk Reward and Expectancy
|
||||
Note that it downloads historical data so increasing this number would lead to slowing down the bot<br/>
|
||||
(default to 7)
|
||||
|
||||
#### allowed_risk
|
||||
Percentage of allowed risk per trade<br/>
|
||||
(default to 0.01 [1%])
|
||||
|
||||
#### stoploss_range_min
|
||||
Minimum stoploss <br/>
|
||||
(default to -0.01)
|
||||
|
||||
#### stoploss_range_max
|
||||
Maximum stoploss <br/>
|
||||
(default to -0.10)
|
||||
|
||||
#### stoploss_range_step
|
||||
As an example if this is set to -0.01 then Edge will test the strategy for [-0.01, -0,02, -0,03 ..., -0.09, -0.10] ranges.
|
||||
Note than having a smaller step means having a bigger range which could lead to slow calculation. <br/>
|
||||
if you set this parameter to -0.001, you then slow down the Edge calculation by a factor of 10. <br/>
|
||||
(default to -0.01)
|
||||
|
||||
#### minimum_winrate
|
||||
It filters pairs which don't have at least minimum_winrate.
|
||||
This comes handy if you want to be conservative and don't comprise win rate in favor of risk reward ratio.<br/>
|
||||
(default to 0.60)
|
||||
|
||||
#### minimum_expectancy
|
||||
It filters paris which have an expectancy lower than this number .
|
||||
Having an expectancy of 0.20 means if you put 10$ on a trade you expect a 12$ return.<br/>
|
||||
(default to 0.20)
|
||||
|
||||
#### min_trade_number
|
||||
When calculating W and R and E (expectancy) against historical data, you always want to have a minimum number of trades. The more this number is the more Edge is reliable. Having a win rate of 100% on a single trade doesn't mean anything at all. But having a win rate of 70% over past 100 trades means clearly something. <br/>
|
||||
(default to 10, it is highly recommended not to decrease this number)
|
||||
|
||||
#### max_trade_duration_minute
|
||||
Edge will filter out trades with long duration. If a trade is profitable after 1 month, it is hard to evaluate the strategy based on it. But if most of trades are profitable and they have maximum duration of 30 minutes, then it is clearly a good sign.<br/>
|
||||
**NOTICE:** While configuring this value, you should take into consideration your ticker interval. as an example filtering out trades having duration less than one day for a strategy which has 4h interval does not make sense. default value is set assuming your strategy interval is relatively small (1m or 5m, etc).<br/>
|
||||
(default to 1 day, 1440 = 60 * 24)
|
||||
|
||||
#### remove_pumps
|
||||
Edge will remove sudden pumps in a given market while going through historical data. However, given that pumps happen very often in crypto markets, we recommend you keep this off.<br/>
|
||||
(default to false)
|
||||
|
||||
|
||||
## Running Edge independently
|
||||
You can run Edge independently in order to see in details the result. Here is an example:
|
||||
```bash
|
||||
python3 ./freqtrade/main.py edge
|
||||
```
|
||||
|
||||
An example of its output:
|
||||
|
||||
| pair | stoploss | win rate | risk reward ratio | required risk reward | expectancy | total number of trades | average duration (min) |
|
||||
|:----------|-----------:|-----------:|--------------------:|-----------------------:|-------------:|-------------------------:|-------------------------:|
|
||||
| AGI/BTC | -0.02 | 0.64 | 5.86 | 0.56 | 3.41 | 14 | 54 |
|
||||
| NXS/BTC | -0.03 | 0.64 | 2.99 | 0.57 | 1.54 | 11 | 26 |
|
||||
| LEND/BTC | -0.02 | 0.82 | 2.05 | 0.22 | 1.50 | 11 | 36 |
|
||||
| VIA/BTC | -0.01 | 0.55 | 3.01 | 0.83 | 1.19 | 11 | 48 |
|
||||
| MTH/BTC | -0.09 | 0.56 | 2.82 | 0.80 | 1.12 | 18 | 52 |
|
||||
| ARDR/BTC | -0.04 | 0.42 | 3.14 | 1.40 | 0.73 | 12 | 42 |
|
||||
| BCPT/BTC | -0.01 | 0.71 | 1.34 | 0.40 | 0.67 | 14 | 30 |
|
||||
| WINGS/BTC | -0.02 | 0.56 | 1.97 | 0.80 | 0.65 | 27 | 42 |
|
||||
| VIBE/BTC | -0.02 | 0.83 | 0.91 | 0.20 | 0.59 | 12 | 35 |
|
||||
| MCO/BTC | -0.02 | 0.79 | 0.97 | 0.27 | 0.55 | 14 | 31 |
|
||||
| GNT/BTC | -0.02 | 0.50 | 2.06 | 1.00 | 0.53 | 18 | 24 |
|
||||
| HOT/BTC | -0.01 | 0.17 | 7.72 | 4.81 | 0.50 | 209 | 7 |
|
||||
| SNM/BTC | -0.03 | 0.71 | 1.06 | 0.42 | 0.45 | 17 | 38 |
|
||||
| APPC/BTC | -0.02 | 0.44 | 2.28 | 1.27 | 0.44 | 25 | 43 |
|
||||
| NEBL/BTC | -0.03 | 0.63 | 1.29 | 0.58 | 0.44 | 19 | 59 |
|
||||
|
||||
### Update cached pairs with the latest data
|
||||
```bash
|
||||
python3 ./freqtrade/main.py edge --refresh-pairs-cached
|
||||
```
|
||||
|
||||
### Precising stoploss range
|
||||
```bash
|
||||
python3 ./freqtrade/main.py edge --stoplosses=-0.01,-0.1,-0.001 #min,max,step
|
||||
```
|
||||
|
||||
### Advanced use of timerange
|
||||
```bash
|
||||
python3 ./freqtrade/main.py edge --timerange=20181110-20181113
|
||||
```
|
||||
|
||||
Doing --timerange=-200 will get the last 200 timeframes from your inputdata. You can also specify specific dates, or a range span indexed by start and stop.
|
||||
|
||||
The full timerange specification:
|
||||
|
||||
* Use last 123 tickframes of data: --timerange=-123
|
||||
* Use first 123 tickframes of data: --timerange=123-
|
||||
* Use tickframes from line 123 through 456: --timerange=123-456
|
||||
* Use tickframes till 2018/01/31: --timerange=-20180131
|
||||
* Use tickframes since 2018/01/31: --timerange=20180131-
|
||||
* Use tickframes since 2018/01/31 till 2018/03/01 : --timerange=20180131-20180301
|
||||
* Use tickframes between POSIX timestamps 1527595200 1527618600: --timerange=1527595200-1527618600
|
@ -19,18 +19,27 @@ and still take a long time.
|
||||
|
||||
## Prepare Hyperopting
|
||||
|
||||
We recommend you start by taking a look at `hyperopt.py` file located in [freqtrade/optimize](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py)
|
||||
Before we start digging in Hyperopt, we recommend you to take a look at
|
||||
an example hyperopt file located into [user_data/hyperopts/](https://github.com/gcarq/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py)
|
||||
|
||||
### 1. Install a Custom Hyperopt File
|
||||
This is very simple. Put your hyperopt file into the folder
|
||||
`user_data/hyperopts`.
|
||||
|
||||
Let assume you want a hyperopt file `awesome_hyperopt.py`:
|
||||
1. Copy the file `user_data/hyperopts/sample_hyperopt.py` into `user_data/hyperopts/awesome_hyperopt.py`
|
||||
|
||||
|
||||
### Configure your Guards and Triggers
|
||||
### 2. Configure your Guards and Triggers
|
||||
There are two places you need to change in your hyperopt file to add a
|
||||
new buy hyperopt for testing:
|
||||
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py#L230-L251).
|
||||
- Inside [indicator_space()](https://github.com/freqtrade/freqtrade/blob/develop/user_data/hyperopts/test_hyperopt.py#L207-L223).
|
||||
|
||||
There are two places you need to change to add a new buy strategy for testing:
|
||||
- Inside [populate_buy_trend()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L231-L264).
|
||||
- Inside [hyperopt_space()](https://github.com/freqtrade/freqtrade/blob/develop/freqtrade/optimize/hyperopt.py#L213-L224)
|
||||
and the associated methods `indicator_space`, `roi_space`, `stoploss_space`.
|
||||
There you have two different types of indicators: 1. `guards` and 2. `triggers`.
|
||||
|
||||
There you have two different type of indicators: 1. `guards` and 2. `triggers`.
|
||||
1. Guards are conditions like "never buy if ADX < 10", or "never buy if
|
||||
current price is over EMA10".
|
||||
1. Guards are conditions like "never buy if ADX < 10", or never buy if
|
||||
current price is over EMA10.
|
||||
2. Triggers are ones that actually trigger buy in specific moment, like
|
||||
"buy when EMA5 crosses over EMA10" or "buy when close price touches lower
|
||||
bollinger band".
|
||||
@ -124,9 +133,12 @@ Because hyperopt tries a lot of combinations to find the best parameters it will
|
||||
We strongly recommend to use `screen` or `tmux` to prevent any connection loss.
|
||||
|
||||
```bash
|
||||
python3 ./freqtrade/main.py -c config.json hyperopt -e 5000
|
||||
python3 ./freqtrade/main.py -s <strategyname> --hyperopt <hyperoptname> -c config.json hyperopt -e 5000
|
||||
```
|
||||
|
||||
Use `<strategyname>` and `<hyperoptname>` as the names of the custom strategy
|
||||
(only required for generating sells) and the custom hyperopt used.
|
||||
|
||||
The `-e` flag will set how many evaluations hyperopt will do. We recommend
|
||||
running at least several thousand evaluations.
|
||||
|
||||
|
@ -1,8 +1,8 @@
|
||||
# freqtrade documentation
|
||||
|
||||
Welcome to freqtrade documentation. Please feel free to contribute to
|
||||
this documentation if you see it became outdated by sending us a
|
||||
Pull-request. Do not hesitate to reach us on
|
||||
this documentation if you see it became outdated by sending us a
|
||||
Pull-request. Do not hesitate to reach us on
|
||||
[Slack](https://join.slack.com/t/highfrequencybot/shared_invite/enQtMjQ5NTM0OTYzMzY3LWMxYzE3M2MxNDdjMGM3ZTYwNzFjMGIwZGRjNTc3ZGU3MGE3NzdmZGMwNmU3NDM5ZTNmM2Y3NjRiNzk4NmM4OGE)
|
||||
if you do not find the answer to your questions.
|
||||
|
||||
@ -21,10 +21,12 @@ Pull-request. Do not hesitate to reach us on
|
||||
- [Bot commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#bot-commands)
|
||||
- [Backtesting commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#backtesting-commands)
|
||||
- [Hyperopt commands](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-usage.md#hyperopt-commands)
|
||||
- [Edge commands](https://github.com/mishaker/freqtrade/blob/develop/docs/bot-usage.md#edge-commands)
|
||||
- [Bot Optimization](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md)
|
||||
- [Change your strategy](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#change-your-strategy)
|
||||
- [Add more Indicator](https://github.com/freqtrade/freqtrade/blob/develop/docs/bot-optimization.md#add-more-indicator)
|
||||
- [Test your strategy with Backtesting](https://github.com/freqtrade/freqtrade/blob/develop/docs/backtesting.md)
|
||||
- [Edge positioning](https://github.com/mishaker/freqtrade/blob/money_mgt/docs/edge.md)
|
||||
- [Find optimal parameters with Hyperopt](https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md)
|
||||
- [Control the bot with telegram](https://github.com/freqtrade/freqtrade/blob/develop/docs/telegram-usage.md)
|
||||
- [Receive notifications via webhook](https://github.com/freqtrade/freqtrade/blob/develop/docs/webhook-config.md)
|
||||
|
@ -104,6 +104,14 @@ class Arguments(object):
|
||||
type=str,
|
||||
metavar='PATH',
|
||||
)
|
||||
self.parser.add_argument(
|
||||
'--customhyperopt',
|
||||
help='specify hyperopt class name (default: %(default)s)',
|
||||
dest='hyperopt',
|
||||
default=constants.DEFAULT_HYPEROPT,
|
||||
type=str,
|
||||
metavar='NAME',
|
||||
)
|
||||
self.parser.add_argument(
|
||||
'--dynamic-whitelist',
|
||||
help='dynamically generate and update whitelist'
|
||||
@ -128,6 +136,22 @@ class Arguments(object):
|
||||
"""
|
||||
Parses given arguments for Backtesting scripts.
|
||||
"""
|
||||
parser.add_argument(
|
||||
'--eps', '--enable-position-stacking',
|
||||
help='Allow buying the same pair multiple times (position stacking)',
|
||||
action='store_true',
|
||||
dest='position_stacking',
|
||||
default=False
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--dmmp', '--disable-max-market-positions',
|
||||
help='Disable applying `max_open_trades` during backtest '
|
||||
'(same as setting `max_open_trades` to a very high number)',
|
||||
action='store_false',
|
||||
dest='use_max_market_positions',
|
||||
default=True
|
||||
)
|
||||
parser.add_argument(
|
||||
'-l', '--live',
|
||||
help='using live data',
|
||||
@ -171,6 +195,27 @@ class Arguments(object):
|
||||
metavar='PATH',
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def edge_options(parser: argparse.ArgumentParser) -> None:
|
||||
"""
|
||||
Parses given arguments for Backtesting scripts.
|
||||
"""
|
||||
parser.add_argument(
|
||||
'-r', '--refresh-pairs-cached',
|
||||
help='refresh the pairs files in tests/testdata with the latest data from the '
|
||||
'exchange. Use it if you want to run your edge with up-to-date data.',
|
||||
action='store_true',
|
||||
dest='refresh_pairs',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--stoplosses',
|
||||
help='defines a range of stoploss against which edge will assess the strategy '
|
||||
'the format is "min,max,step" (without any space).'
|
||||
'example: --stoplosses=-0.01,-0.1,-0.001',
|
||||
type=str,
|
||||
dest='stoploss_range',
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
|
||||
"""
|
||||
@ -184,6 +229,20 @@ class Arguments(object):
|
||||
dest='ticker_interval',
|
||||
type=str,
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--timerange',
|
||||
help='specify what timerange of data to use.',
|
||||
default=None,
|
||||
type=str,
|
||||
dest='timerange',
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_options(parser: argparse.ArgumentParser) -> None:
|
||||
"""
|
||||
Parses given arguments for Hyperopt scripts.
|
||||
"""
|
||||
parser.add_argument(
|
||||
'--eps', '--enable-position-stacking',
|
||||
help='Allow buying the same pair multiple times (position stacking)',
|
||||
@ -200,20 +259,6 @@ class Arguments(object):
|
||||
dest='use_max_market_positions',
|
||||
default=True
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--timerange',
|
||||
help='specify what timerange of data to use.',
|
||||
default=None,
|
||||
type=str,
|
||||
dest='timerange',
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_options(parser: argparse.ArgumentParser) -> None:
|
||||
"""
|
||||
Parses given arguments for Hyperopt scripts.
|
||||
"""
|
||||
parser.add_argument(
|
||||
'-e', '--epochs',
|
||||
help='specify number of epochs (default: %(default)d)',
|
||||
@ -237,7 +282,7 @@ class Arguments(object):
|
||||
Builds and attaches all subcommands
|
||||
:return: None
|
||||
"""
|
||||
from freqtrade.optimize import backtesting, hyperopt
|
||||
from freqtrade.optimize import backtesting, hyperopt, edge_cli
|
||||
|
||||
subparsers = self.parser.add_subparsers(dest='subparser')
|
||||
|
||||
@ -247,6 +292,12 @@ class Arguments(object):
|
||||
self.optimizer_shared_options(backtesting_cmd)
|
||||
self.backtesting_options(backtesting_cmd)
|
||||
|
||||
# Add edge subcommand
|
||||
edge_cmd = subparsers.add_parser('edge', help='edge module')
|
||||
edge_cmd.set_defaults(func=edge_cli.start)
|
||||
self.optimizer_shared_options(edge_cmd)
|
||||
self.edge_options(edge_cmd)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='hyperopt module')
|
||||
hyperopt_cmd.set_defaults(func=hyperopt.start)
|
||||
|
@ -33,6 +33,7 @@ class Configuration(object):
|
||||
Class to read and init the bot configuration
|
||||
Reuse this class for the bot, backtesting, hyperopt and every script that required configuration
|
||||
"""
|
||||
|
||||
def __init__(self, args: Namespace) -> None:
|
||||
self.args = args
|
||||
self.config: Optional[Dict[str, Any]] = None
|
||||
@ -52,12 +53,18 @@ class Configuration(object):
|
||||
if self.args.strategy_path:
|
||||
config.update({'strategy_path': self.args.strategy_path})
|
||||
|
||||
# Add the hyperopt file to use
|
||||
config.update({'hyperopt': self.args.hyperopt})
|
||||
|
||||
# Load Common configuration
|
||||
config = self._load_common_config(config)
|
||||
|
||||
# Load Backtesting
|
||||
config = self._load_backtesting_config(config)
|
||||
|
||||
# Load Edge
|
||||
config = self._load_edge_config(config)
|
||||
|
||||
# Load Hyperopt
|
||||
config = self._load_hyperopt_config(config)
|
||||
|
||||
@ -130,6 +137,10 @@ class Configuration(object):
|
||||
if config.get('forcebuy_enable', False):
|
||||
logger.warning('`forcebuy` RPC message enabled.')
