Merge branch 'feat/short' into pr/samgermain/5378
This commit is contained in:
@@ -1,6 +1,6 @@
|
||||
import logging
|
||||
from operator import itemgetter
|
||||
from typing import Any, Dict, List
|
||||
from typing import Any, Dict
|
||||
|
||||
from colorama import init as colorama_init
|
||||
|
||||
@@ -28,30 +28,12 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
no_details = config.get('hyperopt_list_no_details', False)
|
||||
no_header = False
|
||||
|
||||
filteroptions = {
|
||||
'only_best': config.get('hyperopt_list_best', False),
|
||||
'only_profitable': config.get('hyperopt_list_profitable', False),
|
||||
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
|
||||
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
|
||||
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
|
||||
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
|
||||
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
|
||||
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
|
||||
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
|
||||
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
|
||||
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
|
||||
'filter_max_objective': config.get('hyperopt_list_max_objective', None),
|
||||
}
|
||||
|
||||
results_file = get_latest_hyperopt_file(
|
||||
config['user_data_dir'] / 'hyperopt_results',
|
||||
config.get('hyperoptexportfilename'))
|
||||
|
||||
# Previous evaluations
|
||||
epochs = HyperoptTools.load_previous_results(results_file)
|
||||
total_epochs = len(epochs)
|
||||
|
||||
epochs = hyperopt_filter_epochs(epochs, filteroptions)
|
||||
epochs, total_epochs = HyperoptTools.load_filtered_results(results_file, config)
|
||||
|
||||
if print_colorized:
|
||||
colorama_init(autoreset=True)
|
||||
@@ -59,7 +41,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
if not export_csv:
|
||||
try:
|
||||
print(HyperoptTools.get_result_table(config, epochs, total_epochs,
|
||||
not filteroptions['only_best'],
|
||||
not config.get('hyperopt_list_best', False),
|
||||
print_colorized, 0))
|
||||
except KeyboardInterrupt:
|
||||
print('User interrupted..')
|
||||
@@ -71,7 +53,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
|
||||
|
||||
if epochs and export_csv:
|
||||
HyperoptTools.export_csv_file(
|
||||
config, epochs, total_epochs, not filteroptions['only_best'], export_csv
|
||||
config, epochs, total_epochs, not config.get('hyperopt_list_best', False), export_csv
|
||||
)
|
||||
|
||||
|
||||
@@ -91,26 +73,9 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
|
||||
n = config.get('hyperopt_show_index', -1)
|
||||
|
||||
filteroptions = {
|
||||
'only_best': config.get('hyperopt_list_best', False),
|
||||
'only_profitable': config.get('hyperopt_list_profitable', False),
|
||||
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
|
||||
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
|
||||
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
|
||||
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
|
||||
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
|
||||
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
|
||||
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
|
||||
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
|
||||
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
|
||||
'filter_max_objective': config.get('hyperopt_list_max_objective', None)
|
||||
}
|
||||
|
||||
# Previous evaluations
|
||||
epochs = HyperoptTools.load_previous_results(results_file)
|
||||
total_epochs = len(epochs)
|
||||
epochs, total_epochs = HyperoptTools.load_filtered_results(results_file, config)
|
||||
|
||||
epochs = hyperopt_filter_epochs(epochs, filteroptions)
|
||||
filtered_epochs = len(epochs)
|
||||
|
||||
if n > filtered_epochs:
|
||||
@@ -137,138 +102,3 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
|
||||
|
||||
HyperoptTools.show_epoch_details(val, total_epochs, print_json, no_header,
|
||||
header_str="Epoch details")
|
||||
|
||||
|
||||
def hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
|
||||
"""
|
||||
Filter our items from the list of hyperopt results
|
||||
TODO: after 2021.5 remove all "legacy" mode queries.
