stable/freqtrade/strategy/backtest_lookahead_bias_checker.py
hippocritical 7bd55971dc strategy_updater:
removed args_common_optimize for strategy-updater

backtest_lookahead_bias_checker:
added args and cli-options for minimum and target trade amounts
fixed code according to best-practice coding requests of matthias (CamelCase etc)
2023-03-28 22:20:00 +02:00

227 lines
9.6 KiB
Python

import copy
from copy import deepcopy
from datetime import datetime, timedelta, timezone
import pandas
from freqtrade.configuration import TimeRange
from freqtrade.data.history import get_timerange
from freqtrade.exchange import timeframe_to_minutes
from freqtrade.optimize.backtesting import Backtesting
class BacktestLookaheadBiasChecker:
class VarHolder:
timerange: TimeRange
data: pandas.DataFrame
indicators: pandas.DataFrame
result: pandas.DataFrame
compared: pandas.DataFrame
from_dt: datetime
to_dt: datetime
compared_dt: datetime
class Analysis:
def __init__(self):
self.total_signals = 0
self.false_entry_signals = 0
self.false_exit_signals = 0
self.false_indicators = []
self.has_bias = False
total_signals: int
false_entry_signals: int
false_exit_signals: int
false_indicators: list
has_bias: bool
def __init__(self):
self.strategy_obj = None
self.current_analysis = None
self.local_config = None
self.full_varHolder = None
self.entry_varHolder = None
self.exit_varHolder = None
self.backtesting = None
self.current_analysis = None
self.minimum_trade_amount = None
self.targeted_trade_amount = None
@staticmethod
def dt_to_timestamp(dt):
timestamp = int(dt.replace(tzinfo=timezone.utc).timestamp())
return timestamp
@staticmethod
def get_result(backtesting, processed):
min_date, max_date = get_timerange(processed)
result = backtesting.backtest(
processed=deepcopy(processed),
start_date=min_date,
end_date=max_date
)
return result
@staticmethod
def report_signal(result, column_name, checked_timestamp):
df = result['results']
row_count = df[column_name].shape[0]
if row_count == 0:
return False
else:
df_cut = df[(df[column_name] == checked_timestamp)]
if df_cut[column_name].shape[0] == 0:
# print("did NOT find the same signal in column " + column_name +
# " at timestamp " + str(checked_timestamp))
return False
else:
return True
return False
# analyzes two data frames with processed indicators and shows differences between them.
def analyze_indicators(self, full_vars, cut_vars, current_pair):
# extract dataframes
cut_df = cut_vars.indicators[current_pair]
full_df = full_vars.indicators[current_pair]
# cut longer dataframe to length of the shorter
full_df_cut = full_df[
(full_df.date == cut_vars.compared_dt)
].reset_index(drop=True)
cut_df_cut = cut_df[
(cut_df.date == cut_vars.compared_dt)
].reset_index(drop=True)
# compare dataframes
if full_df_cut.shape[0] != 0:
if cut_df_cut.shape[0] != 0:
compare_df = full_df_cut.compare(cut_df_cut)
# skippedColumns = ["date", "open", "high", "low", "close", "volume"]
for col_name, values in compare_df.items():
col_idx = compare_df.columns.get_loc(col_name)
compare_df_row = compare_df.iloc[0]
# compare_df now comprises tuples with [1] having either 'self' or 'other'
if 'other' in col_name[1]:
continue
self_value = compare_df_row[col_idx]
other_value = compare_df_row[col_idx + 1]
# output differences
if self_value != other_value:
if not self.current_analysis.false_indicators.__contains__(col_name[0]):
self.current_analysis.false_indicators.append(col_name[0])
print(f"=> found look ahead bias in indicator {col_name[0]}. " +
f"{str(self_value)} != {str(other_value)}")
def prepare_data(self, varHolder, pairs_to_load):
prepare_data_config = copy.deepcopy(self.local_config)
prepare_data_config['timerange'] = (str(self.dt_to_timestamp(varHolder.from_dt)) + "-" +
str(self.dt_to_timestamp(varHolder.to_dt)))
prepare_data_config['pairs'] = pairs_to_load
self.backtesting = Backtesting(prepare_data_config)
self.backtesting._set_strategy(self.backtesting.strategylist[0])
varHolder.data, varHolder.timerange = self.backtesting.load_bt_data()