|
||||
|
||||
# Setting max_open_trades to infinite if -1
|
||||
if config.get('max_open_trades') == -1:
|
||||
config['max_open_trades'] = float('inf')
|
||||
|
||||
logger.info(f'Using DB: "{config["db_url"]}"')
|
||||
|
||||
# Check if the exchange set by the user is supported
|
||||
@ -213,6 +224,32 @@ class Configuration(object):
|
||||
|
||||
return config
|
||||
|
||||
def _load_edge_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Extract information for sys.argv and load Edge configuration
|
||||
:return: configuration as dictionary
|
||||
"""
|
||||
|
||||
# If --timerange is used we add it to the configuration
|
||||
if 'timerange' in self.args and self.args.timerange:
|
||||
config.update({'timerange': self.args.timerange})
|
||||
logger.info('Parameter --timerange detected: %s ...', self.args.timerange)
|
||||
|
||||
# If --timerange is used we add it to the configuration
|
||||
if 'stoploss_range' in self.args and self.args.stoploss_range:
|
||||
txt_range = eval(self.args.stoploss_range)
|
||||
config['edge'].update({'stoploss_range_min': txt_range[0]})
|
||||
config['edge'].update({'stoploss_range_max': txt_range[1]})
|
||||
config['edge'].update({'stoploss_range_step': txt_range[2]})
|
||||
logger.info('Parameter --stoplosses detected: %s ...', self.args.stoploss_range)
|
||||
|
||||
# If -r/--refresh-pairs-cached is used we add it to the configuration
|
||||
if 'refresh_pairs' in self.args and self.args.refresh_pairs:
|
||||
config.update({'refresh_pairs': True})
|
||||
logger.info('Parameter -r/--refresh-pairs-cached detected ...')
|
||||
|
||||
return config
|
||||
|
||||
def _load_hyperopt_config(self, config: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Extract information for sys.argv and load Hyperopt configuration
|
||||
|
@ -9,9 +9,12 @@ TICKER_INTERVAL = 5 # min
|
||||
HYPEROPT_EPOCH = 100 # epochs
|
||||
RETRY_TIMEOUT = 30 # sec
|
||||
DEFAULT_STRATEGY = 'DefaultStrategy'
|
||||
DEFAULT_HYPEROPT = 'DefaultHyperOpts'
|
||||
DEFAULT_DB_PROD_URL = 'sqlite:///tradesv3.sqlite'
|
||||
DEFAULT_DB_DRYRUN_URL = 'sqlite://'
|
||||
UNLIMITED_STAKE_AMOUNT = 'unlimited'
|
||||
REQUIRED_ORDERTYPES = ['buy', 'sell', 'stoploss']
|
||||
ORDERTYPE_POSSIBILITIES = ['limit', 'market']
|
||||
|
||||
|
||||
TICKER_INTERVAL_MINUTES = {
|
||||
@ -37,13 +40,13 @@ SUPPORTED_FIAT = [
|
||||
"KRW", "MXN", "MYR", "NOK", "NZD", "PHP", "PKR", "PLN",
|
||||
"RUB", "SEK", "SGD", "THB", "TRY", "TWD", "ZAR", "USD",
|
||||
"BTC", "XBT", "ETH", "XRP", "LTC", "BCH", "USDT"
|
||||
]
|
||||
]
|
||||
|
||||
# Required json-schema for user specified config
|
||||
CONF_SCHEMA = {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'max_open_trades': {'type': 'integer', 'minimum': 0},
|
||||
'max_open_trades': {'type': 'integer', 'minimum': -1},
|
||||
'ticker_interval': {'type': 'string', 'enum': list(TICKER_INTERVAL_MINUTES.keys())},
|
||||
'stake_currency': {'type': 'string', 'enum': ['BTC', 'XBT', 'ETH', 'USDT', 'EUR', 'USD']},
|
||||
'stake_amount': {
|
||||
@ -101,7 +104,17 @@ CONF_SCHEMA = {
|
||||
'order_book_max': {'type': 'number', 'minimum': 1, 'maximum': 50}
|
||||
}
|
||||
},
|
||||
'order_types': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
'buy': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
||||
'sell': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES},
|
||||
'stoploss': {'type': 'string', 'enum': ORDERTYPE_POSSIBILITIES}
|
||||
},
|
||||
'required': ['buy', 'sell', 'stoploss']
|
||||
},
|
||||
'exchange': {'$ref': '#/definitions/exchange'},
|
||||
'edge': {'$ref': '#/definitions/edge'},
|
||||
'experimental': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
@ -170,6 +183,23 @@ CONF_SCHEMA = {
|
||||
'ccxt_async_config': {'type': 'object'}
|
||||
},
|
||||
'required': ['name', 'key', 'secret', 'pair_whitelist']
|
||||
},
|
||||
'edge': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
"enabled": {'type': 'boolean'},
|
||||
"process_throttle_secs": {'type': 'integer', 'minimum': 600},
|
||||
"calculate_since_number_of_days": {'type': 'integer'},
|
||||
"allowed_risk": {'type': 'number'},
|
||||
"stoploss_range_min": {'type': 'number'},
|
||||
"stoploss_range_max": {'type': 'number'},
|
||||
"stoploss_range_step": {'type': 'number'},
|
||||
"minimum_winrate": {'type': 'number'},
|
||||
"minimum_expectancy": {'type': 'number'},
|
||||
"min_trade_number": {'type': 'number'},
|
||||
"max_trade_duration_minute": {'type': 'integer'},
|
||||
"remove_pumps": {'type': 'boolean'}
|
||||
}
|
||||
}
|
||||
},
|
||||
'anyOf': [
|
||||
|
414
freqtrade/edge/__init__.py
Normal file
414
freqtrade/edge/__init__.py
Normal file
@ -0,0 +1,414 @@
|
||||
# pragma pylint: disable=W0603
|
||||
""" Edge positioning package """
|
||||
import logging
|
||||
from typing import Any, Dict, NamedTuple
|
||||
import arrow
|
||||
|
||||
import numpy as np
|
||||
import utils_find_1st as utf1st
|
||||
from pandas import DataFrame
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.strategy.interface import SellType
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PairInfo(NamedTuple):
|
||||
stoploss: float
|
||||
winrate: float
|
||||
risk_reward_ratio: float
|
||||
required_risk_reward: float
|
||||
expectancy: float
|
||||
nb_trades: int
|
||||
avg_trade_duration: float
|
||||
|
||||
|
||||
class Edge():
|
||||
"""
|
||||
Calculates Win Rate, Risk Reward Ratio, Expectancy
|
||||
against historical data for a give set of markets and a strategy
|
||||
it then adjusts stoploss and position size accordingly
|
||||
and force it into the strategy
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
config: Dict = {}
|
||||
_cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
|
||||
def __init__(self, config: Dict[str, Any], exchange, strategy) -> None:
|
||||
|
||||
self.config = config
|
||||
self.exchange = exchange
|
||||
self.strategy = strategy
|
||||
self.ticker_interval = self.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||
self.get_timeframe = optimize.get_timeframe
|
||||
self.advise_sell = self.strategy.advise_sell
|
||||
self.advise_buy = self.strategy.advise_buy
|
||||
|
||||
self.edge_config = self.config.get('edge', {})
|
||||
self._cached_pairs: Dict[str, Any] = {} # Keeps a list of pairs
|
||||
|
||||
self._total_capital: float = self.config['stake_amount']
|
||||
self._allowed_risk: float = self.edge_config.get('allowed_risk')
|
||||
self._since_number_of_days: int = self.edge_config.get('calculate_since_number_of_days', 14)
|
||||
self._last_updated: int = 0 # Timestamp of pairs last updated time
|
||||
self._refresh_pairs = True
|
||||
|
||||
self._stoploss_range_min = float(self.edge_config.get('stoploss_range_min', -0.01))
|
||||
self._stoploss_range_max = float(self.edge_config.get('stoploss_range_max', -0.05))
|
||||
self._stoploss_range_step = float(self.edge_config.get('stoploss_range_step', -0.001))
|
||||
|
||||
# calculating stoploss range
|
||||
self._stoploss_range = np.arange(
|
||||
self._stoploss_range_min,
|
||||
self._stoploss_range_max,
|
||||
self._stoploss_range_step
|
||||
)
|
||||
|
||||
self._timerange: TimeRange = Arguments.parse_timerange("%s-" % arrow.now().shift(
|
||||
days=-1 * self._since_number_of_days).format('YYYYMMDD'))
|
||||
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
def calculate(self) -> bool:
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
heartbeat = self.edge_config.get('process_throttle_secs')
|
||||
|
||||
if (self._last_updated > 0) and (
|
||||
self._last_updated + heartbeat > arrow.utcnow().timestamp):
|
||||
return False
|
||||
|
||||
data: Dict[str, Any] = {}
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=self._refresh_pairs,
|
||||
exchange=self.exchange,
|
||||
timerange=self._timerange
|
||||
)
|
||||
|
||||
if not data:
|
||||
# Reinitializing cached pairs
|
||||
self._cached_pairs = {}
|
||||
logger.critical("No data found. Edge is stopped ...")
|
||||
return False
|
||||
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days) ...',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
|
||||
trades: list = []
|
||||
for pair, pair_data in preprocessed.items():
|
||||
# Sorting dataframe by date and reset index
|
||||
pair_data = pair_data.sort_values(by=['date'])
|
||||
pair_data = pair_data.reset_index(drop=True)
|
||||
|
||||
ticker_data = self.advise_sell(
|
||||
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
trades += self._find_trades_for_stoploss_range(ticker_data, pair, self._stoploss_range)
|
||||
|
||||
# If no trade found then exit
|
||||
if len(trades) == 0:
|
||||
return False
|
||||
|
||||
# Fill missing, calculable columns, profit, duration , abs etc.
|
||||
trades_df = self._fill_calculable_fields(DataFrame(trades))
|
||||
self._cached_pairs = self._process_expectancy(trades_df)
|
||||
self._last_updated = arrow.utcnow().timestamp
|
||||
|
||||
# Not a nice hack but probably simplest solution:
|
||||
# When backtest load data it loads the delta between disk and exchange
|
||||
# The problem is that exchange consider that recent.
|
||||
# it is but it is incomplete (c.f. _async_get_candle_history)
|
||||
# So it causes get_signal to exit cause incomplete ticker_hist
|
||||
# A patch to that would be update _pairs_last_refresh_time of exchange
|
||||
# so it will download again all pairs
|
||||
# Another solution is to add new data to klines instead of reassigning it:
|
||||
# self.klines[pair].update(data) instead of self.klines[pair] = data in exchange package.
|
||||
# But that means indexing timestamp and having a verification so that
|
||||
# there is no empty range between two timestaps (recently added and last
|
||||
# one)
|
||||
self.exchange._pairs_last_refresh_time = {}
|
||||
|
||||
return True
|
||||
|
||||
def stake_amount(self, pair: str) -> float:
|
||||
stoploss = self._cached_pairs[pair].stoploss
|
||||
allowed_capital_at_risk = round(self._total_capital * self._allowed_risk, 5)
|
||||
position_size = abs(round((allowed_capital_at_risk / stoploss), 5))
|
||||
return position_size
|
||||
|
||||
def stoploss(self, pair: str) -> float:
|
||||
return self._cached_pairs[pair].stoploss
|
||||
|
||||
def adjust(self, pairs) -> list:
|
||||
"""
|
||||
Filters out and sorts "pairs" according to Edge calculated pairs
|
||||
"""
|
||||
|
||||
final = []
|
||||
for pair, info in self._cached_pairs.items():
|
||||
if info.expectancy > float(self.edge_config.get('minimum_expectancy', 0.2)) and \
|
||||
info.winrate > float(self.edge_config.get('minimum_winrate', 0.60)) and \
|
||||
pair in pairs:
|
||||
final.append(pair)
|
||||
|
||||
if final:
|
||||
logger.info('Edge validated only %s', final)
|
||||
else:
|
||||
logger.info('Edge removed all pairs as no pair with minimum expectancy was found !')
|
||||
|
||||
return final
|
||||
|
||||
def _fill_calculable_fields(self, result: DataFrame) -> DataFrame:
|
||||
"""
|
||||
The result frame contains a number of columns that are calculable
|
||||
from other columns. These are left blank till all rows are added,
|
||||
to be populated in single vector calls.
|
||||
|
||||
Columns to be populated are:
|
||||
- Profit
|
||||
- trade duration
|
||||
- profit abs
|
||||
:param result Dataframe
|
||||
:return: result Dataframe
|
||||
"""
|
||||
|
||||
# stake and fees
|
||||
# stake = 0.015
|
||||
# 0.05% is 0.0005
|
||||
# fee = 0.001
|
||||
|
||||
stake = self.config.get('stake_amount')
|
||||
fee = self.fee
|
||||
|
||||
open_fee = fee / 2
|
||||
close_fee = fee / 2
|
||||
|
||||
result['trade_duration'] = result['close_time'] - result['open_time']
|
||||
|
||||
result['trade_duration'] = result['trade_duration'].map(
|
||||
lambda x: int(x.total_seconds() / 60))
|
||||
|
||||
# Spends, Takes, Profit, Absolute Profit
|
||||
|
||||
# Buy Price
|
||||
result['buy_vol'] = stake / result['open_rate'] # How many target are we buying
|
||||
result['buy_fee'] = stake * open_fee
|
||||
result['buy_spend'] = stake + result['buy_fee'] # How much we're spending
|
||||
|
||||
# Sell price
|
||||
result['sell_sum'] = result['buy_vol'] * result['close_rate']
|
||||
result['sell_fee'] = result['sell_sum'] * close_fee
|
||||
result['sell_take'] = result['sell_sum'] - result['sell_fee']
|
||||
|
||||
# profit_percent
|
||||
result['profit_percent'] = (result['sell_take'] - result['buy_spend']) / result['buy_spend']
|
||||
|
||||
# Absolute profit
|
||||
result['profit_abs'] = result['sell_take'] - result['buy_spend']
|
||||
|
||||
return result
|
||||
|
||||
def _process_expectancy(self, results: DataFrame) -> Dict[str, Any]:
|
||||
"""
|
||||
This calculates WinRate, Required Risk Reward, Risk Reward and Expectancy of all pairs
|
||||
The calulation will be done per pair and per strategy.
|
||||
"""
|
||||
# Removing pairs having less than min_trades_number
|
||||
min_trades_number = self.edge_config.get('min_trade_number', 10)
|
||||
results = results.groupby(['pair', 'stoploss']).filter(lambda x: len(x) > min_trades_number)
|
||||
###################################
|
||||
|
||||
# Removing outliers (Only Pumps) from the dataset
|
||||
# The method to detect outliers is to calculate standard deviation
|
||||
# Then every value more than (standard deviation + 2*average) is out (pump)
|
||||
#
|
||||
# Removing Pumps
|
||||
if self.edge_config.get('remove_pumps', False):
|
||||
results = results.groupby(['pair', 'stoploss']).apply(
|
||||
lambda x: x[x['profit_abs'] < 2 * x['profit_abs'].std() + x['profit_abs'].mean()])
|
||||
##########################################################################
|
||||
|
||||
# Removing trades having a duration more than X minutes (set in config)
|
||||
max_trade_duration = self.edge_config.get('max_trade_duration_minute', 1440)
|
||||
results = results[results.trade_duration < max_trade_duration]
|
||||
#######################################################################
|
||||
|
||||
if results.empty:
|
||||
return {}
|
||||
|
||||
groupby_aggregator = {
|
||||
'profit_abs': [
|
||||
('nb_trades', 'count'), # number of all trades
|
||||
('profit_sum', lambda x: x[x > 0].sum()), # cumulative profit of all winning trades
|
||||
('loss_sum', lambda x: abs(x[x < 0].sum())), # cumulative loss of all losing trades
|
||||
('nb_win_trades', lambda x: x[x > 0].count()) # number of winning trades
|
||||
],
|
||||
'trade_duration': [('avg_trade_duration', 'mean')]
|
||||
}
|
||||
|
||||
# Group by (pair and stoploss) by applying above aggregator
|
||||
df = results.groupby(['pair', 'stoploss'])['profit_abs', 'trade_duration'].agg(
|
||||
groupby_aggregator).reset_index(col_level=1)
|
||||
|
||||
# Dropping level 0 as we don't need it
|
||||
df.columns = df.columns.droplevel(0)
|
||||
|
||||
# Calculating number of losing trades, average win and average loss
|
||||
df['nb_loss_trades'] = df['nb_trades'] - df['nb_win_trades']
|
||||
df['average_win'] = df['profit_sum'] / df['nb_win_trades']
|
||||
df['average_loss'] = df['loss_sum'] / df['nb_loss_trades']
|
||||
|
||||
# Win rate = number of profitable trades / number of trades
|
||||
df['winrate'] = df['nb_win_trades'] / df['nb_trades']
|
||||
|
||||
# risk_reward_ratio = average win / average loss
|
||||
df['risk_reward_ratio'] = df['average_win'] / df['average_loss']
|
||||
|
||||
# required_risk_reward = (1 / winrate) - 1
|
||||
df['required_risk_reward'] = (1 / df['winrate']) - 1
|
||||
|
||||
# expectancy = (risk_reward_ratio * winrate) - (lossrate)
|
||||
df['expectancy'] = (df['risk_reward_ratio'] * df['winrate']) - (1 - df['winrate'])
|
||||
|
||||
# sort by expectancy and stoploss
|
||||
df = df.sort_values(by=['expectancy', 'stoploss'], ascending=False).groupby(
|
||||
'pair').first().sort_values(by=['expectancy'], ascending=False).reset_index()
|
||||
|
||||
final = {}
|
||||
for x in df.itertuples():
|
||||
final[x.pair] = PairInfo(
|
||||
x.stoploss,
|
||||
x.winrate,
|
||||
x.risk_reward_ratio,
|
||||
x.required_risk_reward,
|
||||
x.expectancy,
|
||||
x.nb_trades,
|
||||
x.avg_trade_duration
|
||||
)
|
||||
|
||||
# Returning a list of pairs in order of "expectancy"
|
||||
return final
|
||||
|
||||
def _find_trades_for_stoploss_range(self, ticker_data, pair, stoploss_range):
|
||||
buy_column = ticker_data['buy'].values
|
||||
sell_column = ticker_data['sell'].values
|
||||
date_column = ticker_data['date'].values
|
||||
ohlc_columns = ticker_data[['open', 'high', 'low', 'close']].values
|
||||
|
||||
result: list = []
|
||||
for stoploss in stoploss_range:
|
||||
result += self._detect_next_stop_or_sell_point(
|
||||
buy_column, sell_column, date_column, ohlc_columns, round(stoploss, 6), pair
|
||||
)
|
||||
|
||||
return result
|
||||
|
||||
def _detect_next_stop_or_sell_point(self, buy_column, sell_column, date_column,
|
||||
ohlc_columns, stoploss, pair, start_point=0):
|
||||
"""
|
||||
Iterate through ohlc_columns recursively in order to find the next trade
|
||||
Next trade opens from the first buy signal noticed to
|
||||
The sell or stoploss signal after it.