|
||||
"""
|
||||
if filteroptions['only_best']:
|
||||
epochs = [x for x in epochs if x['is_best']]
|
||||
if filteroptions['only_profitable']:
|
||||
epochs = [x for x in epochs if x['results_metrics'].get(
|
||||
'profit', x['results_metrics'].get('profit_total', 0)) > 0]
|
||||
|
||||
epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions)
|
||||
|
||||
epochs = _hyperopt_filter_epochs_duration(epochs, filteroptions)
|
||||
|
||||
epochs = _hyperopt_filter_epochs_profit(epochs, filteroptions)
|
||||
|
||||
epochs = _hyperopt_filter_epochs_objective(epochs, filteroptions)
|
||||
|
||||
logger.info(f"{len(epochs)} " +
|
||||
("best " if filteroptions['only_best'] else "") +
|
||||
("profitable " if filteroptions['only_profitable'] else "") +
|
||||
"epochs found.")
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_trade(epochs: List, trade_count: int):
|
||||
"""
|
||||
Filter epochs with trade-counts > trades
|
||||
"""
|
||||
return [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get(
|
||||
'trade_count', x['results_metrics'].get('total_trades', 0)
|
||||
) > trade_count
|
||||
]
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_trades'] > 0:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, filteroptions['filter_min_trades'])
|
||||
|
||||
if filteroptions['filter_max_trades'] > 0:
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get(
|
||||
'trade_count', x['results_metrics'].get('total_trades')
|
||||
) < filteroptions['filter_max_trades']
|
||||
]
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
def get_duration_value(x):
|
||||
# Duration in minutes ...
|
||||
if 'duration' in x['results_metrics']:
|
||||
return x['results_metrics']['duration']
|
||||
else:
|
||||
# New mode
|
||||
if 'holding_avg_s' in x['results_metrics']:
|
||||
avg = x['results_metrics']['holding_avg_s']
|
||||
return avg // 60
|
||||
raise OperationalException(
|
||||
"Holding-average not available. Please omit the filter on average time, "
|
||||
"or rerun hyperopt with this version")
|
||||
|
||||
if filteroptions['filter_min_avg_time'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if get_duration_value(x) > filteroptions['filter_min_avg_time']
|
||||
]
|
||||
if filteroptions['filter_max_avg_time'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if get_duration_value(x) < filteroptions['filter_max_avg_time']
|
||||
]
|
||||
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_avg_profit'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get(
|
||||
'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100
|
||||
) > filteroptions['filter_min_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_max_avg_profit'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get(
|
||||
'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100
|
||||
) < filteroptions['filter_max_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_min_total_profit'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get(
|
||||
'profit', x['results_metrics'].get('profit_total_abs', 0)
|
||||
) > filteroptions['filter_min_total_profit']
|
||||
]
|
||||
if filteroptions['filter_max_total_profit'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get(
|
||||
'profit', x['results_metrics'].get('profit_total_abs', 0)
|
||||
) < filteroptions['filter_max_total_profit']
|
||||
]
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_objective'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
|
||||
epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']]
|
||||
if filteroptions['filter_max_objective'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
|
||||
epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']]
|
||||
|
||||
return epochs
|
||||
|
@@ -191,6 +191,9 @@ CONF_SCHEMA = {
|
||||
},
|
||||
'required': ['price_side']
|
||||
},
|
||||
'custom_price_max_distance_ratio': {
|
||||
'type': 'number', 'minimum': 0.0
|
||||
},
|
||||
'order_types': {
|
||||
'type': 'object',
|
||||
'properties': {
|
||||
|
@@ -19,7 +19,7 @@ logger = logging.getLogger(__name__)
|
||||
