strategy_updater:

removed args_common_optimize for strategy-updater

backtest_lookahead_bias_checker:
added args and cli-options for minimum and target trade amounts
fixed code according to best-practice coding requests of matthias (CamelCase etc)
This commit is contained in:
hippocritical 2023-03-28 22:20:00 +02:00
parent efefcb240b
commit 7bd55971dc
4 changed files with 146 additions and 131 deletions

View File

@ -116,9 +116,10 @@ NO_CONF_REQURIED = ["convert-data", "convert-trade-data", "download-data", "list
NO_CONF_ALLOWED = ["create-userdir", "list-exchanges", "new-strategy"]
ARGS_STRATEGY_UPDATER = ARGS_COMMON_OPTIMIZE + ["strategy_list"]
ARGS_STRATEGY_UPDATER = ["strategy_list"]
ARGS_BACKTEST_LOOKAHEAD_BIAS_CHECKER = ARGS_BACKTEST
ARGS_BACKTEST_LOOKAHEAD_BIAS_CHECKER = ARGS_BACKTEST + ["minimum_trade_amount",
"targeted_trade_amount"]
# + ["target_trades", "minimum_trades",
@ -461,7 +462,7 @@ class Arguments:
# Add backtest lookahead bias checker subcommand
backtest_lookahead_bias_checker_cmd = \
subparsers.add_parser('backtest_lookahead_bias_checker',
subparsers.add_parser('backtest-lookahead-bias-checker',
help="checks for potential look ahead bias",
parents=[_common_parser])
backtest_lookahead_bias_checker_cmd.set_defaults(func=start_backtest_lookahead_bias_checker)

View File

@ -675,4 +675,18 @@ AVAILABLE_CLI_OPTIONS = {
help='Run backtest with ready models.',
action='store_true'
),
"minimum_trade_amount": Arg(
'--minimum-trade-amount',
help='set INT minimum trade amount',
type=check_int_positive,
metavar='INT',
default=10,
),
"targeted_trade_amount": Arg(
'--targeted-trade-amount',
help='set INT targeted trade amount',
type=check_int_positive,
metavar='INT',
default=20,
)
}

View File

@ -7,7 +7,7 @@ from typing import Any, Dict
from freqtrade.configuration import setup_utils_configuration
from freqtrade.enums import RunMode
from freqtrade.resolvers import StrategyResolver
from freqtrade.strategy.backtest_lookahead_bias_checker import backtest_lookahead_bias_checker
from freqtrade.strategy.backtest_lookahead_bias_checker import BacktestLookaheadBiasChecker
from freqtrade.strategy.strategyupdater import StrategyUpdater
@ -67,9 +67,16 @@ def start_backtest_lookahead_bias_checker(args: Dict[str, Any]) -> None:
"""
config = setup_utils_configuration(args, RunMode.UTIL_NO_EXCHANGE)
if args['targeted_trade_amount'] < args['minimum_trade_amount']:
# add logic that tells the user to check the configuration
# since this combo doesn't make any sense.
pass
strategy_objs = StrategyResolver.search_all_objects(
config, enum_failed=False, recursive=config.get('recursive_strategy_search', False))
bias_checker_instances = []
filtered_strategy_objs = []
if 'strategy_list' in args and args['strategy_list'] is not None:
for args_strategy in args['strategy_list']:
@ -80,21 +87,29 @@ def start_backtest_lookahead_bias_checker(args: Dict[str, Any]) -> None:
break
for filtered_strategy_obj in filtered_strategy_objs:
initialize_single_lookahead_bias_checker(filtered_strategy_obj, config)
bias_checker_instances = initialize_single_lookahead_bias_checker(
filtered_strategy_obj, config, args)
else:
processed_locations = set()
for strategy_obj in strategy_objs:
if strategy_obj['location'] not in processed_locations:
processed_locations.add(strategy_obj['location'])
initialize_single_lookahead_bias_checker(strategy_obj, config)
bias_checker_instances = initialize_single_lookahead_bias_checker(
strategy_obj, config, args)
create_result_list(bias_checker_instances)
def initialize_single_lookahead_bias_checker(strategy_obj, config):
def create_result_list(bias_checker_instances):
pass
def initialize_single_lookahead_bias_checker(strategy_obj, config, args):
# try:
print(f"Bias test of {Path(strategy_obj['location']).name} started.")
instance_backtest_lookahead_bias_checker = backtest_lookahead_bias_checker()
instance_backtest_lookahead_bias_checker = BacktestLookaheadBiasChecker()
start = time.perf_counter()
instance_backtest_lookahead_bias_checker.start(config, strategy_obj)
current_instance = instance_backtest_lookahead_bias_checker.start(config, strategy_obj, args)
elapsed = time.perf_counter() - start
print(f"checking look ahead bias via backtests of {Path(strategy_obj['location']).name} "
f"took {elapsed:.1f} seconds.")
return current_instance