|
||||
It then calls itself cutting OHLC, buy_column, sell_colum and date_column
|
||||
Cut from (the exit trade index) + 1
|
||||
Author: https://github.com/mishaker
|
||||
"""
|
||||
|
||||
result: list = []
|
||||
open_trade_index = utf1st.find_1st(buy_column, 1, utf1st.cmp_equal)
|
||||
|
||||
# return empty if we don't find trade entry (i.e. buy==1) or
|
||||
# we find a buy but at the of array
|
||||
if open_trade_index == -1 or open_trade_index == len(buy_column) - 1:
|
||||
return []
|
||||
else:
|
||||
open_trade_index += 1 # when a buy signal is seen,
|
||||
# trade opens in reality on the next candle
|
||||
|
||||
stop_price_percentage = stoploss + 1
|
||||
open_price = ohlc_columns[open_trade_index, 0]
|
||||
stop_price = (open_price * stop_price_percentage)
|
||||
|
||||
# Searching for the index where stoploss is hit
|
||||
stop_index = utf1st.find_1st(
|
||||
ohlc_columns[open_trade_index:, 2], stop_price, utf1st.cmp_smaller)
|
||||
|
||||
# If we don't find it then we assume stop_index will be far in future (infinite number)
|
||||
if stop_index == -1:
|
||||
stop_index = float('inf')
|
||||
|
||||
# Searching for the index where sell is hit
|
||||
sell_index = utf1st.find_1st(sell_column[open_trade_index:], 1, utf1st.cmp_equal)
|
||||
|
||||
# If we don't find it then we assume sell_index will be far in future (infinite number)
|
||||
if sell_index == -1:
|
||||
sell_index = float('inf')
|
||||
|
||||
# Check if we don't find any stop or sell point (in that case trade remains open)
|
||||
# It is not interesting for Edge to consider it so we simply ignore the trade
|
||||
# And stop iterating there is no more entry
|
||||
if stop_index == sell_index == float('inf'):
|
||||
return []
|
||||
|
||||
if stop_index <= sell_index:
|
||||
exit_index = open_trade_index + stop_index
|
||||
exit_type = SellType.STOP_LOSS
|
||||
exit_price = stop_price
|
||||
elif stop_index > sell_index:
|
||||
# if exit is SELL then we exit at the next candle
|
||||
exit_index = open_trade_index + sell_index + 1
|
||||
|
||||
# check if we have the next candle
|
||||
if len(ohlc_columns) - 1 < exit_index:
|
||||
return []
|
||||
|
||||
exit_type = SellType.SELL_SIGNAL
|
||||
exit_price = ohlc_columns[exit_index, 0]
|
||||
|
||||
trade = {'pair': pair,
|
||||
'stoploss': stoploss,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': date_column[open_trade_index],
|
||||
'close_time': date_column[exit_index],
|
||||
'open_index': start_point + open_trade_index,
|
||||
'close_index': start_point + exit_index,
|
||||
'trade_duration': '',
|
||||
'open_rate': round(open_price, 15),
|
||||
'close_rate': round(exit_price, 15),
|
||||
'exit_type': exit_type
|
||||
}
|
||||
|
||||
result.append(trade)
|
||||
|
||||
# Calling again the same function recursively but giving
|
||||
# it a view of exit_index till the end of array
|
||||
return result + self._detect_next_stop_or_sell_point(
|
||||
buy_column[exit_index:],
|
||||
sell_column[exit_index:],
|
||||
date_column[exit_index:],
|
||||
ohlc_columns[exit_index:],
|
||||
stoploss,
|
||||
pair,
|
||||
(start_point + exit_index)
|
||||
)
|
@ -102,7 +102,7 @@ class Exchange(object):
|
||||
self.markets = self._load_markets()
|
||||
# Check if all pairs are available
|
||||
self.validate_pairs(config['exchange']['pair_whitelist'])
|
||||
|
||||
self.validate_ordertypes(config.get('order_types', {}))
|
||||
if config.get('ticker_interval'):
|
||||
# Check if timeframe is available
|
||||
self.validate_timeframes(config['ticker_interval'])
|
||||
@ -218,6 +218,15 @@ class Exchange(object):
|
||||
raise OperationalException(
|
||||
f'Invalid ticker {timeframe}, this Exchange supports {timeframes}')
|
||||
|
||||
def validate_ordertypes(self, order_types: Dict) -> None:
|
||||
"""
|
||||
Checks if order-types configured in strategy/config are supported
|
||||
"""
|
||||
if any(v == 'market' for k, v in order_types.items()):
|
||||
if not self.exchange_has('createMarketOrder'):
|
||||
raise OperationalException(
|
||||
f'Exchange {self.name} does not support market orders.')
|
||||
|
||||
def exchange_has(self, endpoint: str) -> bool:
|
||||
"""
|
||||
Checks if exchange implements a specific API endpoint.
|
||||
@ -249,14 +258,14 @@ class Exchange(object):
|
||||
price = ceil(big_price) / pow(10, symbol_prec)
|
||||
return price
|
||||
|
||||
def buy(self, pair: str, rate: float, amount: float) -> Dict:
|
||||
def buy(self, pair: str, ordertype: str, amount: float, rate: float) -> Dict:
|
||||
if self._conf['dry_run']:
|
||||
order_id = f'dry_run_buy_{randint(0, 10**6)}'
|
||||
self._dry_run_open_orders[order_id] = {
|
||||
'pair': pair,
|
||||
'price': rate,
|
||||
'amount': amount,
|
||||
'type': 'limit',
|
||||
'type': ordertype,
|
||||
'side': 'buy',
|
||||
'remaining': 0.0,
|
||||
'datetime': arrow.utcnow().isoformat(),
|
||||
@ -268,9 +277,9 @@ class Exchange(object):
|
||||
try:
|
||||
# Set the precision for amount and price(rate) as accepted by the exchange
|
||||
amount = self.symbol_amount_prec(pair, amount)
|
||||
rate = self.symbol_price_prec(pair, rate)
|
||||
rate = self.symbol_price_prec(pair, rate) if ordertype != 'market' else None
|
||||
|
||||
return self._api.create_limit_buy_order(pair, amount, rate)
|
||||
return self._api.create_order(pair, ordertype, 'buy', amount, rate)
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
f'Insufficient funds to create limit buy order on market {pair}.'
|
||||
@ -287,14 +296,14 @@ class Exchange(object):
|
||||
except ccxt.BaseError as e:
|
||||
raise OperationalException(e)
|
||||
|
||||
def sell(self, pair: str, rate: float, amount: float) -> Dict:
|
||||
def sell(self, pair: str, ordertype: str, amount: float, rate: float) -> Dict:
|
||||
if self._conf['dry_run']:
|
||||
order_id = f'dry_run_sell_{randint(0, 10**6)}'
|
||||
self._dry_run_open_orders[order_id] = {
|
||||
'pair': pair,
|
||||
'price': rate,
|
||||
'amount': amount,
|
||||
'type': 'limit',
|
||||
'type': ordertype,
|
||||
'side': 'sell',
|
||||
'remaining': 0.0,
|
||||
'datetime': arrow.utcnow().isoformat(),
|
||||
@ -305,9 +314,9 @@ class Exchange(object):
|
||||
try:
|
||||
# Set the precision for amount and price(rate) as accepted by the exchange
|
||||
amount = self.symbol_amount_prec(pair, amount)
|
||||
rate = self.symbol_price_prec(pair, rate)
|
||||
rate = self.symbol_price_prec(pair, rate) if ordertype != 'market' else None
|
||||
|
||||
return self._api.create_limit_sell_order(pair, amount, rate)
|
||||
return self._api.create_order(pair, ordertype, 'sell', amount, rate)
|
||||
except ccxt.InsufficientFunds as e:
|
||||
raise DependencyException(
|
||||
f'Insufficient funds to create limit sell order on market {pair}.'
|
||||
|
@ -17,6 +17,8 @@ from cachetools import TTLCache, cached
|
||||
from freqtrade import (DependencyException, OperationalException,
|
||||
TemporaryError, __version__, constants, persistence)
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.wallets import Wallets
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.rpc import RPCManager, RPCMessageType
|
||||
from freqtrade.state import State
|
||||
@ -24,6 +26,7 @@ from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
from freqtrade.exchange.exchange_helpers import order_book_to_dataframe
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@ -54,6 +57,12 @@ class FreqtradeBot(object):
|
||||
self.rpc: RPCManager = RPCManager(self)
|
||||
self.persistence = None
|
||||
self.exchange = Exchange(self.config)
|
||||
self.wallets = Wallets(self.exchange)
|
||||
|
||||
# Initializing Edge only if enabled
|
||||
self.edge = Edge(self.config, self.exchange, self.strategy) if \
|
||||
self.config.get('edge', {}).get('enabled', False) else None
|
||||
|
||||
self.active_pair_whitelist: List[str] = self.config['exchange']['pair_whitelist']
|
||||
self._init_modules()
|
||||
|
||||
@ -133,7 +142,7 @@ class FreqtradeBot(object):
|
||||
f'*Strategy:* `{strategy_name}`'
|
||||
})
|
||||
if self.config.get('dynamic_whitelist', False):
|
||||
top_pairs = 'top ' + str(self.config.get('dynamic_whitelist', 20))
|
||||
top_pairs = 'top volume ' + str(self.config.get('dynamic_whitelist', 20))
|
||||
specific_pairs = ''
|
||||
else:
|
||||
top_pairs = 'whitelisted'
|
||||
@ -179,6 +188,14 @@ class FreqtradeBot(object):
|
||||
# Keep only the subsets of pairs wanted (up to nb_assets)
|
||||
self.active_pair_whitelist = sanitized_list[:nb_assets] if nb_assets else sanitized_list
|
||||
|
||||
# Calculating Edge positiong
|
||||
# Should be called before refresh_tickers
|
||||
# Otherwise it will override cached klines in exchange
|
||||
# with delta value (klines only from last refresh_pairs)
|
||||
if self.edge:
|
||||
self.edge.calculate()
|
||||
self.active_pair_whitelist = self.edge.adjust(self.active_pair_whitelist)
|
||||
|
||||
# Query trades from persistence layer
|
||||
trades = Trade.query.filter(Trade.is_open.is_(True)).all()
|
||||
|
||||
@ -309,14 +326,20 @@ class FreqtradeBot(object):
|
||||
|
||||
return used_rate
|
||||
|
||||
def _get_trade_stake_amount(self) -> Optional[float]:
|
||||
def _get_trade_stake_amount(self, pair) -> Optional[float]:
|
||||
"""
|
||||
Check if stake amount can be fulfilled with the available balance
|
||||
for the stake currency
|
||||
:return: float: Stake Amount
|
||||
"""
|
||||
stake_amount = self.config['stake_amount']
|
||||
if self.edge:
|
||||
stake_amount = self.edge.stake_amount(pair)
|
||||
else:
|
||||
stake_amount = self.config['stake_amount']
|
||||
|
||||
# TODO: should come from the wallet
|
||||
avaliable_amount = self.exchange.get_balance(self.config['stake_currency'])
|
||||
# avaliable_amount = self.wallets.wallets[self.config['stake_currency']].free
|
||||
|
||||
if stake_amount == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
open_trades = len(Trade.query.filter(Trade.is_open.is_(True)).all())
|
||||
@ -373,15 +396,6 @@ class FreqtradeBot(object):
|
||||
:return: True if a trade object has been created and persisted, False otherwise
|
||||
"""
|
||||
interval = self.strategy.ticker_interval
|
||||
stake_amount = self._get_trade_stake_amount()
|
||||
|
||||
if not stake_amount:
|
||||
return False
|
||||
|
||||
logger.info(
|
||||
'Checking buy signals to create a new trade with stake_amount: %f ...',
|
||||
stake_amount
|
||||
)
|
||||
whitelist = copy.deepcopy(self.active_pair_whitelist)
|
||||
|
||||
# Remove currently opened and latest pairs from whitelist
|
||||
@ -394,10 +408,18 @@ class FreqtradeBot(object):
|
||||
raise DependencyException('No currency pairs in whitelist')
|
||||
|
||||
# running get_signal on historical data fetched
|
||||
# to find buy signals
|
||||
for _pair in whitelist:
|
||||
(buy, sell) = self.strategy.get_signal(_pair, interval, self.exchange.klines.get(_pair))
|
||||
if buy and not sell:
|
||||
stake_amount = self._get_trade_stake_amount(_pair)
|
||||
if not stake_amount:
|
||||
return False
|
||||
|
||||
logger.info(
|
||||
'Buy signal found: about create a new trade with stake_amount: %f ...',
|
||||
stake_amount
|
||||
)
|
||||
|
||||
bidstrat_check_depth_of_market = self.config.get('bid_strategy', {}).\
|
||||
get('check_depth_of_market', {})
|
||||
if (bidstrat_check_depth_of_market.get('enabled', False)) and\
|
||||
@ -454,7 +476,8 @@ class FreqtradeBot(object):
|
||||
|
||||
amount = stake_amount / buy_limit
|
||||
|
||||
order_id = self.exchange.buy(pair, buy_limit, amount)['id']
|
||||
order_id = self.exchange.buy(pair=pair, ordertype=self.strategy.order_types['buy'],
|
||||
amount=amount, rate=buy_limit)['id']
|
||||
|
||||
self.rpc.send_msg({
|
||||
'type': RPCMessageType.BUY_NOTIFICATION,
|
||||
@ -484,6 +507,10 @@ class FreqtradeBot(object):
|
||||
)
|
||||
Trade.session.add(trade)
|
||||
Trade.session.flush()
|
||||
|
||||
# Updating wallets
|
||||
self.wallets.update()
|
||||
|
||||
return True
|
||||
|
||||
def process_maybe_execute_buy(self) -> bool:
|
||||
@ -528,7 +555,14 @@ class FreqtradeBot(object):
|
||||
|
||||
if trade.is_open and trade.open_order_id is None:
|
||||
# Check if we can sell our current pair
|
||||
return self.handle_trade(trade)
|
||||
result = self.handle_trade(trade)
|
||||
|
||||
# Updating wallets if any trade occured
|
||||
if result:
|
||||
self.wallets.update()
|
||||
|
||||
return result
|
||||
|
||||
except DependencyException as exception:
|
||||
logger.warning('Unable to sell trade: %s', exception)
|
||||
return False
|
||||
@ -624,10 +658,16 @@ class FreqtradeBot(object):
|
||||
return False
|
||||
|
||||
def check_sell(self, trade: Trade, sell_rate: float, buy: bool, sell: bool) -> bool:
|
||||
should_sell = self.strategy.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell)
|
||||
if self.edge:
|
||||
stoploss = self.edge.stoploss(trade.pair)
|
||||
should_sell = self.strategy.should_sell(
|
||||
trade, sell_rate, datetime.utcnow(), buy, sell, force_stoploss=stoploss)
|
||||
else:
|
||||
should_sell = self.strategy.should_sell(trade, sell_rate, datetime.utcnow(), buy, sell)
|
||||
|
||||
if should_sell.sell_flag:
|
||||
self.execute_sell(trade, sell_rate, should_sell.sell_type)
|
||||
logger.info('excuted sell')
|
||||
logger.info('executed sell, reason: %s', should_sell.sell_type)
|
||||
return True
|
||||
return False
|
||||
|
||||
@ -661,14 +701,17 @@ class FreqtradeBot(object):
|
||||
|
||||
# Check if trade is still actually open
|
||||
if int(order['remaining']) == 0:
|
||||
self.wallets.update()
|
||||
continue
|
||||
|
||||
# Check if trade is still actually open
|
||||
if order['status'] == 'open':
|
||||
if order['side'] == 'buy' and ordertime < buy_timeoutthreashold:
|
||||
self.handle_timedout_limit_buy(trade, order)
|
||||
self.wallets.update()
|
||||
elif order['side'] == 'sell' and ordertime < sell_timeoutthreashold:
|
||||
self.handle_timedout_limit_sell(trade, order)
|
||||
self.wallets.update()
|
||||
|
||||
# FIX: 20180110, why is cancel.order unconditionally here, whereas
|
||||
# it is conditionally called in the
|
||||
@ -735,8 +778,13 @@ class FreqtradeBot(object):
|
||||
:param sellreason: Reason the sell was triggered
|
||||
:return: None
|
||||
"""
|
||||
sell_type = 'sell'
|
||||
if sell_reason in (SellType.STOP_LOSS, SellType.TRAILING_STOP_LOSS):
|
||||
sell_type = 'stoploss'
|
||||
# Execute sell and update trade record
|
||||
order_id = self.exchange.sell(str(trade.pair), limit, trade.amount)['id']
|
||||
order_id = self.exchange.sell(pair=str(trade.pair),
|
||||
ordertype=self.strategy.order_types[sell_type],
|
||||
amount=trade.amount, rate=limit)['id']
|
||||
trade.open_order_id = order_id
|
||||
trade.close_rate_requested = limit
|
||||
trade.sell_reason = sell_reason.value
|
||||
|
@ -20,6 +20,7 @@ from pandas import DataFrame
|
||||
from freqtrade import misc, constants, OperationalException
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.arguments import TimeRange
|
||||
from freqtrade.optimize.default_hyperopt import DefaultHyperOpts # noqa: F401
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
130
freqtrade/optimize/default_hyperopt.py
Normal file
130
freqtrade/optimize/default_hyperopt.py
Normal file
@ -0,0 +1,130 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from typing import Dict, Any, Callable, List
|
||||
from functools import reduce
|
||||
|
||||
from skopt.space import Categorical, Dimension, Integer, Real
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
|
||||
class_name = 'DefaultHyperOpts'
|
||||
|
||||
|
||||
class DefaultHyperOpts(IHyperOpt):
|
||||
"""
|
||||
Default hyperopt provided by freqtrade bot.