BT_DATA_COLUMNS_OLD = ["pair", "profit_percent", "open_date", "close_date", "index",
|
||||
"trade_duration", "open_rate", "close_rate", "open_at_end", "sell_reason"]
|
||||
|
||||
# Mid-term format, crated by BacktestResult Named Tuple
|
||||
# Mid-term format, created by BacktestResult Named Tuple
|
||||
BT_DATA_COLUMNS_MID = ['pair', 'profit_percent', 'open_date', 'close_date', 'trade_duration',
|
||||
'open_rate', 'close_rate', 'open_at_end', 'sell_reason', 'fee_open',
|
||||
'fee_close', 'amount', 'profit_abs', 'profit_ratio']
|
||||
|
@@ -242,7 +242,7 @@ def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to:
|
||||
:param config: Config dictionary
|
||||
:param convert_from: Source format
|
||||
:param convert_to: Target format
|
||||
:param erase: Erase souce data (does not apply if source and target format are identical)
|
||||
:param erase: Erase source data (does not apply if source and target format are identical)
|
||||
"""
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
src = get_datahandler(config['datadir'], convert_from)
|
||||
@@ -267,7 +267,7 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to:
|
||||
:param config: Config dictionary
|
||||
:param convert_from: Source format
|
||||
:param convert_to: Target format
|
||||
:param erase: Erase souce data (does not apply if source and target format are identical)
|
||||
:param erase: Erase source data (does not apply if source and target format are identical)
|
||||
"""
|
||||
from freqtrade.data.history.idatahandler import get_datahandler
|
||||
src = get_datahandler(config['datadir'], convert_from)
|
||||
|
@@ -117,10 +117,11 @@ def refresh_data(datadir: Path,
|
||||
:param timerange: Limit data to be loaded to this timerange
|
||||
"""
|
||||
data_handler = get_datahandler(datadir, data_format)
|
||||
for pair in pairs:
|
||||
_download_pair_history(pair=pair, timeframe=timeframe,
|
||||
datadir=datadir, timerange=timerange,
|
||||
exchange=exchange, data_handler=data_handler)
|
||||
for idx, pair in enumerate(pairs):
|
||||
process = f'{idx}/{len(pairs)}'
|
||||
_download_pair_history(pair=pair, process=process,
|
||||
timeframe=timeframe, datadir=datadir,
|
||||
timerange=timerange, exchange=exchange, data_handler=data_handler)
|
||||
|
||||
|
||||
def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optional[TimeRange],
|
||||
@@ -153,13 +154,14 @@ def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optiona
|
||||
return data, start_ms
|
||||
|
||||
|
||||
def _download_pair_history(datadir: Path,
|
||||
def _download_pair_history(pair: str, *,
|
||||
datadir: Path,
|
||||
exchange: Exchange,
|
||||
pair: str, *,
|
||||
new_pairs_days: int = 30,
|
||||
timeframe: str = '5m',
|
||||
timerange: Optional[TimeRange] = None,
|
||||
data_handler: IDataHandler = None) -> bool:
|
||||
process: str = '',
|
||||
new_pairs_days: int = 30,
|
||||
data_handler: IDataHandler = None,
|
||||
timerange: Optional[TimeRange] = None) -> bool:
|
||||
"""
|
||||
Download latest candles from the exchange for the pair and timeframe passed in parameters
|
||||
The data is downloaded starting from the last correct data that
|
||||
@@ -177,7 +179,7 @@ def _download_pair_history(datadir: Path,
|
||||
|
||||
try:
|
||||
logger.info(
|
||||
f'Download history data for pair: "{pair}", timeframe: {timeframe} '
|
||||
f'Download history data for pair: "{pair}" ({process}), timeframe: {timeframe} '
|
||||
f'and store in {datadir}.'
|
||||
)
|
||||
|
||||
@@ -234,7 +236,7 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
|
||||
"""
|
||||
pairs_not_available = []
|
||||
data_handler = get_datahandler(datadir, data_format)
|
||||
for pair in pairs:
|
||||
for idx, pair in enumerate(pairs, start=1):
|
||||
if pair not in exchange.markets:
|
||||
pairs_not_available.append(pair)
|
||||
logger.info(f"Skipping pair {pair}...")
|
||||
@@ -247,10 +249,11 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes
|
||||
f'Deleting existing data for pair {pair}, interval {timeframe}.')
|
||||
|
||||
logger.info(f'Downloading pair {pair}, interval {timeframe}.')