View File

@ -1,4 +1,4 @@
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import copy
from copy import deepcopy
from datetime import datetime, timedelta, timezone
@ -10,8 +10,8 @@ from freqtrade.exchange import timeframe_to_minutes
from freqtrade.optimize.backtesting import Backtesting
class backtest_lookahead_bias_checker:
class varHolder:
class BacktestLookaheadBiasChecker:
class VarHolder:
timerange: TimeRange
data: pandas.DataFrame
indicators: pandas.DataFrame
@ -21,7 +21,7 @@ class backtest_lookahead_bias_checker:
to_dt: datetime
compared_dt: datetime
class analysis:
class Analysis:
def __init__(self):
self.total_signals = 0
self.false_entry_signals = 0
@ -37,24 +37,24 @@ class backtest_lookahead_bias_checker:
has_bias: bool
def __init__(self):
self.strategy_obj
self.current_analysis
self.config
self.full_varHolder
self.entry_varholder
self.exit_varholder
self.backtesting
self.signals_to_check: int = 20
self.current_analysis
self.full_varHolder.from_dt
self.full_varHolder.to_dt
self.strategy_obj = None
self.current_analysis = None
self.local_config = None
self.full_varHolder = None
self.entry_varHolder = None
self.exit_varHolder = None
self.backtesting = None
self.current_analysis = None
self.minimum_trade_amount = None
self.targeted_trade_amount = None
@staticmethod
def dt_to_timestamp(dt):
timestamp = int(dt.replace(tzinfo=timezone.utc).timestamp())
return timestamp
def get_result(self, backtesting, processed):
@staticmethod
def get_result(backtesting, processed):
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
@ -64,6 +64,24 @@ class backtest_lookahead_bias_checker:
)
return result
@staticmethod
def report_signal(result, column_name, checked_timestamp):
df = result['results']
row_count = df[column_name].shape[0]
if row_count == 0:
return False
else:
df_cut = df[(df[column_name] == checked_timestamp)]
if df_cut[column_name].shape[0] == 0:
# print("did NOT find the same signal in column " + column_name +
# " at timestamp " + str(checked_timestamp))
return False
else:
return True
return False
# analyzes two data frames with processed indicators and shows differences between them.
def analyze_indicators(self, full_vars, cut_vars, current_pair):
# extract dataframes
@ -87,12 +105,11 @@ class backtest_lookahead_bias_checker:
for col_name, values in compare_df.items():
col_idx = compare_df.columns.get_loc(col_name)
compare_df_row = compare_df.iloc[0]
# compare_df now is comprised of tuples with [1] having either 'self' or 'other'
# compare_df now comprises tuples with [1] having either 'self' or 'other'
if 'other' in col_name[1]:
continue
self_value = compare_df_row[col_idx]
other_value = compare_df_row[col_idx + 1]
other_value = compare_df_row[col_idx + 1]
# output differences
if self_value != other_value:
@ -101,90 +118,62 @@ class backtest_lookahead_bias_checker:
self.current_analysis.false_indicators.append(col_name[0])
print(f"=> found look ahead bias in indicator {col_name[0]}. " +
f"{str(self_value)} != {str(other_value)}")
# return compare_df
def report_signal(self, result, column_name, checked_timestamp):
df = result['results']
row_count = df[column_name].shape[0]
if row_count == 0:
return False
else:
df_cut = df[(df[column_name] == checked_timestamp)]
if df_cut[column_name].shape[0] == 0:
# print("did NOT find the same signal in column " + column_name +
# " at timestamp " + str(checked_timestamp))
return False
else:
return True
return False
def prepare_data(self, varholder, var_pairs):
self.config['timerange'] = \
str(int(self.dt_to_timestamp(varholder.from_dt))) + "-" + \
str(int(self.dt_to_timestamp(varholder.to_dt)))
self.backtesting = Backtesting(self.config)
def prepare_data(self, varHolder, pairs_to_load):
prepare_data_config = copy.deepcopy(self.local_config)
prepare_data_config['timerange'] = (str(self.dt_to_timestamp(varHolder.from_dt)) + "-" +
str(self.dt_to_timestamp(varHolder.to_dt)))
prepare_data_config['pairs'] = pairs_to_load
self.backtesting = Backtesting(prepare_data_config)