|
||||
You can override it with your own hyperopt
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
return dataframe
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by hyperopt
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use
|
||||
"""
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
@staticmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return [
|
||||
Integer(10, 25, name='mfi-value'),
|
||||
Integer(15, 45, name='fastd-value'),
|
||||
Integer(20, 50, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
Generate the ROI table that will be used by Hyperopt
|
||||
"""
|
||||
roi_table = {}
|
||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||
|
||||
return roi_table
|
||||
|
||||
@staticmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
Stoploss Value to search
|
||||
"""
|
||||
return [
|
||||
Real(-0.5, -0.02, name='stoploss'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
Values to search for each ROI steps
|
||||
"""
|
||||
return [
|
||||
Integer(10, 120, name='roi_t1'),
|
||||
Integer(10, 60, name='roi_t2'),
|
||||
Integer(10, 40, name='roi_t3'),
|
||||
Real(0.01, 0.04, name='roi_p1'),
|
||||
Real(0.01, 0.07, name='roi_p2'),
|
||||
Real(0.01, 0.20, name='roi_p3'),
|
||||
]
|
106
freqtrade/optimize/edge_cli.py
Normal file
106
freqtrade/optimize/edge_cli.py
Normal file
@ -0,0 +1,106 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
|
||||
|
||||
"""
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
import logging
|
||||
from argparse import Namespace
|
||||
from typing import Dict, Any
|
||||
from tabulate import tabulate
|
||||
from freqtrade.edge import Edge
|
||||
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.strategy.resolver import StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class EdgeCli(object):
|
||||
"""
|
||||
Backtesting class, this class contains all the logic to run a backtest
|
||||
|
||||
To run a backtest:
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
|
||||
# Reset keys for edge
|
||||
self.config['exchange']['key'] = ''
|
||||
self.config['exchange']['secret'] = ''
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.exchange = Exchange(self.config)
|
||||
self.strategy = StrategyResolver(self.config).strategy
|
||||
|
||||
self.edge = Edge(config, self.exchange, self.strategy)
|
||||
self.edge._refresh_pairs = self.config.get('refresh_pairs', False)
|
||||
|
||||
self.timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
self.edge._timerange = self.timerange
|
||||
|
||||
def _generate_edge_table(self, results: dict) -> str:
|
||||
|
||||
floatfmt = ('s', '.10g', '.2f', '.2f', '.2f', '.2f', 'd', '.d')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'stoploss', 'win rate', 'risk reward ratio',
|
||||
'required risk reward', 'expectancy', 'total number of trades',
|
||||
'average duration (min)']
|
||||
|
||||
for result in results.items():
|
||||
if result[1].nb_trades > 0:
|
||||
tabular_data.append([
|
||||
result[0],
|
||||
result[1].stoploss,
|
||||
result[1].winrate,
|
||||
result[1].risk_reward_ratio,
|
||||
result[1].required_risk_reward,
|
||||
result[1].expectancy,
|
||||
result[1].nb_trades,
|
||||
round(result[1].avg_trade_duration)
|
||||
])
|
||||
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
def start(self) -> None:
|
||||
self.edge.calculate()
|
||||
print('') # blank like for readability
|
||||
print(self._generate_edge_table(self.edge._cached_pairs))
|
||||
|
||||
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the backtesting
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def start(args: Namespace) -> None:
|
||||
"""
|
||||
Start Edge script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args)
|
||||
logger.info('Starting freqtrade in Edge mode')
|
||||
|
||||
# Initialize Edge object
|
||||
edge_cli = EdgeCli(config)
|
||||
edge_cli.start()
|
@ -9,22 +9,21 @@ import multiprocessing
|
||||
import os
|
||||
import sys
|
||||
from argparse import Namespace
|
||||
from functools import reduce
|
||||
from math import exp
|
||||
from operator import itemgetter
|
||||
from typing import Any, Callable, Dict, List
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from sklearn.externals.joblib import Parallel, delayed, dump, load
|
||||
from joblib import Parallel, delayed, dump, load, wrap_non_picklable_objects
|
||||
from skopt import Optimizer
|
||||
from skopt.space import Categorical, Dimension, Integer, Real
|
||||
from skopt.space import Dimension
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.optimize import load_data, get_timeframe
|
||||
from freqtrade.optimize.backtesting import Backtesting
|
||||
from freqtrade.optimize.hyperopt_resolver import HyperOptResolver
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
@ -42,6 +41,9 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
self.custom_hyperopt = HyperOptResolver(self.config).hyperopt
|
||||
|
||||
# set TARGET_TRADES to suit your number concurrent trades so its realistic
|
||||
# to the number of days
|
||||
self.target_trades = 600
|
||||
@ -74,24 +76,6 @@ class Hyperopt(Backtesting):
|
||||
arg_dict = {dim.name: value for dim, value in zip(dimensions, params)}
|
||||
return arg_dict
|
||||
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
|
||||
return dataframe
|
||||
|
||||
def save_trials(self) -> None:
|
||||
"""
|
||||
Save hyperopt trials to file
|
||||
@ -121,7 +105,8 @@ class Hyperopt(Backtesting):
|
||||
best_result['params']
|
||||
)
|
||||
if 'roi_t1' in best_result['params']:
|
||||
logger.info('ROI table:\n%s', self.generate_roi_table(best_result['params']))
|
||||
logger.info('ROI table:\n%s',
|
||||
self.custom_hyperopt.generate_roi_table(best_result['params']))
|
||||
|
||||
def log_results(self, results) -> None:
|
||||
"""
|
||||
@ -149,59 +134,6 @@ class Hyperopt(Backtesting):
|
||||
result = trade_loss + profit_loss + duration_loss
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
Generate the ROI table that will be used by Hyperopt
|
||||
"""
|
||||
roi_table = {}
|
||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||
|
||||
return roi_table
|
||||
|
||||
@staticmethod
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
Values to search for each ROI steps
|
||||
"""
|
||||
return [
|
||||
Integer(10, 120, name='roi_t1'),
|
||||
Integer(10, 60, name='roi_t2'),
|
||||
Integer(10, 40, name='roi_t3'),
|
||||
Real(0.01, 0.04, name='roi_p1'),
|
||||
Real(0.01, 0.07, name='roi_p2'),
|
||||
Real(0.01, 0.20, name='roi_p3'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
Stoploss search space
|
||||
"""
|
||||
return [
|
||||
Real(-0.5, -0.02, name='stoploss'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return [
|
||||
Integer(10, 25, name='mfi-value'),
|
||||
Integer(15, 45, name='fastd-value'),
|
||||
Integer(20, 50, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
def has_space(self, space: str) -> bool:
|
||||
"""
|
||||
Tell if a space value is contained in the configuration
|
||||
@ -216,61 +148,20 @@ class Hyperopt(Backtesting):
|
||||
"""
|
||||
spaces: List[Dimension] = []
|
||||
if self.has_space('buy'):
|
||||
spaces += Hyperopt.indicator_space()
|
||||
spaces += self.custom_hyperopt.indicator_space()
|
||||
if self.has_space('roi'):
|
||||
spaces += Hyperopt.roi_space()
|
||||
spaces += self.custom_hyperopt.roi_space()
|
||||
if self.has_space('stoploss'):
|
||||
spaces += Hyperopt.stoploss_space()
|
||||
spaces += self.custom_hyperopt.stoploss_space()
|
||||
return spaces
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by hyperopt
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use
|
||||
"""
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
def generate_optimizer(self, _params) -> Dict:
|
||||
def generate_optimizer(self, _params: Dict) -> Dict:
|
||||
params = self.get_args(_params)
|
||||
|
||||
if self.has_space('roi'):
|
||||
self.strategy.minimal_roi = self.generate_roi_table(params)
|
||||
self.strategy.minimal_roi = self.custom_hyperopt.generate_roi_table(params)
|
||||
|
||||
if self.has_space('buy'):
|
||||
self.advise_buy = self.buy_strategy_generator(params)
|
||||
self.advise_buy = self.custom_hyperopt.buy_strategy_generator(params)
|
||||
|
||||
if self.has_space('stoploss'):
|
||||
self.strategy.stoploss = params['stoploss']
|
||||
@ -332,7 +223,8 @@ class Hyperopt(Backtesting):
|
||||
)
|
||||
|
||||
def run_optimizer_parallel(self, parallel, asked) -> List:
|
||||
return parallel(delayed(self.generate_optimizer)(v) for v in asked)
|
||||
return parallel(delayed(
|
||||
wrap_non_picklable_objects(self.generate_optimizer))(v) for v in asked)
|
||||
|
||||
def load_previous_results(self):
|
||||
""" read trials file if we have one """
|
||||
@ -354,7 +246,8 @@ class Hyperopt(Backtesting):
|
||||
)
|
||||
|
||||
if self.has_space('buy'):
|
||||
self.strategy.advise_indicators = Hyperopt.populate_indicators # type: ignore
|
||||
self.strategy.advise_indicators = \
|
||||
self.custom_hyperopt.populate_indicators # type: ignore
|
||||
dump(self.strategy.tickerdata_to_dataframe(data), TICKERDATA_PICKLE)
|
||||
self.exchange = None # type: ignore
|
||||
self.load_previous_results()
|
||||
|
66
freqtrade/optimize/hyperopt_interface.py
Normal file
66
freqtrade/optimize/hyperopt_interface.py
Normal file
@ -0,0 +1,66 @@
|
||||
"""
|
||||
IHyperOpt interface
|
||||
This module defines the interface to apply for hyperopts
|
||||
"""
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from typing import Dict, Any, Callable, List
|
||||
|
||||
from pandas import DataFrame
|
||||
from skopt.space import Dimension
|
||||
|
||||
|
||||
class IHyperOpt(ABC):
|
||||
"""
|
||||
Interface for freqtrade hyperopts
|
||||
Defines the mandatory structure must follow any custom strategies
|
||||
|
||||
Attributes you can use:
|
||||
minimal_roi -> Dict: Minimal ROI designed for the strategy
|
||||
stoploss -> float: optimal stoploss designed for the strategy
|
||||
ticker_interval -> int: value of the ticker interval to use for the strategy
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Populate indicators that will be used in the Buy and Sell strategy
|
||||
:param dataframe: Raw data from the exchange and parsed by parse_ticker_dataframe()
|
||||
:return: a Dataframe with all mandatory indicators for the strategies
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Create a buy strategy generator
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Create an indicator space
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
Create an roi table
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
Create a stoploss space
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
@abstractmethod
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
Create a roi space
|
||||
"""
|
104
freqtrade/optimize/hyperopt_resolver.py
Normal file
104
freqtrade/optimize/hyperopt_resolver.py
Normal file
@ -0,0 +1,104 @@
|
||||
# pragma pylint: disable=attribute-defined-outside-init
|
||||
|
||||
"""
|
||||
This module load custom hyperopts
|
||||
"""
|
||||
import importlib.util
|
||||
import inspect
|
||||
import logging
|
||||
import os
|
||||
from typing import Optional, Dict, Type
|
||||
|
||||
from freqtrade.constants import DEFAULT_HYPEROPT
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class HyperOptResolver(object):
|
||||
"""
|
||||
This class contains all the logic to load custom hyperopt class
|
||||
"""
|
||||
|
||||
__slots__ = ['hyperopt']
|
||||
|
||||
def __init__(self, config: Optional[Dict] = None) -> None:
|
||||
"""
|
||||
Load the custom class from config parameter
|
||||
:param config: configuration dictionary or None
|
||||
"""
|
||||
config = config or {}
|
||||
|
||||
# Verify the hyperopt is in the configuration, otherwise fallback to the default hyperopt
|
||||
hyperopt_name = config.get('hyperopt') or DEFAULT_HYPEROPT
|
||||
self.hyperopt = self._load_hyperopt(hyperopt_name, extra_dir=config.get('hyperopt_path'))
|
||||
|
||||
def _load_hyperopt(
|
||||
self, hyperopt_name: str, extra_dir: Optional[str] = None) -> IHyperOpt:
|
||||
"""
|
||||
Search and loads the specified hyperopt.