varHolder.indicators = self.backtesting.strategy.advise_all_indicators(varHolder.data)
varHolder.result = self.get_result(self.backtesting, varHolder.indicators)
def update_output_file(self):
pass
def start(self, config, strategy_obj: dict, args) -> None:
# deepcopy so we can change the pairs for the 2ndary runs
# and not worry about another strategy to check after.
self.local_config = deepcopy(config)
self.local_config['strategy_list'] = [strategy_obj['name']]
self.current_analysis = BacktestLookaheadBiasChecker.Analysis()
self.minimum_trade_amount = args['minimum_trade_amount']
self.targeted_trade_amount = args['targeted_trade_amount']
# first make a single backtest
self.full_varHolder = BacktestLookaheadBiasChecker.VarHolder()
# define datetime in human-readable format
parsed_timerange = TimeRange.parse_timerange(config['timerange'])
if (parsed_timerange is not None and
parsed_timerange.startdt is not None and
parsed_timerange.stopdt is not None):
self.full_varHolder.from_dt = parsed_timerange.startdt
self.full_varHolder.to_dt = parsed_timerange.stopdt
else:
print("Parsing of parsed_timerange failed. exiting!")
return
self.prepare_data(self.full_varHolder, self.local_config['pairs'])
found_signals: int = self.full_varHolder.result['results'].shape[0] + 1
if found_signals >= self.targeted_trade_amount:
print(f"Found {found_signals} trades, calculating {self.targeted_trade_amount} trades.")
elif self.targeted_trade_amount >= found_signals >= self.minimum_trade_amount:
print(f"Only found {found_signals} trades. Calculating all available trades.")
else:
print(f"found {found_signals} trades "
f"which is less than minimum_trade_amount {self.minimum_trade_amount}. "
f"Cancelling this backtest lookahead bias test.")
return
# now we loop through all entry signals
# starting from the same datetime to avoid miss-reports of bias
for idx, result_row in self.full_varHolder.result['results'].iterrows():
if self.current_analysis.total_signals == self.targeted_trade_amount:
break
# if force-sold, ignore this signal since here it will unconditionally exit.
if result_row.close_date == self.dt_to_timestamp(self.full_varHolder.to_dt):
continue
self.current_analysis.total_signals += 1
self.entry_varHolder = BacktestLookaheadBiasChecker.VarHolder()
self.exit_varHolder = BacktestLookaheadBiasChecker.VarHolder()
self.entry_varHolder.from_dt = self.full_varHolder.from_dt
self.entry_varHolder.compared_dt = result_row['open_date']
# to_dt needs +1 candle since it won't buy on the last candle
self.entry_varHolder.to_dt = (result_row['open_date'] +
timedelta(minutes=timeframe_to_minutes(
self.local_config['timeframe'])))
self.prepare_data(self.entry_varHolder, [result_row['pair']])
# to_dt needs +1 candle since it will always exit/force-exit trades on the last candle
self.exit_varHolder.from_dt = self.full_varHolder.from_dt
self.exit_varHolder.to_dt = (result_row['close_date'] +
timedelta(minutes=timeframe_to_minutes(
self.local_config['timeframe'])))
self.exit_varHolder.compared_dt = result_row['close_date']
self.prepare_data(self.exit_varHolder, [result_row['pair']])
# register if buy signal is broken
if not self.report_signal(
self.entry_varHolder.result, "open_date", self.entry_varHolder.compared_dt):
self.current_analysis.false_entry_signals += 1
# register if buy or sell signal is broken
if not self.report_signal(
self.exit_varHolder.result, "close_date", self.exit_varHolder.compared_dt):
self.current_analysis.false_exit_signals += 1
# check if the indicators themselves contain biased data
self.analyze_indicators(self.full_varHolder, self.entry_varHolder, result_row['pair'])
self.analyze_indicators(self.full_varHolder, self.exit_varHolder, result_row['pair'])
if (self.current_analysis.false_entry_signals > 0 or
self.current_analysis.false_exit_signals > 0 or
len(self.current_analysis.false_indicators) > 0):
print(" => " + self.local_config['strategy_list'][0] + ": bias detected!")
self.current_analysis.has_bias = True
else:
print(self.local_config['strategy_list'][0] + ": no bias detected")