self.backtesting._set_strategy(self.backtesting.strategylist[0])
varholder.data, varholder.timerange = self.backtesting.load_bt_data()
varholder.indicators = self.backtesting.strategy.advise_all_indicators(varholder.data)
varholder.result = self.get_result(self.backtesting, varholder.indicators)
varHolder.data, varHolder.timerange = self.backtesting.load_bt_data()
varHolder.indicators = self.backtesting.strategy.advise_all_indicators(varHolder.data)
varHolder.result = self.get_result(self.backtesting, varHolder.indicators)
def start(self, config, strategy_obj: dict) -> None:
self.strategy_obj = strategy_obj
self.config = config
self.current_analysis = backtest_lookahead_bias_checker.analysis()
def update_output_file(self):
pass
max_try_signals: int = 3
found_signals: int = 0
continue_with_strategy = True
def start(self, config, strategy_obj: dict, args) -> None:
# first we need to get the necessary entry/exit signals
# so we start by 14 days and increase in 1 month steps
# until we have the desired trade amount.
for try_buysignals in range(max_try_signals): # range(3) = 0..2
# re-initialize backtesting-variable
self.full_varHolder = backtest_lookahead_bias_checker.varHolder()
# deepcopy so we can change the pairs for the 2ndary runs
# and not worry about another strategy to check after.
self.local_config = deepcopy(config)
self.local_config['strategy_list'] = [strategy_obj['name']]
self.current_analysis = BacktestLookaheadBiasChecker.Analysis()
self.minimum_trade_amount = args['minimum_trade_amount']
self.targeted_trade_amount = args['targeted_trade_amount']
# define datetimes in human readable format
self.full_varHolder.from_dt = datetime(2022, 9, 1)
self.full_varHolder.to_dt = datetime(2022, 9, 15) + timedelta(days=30 * try_buysignals)
# first make a single backtest
self.full_varHolder = BacktestLookaheadBiasChecker.VarHolder()
self.prepare_data(self.full_varHolder, self.config['pairs'])
found_signals = self.full_varHolder.result['results'].shape[0] + 1
if try_buysignals == max_try_signals - 1:
if found_signals < self.signals_to_check / 2:
print(f"... only found {str(int(found_signals / 2))} "
f"buy signals for {self.strategy_obj['name']}. "
f"Cancelling...")
continue_with_strategy = False
else:
print(
f"Found {str(found_signals)} buy signals. "
f"Going with max {str(self.signals_to_check)} "
f" buy signals in the full timerange from "
f"{str(self.full_varHolder.from_dt)} to {str(self.full_varHolder.to_dt)}")
break
elif found_signals < self.signals_to_check:
print(
f"Only found {str(found_signals)} buy signals in the full timerange from "
f"{str(self.full_varHolder.from_dt)} to "
f"{str(self.full_varHolder.to_dt)}. "
f"will increase timerange trying to get at least "
f"{str(self.signals_to_check)} signals.")
else:
print(
f"Found {str(found_signals)} buy signals, more than necessary. "
f"Reducing to {str(self.signals_to_check)} "
f"checked buy signals in the full timerange from "
f"{str(self.full_varHolder.from_dt)} to {str(self.full_varHolder.to_dt)}")
break
if not continue_with_strategy:
# define datetime in human-readable format
parsed_timerange = TimeRange.parse_timerange(config['timerange'])
if (parsed_timerange is not None and
parsed_timerange.startdt is not None and
parsed_timerange.stopdt is not None):
self.full_varHolder.from_dt = parsed_timerange.startdt
self.full_varHolder.to_dt = parsed_timerange.stopdt
else:
print("Parsing of parsed_timerange failed. exiting!")
return
self.prepare_data(self.full_varHolder, self.local_config['pairs'])
found_signals: int = self.full_varHolder.result['results'].shape[0] + 1
if found_signals >= self.targeted_trade_amount:
print(f"Found {found_signals} trades, calculating {self.targeted_trade_amount} trades.")
elif self.targeted_trade_amount >= found_signals >= self.minimum_trade_amount:
print(f"Only found {found_signals} trades. Calculating all available trades.")
else:
print(f"found {found_signals} trades "
f"which is less than minimum_trade_amount {self.minimum_trade_amount}. "
f"Cancelling this backtest lookahead bias test.")