|
||||
:param hyperopt_name: name of the module to import
|
||||
:param extra_dir: additional directory to search for the given hyperopt
|
||||
:return: HyperOpt instance or None
|
||||
"""
|
||||
current_path = os.path.dirname(os.path.realpath(__file__))
|
||||
abs_paths = [
|
||||
os.path.join(current_path, '..', '..', 'user_data', 'hyperopts'),
|
||||
current_path,
|
||||
]
|
||||
|
||||
if extra_dir:
|
||||
# Add extra hyperopt directory on top of search paths
|
||||
abs_paths.insert(0, extra_dir)
|
||||
|
||||
for path in abs_paths:
|
||||
hyperopt = self._search_hyperopt(path, hyperopt_name)
|
||||
if hyperopt:
|
||||
logger.info('Using resolved hyperopt %s from \'%s\'', hyperopt_name, path)
|
||||
return hyperopt
|
||||
|
||||
raise ImportError(
|
||||
"Impossible to load Hyperopt '{}'. This class does not exist"
|
||||
" or contains Python code errors".format(hyperopt_name)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _get_valid_hyperopts(module_path: str, hyperopt_name: str) -> Optional[Type[IHyperOpt]]:
|
||||
"""
|
||||
Returns a list of all possible hyperopts for the given module_path
|
||||
:param module_path: absolute path to the module
|
||||
:param hyperopt_name: Class name of the hyperopt
|
||||
:return: Tuple with (name, class) or None
|
||||
"""
|
||||
|
||||
# Generate spec based on absolute path
|
||||
spec = importlib.util.spec_from_file_location('user_data.hyperopts', module_path)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module) # type: ignore # importlib does not use typehints
|
||||
|
||||
valid_hyperopts_gen = (
|
||||
obj for name, obj in inspect.getmembers(module, inspect.isclass)
|
||||
if hyperopt_name == name and IHyperOpt in obj.__bases__
|
||||
)
|
||||
return next(valid_hyperopts_gen, None)
|
||||
|
||||
@staticmethod
|
||||
def _search_hyperopt(directory: str, hyperopt_name: str) -> Optional[IHyperOpt]:
|
||||
"""
|
||||
Search for the hyperopt_name in the given directory
|
||||
:param directory: relative or absolute directory path
|
||||
:return: name of the hyperopt class
|
||||
"""
|
||||
logger.debug('Searching for hyperopt %s in \'%s\'', hyperopt_name, directory)
|
||||
for entry in os.listdir(directory):
|
||||
# Only consider python files
|
||||
if not entry.endswith('.py'):
|
||||
logger.debug('Ignoring %s', entry)
|
||||
continue
|
||||
hyperopt = HyperOptResolver._get_valid_hyperopts(
|
||||
os.path.abspath(os.path.join(directory, entry)), hyperopt_name
|
||||
)
|
||||
if hyperopt:
|
||||
return hyperopt()
|
||||
return None
|
@ -410,7 +410,7 @@ class RPC(object):
|
||||
raise RPCException(f'position for {pair} already open - id: {trade.id}')
|
||||
|
||||
# gen stake amount
|
||||
stakeamount = self._freqtrade._get_trade_stake_amount()
|
||||
stakeamount = self._freqtrade._get_trade_stake_amount(pair)
|
||||
|
||||
# execute buy
|
||||
if self._freqtrade.execute_buy(pair, stakeamount, price):
|
||||
@ -443,3 +443,10 @@ class RPC(object):
|
||||
raise RPCException('trader is not running')
|
||||
|
||||
return Trade.query.filter(Trade.is_open.is_(True)).all()
|
||||
|
||||
def _rpc_whitelist(self) -> Dict:
|
||||
""" Returns the currently active whitelist"""
|
||||
res = {'method': self._freqtrade.config.get('dynamic_whitelist', 0) or 'static',
|
||||
'whitelist': self._freqtrade.active_pair_whitelist
|
||||
}
|
||||
return res
|
||||
|
@ -91,6 +91,7 @@ class Telegram(RPC):
|
||||
CommandHandler('daily', self._daily),
|
||||
CommandHandler('count', self._count),
|
||||
CommandHandler('reload_conf', self._reload_conf),
|
||||
CommandHandler('whitelist', self._whitelist),
|
||||
CommandHandler('help', self._help),
|
||||
CommandHandler('version', self._version),
|
||||
]
|
||||
@ -438,6 +439,25 @@ class Telegram(RPC):
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e), bot=bot)
|
||||
|
||||
@authorized_only
|
||||
def _whitelist(self, bot: Bot, update: Update) -> None:
|
||||
"""
|
||||
Handler for /whitelist
|
||||
Shows the currently active whitelist
|
||||
"""
|
||||
try:
|
||||
whitelist = self._rpc_whitelist()
|
||||
if whitelist['method'] == 'static':
|
||||
message = f"Using static whitelist with `{len(whitelist['whitelist'])}` pairs \n"
|
||||
else:
|
||||
message = f"Dynamic whitelist with `{whitelist['method']}` pairs\n"
|
||||
message += f"`{', '.join(whitelist['whitelist'])}`"
|
||||
|
||||
logger.debug(message)
|
||||
self._send_msg(message)
|
||||
except RPCException as e:
|
||||
self._send_msg(str(e), bot=bot)
|
||||
|
||||
@authorized_only
|
||||
def _help(self, bot: Bot, update: Update) -> None:
|
||||
"""
|
||||
@ -460,6 +480,7 @@ class Telegram(RPC):
|
||||
"\n" \
|
||||
"*/balance:* `Show account balance per currency`\n" \
|
||||
"*/reload_conf:* `Reload configuration file` \n" \
|
||||
"*/whitelist:* `Show current whitelist` \n" \
|
||||
"*/help:* `This help message`\n" \
|
||||
"*/version:* `Show version`"
|
||||
|
||||
|
@ -28,6 +28,13 @@ class DefaultStrategy(IStrategy):
|
||||
# Optimal ticker interval for the strategy
|
||||
ticker_interval = '5m'
|
||||
|
||||
# Optional order type mapping
|
||||
order_types = {
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'limit'
|
||||
}
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
@ -70,6 +70,13 @@ class IStrategy(ABC):
|
||||
# associated ticker interval
|
||||
ticker_interval: str
|
||||
|
||||
# Optional order types
|
||||
order_types: Dict = {
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'limit'
|
||||
}
|
||||
|
||||
# run "populate_indicators" only for new candle
|
||||
process_only_new_candles: bool = False
|
||||
|
||||
@ -203,17 +210,20 @@ class IStrategy(ABC):
|
||||
return buy, sell
|
||||
|
||||
def should_sell(self, trade: Trade, rate: float, date: datetime, buy: bool,
|
||||
sell: bool, low: float = None, high: float = None) -> SellCheckTuple:
|
||||
sell: bool, low: float = None, high: float = None,
|
||||
force_stoploss: float = 0) -> SellCheckTuple:
|
||||
"""
|
||||
This function evaluate if on the condition required to trigger a sell has been reached
|
||||
if the threshold is reached and updates the trade record.
|
||||
:return: True if trade should be sold, False otherwise
|
||||
"""
|
||||
|
||||
# Set current rate to low for backtesting sell
|
||||
current_rate = low or rate
|
||||
current_profit = trade.calc_profit_percent(current_rate)
|
||||
stoplossflag = self.stop_loss_reached(current_rate=current_rate, trade=trade,
|
||||
current_time=date, current_profit=current_profit)
|
||||
current_time=date, current_profit=current_profit,
|
||||
force_stoploss=force_stoploss)
|
||||
if stoplossflag.sell_flag:
|
||||
return stoplossflag
|
||||
# Set current rate to low for backtesting sell
|
||||
@ -241,7 +251,7 @@ class IStrategy(ABC):
|
||||
return SellCheckTuple(sell_flag=False, sell_type=SellType.NONE)
|
||||
|
||||
def stop_loss_reached(self, current_rate: float, trade: Trade, current_time: datetime,
|
||||
current_profit: float) -> SellCheckTuple:
|
||||
current_profit: float, force_stoploss: float) -> SellCheckTuple:
|
||||
"""
|
||||
Based on current profit of the trade and configured (trailing) stoploss,
|
||||
decides to sell or not
|
||||
@ -250,7 +260,8 @@ class IStrategy(ABC):
|
||||
|
||||
trailing_stop = self.config.get('trailing_stop', False)
|
||||
|
||||
trade.adjust_stop_loss(trade.open_rate, self.stoploss, initial=True)
|
||||
trade.adjust_stop_loss(trade.open_rate, force_stoploss if force_stoploss
|
||||
else self.stoploss, initial=True)
|
||||
|
||||
# evaluate if the stoploss was hit
|
||||
if self.stoploss is not None and trade.stop_loss >= current_rate:
|
||||
|
@ -75,6 +75,19 @@ class StrategyResolver(object):
|
||||
else:
|
||||
config['process_only_new_candles'] = self.strategy.process_only_new_candles
|
||||
|
||||
if 'order_types' in config:
|
||||
self.strategy.order_types = config['order_types']
|
||||
logger.info(
|
||||
"Override strategy 'order_types' with value in config file: %s.",
|
||||
config['order_types']
|
||||
)
|
||||
else:
|
||||
config['order_types'] = self.strategy.order_types
|
||||
|
||||
if not all(k in self.strategy.order_types for k in constants.REQUIRED_ORDERTYPES):
|
||||
raise ImportError(f"Impossible to load Strategy '{self.strategy.__class__.__name__}'. "
|
||||
f"Order-types mapping is incomplete.")
|
||||
|
||||
# Sort and apply type conversions
|
||||
self.strategy.minimal_roi = OrderedDict(sorted(
|
||||
{int(key): value for (key, value) in self.strategy.minimal_roi.items()}.items(),
|
||||
|
@ -4,6 +4,7 @@ import logging
|
||||
from datetime import datetime
|
||||
from functools import reduce
|
||||
from typing import Dict, Optional
|
||||
from collections import namedtuple
|
||||
from unittest.mock import MagicMock, PropertyMock
|
||||
|
||||
import arrow
|
||||
@ -12,6 +13,7 @@ from telegram import Chat, Message, Update
|
||||
|
||||
from freqtrade.exchange.exchange_helpers import parse_ticker_dataframe
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.edge import Edge
|
||||
from freqtrade.freqtradebot import FreqtradeBot
|
||||
|
||||
logging.getLogger('').setLevel(logging.INFO)
|
||||
@ -28,6 +30,7 @@ def log_has(line, logs):
|
||||
def patch_exchange(mocker, api_mock=None) -> None:
|
||||
mocker.patch('freqtrade.exchange.Exchange._load_markets', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_ordertypes', MagicMock())
|
||||
mocker.patch('freqtrade.exchange.Exchange.name', PropertyMock(return_value="Bittrex"))
|
||||
mocker.patch('freqtrade.exchange.Exchange.id', PropertyMock(return_value="bittrex"))
|
||||
if api_mock:
|
||||
@ -42,7 +45,32 @@ def get_patched_exchange(mocker, config, api_mock=None) -> Exchange:
|
||||
return exchange
|
||||
|
||||
|
||||
def patch_edge(mocker) -> None:
|
||||
# "ETH/BTC",
|
||||
# "LTC/BTC",
|
||||
# "XRP/BTC",
|
||||
# "NEO/BTC"
|
||||
pair_info = namedtuple(
|
||||
'pair_info',
|
||||
'stoploss, winrate, risk_reward_ratio, required_risk_reward, expectancy')
|
||||
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
||||
return_value={
|
||||
'NEO/BTC': pair_info(-0.20, 0.66, 3.71, 0.50, 1.71),
|
||||
'LTC/BTC': pair_info(-0.21, 0.66, 3.71, 0.50, 1.71),
|
||||
}
|
||||
))
|
||||
mocker.patch('freqtrade.edge.Edge.stoploss', MagicMock(return_value=-0.20))
|
||||
mocker.patch('freqtrade.edge.Edge.calculate', MagicMock(return_value=True))
|
||||
|
||||
|
||||
def get_patched_edge(mocker, config) -> Edge:
|
||||
patch_edge(mocker)
|
||||
edge = Edge(config)
|
||||
return edge
|
||||
|
||||
# Functions for recurrent object patching
|
||||
|
||||
|
||||
def get_patched_freqtradebot(mocker, config) -> FreqtradeBot:
|
||||
"""
|
||||
This function patch _init_modules() to not call dependencies
|
||||
@ -752,3 +780,23 @@ def buy_order_fee():
|
||||
'status': 'closed',
|
||||
'fee': None
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture(scope="function")
|
||||
def edge_conf(default_conf):
|
||||
default_conf['edge'] = {
|
||||
"enabled": True,
|
||||
"process_throttle_secs": 1800,
|
||||
"calculate_since_number_of_days": 14,
|
||||
"allowed_risk": 0.01,
|
||||
"stoploss_range_min": -0.01,
|
||||
"stoploss_range_max": -0.1,
|
||||
"stoploss_range_step": -0.01,
|
||||
"maximum_winrate": 0.80,
|
||||
"minimum_expectancy": 0.20,
|
||||
"min_trade_number": 15,
|
||||
"max_trade_duration_minute": 1440,
|
||||
"remove_pumps": False
|
||||
}
|
||||
|
||||
return default_conf
|
||||
|
0
freqtrade/tests/edge/__init__.py
Normal file
0
freqtrade/tests/edge/__init__.py
Normal file
310
freqtrade/tests/edge/test_edge.py
Normal file
310
freqtrade/tests/edge/test_edge.py
Normal file
@ -0,0 +1,310 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103, C0330
|
||||
# pragma pylint: disable=protected-access, too-many-lines, invalid-name, too-many-arguments
|
||||
|
||||
import pytest
|
||||
import logging
|
||||
from freqtrade.tests.conftest import get_patched_freqtradebot
|
||||
from freqtrade.edge import Edge, PairInfo
|
||||
from pandas import DataFrame, to_datetime
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.tests.optimize import (BTrade, BTContainer, _build_backtest_dataframe,
|
||||
_get_frame_time_from_offset)
|
||||
import arrow
|
||||
import numpy as np
|
||||
import math
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
# Cases to be tested:
|
||||
# 1) Open trade should be removed from the end
|
||||
# 2) Two complete trades within dataframe (with sell hit for all)
|
||||
# 3) Entered, sl 1%, candle drops 8% => Trade closed, 1% loss
|
||||
# 4) Entered, sl 3%, candle drops 4%, recovers to 1% => Trade closed, 3% loss
|
||||
# 5) Stoploss and sell are hit. should sell on stoploss
|
||||
####################################################################
|
||||
|
||||
ticker_start_time = arrow.get(2018, 10, 3)
|
||||
ticker_interval_in_minute = 60
|
||||
_ohlc = {'date': 0, 'buy': 1, 'open': 2, 'high': 3, 'low': 4, 'close': 5, 'sell': 6, 'volume': 7}
|
||||
|
||||
|
||||
# Open trade should be removed from the end
|
||||
tc0 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 1]], # enter trade (signal on last candle)
|
||||
stop_loss=-0.99, roi=float('inf'), profit_perc=0.00,
|
||||
trades=[]
|
||||
)
|
||||
|
||||
# Two complete trades within dataframe(with sell hit for all)
|
||||
tc1 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 1], # enter trade (signal on last candle)
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0], # exit at open
|
||||
[3, 5000, 5025, 4975, 4987, 6172, 1, 0], # no action
|
||||
[4, 5000, 5025, 4975, 4987, 6172, 0, 0], # should enter the trade
|
||||
[5, 5000, 5025, 4975, 4987, 6172, 0, 1], # no action
|
||||
[6, 5000, 5025, 4975, 4987, 6172, 0, 0], # should sell
|
||||
],
|
||||
stop_loss=-0.99, roi=float('inf'), profit_perc=0.00,
|
||||
trades=[BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=1, close_tick=2),
|
||||
BTrade(sell_reason=SellType.SELL_SIGNAL, open_tick=4, close_tick=6)]
|
||||
)
|
||||
|
||||
# 3) Entered, sl 1%, candle drops 8% => Trade closed, 1% loss
|
||||
tc2 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4600, 4987, 6172, 0, 0], # enter trade, stoploss hit
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
],
|
||||
stop_loss=-0.01, roi=float('inf'), profit_perc=-0.01,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
# 4) Entered, sl 3 %, candle drops 4%, recovers to 1 % = > Trade closed, 3 % loss
|
||||
tc3 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4800, 4987, 6172, 0, 0], # enter trade, stoploss hit
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
],
|
||||
stop_loss=-0.03, roi=float('inf'), profit_perc=-0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
# 5) Stoploss and sell are hit. should sell on stoploss
|
||||
tc4 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4800, 4987, 6172, 0, 1], # enter trade, stoploss hit, sell signal
|
||||
[2, 5000, 5025, 4975, 4987, 6172, 0, 0],
|
||||
],
|
||||
stop_loss=-0.03, roi=float('inf'), profit_perc=-0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=1)]
|
||||
)
|
||||
|
||||
TESTS = [
|
||||
tc0,
|
||||
tc1,
|
||||
tc2,
|
||||
tc3,
|
||||
tc4
|
||||
]
|
||||
|
||||
|
||||
@pytest.mark.parametrize("data", TESTS)
|
||||
def test_edge_results(edge_conf, mocker, caplog, data) -> None:
|
||||
"""
|
||||
run functional tests
|
||||
"""
|
||||
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
|
||||
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
frame = _build_backtest_dataframe(data.data)
|
||||
caplog.set_level(logging.DEBUG)
|
||||
edge.fee = 0
|
||||
|
||||
trades = edge._find_trades_for_stoploss_range(frame, 'TEST/BTC', [data.stop_loss])
|
||||
results = edge._fill_calculable_fields(DataFrame(trades)) if trades else DataFrame()
|
||||
|
||||
print(results)
|
||||
|
||||
assert len(trades) == len(data.trades)
|
||||
|
||||
if not results.empty:
|
||||
assert round(results["profit_percent"].sum(), 3) == round(data.profit_perc, 3)
|
||||
|
||||
for c, trade in enumerate(data.trades):
|
||||
res = results.iloc[c]
|
||||
assert res.exit_type == trade.sell_reason
|
||||
assert res.open_time == _get_frame_time_from_offset(trade.open_tick)
|
||||
assert res.close_time == _get_frame_time_from_offset(trade.close_tick)
|
||||
|
||||
|
||||
def test_adjust(mocker, default_conf):
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
edge = Edge(default_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
||||
return_value={
|
||||
'E/F': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60),
|
||||
'C/D': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60),
|
||||
'N/O': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60)
|
||||
}
|
||||
))
|
||||
|
||||
pairs = ['A/B', 'C/D', 'E/F', 'G/H']
|
||||
assert(edge.adjust(pairs) == ['E/F', 'C/D'])
|
||||
|
||||
|
||||
def test_stoploss(mocker, default_conf):
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
edge = Edge(default_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
mocker.patch('freqtrade.edge.Edge._cached_pairs', mocker.PropertyMock(
|
||||
return_value={
|
||||
'E/F': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60),
|
||||
'C/D': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60),
|
||||
'N/O': PairInfo(-0.01, 0.66, 3.71, 0.50, 1.71, 10, 60)
|
||||
}
|
||||
))
|
||||
|
||||
assert edge.stoploss('E/F') == -0.01
|
||||
|
||||
|
||||
def _validate_ohlc(buy_ohlc_sell_matrice):
|
||||
for index, ohlc in enumerate(buy_ohlc_sell_matrice):
|
||||
# if not high < open < low or not high < close < low
|
||||
if not ohlc[3] >= ohlc[2] >= ohlc[4] or not ohlc[3] >= ohlc[5] >= ohlc[4]:
|
||||
raise Exception('Line ' + str(index + 1) + ' of ohlc has invalid values!')