|
||||
_download_pair_history(datadir=datadir, exchange=exchange,
|
||||
pair=pair, timeframe=str(timeframe),
|
||||
new_pairs_days=new_pairs_days,
|
||||
timerange=timerange, data_handler=data_handler)
|
||||
process = f'{idx}/{len(pairs)}'
|
||||
_download_pair_history(pair=pair, process=process,
|
||||
datadir=datadir, exchange=exchange,
|
||||
timerange=timerange, data_handler=data_handler,
|
||||
timeframe=str(timeframe), new_pairs_days=new_pairs_days)
|
||||
return pairs_not_available
|
||||
|
||||
|
||||
|
@@ -151,7 +151,7 @@ class Edge:
|
||||
# Fake run-mode to Edge
|
||||
prior_rm = self.config['runmode']
|
||||
self.config['runmode'] = RunMode.EDGE
|
||||
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
|
||||
preprocessed = self.strategy.advise_all_indicators(data)
|
||||
self.config['runmode'] = prior_rm
|
||||
|
||||
# Print timeframe
|
||||
|
@@ -15,6 +15,7 @@ from freqtrade.exchange.exchange import (available_exchanges, ccxt_exchanges,
|
||||
timeframe_to_seconds, validate_exchange,
|
||||
validate_exchanges)
|
||||
from freqtrade.exchange.ftx import Ftx
|
||||
from freqtrade.exchange.gateio import Gateio
|
||||
from freqtrade.exchange.hitbtc import Hitbtc
|
||||
from freqtrade.exchange.kraken import Kraken
|
||||
from freqtrade.exchange.kucoin import Kucoin
|
||||
|
@@ -618,6 +618,8 @@ class Exchange:
|
||||
if self.exchange_has('fetchL2OrderBook'):
|
||||
ob = self.fetch_l2_order_book(pair, 20)
|
||||
ob_type = 'asks' if side == 'buy' else 'bids'
|
||||
slippage = 0.05
|
||||
max_slippage_val = rate * ((1 + slippage) if side == 'buy' else (1 - slippage))
|
||||
|
||||
remaining_amount = amount
|
||||
filled_amount = 0
|
||||
@@ -626,7 +628,9 @@ class Exchange:
|
||||
book_entry_coin_volume = book_entry[1]
|
||||
if remaining_amount > 0:
|
||||
if remaining_amount < book_entry_coin_volume:
|
||||
# Orderbook at this slot bigger than remaining amount
|
||||
filled_amount += remaining_amount * book_entry_price
|
||||
break
|
||||
else:
|
||||
filled_amount += book_entry_coin_volume * book_entry_price
|
||||
remaining_amount -= book_entry_coin_volume
|
||||
@@ -635,7 +639,14 @@ class Exchange:
|
||||
else:
|
||||
# If remaining_amount wasn't consumed completely (break was not called)
|
||||
filled_amount += remaining_amount * book_entry_price
|
||||
forecast_avg_filled_price = filled_amount / amount
|
||||
forecast_avg_filled_price = max(filled_amount, 0) / amount
|
||||
# Limit max. slippage to specified value
|
||||
if side == 'buy':
|
||||
forecast_avg_filled_price = min(forecast_avg_filled_price, max_slippage_val)
|
||||
|
||||
else:
|
||||
forecast_avg_filled_price = max(forecast_avg_filled_price, max_slippage_val)
|
||||
|
||||
return self.price_to_precision(pair, forecast_avg_filled_price)
|
||||
|
||||
return rate
|
||||
@@ -1242,7 +1253,7 @@ class Exchange:
|
||||
logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list))
|
||||
|
||||
input_coroutines = []
|
||||
|
||||
cached_pairs = []
|
||||
# Gather coroutines to run
|
||||
for pair, timeframe in set(pair_list):
|
||||
if (((pair, timeframe) not in self._klines)
|
||||
@@ -1254,6 +1265,7 @@ class Exchange:
|
||||
"Using cached candle (OHLCV) data for pair %s, timeframe %s ...",
|
||||
pair, timeframe
|
||||
)
|
||||
cached_pairs.append((pair, timeframe))
|
||||
|
||||
results = asyncio.get_event_loop().run_until_complete(
|
||||
asyncio.gather(*input_coroutines, return_exceptions=True))
|
||||
@@ -1276,6 +1288,10 @@ class Exchange:
|
||||
results_df[(pair, timeframe)] = ohlcv_df
|
||||
if cache:
|
||||
self._klines[(pair, timeframe)] = ohlcv_df
|
||||
# Return cached klines
|
||||
for pair, timeframe in cached_pairs:
|
||||
results_df[(pair, timeframe)] = self.klines((pair, timeframe), copy=False)
|
||||
|
||||
return results_df
|
||||
|
||||
def _now_is_time_to_refresh(self, pair: str, timeframe: str) -> bool:
|
||||
@@ -1486,7 +1502,7 @@ class Exchange:
|
||||
:returns List of trade data
|
||||
"""
|
||||
if not self.exchange_has("fetchTrades"):
|
||||
raise OperationalException("This exchange does not suport downloading Trades.")