return
# now we loop through all entry signals
# starting from the same datetime to avoid miss-reports of bias
for idx, result_row in self.full_varHolder.result['results'].iterrows():
if self.current_analysis.total_signals == self.signals_to_check:
if self.current_analysis.total_signals == self.targeted_trade_amount:
break
# if force-sold, ignore this signal since here it will unconditionally exit.
@ -193,49 +182,45 @@ class backtest_lookahead_bias_checker:
self.current_analysis.total_signals += 1
self.entry_varholder = backtest_lookahead_bias_checker.varHolder()
self.exit_varholder = backtest_lookahead_bias_checker.varHolder()
self.entry_varholder.from_dt = self.full_varHolder.from_dt # result_row['open_date']
self.entry_varholder.compared_dt = result_row['open_date']
self.entry_varHolder = BacktestLookaheadBiasChecker.VarHolder()
self.exit_varHolder = BacktestLookaheadBiasChecker.VarHolder()
self.entry_varHolder.from_dt = self.full_varHolder.from_dt
self.entry_varHolder.compared_dt = result_row['open_date']
# to_dt needs +1 candle since it won't buy on the last candle
self.entry_varholder.to_dt = result_row['open_date'] + \
timedelta(minutes=timeframe_to_minutes(self.config['timeframe']) * 2)
self.entry_varHolder.to_dt = (result_row['open_date'] +
timedelta(minutes=timeframe_to_minutes(
self.local_config['timeframe'])))
self.prepare_data(self.entry_varholder, [result_row['pair']])
self.prepare_data(self.entry_varHolder, [result_row['pair']])
# ---
# print("analyzing the sell signal")
# to_dt needs +1 candle since it will always sell all trades on the last candle
self.exit_varholder.from_dt = self.full_varHolder.from_dt # result_row['open_date']
self.exit_varholder.to_dt = \
result_row['close_date'] + \
timedelta(minutes=timeframe_to_minutes(self.config['timeframe']))
self.exit_varholder.compared_dt = result_row['close_date']
# to_dt needs +1 candle since it will always exit/force-exit trades on the last candle
self.exit_varHolder.from_dt = self.full_varHolder.from_dt
self.exit_varHolder.to_dt = (result_row['close_date'] +
timedelta(minutes=timeframe_to_minutes(
self.local_config['timeframe'])))
self.exit_varHolder.compared_dt = result_row['close_date']
self.prepare_data(self.exit_varholder, [result_row['pair']])
self.prepare_data(self.exit_varHolder, [result_row['pair']])
# register if buy signal is broken
if not self.report_signal(
self.entry_varholder.result,
"open_date", self.entry_varholder.compared_dt):
self.entry_varHolder.result, "open_date", self.entry_varHolder.compared_dt):
self.current_analysis.false_entry_signals += 1
# register if buy or sell signal is broken
if not self.report_signal(self.entry_varholder.result,
"open_date", self.entry_varholder.compared_dt) \
or not self.report_signal(self.exit_varholder.result,
"close_date", self.exit_varholder.compared_dt):
if not self.report_signal(
self.exit_varHolder.result, "close_date", self.exit_varHolder.compared_dt):
self.current_analysis.false_exit_signals += 1
self.analyze_indicators(self.full_varHolder, self.entry_varholder, result_row['pair'])
self.analyze_indicators(self.full_varHolder, self.exit_varholder, result_row['pair'])
# check if the indicators themselves contain biased data
self.analyze_indicators(self.full_varHolder, self.entry_varHolder, result_row['pair'])
self.analyze_indicators(self.full_varHolder, self.exit_varHolder, result_row['pair'])
if self.current_analysis.false_entry_signals > 0 or \
self.current_analysis.false_exit_signals > 0 or \
len(self.current_analysis.false_indicators) > 0:
print(" => " + self.strategy_obj['name'] + ": bias detected!")
if (self.current_analysis.false_entry_signals > 0 or
self.current_analysis.false_exit_signals > 0 or
len(self.current_analysis.false_indicators) > 0):
print(" => " + self.local_config['strategy_list'][0] + ": bias detected!")
self.current_analysis.has_bias = True
else:
print(self.strategy_obj['name'] + ": no bias detected")
print(self.local_config['strategy_list'][0] + ": no bias detected")