|
||||
return True
|
||||
|
||||
|
||||
def _build_dataframe(buy_ohlc_sell_matrice):
|
||||
_validate_ohlc(buy_ohlc_sell_matrice)
|
||||
tickers = []
|
||||
for ohlc in buy_ohlc_sell_matrice:
|
||||
ticker = {
|
||||
'date': ticker_start_time.shift(
|
||||
minutes=(
|
||||
ohlc[0] *
|
||||
ticker_interval_in_minute)).timestamp *
|
||||
1000,
|
||||
'buy': ohlc[1],
|
||||
'open': ohlc[2],
|
||||
'high': ohlc[3],
|
||||
'low': ohlc[4],
|
||||
'close': ohlc[5],
|
||||
'sell': ohlc[6]}
|
||||
tickers.append(ticker)
|
||||
|
||||
frame = DataFrame(tickers)
|
||||
frame['date'] = to_datetime(frame['date'],
|
||||
unit='ms',
|
||||
utc=True,
|
||||
infer_datetime_format=True)
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
def _time_on_candle(number):
|
||||
return np.datetime64(ticker_start_time.shift(
|
||||
minutes=(number * ticker_interval_in_minute)).timestamp * 1000, 'ms')
|
||||
|
||||
|
||||
def test_edge_heartbeat_calculate(mocker, edge_conf):
|
||||
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
|
||||
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
heartbeat = edge_conf['edge']['process_throttle_secs']
|
||||
|
||||
# should not recalculate if heartbeat not reached
|
||||
edge._last_updated = arrow.utcnow().timestamp - heartbeat + 1
|
||||
|
||||
assert edge.calculate() is False
|
||||
|
||||
|
||||
def mocked_load_data(datadir, pairs=[], ticker_interval='0m', refresh_pairs=False,
|
||||
timerange=None, exchange=None):
|
||||
hz = 0.1
|
||||
base = 0.001
|
||||
|
||||
ETHBTC = [
|
||||
[
|
||||
ticker_start_time.shift(minutes=(x * ticker_interval_in_minute)).timestamp * 1000,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
math.sin(x * hz) / 1000 + base + 0.0001,
|
||||
math.sin(x * hz) / 1000 + base - 0.0001,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
123.45
|
||||
] for x in range(0, 500)]
|
||||
|
||||
hz = 0.2
|
||||
base = 0.002
|
||||
LTCBTC = [
|
||||
[
|
||||
ticker_start_time.shift(minutes=(x * ticker_interval_in_minute)).timestamp * 1000,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
math.sin(x * hz) / 1000 + base + 0.0001,
|
||||
math.sin(x * hz) / 1000 + base - 0.0001,
|
||||
math.sin(x * hz) / 1000 + base,
|
||||
123.45
|
||||
] for x in range(0, 500)]
|
||||
|
||||
pairdata = {'NEO/BTC': ETHBTC, 'LTC/BTC': LTCBTC}
|
||||
return pairdata
|
||||
|
||||
|
||||
def test_edge_process_downloaded_data(mocker, default_conf):
|
||||
default_conf['datadir'] = None
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', MagicMock(return_value=0.001))
|
||||
mocker.patch('freqtrade.optimize.load_data', mocked_load_data)
|
||||
edge = Edge(default_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
|
||||
assert edge.calculate()
|
||||
assert len(edge._cached_pairs) == 2
|
||||
assert edge._last_updated <= arrow.utcnow().timestamp + 2
|
||||
|
||||
|
||||
def test_process_expectancy(mocker, edge_conf):
|
||||
edge_conf['edge']['min_trade_number'] = 2
|
||||
freqtrade = get_patched_freqtradebot(mocker, edge_conf)
|
||||
|
||||
def get_fee():
|
||||
return 0.001
|
||||
|
||||
freqtrade.exchange.get_fee = get_fee
|
||||
edge = Edge(edge_conf, freqtrade.exchange, freqtrade.strategy)
|
||||
|
||||
trades = [
|
||||
{'pair': 'TEST/BTC',
|
||||
'stoploss': -0.9,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': np.datetime64('2018-10-03T00:05:00.000000000'),
|
||||
'close_time': np.datetime64('2018-10-03T00:10:00.000000000'),
|
||||
'open_index': 1,
|
||||
'close_index': 1,
|
||||
'trade_duration': '',
|
||||
'open_rate': 17,
|
||||
'close_rate': 17,
|
||||
'exit_type': 'sell_signal'},
|
||||
|
||||
{'pair': 'TEST/BTC',
|
||||
'stoploss': -0.9,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': np.datetime64('2018-10-03T00:20:00.000000000'),
|
||||
'close_time': np.datetime64('2018-10-03T00:25:00.000000000'),
|
||||
'open_index': 4,
|
||||
'close_index': 4,
|
||||
'trade_duration': '',
|
||||
'open_rate': 20,
|
||||
'close_rate': 20,
|
||||
'exit_type': 'sell_signal'},
|
||||
|
||||
{'pair': 'TEST/BTC',
|
||||
'stoploss': -0.9,
|
||||
'profit_percent': '',
|
||||
'profit_abs': '',
|
||||
'open_time': np.datetime64('2018-10-03T00:30:00.000000000'),
|
||||
'close_time': np.datetime64('2018-10-03T00:40:00.000000000'),
|
||||
'open_index': 6,
|
||||
'close_index': 7,
|
||||
'trade_duration': '',
|
||||
'open_rate': 26,
|
||||
'close_rate': 34,
|
||||
'exit_type': 'sell_signal'}
|
||||
]
|
||||
|
||||
trades_df = DataFrame(trades)
|
||||
trades_df = edge._fill_calculable_fields(trades_df)
|
||||
final = edge._process_expectancy(trades_df)
|
||||
assert len(final) == 1
|
||||
|
||||
assert 'TEST/BTC' in final
|
||||
assert final['TEST/BTC'].stoploss == -0.9
|
||||
assert round(final['TEST/BTC'].winrate, 10) == 0.3333333333
|
||||
assert round(final['TEST/BTC'].risk_reward_ratio, 10) == 306.5384615384
|
||||
assert round(final['TEST/BTC'].required_risk_reward, 10) == 2.0
|
||||
assert round(final['TEST/BTC'].expectancy, 10) == 101.5128205128
|
@ -355,6 +355,36 @@ def test_validate_timeframes_not_in_config(default_conf, mocker):
|
||||
Exchange(default_conf)
|
||||
|
||||
|
||||
def test_validate_order_types(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
|
||||
type(api_mock).has = PropertyMock(return_value={'createMarketOrder': True})
|
||||
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
|
||||
mocker.patch('freqtrade.exchange.Exchange._load_markets', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
|
||||
default_conf['order_types'] = {'buy': 'limit', 'sell': 'limit', 'stoploss': 'market'}
|
||||
Exchange(default_conf)
|
||||
|
||||
type(api_mock).has = PropertyMock(return_value={'createMarketOrder': False})
|
||||
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
|
||||
|
||||
default_conf['order_types'] = {'buy': 'limit', 'sell': 'limit', 'stoploss': 'market'}
|
||||
|
||||
with pytest.raises(OperationalException,
|
||||
match=r'Exchange .* does not support market orders.'):
|
||||
Exchange(default_conf)
|
||||
|
||||
|
||||
def test_validate_order_types_not_in_config(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
mocker.patch('freqtrade.exchange.Exchange._init_ccxt', MagicMock(return_value=api_mock))
|
||||
mocker.patch('freqtrade.exchange.Exchange._load_markets', MagicMock(return_value={}))
|
||||
mocker.patch('freqtrade.exchange.Exchange.validate_timeframes', MagicMock())
|
||||
|
||||
conf = copy.deepcopy(default_conf)
|
||||
Exchange(conf)
|
||||
|
||||
|
||||
def test_exchange_has(default_conf, mocker):
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
assert not exchange.exchange_has('ASDFASDF')
|
||||
@ -373,7 +403,7 @@ def test_buy_dry_run(default_conf, mocker):
|
||||
default_conf['dry_run'] = True
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
|
||||
order = exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
order = exchange.buy(pair='ETH/BTC', ordertype='limit', amount=1, rate=200)
|
||||
assert 'id' in order
|
||||
assert 'dry_run_buy_' in order['id']
|
||||
|
||||
@ -381,47 +411,64 @@ def test_buy_dry_run(default_conf, mocker):
|
||||
def test_buy_prod(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
order_id = 'test_prod_buy_{}'.format(randint(0, 10 ** 6))
|
||||
api_mock.create_limit_buy_order = MagicMock(return_value={
|
||||
order_type = 'market'
|
||||
api_mock.create_order = MagicMock(return_value={
|
||||
'id': order_id,
|
||||
'info': {
|
||||
'foo': 'bar'
|
||||
}
|
||||
})
|
||||
default_conf['dry_run'] = False
|
||||
mocker.patch('freqtrade.exchange.Exchange.symbol_amount_prec', lambda s, x, y: y)
|
||||
mocker.patch('freqtrade.exchange.Exchange.symbol_price_prec', lambda s, x, y: y)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
|
||||
order = exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
order = exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
assert 'id' in order
|
||||
assert 'info' in order
|
||||
assert order['id'] == order_id
|
||||
assert api_mock.create_order.call_args[0][0] == 'ETH/BTC'
|
||||
assert api_mock.create_order.call_args[0][1] == order_type
|
||||
assert api_mock.create_order.call_args[0][2] == 'buy'
|
||||
assert api_mock.create_order.call_args[0][3] == 1
|
||||
assert api_mock.create_order.call_args[0][4] is None
|
||||
|
||||
api_mock.create_order.reset_mock()
|
||||
order_type = 'limit'
|
||||
order = exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
assert api_mock.create_order.call_args[0][0] == 'ETH/BTC'
|
||||
assert api_mock.create_order.call_args[0][1] == order_type
|
||||
assert api_mock.create_order.call_args[0][2] == 'buy'
|
||||
assert api_mock.create_order.call_args[0][3] == 1
|
||||
assert api_mock.create_order.call_args[0][4] == 200
|
||||
|
||||
# test exception handling
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.InsufficientFunds)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.InsufficientFunds)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.create_limit_buy_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.buy(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.buy(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
|
||||
def test_sell_dry_run(default_conf, mocker):
|
||||
default_conf['dry_run'] = True
|
||||
exchange = get_patched_exchange(mocker, default_conf)
|
||||
|
||||
order = exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
order = exchange.sell(pair='ETH/BTC', ordertype='limit', amount=1, rate=200)
|
||||
assert 'id' in order
|
||||
assert 'dry_run_sell_' in order['id']
|
||||
|
||||
@ -429,7 +476,8 @@ def test_sell_dry_run(default_conf, mocker):
|
||||
def test_sell_prod(default_conf, mocker):
|
||||
api_mock = MagicMock()
|
||||
order_id = 'test_prod_sell_{}'.format(randint(0, 10 ** 6))
|
||||
api_mock.create_limit_sell_order = MagicMock(return_value={
|
||||
order_type = 'market'
|
||||
api_mock.create_order = MagicMock(return_value={
|
||||
'id': order_id,
|
||||
'info': {
|
||||
'foo': 'bar'
|
||||
@ -438,32 +486,48 @@ def test_sell_prod(default_conf, mocker):
|
||||
default_conf['dry_run'] = False
|
||||
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
mocker.patch('freqtrade.exchange.Exchange.symbol_amount_prec', lambda s, x, y: y)
|
||||
mocker.patch('freqtrade.exchange.Exchange.symbol_price_prec', lambda s, x, y: y)
|
||||
|
||||
order = exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
order = exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
assert 'id' in order
|
||||
assert 'info' in order
|
||||
assert order['id'] == order_id
|
||||
assert api_mock.create_order.call_args[0][0] == 'ETH/BTC'
|
||||
assert api_mock.create_order.call_args[0][1] == order_type
|
||||
assert api_mock.create_order.call_args[0][2] == 'sell'
|
||||
assert api_mock.create_order.call_args[0][3] == 1
|
||||
assert api_mock.create_order.call_args[0][4] is None
|
||||
|
||||
api_mock.create_order.reset_mock()
|
||||
order_type = 'limit'
|
||||
order = exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
assert api_mock.create_order.call_args[0][0] == 'ETH/BTC'
|
||||
assert api_mock.create_order.call_args[0][1] == order_type
|
||||
assert api_mock.create_order.call_args[0][2] == 'sell'
|
||||
assert api_mock.create_order.call_args[0][3] == 1
|
||||
assert api_mock.create_order.call_args[0][4] == 200
|
||||
|
||||
# test exception handling
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.InsufficientFunds)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.InsufficientFunds)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(DependencyException):
|
||||
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.InvalidOrder)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(TemporaryError):
|
||||
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.NetworkError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
with pytest.raises(OperationalException):
|
||||
api_mock.create_limit_sell_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
api_mock.create_order = MagicMock(side_effect=ccxt.BaseError)
|
||||
exchange = get_patched_exchange(mocker, default_conf, api_mock)
|
||||
exchange.sell(pair='ETH/BTC', rate=200, amount=1)
|
||||
exchange.sell(pair='ETH/BTC', ordertype=order_type, amount=1, rate=200)
|
||||
|
||||
|
||||
def test_get_balance_dry_run(default_conf, mocker):
|
||||
|
@ -31,8 +31,8 @@ class BTContainer(NamedTuple):
|
||||
|
||||
|
||||
def _get_frame_time_from_offset(offset):
|
||||
return ticker_start_time.shift(
|
||||
minutes=(offset * TICKER_INTERVAL_MINUTES[tests_ticker_interval])).datetime
|
||||
return ticker_start_time.shift(minutes=(offset * TICKER_INTERVAL_MINUTES[tests_ticker_interval])
|
||||
).datetime.replace(tzinfo=None)
|
||||
|
||||
|
||||
def _build_backtest_dataframe(ticker_with_signals):
|
||||
|
@ -1,4 +1,4 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
|
||||
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, C0330, unused-argument
|
||||
import logging
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
@ -35,15 +35,15 @@ tc0 = BTContainer(data=[
|
||||
# TC2: Stop-Loss Triggered 3% Loss
|
||||
tc1 = BTContainer(data=[
|
||||
# D O H L C V B S
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5012, 4962, 4975, 6172, 0, 0],
|
||||
[3, 4975, 5000, 4800, 4962, 6172, 0, 0], # exit with stoploss hit
|
||||
[4, 4962, 4987, 4937, 4950, 6172, 0, 0],
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
[0, 5000, 5025, 4975, 4987, 6172, 1, 0],
|
||||
[1, 5000, 5025, 4975, 4987, 6172, 0, 0], # enter trade (signal on last candle)
|
||||
[2, 4987, 5012, 4962, 4975, 6172, 0, 0],
|
||||
[3, 4975, 5000, 4800, 4962, 6172, 0, 0], # exit with stoploss hit
|
||||
[4, 4962, 4987, 4937, 4950, 6172, 0, 0],
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.03, roi=1, profit_perc=-0.03,
|
||||
trades=[BTrade(sell_reason=SellType.STOP_LOSS, open_tick=1, close_tick=3)]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
# Test 3 Candle drops 4%, Recovers 1%.
|
||||
@ -128,7 +128,7 @@ tc6 = BTContainer(data=[
|
||||
[5, 4950, 4975, 4925, 4950, 6172, 0, 0]],
|
||||
stop_loss=-0.02, roi=0.03, profit_perc=0.03,
|
||||
trades=[BTrade(sell_reason=SellType.ROI, open_tick=1, close_tick=2)]
|
||||
)
|
||||
)
|
||||
|
||||
TESTS = [
|
||||
tc0,
|
||||
|
@ -638,6 +638,7 @@ def test_backtest_only_sell(mocker, default_conf):
|
||||
|
||||
def test_backtest_alternate_buy_sell(default_conf, fee, mocker):
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
mocker.patch('freqtrade.optimize.backtesting.file_dump_json', MagicMock())
|
||||
backtest_conf = _make_backtest_conf(mocker, conf=default_conf, pair='UNITTEST/BTC')