|
||||
raise OperationalException("This exchange does not support downloading Trades.")
|
||||
|
||||
return asyncio.get_event_loop().run_until_complete(
|
||||
self._async_get_trade_history(pair=pair, since=since,
|
||||
|
23
freqtrade/exchange/gateio.py
Normal file
23
freqtrade/exchange/gateio.py
Normal file
@@ -0,0 +1,23 @@
|
||||
""" Gate.io exchange subclass """
|
||||
import logging
|
||||
from typing import Dict
|
||||
|
||||
from freqtrade.exchange import Exchange
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class Gateio(Exchange):
|
||||
"""
|
||||
Gate.io exchange class. Contains adjustments needed for Freqtrade to work
|
||||
with this exchange.
|
||||
|
||||
Please note that this exchange is not included in the list of exchanges
|
||||
officially supported by the Freqtrade development team. So some features
|
||||
may still not work as expected.
|
||||
"""
|
||||
|
||||
_ft_has: Dict = {
|
||||
"ohlcv_candle_limit": 1000,
|
||||
}
|
@@ -479,7 +479,13 @@ class FreqtradeBot(LoggingMixin):
|
||||
buy_limit_requested = price
|
||||
else:
|
||||
# Calculate price
|
||||
buy_limit_requested = self.exchange.get_rate(pair, refresh=True, side="buy")
|
||||
proposed_buy_rate = self.exchange.get_rate(pair, refresh=True, side="buy")
|
||||
custom_entry_price = strategy_safe_wrapper(self.strategy.custom_entry_price,
|
||||
default_retval=proposed_buy_rate)(
|
||||
pair=pair, current_time=datetime.now(timezone.utc),
|
||||
proposed_rate=proposed_buy_rate)
|
||||
|
||||
buy_limit_requested = self.get_valid_price(custom_entry_price, proposed_buy_rate)
|
||||
|
||||
if not buy_limit_requested:
|
||||
raise PricingError('Could not determine buy price.')
|
||||
@@ -977,7 +983,7 @@ class FreqtradeBot(LoggingMixin):
|
||||
# if trade is partially complete, edit the stake details for the trade
|
||||
# and close the order
|
||||
# cancel_order may not contain the full order dict, so we need to fallback
|
||||
# to the order dict aquired before cancelling.
|
||||
# to the order dict acquired before cancelling.
|
||||
# we need to fall back to the values from order if corder does not contain these keys.
|
||||
trade.amount = filled_amount
|
||||
trade.stake_amount = trade.amount * trade.open_rate
|
||||
@@ -1076,6 +1082,17 @@ class FreqtradeBot(LoggingMixin):
|
||||
and self.strategy.order_types['stoploss_on_exchange']:
|
||||
limit = trade.stop_loss
|
||||
|
||||
# set custom_exit_price if available
|
||||
proposed_limit_rate = limit
|
||||
current_profit = trade.calc_profit_ratio(limit)
|
||||
custom_exit_price = strategy_safe_wrapper(self.strategy.custom_exit_price,
|
||||
default_retval=proposed_limit_rate)(
|
||||
pair=trade.pair, trade=trade,
|
||||
current_time=datetime.now(timezone.utc),
|
||||
proposed_rate=proposed_limit_rate, current_profit=current_profit)
|
||||
|
||||
limit = self.get_valid_price(custom_exit_price, proposed_limit_rate)