|
||||
# We need to enable sell-signal - otherwise it sells on ROI!!
|
||||
default_conf['experimental'] = {"use_sell_signal": True}
|
||||
|
131
freqtrade/tests/optimize/test_edge_cli.py
Normal file
131
freqtrade/tests/optimize/test_edge_cli.py
Normal file
@ -0,0 +1,131 @@
|
||||
# pragma pylint: disable=missing-docstring, C0103, C0330
|
||||
# pragma pylint: disable=protected-access, too-many-lines, invalid-name, too-many-arguments
|
||||
|
||||
from unittest.mock import MagicMock
|
||||
import json
|
||||
from typing import List
|
||||
from freqtrade.edge import PairInfo
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.optimize.edge_cli import (EdgeCli, setup_configuration, start)
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange
|
||||
|
||||
|
||||
def get_args(args) -> List[str]:
|
||||
return Arguments(args, '').get_parsed_arg()
|
||||
|
||||
|
||||
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'edge'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args))
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has(
|
||||
'Using data folder: {} ...'.format(config['datadir']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert 'ticker_interval' in config
|
||||
assert not log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
|
||||
|
||||
assert 'refresh_pairs' not in config
|
||||
assert not log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
|
||||
|
||||
assert 'timerange' not in config
|
||||
assert 'stoploss_range' not in config
|
||||
|
||||
|
||||
def test_setup_configuration_with_arguments(mocker, edge_conf, caplog) -> None:
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(edge_conf)
|
||||
))
|
||||
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'--datadir', '/foo/bar',
|
||||
'edge',
|
||||
'--ticker-interval', '1m',
|
||||
'--refresh-pairs-cached',
|
||||
'--timerange', ':100',
|
||||
'--stoplosses=-0.01,-0.10,-0.001'
|
||||
]
|
||||
|
||||
config = setup_configuration(get_args(args))
|
||||
assert 'max_open_trades' in config
|
||||
assert 'stake_currency' in config
|
||||
assert 'stake_amount' in config
|
||||
assert 'exchange' in config
|
||||
assert 'pair_whitelist' in config['exchange']
|
||||
assert 'datadir' in config
|
||||
assert log_has(
|
||||
'Using data folder: {} ...'.format(config['datadir']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert 'ticker_interval' in config
|
||||
assert log_has('Parameter -i/--ticker-interval detected ...', caplog.record_tuples)
|
||||
assert log_has(
|
||||
'Using ticker_interval: 1m ...',
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
assert 'refresh_pairs' in config
|
||||
assert log_has('Parameter -r/--refresh-pairs-cached detected ...', caplog.record_tuples)
|
||||
assert 'timerange' in config
|
||||
assert log_has(
|
||||
'Parameter --timerange detected: {} ...'.format(config['timerange']),
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
|
||||
def test_start(mocker, fee, edge_conf, caplog) -> None:
|
||||
start_mock = MagicMock()
|
||||
mocker.patch('freqtrade.exchange.Exchange.get_fee', fee)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.optimize.edge_cli.EdgeCli.start', start_mock)
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(edge_conf)
|
||||
))
|
||||
args = [
|
||||
'--config', 'config.json',
|
||||
'--strategy', 'DefaultStrategy',
|
||||
'edge'
|
||||
]
|
||||
args = get_args(args)
|
||||
start(args)
|
||||
assert log_has(
|
||||
'Starting freqtrade in Edge mode',
|
||||
caplog.record_tuples
|
||||
)
|
||||
assert start_mock.call_count == 1
|
||||
|
||||
|
||||
def test_edge_init(mocker, edge_conf) -> None:
|
||||
patch_exchange(mocker)
|
||||
edge_cli = EdgeCli(edge_conf)
|
||||
assert edge_cli.config == edge_conf
|
||||
assert callable(edge_cli.edge.calculate)
|
||||
|
||||
|
||||
def test_generate_edge_table(edge_conf, mocker):
|
||||
patch_exchange(mocker)
|
||||
edge_cli = EdgeCli(edge_conf)
|
||||
|
||||
results = {}
|
||||
results['ETH/BTC'] = PairInfo(-0.01, 0.60, 2, 1, 3, 10, 60)
|
||||
|
||||
assert edge_cli._generate_edge_table(results).count(':|') == 7
|
||||
assert edge_cli._generate_edge_table(results).count('| ETH/BTC |') == 1
|
||||
assert edge_cli._generate_edge_table(results).count(
|
||||
'| risk reward ratio | required risk reward | expectancy |') == 1
|
@ -176,7 +176,7 @@ def test_roi_table_generation(hyperopt) -> None:
|
||||
'roi_p3': 3,
|
||||
}
|
||||
|
||||
assert hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
||||
assert hyperopt.custom_hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
|
||||
|
||||
|
||||
def test_start_calls_optimizer(mocker, default_conf, caplog) -> None:
|
||||
@ -244,7 +244,8 @@ def test_populate_indicators(hyperopt) -> None:
|
||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
||||
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
|
||||
{'pair': 'UNITTEST/BTC'})
|
||||
|
||||
# Check if some indicators are generated. We will not test all of them
|
||||
assert 'adx' in dataframe
|
||||
@ -256,9 +257,10 @@ def test_buy_strategy_generator(hyperopt) -> None:
|
||||
tick = load_tickerdata_file(None, 'UNITTEST/BTC', '1m')
|
||||
tickerlist = {'UNITTEST/BTC': tick}
|
||||
dataframes = hyperopt.strategy.tickerdata_to_dataframe(tickerlist)
|
||||
dataframe = hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'})
|
||||
dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'],
|
||||
{'pair': 'UNITTEST/BTC'})
|
||||
|
||||
populate_buy_trend = hyperopt.buy_strategy_generator(
|
||||
populate_buy_trend = hyperopt.custom_hyperopt.buy_strategy_generator(
|
||||
{
|
||||
'adx-value': 20,
|
||||
'fastd-value': 20,
|
||||
|
@ -645,3 +645,28 @@ def test_rpcforcebuy_disabled(mocker, default_conf) -> None:
|
||||
pair = 'ETH/BTC'
|
||||
with pytest.raises(RPCException, match=r'Forcebuy not enabled.'):
|
||||
rpc._rpc_forcebuy(pair, None)
|
||||
|
||||
|
||||
def test_rpc_whitelist(mocker, default_conf) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
patch_exchange(mocker)
|
||||
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
|
||||
|
||||
freqtradebot = FreqtradeBot(default_conf)
|
||||
rpc = RPC(freqtradebot)
|
||||
ret = rpc._rpc_whitelist()
|
||||
assert ret['method'] == 'static'
|
||||
assert ret['whitelist'] == default_conf['exchange']['pair_whitelist']
|
||||
|
||||
|
||||
def test_rpc_whitelist_dynamic(mocker, default_conf) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
patch_exchange(mocker)
|
||||
default_conf['dynamic_whitelist'] = 4
|
||||
mocker.patch('freqtrade.rpc.telegram.Telegram', MagicMock())
|
||||
|
||||
freqtradebot = FreqtradeBot(default_conf)
|
||||
rpc = RPC(freqtradebot)
|
||||
ret = rpc._rpc_whitelist()
|
||||
assert ret['method'] == 4
|
||||
assert ret['whitelist'] == default_conf['exchange']['pair_whitelist']
|
||||
|
@ -72,7 +72,8 @@ def test_init(default_conf, mocker, caplog) -> None:
|
||||
|
||||
message_str = "rpc.telegram is listening for following commands: [['status'], ['profit'], " \
|
||||
"['balance'], ['start'], ['stop'], ['forcesell'], ['forcebuy'], " \
|
||||
"['performance'], ['daily'], ['count'], ['reload_conf'], ['help'], ['version']]"
|
||||
"['performance'], ['daily'], ['count'], ['reload_conf'], " \
|
||||
"['whitelist'], ['help'], ['version']]"
|
||||
|
||||
assert log_has(message_str, caplog.record_tuples)
|
||||
|
||||
@ -1006,6 +1007,43 @@ def test_count_handle(default_conf, update, ticker, fee, markets, mocker) -> Non
|
||||
assert msg in msg_mock.call_args_list[0][0][0]
|
||||
|
||||
|
||||
def test_whitelist_static(default_conf, update, mocker) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
msg_mock = MagicMock()
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.rpc.telegram.Telegram',
|
||||
_init=MagicMock(),
|
||||
_send_msg=msg_mock
|
||||
)
|
||||
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
telegram = Telegram(freqtradebot)
|
||||
|
||||
telegram._whitelist(bot=MagicMock(), update=update)
|
||||
assert msg_mock.call_count == 1
|
||||
assert ('Using static whitelist with `4` pairs \n`ETH/BTC, LTC/BTC, XRP/BTC, NEO/BTC`'
|
||||
in msg_mock.call_args_list[0][0][0])
|
||||
|
||||
|
||||
def test_whitelist_dynamic(default_conf, update, mocker) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
msg_mock = MagicMock()
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.rpc.telegram.Telegram',
|
||||
_init=MagicMock(),
|
||||
_send_msg=msg_mock
|
||||
)
|
||||
default_conf['dynamic_whitelist'] = 4
|
||||
freqtradebot = get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
telegram = Telegram(freqtradebot)
|
||||
|
||||
telegram._whitelist(bot=MagicMock(), update=update)
|
||||
assert msg_mock.call_count == 1
|
||||
assert ('Dynamic whitelist with `4` pairs\n`ETH/BTC, LTC/BTC, XRP/BTC, NEO/BTC`'
|
||||
in msg_mock.call_args_list[0][0][0])
|
||||
|
||||
|
||||
def test_help_handle(default_conf, update, mocker) -> None:
|
||||
patch_coinmarketcap(mocker)
|
||||
msg_mock = MagicMock()
|
||||
|
@ -88,8 +88,8 @@ def test_load_strategy_invalid_directory(result, caplog):
|
||||
def test_load_not_found_strategy():
|
||||
strategy = StrategyResolver()
|
||||
with pytest.raises(ImportError,
|
||||
match=r'Impossible to load Strategy \'NotFoundStrategy\'.'
|
||||
r' This class does not exist or contains Python code errors'):
|
||||
match=r"Impossible to load Strategy 'NotFoundStrategy'."
|
||||
r" This class does not exist or contains Python code errors"):
|
||||
strategy._load_strategy(strategy_name='NotFoundStrategy', config={})
|
||||
|
||||
|
||||
@ -182,6 +182,42 @@ def test_strategy_override_process_only_new_candles(caplog):
|
||||
) in caplog.record_tuples
|
||||
|
||||
|
||||
def test_strategy_override_order_types(caplog):
|
||||
caplog.set_level(logging.INFO)
|
||||
|
||||
order_types = {
|
||||
'buy': 'market',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'limit'
|
||||
}
|
||||
|
||||
config = {
|
||||
'strategy': 'DefaultStrategy',
|
||||
'order_types': order_types
|
||||
}
|
||||
resolver = StrategyResolver(config)
|
||||
|
||||
assert resolver.strategy.order_types
|
||||
for method in ['buy', 'sell', 'stoploss']:
|
||||
assert resolver.strategy.order_types[method] == order_types[method]
|
||||
|
||||
assert ('freqtrade.strategy.resolver',
|
||||
logging.INFO,
|
||||
"Override strategy 'order_types' with value in config file:"
|
||||
" {'buy': 'market', 'sell': 'limit', 'stoploss': 'limit'}."
|
||||
) in caplog.record_tuples
|
||||
|
||||
config = {
|
||||
'strategy': 'DefaultStrategy',
|
||||
'order_types': {'buy': 'market'}
|
||||
}
|
||||
# Raise error for invalid configuration
|
||||
with pytest.raises(ImportError,
|
||||
match=r"Impossible to load Strategy 'DefaultStrategy'. "
|
||||
r"Order-types mapping is incomplete."):
|
||||
StrategyResolver(config)
|
||||
|
||||
|
||||
def test_deprecate_populate_indicators(result):
|
||||
default_location = path.join(path.dirname(path.realpath(__file__)))
|
||||
resolver = StrategyResolver({'strategy': 'TestStrategyLegacy',
|
||||
|
@ -64,6 +64,22 @@ def test_load_config_max_open_trades_zero(default_conf, mocker, caplog) -> None:
|
||||
assert log_has('Validating configuration ...', caplog.record_tuples)
|
||||
|
||||
|
||||
def test_load_config_max_open_trades_minus_one(default_conf, mocker, caplog) -> None:
|
||||
default_conf['max_open_trades'] = -1
|
||||
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
|
||||
read_data=json.dumps(default_conf)
|
||||
))
|
||||
|
||||
args = Arguments([], '').get_parsed_arg()
|
||||
configuration = Configuration(args)
|
||||
validated_conf = configuration.load_config()
|
||||
print(validated_conf)
|
||||
|
||||
assert validated_conf['max_open_trades'] > 999999999
|
||||
assert validated_conf['max_open_trades'] == float('inf')
|
||||
assert log_has('Validating configuration ...', caplog.record_tuples)
|
||||
|
||||
|
||||
def test_load_config_file_exception(mocker) -> None:
|
||||
mocker.patch(
|
||||
'freqtrade.configuration.open',
|
||||
|
@ -18,7 +18,7 @@ from freqtrade.persistence import Trade
|
||||
from freqtrade.rpc import RPCMessageType
|
||||
from freqtrade.state import State
|
||||
from freqtrade.strategy.interface import SellType, SellCheckTuple
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange
|
||||
from freqtrade.tests.conftest import log_has, patch_exchange, patch_edge
|
||||
|
||||
|
||||
# Functions for recurrent object patching
|
||||
@ -177,7 +177,7 @@ def test_get_trade_stake_amount(default_conf, ticker, limit_buy_order, fee, mock
|
||||
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('ETH/BTC')
|
||||
assert result == default_conf['stake_amount']
|
||||
|
||||
|
||||
@ -195,7 +195,7 @@ def test_get_trade_stake_amount_no_stake_amount(default_conf,
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
|
||||
with pytest.raises(DependencyException, match=r'.*stake amount.*'):
|
||||
freqtrade._get_trade_stake_amount()
|
||||
freqtrade._get_trade_stake_amount('ETH/BTC')
|
||||
|
||||
|
||||
def test_get_trade_stake_amount_unlimited_amount(default_conf,
|
||||
@ -224,28 +224,131 @@ def test_get_trade_stake_amount_unlimited_amount(default_conf,
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
# no open trades, order amount should be 'balance / max_open_trades'
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('ETH/BTC')
|
||||
assert result == default_conf['stake_amount'] / conf['max_open_trades']
|
||||
|
||||
# create one trade, order amount should be 'balance / (max_open_trades - num_open_trades)'
|
||||
freqtrade.create_trade()
|
||||
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('LTC/BTC')
|
||||
assert result == default_conf['stake_amount'] / (conf['max_open_trades'] - 1)
|
||||
|
||||
# create 2 trades, order amount should be None
|
||||
freqtrade.create_trade()
|
||||
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('XRP/BTC')
|
||||
assert result is None
|
||||
|
||||
# set max_open_trades = None, so do not trade
|
||||
conf['max_open_trades'] = 0
|
||||
freqtrade = FreqtradeBot(conf)
|
||||
result = freqtrade._get_trade_stake_amount()
|
||||
result = freqtrade._get_trade_stake_amount('NEO/BTC')
|
||||
assert result is None
|
||||
|
||||
|
||||
def test_edge_called_in_process(mocker, edge_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_edge(mocker)
|
||||
|
||||
def _refresh_whitelist(list):
|
||||
return ['ETH/BTC', 'LTC/BTC', 'XRP/BTC', 'NEO/BTC']
|
||||
|
||||
patch_exchange(mocker)
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
freqtrade._refresh_whitelist = _refresh_whitelist
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade._process()
|
||||
assert freqtrade.active_pair_whitelist == ['NEO/BTC', 'LTC/BTC']
|
||||
|
||||
|
||||
def test_edge_overrides_stake_amount(mocker, edge_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
patch_edge(mocker)
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
|
||||
assert freqtrade._get_trade_stake_amount('NEO/BTC') == (0.001 * 0.01) / 0.20
|
||||
assert freqtrade._get_trade_stake_amount('LTC/BTC') == (0.001 * 0.01) / 0.20
|
||||
|
||||
|
||||
def test_edge_overrides_stoploss(limit_buy_order, fee, markets, caplog, mocker, edge_conf) -> None:
|
||||
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
patch_edge(mocker)
|
||||
|
||||
# Strategy stoploss is -0.1 but Edge imposes a stoploss at -0.2
|
||||
# Thus, if price falls 21%, stoploss should be triggered
|
||||
#
|
||||
# mocking the ticker: price is falling ...
|
||||
buy_price = limit_buy_order['price']
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_ticker=MagicMock(return_value={
|
||||
'bid': buy_price * 0.79,
|
||||
'ask': buy_price * 0.79,
|
||||
'last': buy_price * 0.79
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
get_markets=markets,
|
||||
)
|
||||
#############################################
|
||||
|
||||
# Create a trade with "limit_buy_order" price
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
freqtrade.active_pair_whitelist = ['NEO/BTC']
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade.strategy.min_roi_reached = lambda trade, current_profit, current_time: False
|
||||
freqtrade.create_trade()
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
#############################################
|
||||
|
||||
# stoploss shoud be hit
|
||||
assert freqtrade.handle_trade(trade) is True
|
||||
assert log_has('executed sell, reason: SellType.STOP_LOSS', caplog.record_tuples)
|
||||
assert trade.sell_reason == SellType.STOP_LOSS.value
|
||||
|
||||
|
||||
def test_edge_should_ignore_strategy_stoploss(limit_buy_order, fee, markets,
|
||||
mocker, edge_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
patch_edge(mocker)
|
||||
|
||||
# Strategy stoploss is -0.1 but Edge imposes a stoploss at -0.2
|
||||
# Thus, if price falls 15%, stoploss should not be triggered
|
||||
#
|
||||
# mocking the ticker: price is falling ...
|
||||
buy_price = limit_buy_order['price']
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_ticker=MagicMock(return_value={
|
||||
'bid': buy_price * 0.85,
|
||||
'ask': buy_price * 0.85,
|
||||
'last': buy_price * 0.85
|
||||
}),
|
||||
buy=MagicMock(return_value={'id': limit_buy_order['id']}),
|
||||
get_fee=fee,
|
||||
get_markets=markets,
|
||||
)
|
||||
#############################################
|
||||
|
||||
# Create a trade with "limit_buy_order" price
|
||||
freqtrade = FreqtradeBot(edge_conf)
|
||||
freqtrade.active_pair_whitelist = ['NEO/BTC']
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade.strategy.min_roi_reached = lambda trade, current_profit, current_time: False
|
||||
freqtrade.create_trade()
|
||||
trade = Trade.query.first()
|
||||
trade.update(limit_buy_order)
|
||||
#############################################
|
||||
|
||||
# stoploss shoud not be hit
|
||||
assert freqtrade.handle_trade(trade) is False
|
||||
|
||||
|
||||
def test_get_min_pair_stake_amount(mocker, default_conf) -> None:
|
||||
patch_RPCManager(mocker)
|
||||
patch_exchange(mocker)
|
||||
@ -450,7 +553,7 @@ def test_create_trade_minimal_amount(default_conf, ticker, limit_buy_order,
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
freqtrade.create_trade()
|
||||
rate, amount = buy_mock.call_args[0][1], buy_mock.call_args[0][2]
|
||||
rate, amount = buy_mock.call_args[1]['rate'], buy_mock.call_args[1]['amount']
|
||||
assert rate * amount >= default_conf['stake_amount']
|
||||
|
||||
|
||||
@ -494,7 +597,7 @@ def test_create_trade_limit_reached(default_conf, ticker, limit_buy_order,
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
assert freqtrade.create_trade() is False
|
||||
assert freqtrade._get_trade_stake_amount() is None
|
||||
assert freqtrade._get_trade_stake_amount('ETH/BTC') is None
|
||||
|
||||
|
||||
def test_create_trade_no_pairs(default_conf, ticker, limit_buy_order, fee, markets, mocker) -> None:
|
||||
@ -593,7 +696,7 @@ def test_process_trade_creation(default_conf, ticker, limit_buy_order,
|
||||
assert trade.amount == 90.99181073703367
|
||||
|
||||
assert log_has(
|
||||
'Checking buy signals to create a new trade with stake_amount: 0.001000 ...',
|
||||
'Buy signal found: about create a new trade with stake_amount: 0.001000 ...',
|
||||
caplog.record_tuples
|
||||
)
|
||||
|
||||
@ -760,10 +863,10 @@ def test_execute_buy(mocker, default_conf, fee, markets, limit_buy_order) -> Non
|
||||
assert freqtrade.execute_buy(pair, stake_amount)
|
||||
assert get_bid.call_count == 1
|
||||
assert buy_mm.call_count == 1
|
||||
call_args = buy_mm.call_args_list[0][0]
|
||||
assert call_args[0] == pair
|
||||
assert call_args[1] == bid
|
||||
assert call_args[2] == stake_amount / bid
|
||||
call_args = buy_mm.call_args_list[0][1]
|
||||
assert call_args['pair'] == pair
|
||||
assert call_args['rate'] == bid
|
||||
assert call_args['amount'] == stake_amount / bid
|
||||
|
||||
# Test calling with price
|
||||
fix_price = 0.06
|
||||
@ -772,10 +875,10 @@ def test_execute_buy(mocker, default_conf, fee, markets, limit_buy_order) -> Non
|
||||
assert get_bid.call_count == 1
|
||||
|
||||
assert buy_mm.call_count == 2
|
||||
call_args = buy_mm.call_args_list[1][0]
|
||||
assert call_args[0] == pair
|
||||
assert call_args[1] == fix_price
|
||||
assert call_args[2] == stake_amount / fix_price
|
||||
call_args = buy_mm.call_args_list[1][1]
|
||||
assert call_args['pair'] == pair
|
||||
assert call_args['rate'] == fix_price
|
||||
assert call_args['amount'] == stake_amount / fix_price
|
||||
|
||||
|
||||
def test_process_maybe_execute_buy(mocker, default_conf) -> None:
|
||||
@ -1547,7 +1650,7 @@ def test_sell_profit_only_enable_loss(default_conf, limit_buy_order, fee, market
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
patch_get_signal(freqtrade)
|
||||
freqtrade.strategy.stop_loss_reached = \
|
||||
lambda current_rate, trade, current_time, current_profit: SellCheckTuple(
|
||||
lambda current_rate, trade, current_time, force_stoploss, current_profit: SellCheckTuple(
|
||||
sell_flag=False, sell_type=SellType.NONE)
|
||||
freqtrade.create_trade()
|
||||
|
||||
@ -1821,7 +1924,7 @@ def test_get_real_amount_quote(default_conf, trades_for_order, buy_order_fee, ca
|
||||
exchange='binance',
|
||||
open_rate=0.245441,
|
||||
open_order_id="123456"
|
||||
)
|
||||
)
|
||||
freqtrade = FreqtradeBot(default_conf)
|
||||
patch_get_signal(freqtrade)
|
||||
|
||||
@ -2097,9 +2200,9 @@ def test_order_book_bid_strategy2(mocker, default_conf, order_book_l2, markets)
|
||||
"""
|
||||
patch_exchange(mocker)
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_markets=markets,
|
||||
get_order_book=order_book_l2
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_markets=markets,
|
||||
get_order_book=order_book_l2
|
||||
)
|
||||
default_conf['exchange']['name'] = 'binance'
|
||||
default_conf['bid_strategy']['use_order_book'] = True
|
||||
|
84
freqtrade/tests/test_wallets.py
Normal file
84
freqtrade/tests/test_wallets.py
Normal file
@ -0,0 +1,84 @@
|
||||
# pragma pylint: disable=missing-docstring
|
||||
from freqtrade.tests.conftest import get_patched_freqtradebot
|
||||
from unittest.mock import MagicMock
|
||||
|
||||
|
||||
def test_sync_wallet_at_boot(mocker, default_conf):
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_balances=MagicMock(return_value={
|
||||
"BNT": {
|
||||
"free": 1.0,
|
||||
"used": 2.0,
|
||||
"total": 3.0
|
||||
},
|
||||
"GAS": {
|
||||
"free": 0.260739,
|
||||
"used": 0.0,
|
||||
"total": 0.260739
|
||||
},
|
||||
})
|
||||
)
|
||||
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
assert len(freqtrade.wallets.wallets) == 2
|
||||
assert freqtrade.wallets.wallets['BNT'].free == 1.0
|
||||
assert freqtrade.wallets.wallets['BNT'].used == 2.0
|
||||
assert freqtrade.wallets.wallets['BNT'].total == 3.0
|
||||
assert freqtrade.wallets.wallets['GAS'].free == 0.260739
|
||||
assert freqtrade.wallets.wallets['GAS'].used == 0.0
|
||||
assert freqtrade.wallets.wallets['GAS'].total == 0.260739
|
||||
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_balances=MagicMock(return_value={
|
||||
"BNT": {
|
||||
"free": 1.2,
|
||||
"used": 1.9,
|
||||
"total": 3.5
|
||||
},
|
||||
"GAS": {
|
||||
"free": 0.270739,
|
||||
"used": 0.1,
|
||||
"total": 0.260439
|
||||
},
|
||||
})
|
||||
)
|
||||
|
||||
freqtrade.wallets.update()
|
||||
|
||||
assert len(freqtrade.wallets.wallets) == 2
|
||||
assert freqtrade.wallets.wallets['BNT'].free == 1.2
|
||||
assert freqtrade.wallets.wallets['BNT'].used == 1.9
|
||||
assert freqtrade.wallets.wallets['BNT'].total == 3.5
|
||||
assert freqtrade.wallets.wallets['GAS'].free == 0.270739
|
||||
assert freqtrade.wallets.wallets['GAS'].used == 0.1
|
||||
assert freqtrade.wallets.wallets['GAS'].total == 0.260439
|
||||
|
||||
|
||||
def test_sync_wallet_missing_data(mocker, default_conf):
|
||||
mocker.patch.multiple(
|
||||
'freqtrade.exchange.Exchange',
|
||||
get_balances=MagicMock(return_value={
|
||||
"BNT": {
|
||||
"free": 1.0,
|
||||
"used": 2.0,
|
||||
"total": 3.0
|
||||
},
|
||||
"GAS": {
|
||||
"free": 0.260739,
|
||||
"total": 0.260739
|
||||
},
|
||||
})
|
||||
)
|
||||
|
||||
freqtrade = get_patched_freqtradebot(mocker, default_conf)
|
||||
|
||||
assert len(freqtrade.wallets.wallets) == 2
|
||||
assert freqtrade.wallets.wallets['BNT'].free == 1.0
|
||||
assert freqtrade.wallets.wallets['BNT'].used == 2.0
|
||||
assert freqtrade.wallets.wallets['BNT'].total == 3.0
|
||||
assert freqtrade.wallets.wallets['GAS'].free == 0.260739
|
||||
assert freqtrade.wallets.wallets['GAS'].used is None
|
||||
assert freqtrade.wallets.wallets['GAS'].total == 0.260739
|
44
freqtrade/wallets.py
Normal file
44
freqtrade/wallets.py
Normal file
@ -0,0 +1,44 @@
|
||||
# pragma pylint: disable=W0603
|
||||
""" Wallet """
|
||||
import logging
|
||||
from typing import Dict, Any, NamedTuple
|
||||
from collections import namedtuple
|
||||
from freqtrade.exchange import Exchange
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Wallet(NamedTuple):
|
||||
exchange: str
|
||||
currency: str
|
||||
free: float = 0
|
||||
used: float = 0
|
||||
total: float = 0
|
||||
|
||||
|
||||
class Wallets(object):
|
||||
|
||||
# wallet data structure
|
||||
wallet = namedtuple(
|
||||
'wallet',
|
||||
['exchange', 'currency', 'free', 'used', 'total']
|
||||
)
|
||||
|
||||
def __init__(self, exchange: Exchange) -> None:
|
||||
self.exchange = exchange
|
||||
self.wallets: Dict[str, Any] = {}
|
||||
self.update()
|
||||
|
||||
def update(self) -> None:
|
||||
balances = self.exchange.get_balances()
|
||||
|
||||
for currency in balances:
|
||||
self.wallets[currency] = Wallet(
|
||||
self.exchange.id,
|
||||
currency,
|
||||
balances[currency].get('free', None),
|
||||
balances[currency].get('used', None),
|
||||
balances[currency].get('total', None)
|
||||
)
|
||||
|
||||
logger.info('Wallets synced ...')
|
@ -1,18 +1,19 @@
|
||||
ccxt==1.17.481
|
||||
SQLAlchemy==1.2.13
|
||||
ccxt==1.17.529
|
||||
SQLAlchemy==1.2.14
|
||||
python-telegram-bot==11.1.0
|
||||
arrow==0.12.1
|
||||
cachetools==3.0.0
|
||||
requests==2.20.0
|
||||
requests==2.20.1
|
||||
urllib3==1.24.1
|
||||
wrapt==1.10.11
|
||||
pandas==0.23.4
|
||||
scikit-learn==0.20.0
|
||||
joblib==0.13.0
|
||||
scipy==1.1.0
|
||||
jsonschema==2.6.0
|
||||
numpy==1.15.4
|
||||
TA-Lib==0.4.17
|
||||
pytest==3.10.0
|
||||
pytest==4.0.0
|
||||
pytest-mock==1.10.0
|
||||
pytest-asyncio==0.9.0
|
||||
pytest-cov==2.6.0
|
||||
@ -24,3 +25,9 @@ scikit-optimize==0.5.2
|
||||
|
||||
# Required for plotting data
|
||||
#plotly==3.1.1
|
||||
|
||||
# find first, C search in arrays
|
||||
py_find_1st==1.1.3
|
||||
|
||||
#Load ticker files 30% faster
|
||||
ujson==1.35
|
||||
|
3
setup.py
3
setup.py
@ -31,12 +31,15 @@ setup(name='freqtrade',
|
||||
'pandas',
|
||||
'scikit-learn',
|
||||
'scipy',
|
||||
'joblib',
|
||||
'jsonschema',
|
||||
'TA-Lib',
|
||||
'tabulate',
|
||||
'cachetools',
|
||||
'coinmarketcap',
|
||||
'scikit-optimize',
|
||||
'ujson',
|
||||
'py_find_1st'
|
||||
],
|
||||
include_package_data=True,
|
||||
zip_safe=False,
|
||||
|
0
user_data/hyperopts/__init__.py
Normal file
0
user_data/hyperopts/__init__.py
Normal file
139
user_data/hyperopts/sample_hyperopt.py
Normal file
139
user_data/hyperopts/sample_hyperopt.py
Normal file
@ -0,0 +1,139 @@
|
||||
# pragma pylint: disable=missing-docstring, invalid-name, pointless-string-statement
|
||||
|
||||
import talib.abstract as ta
|
||||
from pandas import DataFrame
|
||||
from typing import Dict, Any, Callable, List
|
||||
from functools import reduce
|
||||
|
||||
import numpy
|
||||
from skopt.space import Categorical, Dimension, Integer, Real
|
||||
|
||||
import freqtrade.vendor.qtpylib.indicators as qtpylib
|
||||
from freqtrade.optimize.hyperopt_interface import IHyperOpt
|
||||
|
||||
class_name = 'SampleHyperOpts'
|
||||
|
||||
|
||||
# This class is a sample. Feel free to customize it.
|
||||
class SampleHyperOpts(IHyperOpt):
|
||||
"""
|
||||
This is a test hyperopt to inspire you.
|
||||
More information in https://github.com/freqtrade/freqtrade/blob/develop/docs/hyperopt.md
|
||||
You can:
|
||||
- Rename the class name (Do not forget to update class_name)
|
||||
- Add any methods you want to build your hyperopt
|
||||
- Add any lib you need to build your hyperopt
|
||||
You must keep:
|
||||
- the prototype for the methods: populate_indicators, indicator_space, buy_strategy_generator,
|
||||
roi_space, generate_roi_table, stoploss_space
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def populate_indicators(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
macd = ta.MACD(dataframe)
|
||||
dataframe['macd'] = macd['macd']
|
||||
dataframe['macdsignal'] = macd['macdsignal']
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
dataframe['rsi'] = ta.RSI(dataframe)
|
||||
stoch_fast = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch_fast['fastd']
|
||||
dataframe['minus_di'] = ta.MINUS_DI(dataframe)
|
||||
# Bollinger bands
|
||||
bollinger = qtpylib.bollinger_bands(qtpylib.typical_price(dataframe), window=20, stds=2)
|
||||
dataframe['bb_lowerband'] = bollinger['lower']
|
||||
dataframe['sar'] = ta.SAR(dataframe)
|
||||
return dataframe
|
||||
|
||||
@staticmethod
|
||||
def buy_strategy_generator(params: Dict[str, Any]) -> Callable:
|
||||
"""
|
||||
Define the buy strategy parameters to be used by hyperopt
|
||||
"""
|
||||
def populate_buy_trend(dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Buy strategy Hyperopt will build and use
|
||||
"""
|
||||
conditions = []
|
||||
# GUARDS AND TRENDS
|
||||
if 'mfi-enabled' in params and params['mfi-enabled']:
|
||||
conditions.append(dataframe['mfi'] < params['mfi-value'])
|
||||
if 'fastd-enabled' in params and params['fastd-enabled']:
|
||||
conditions.append(dataframe['fastd'] < params['fastd-value'])
|
||||
if 'adx-enabled' in params and params['adx-enabled']:
|
||||
conditions.append(dataframe['adx'] > params['adx-value'])
|
||||
if 'rsi-enabled' in params and params['rsi-enabled']:
|
||||
conditions.append(dataframe['rsi'] < params['rsi-value'])
|
||||
|
||||
# TRIGGERS
|
||||
if params['trigger'] == 'bb_lower':
|
||||
conditions.append(dataframe['close'] < dataframe['bb_lowerband'])
|
||||
if params['trigger'] == 'macd_cross_signal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['macd'], dataframe['macdsignal']
|
||||
))
|
||||
if params['trigger'] == 'sar_reversal':
|
||||
conditions.append(qtpylib.crossed_above(
|
||||
dataframe['close'], dataframe['sar']
|
||||
))
|
||||
|
||||
dataframe.loc[
|
||||
reduce(lambda x, y: x & y, conditions),
|
||||
'buy'] = 1
|
||||
|
||||
return dataframe
|
||||
|
||||
return populate_buy_trend
|
||||
|
||||
@staticmethod
|
||||
def indicator_space() -> List[Dimension]:
|
||||
"""
|
||||
Define your Hyperopt space for searching strategy parameters
|
||||
"""
|
||||
return [
|
||||
Integer(10, 25, name='mfi-value'),
|
||||
Integer(15, 45, name='fastd-value'),
|
||||
Integer(20, 50, name='adx-value'),
|
||||
Integer(20, 40, name='rsi-value'),
|
||||
Categorical([True, False], name='mfi-enabled'),
|
||||
Categorical([True, False], name='fastd-enabled'),
|
||||
Categorical([True, False], name='adx-enabled'),
|
||||
Categorical([True, False], name='rsi-enabled'),
|
||||
Categorical(['bb_lower', 'macd_cross_signal', 'sar_reversal'], name='trigger')
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def generate_roi_table(params: Dict) -> Dict[int, float]:
|
||||
"""
|
||||
Generate the ROI table that will be used by Hyperopt
|
||||
"""
|
||||
roi_table = {}
|
||||
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
|
||||
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
|
||||
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
|
||||
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
|
||||
|
||||
return roi_table
|
||||
|
||||
@staticmethod
|
||||
def stoploss_space() -> List[Dimension]:
|
||||
"""
|
||||
Stoploss Value to search
|
||||
"""
|
||||
return [
|
||||
Real(-0.5, -0.02, name='stoploss'),
|
||||
]
|
||||
|
||||
@staticmethod
|
||||
def roi_space() -> List[Dimension]:
|
||||
"""
|
||||
Values to search for each ROI steps
|
||||
"""
|
||||
return [
|
||||
Integer(10, 120, name='roi_t1'),
|
||||
Integer(10, 60, name='roi_t2'),
|
||||
Integer(10, 40, name='roi_t3'),
|
||||
Real(0.01, 0.04, name='roi_p1'),
|
||||
Real(0.01, 0.07, name='roi_p2'),
|
||||
Real(0.01, 0.20, name='roi_p3'),
|
||||
]
|
@ -48,6 +48,13 @@ class TestStrategy(IStrategy):
|
||||
# run "populate_indicators" only for new candle
|
||||
ta_on_candle = False
|
||||
|
||||
# Optional order type mapping
|
||||
order_types = {
|
||||
'buy': 'limit',
|
||||
'sell': 'limit',
|
||||
'stoploss': 'market'
|
||||
}
|
||||
|
||||
def populate_indicators(self, dataframe: DataFrame, metadata: dict) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
|
Loading…
Reference in New Issue
Block a user