|
||||
|
||||
# First cancelling stoploss on exchange ...
|
||||
if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id:
|
||||
try:
|
||||
@@ -1364,7 +1381,9 @@ class FreqtradeBot(LoggingMixin):
|
||||
if fee_currency:
|
||||
# fee_rate should use mean
|
||||
fee_rate = sum(fee_rate_array) / float(len(fee_rate_array)) if fee_rate_array else None
|
||||
trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', ''))
|
||||
if fee_rate is not None and fee_rate < 0.02:
|
||||
# Only update if fee-rate is < 2%
|
||||
trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', ''))
|
||||
|
||||
if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC):
|
||||
logger.warning(f"Amount {amount} does not match amount {trade.amount}")
|
||||
@@ -1375,3 +1394,26 @@ class FreqtradeBot(LoggingMixin):
|
||||
amount=amount, fee_abs=fee_abs)
|
||||
else:
|
||||
return amount
|
||||
|
||||
def get_valid_price(self, custom_price: float, proposed_price: float) -> float:
|
||||
"""
|
||||
Return the valid price.
|
||||
Check if the custom price is of the good type if not return proposed_price
|
||||
:return: valid price for the order
|
||||
"""
|
||||
if custom_price:
|
||||
try:
|
||||
valid_custom_price = float(custom_price)
|
||||
except ValueError:
|
||||
valid_custom_price = proposed_price
|
||||
else:
|
||||
valid_custom_price = proposed_price
|
||||
|
||||
cust_p_max_dist_r = self.config.get('custom_price_max_distance_ratio', 0.02)
|
||||
min_custom_price_allowed = proposed_price - (proposed_price * cust_p_max_dist_r)
|
||||
max_custom_price_allowed = proposed_price + (proposed_price * cust_p_max_dist_r)
|
||||
|
||||
# Bracket between min_custom_price_allowed and max_custom_price_allowed
|
||||
return max(
|
||||
min(valid_custom_price, max_custom_price_allowed),
|
||||
min_custom_price_allowed)
|
||||
|
@@ -133,6 +133,9 @@ class Backtesting:
|
||||
self.abort = False
|
||||
|
||||
def __del__(self):
|
||||
self.cleanup()
|
||||
|
||||
def cleanup(self):
|
||||
LoggingMixin.show_output = True
|
||||
PairLocks.use_db = True
|
||||
Trade.use_db = True
|
||||
@@ -219,7 +222,7 @@ class Backtesting:
|
||||
# Every change to this headers list must evaluate further usages of the resulting tuple
|
||||
# and eventually change the constants for indexes at the top
|
||||
headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long',
|
||||
'enter_short', 'exit_short']
|
||||
'enter_short', 'exit_short', 'long_tag', 'short_tag']
|
||||
data: Dict = {}
|
||||
self.progress.init_step(BacktestState.CONVERT, len(processed))
|
||||
|
||||
@@ -227,21 +230,15 @@ class Backtesting:
|
||||
for pair, pair_data in processed.items():
|
||||
self.check_abort()
|
||||
self.progress.increment()
|
||||
has_buy_tag = 'long_tag' in pair_data
|
||||
has_short_tag = 'short_tag' in pair_data
|
||||
headers = headers + ['long_tag'] if has_buy_tag else headers
|
||||
headers = headers + ['short_tag'] if has_short_tag else headers
|
||||
|
||||
if not pair_data.empty:
|
||||
# Cleanup from prior runs
|
||||
pair_data.loc[:, 'buy'] = 0 # TODO: Should be renamed to enter_long
|
||||
pair_data.loc[:, 'enter_short'] = 0
|
||||
pair_data.loc[:, 'sell'] = 0 # TODO: should be renamed to exit_long
|
||||
pair_data.loc[:, 'exit_short'] = 0
|
||||
# pair_data.loc[:, 'sell'] = 0
|
||||
if has_buy_tag:
|
||||
pair_data.loc[:, 'long_tag'] = None # cleanup if buy_tag is exist
|
||||
if has_short_tag:
|
||||
pair_data.loc[:, 'short_tag'] = None # cleanup if short_tag is exist
|
||||
pair_data.loc[:, 'long_tag'] = None # cleanup if buy_tag is exist
|
||||
pair_data.loc[:, 'short_tag'] = None # cleanup if short_tag is exist
|
||||
|
||||
df_analyzed = self.strategy.advise_sell(
|
||||
self.strategy.advise_buy(pair_data, {'pair': pair}),
|
||||
@@ -256,14 +253,15 @@ class Backtesting:
|
||||
df_analyzed.loc[:, 'enter_short'] = df_analyzed.loc[:, 'enter_short'].shift(1)
|
||||
df_analyzed.loc[:, 'exit_long'] = df_analyzed.loc[:, 'exit_long'].shift(1)
|
||||
df_analyzed.loc[:, 'exit_short'] = df_analyzed.loc[:, 'exit_short'].shift(1)
|
||||
if has_buy_tag:
|
||||
df_analyzed.loc[:, 'long_tag'] = df_analyzed.loc[:, 'long_tag'].shift(1)
|
||||
df_analyzed.loc[:, 'long_tag'] = df_analyzed.loc[:, 'long_tag'].shift(1)
|
||||
|
||||
df_analyzed.drop(df_analyzed.head(1).index, inplace=True)
|
||||
|
||||
# Update dataprovider cache
|
||||
self.dataprovider._set_cached_df(pair, self.timeframe, df_analyzed)
|
||||
|
||||
df_analyzed = df_analyzed.drop(df_analyzed.head(1).index)
|
||||
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
data[pair] = df_analyzed[headers].values.tolist()
|
||||
@@ -337,13 +335,14 @@ class Backtesting:
|
||||
|
||||
def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]:
|
||||
# TODO: short exits
|
||||
sell_candle_time = sell_row[DATE_IDX].to_pydatetime()
|
||||
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore
|
||||
sell_row[DATE_IDX].to_pydatetime(), sell_row[BUY_IDX],
|
||||
sell_candle_time, sell_row[BUY_IDX],
|
||||
sell_row[SELL_IDX],
|
||||
low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX])
|
||||
|
||||
if sell.sell_flag:
|
||||
trade.close_date = sell_row[DATE_IDX].to_pydatetime()
|
||||
trade.close_date = sell_candle_time
|
||||
trade.sell_reason = sell.sell_reason
|
||||
trade_dur = int((trade.close_date_utc - trade.open_date_utc).total_seconds() // 60)
|
||||
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
|
||||
@@ -355,7 +354,7 @@ class Backtesting:
|
||||
rate=closerate,
|
||||
time_in_force=time_in_force,
|
||||
sell_reason=sell.sell_reason,
|
||||
current_time=sell_row[DATE_IDX].to_pydatetime()):
|
||||
current_time=sell_candle_time):
|
||||
return None
|
||||
|
||||
trade.close(closerate, show_msg=False)
|
||||
@@ -494,6 +493,8 @@ class Backtesting:
|
||||
for i, pair in enumerate(data):
|
||||
row_index = indexes[pair]
|
||||
try:
|
||||
# Row is treated as "current incomplete candle".
|
||||
# Buy / sell signals are shifted by 1 to compensate for this.
|
||||
row = data[pair][row_index]
|
||||
except IndexError:
|
||||
# missing Data for one pair at the end.
|
||||
@@ -505,8 +506,8 @@ class Backtesting:
|
||||
continue
|
||||
|
||||
row_index += 1
|
||||
self.dataprovider._set_dataframe_max_index(row_index)
|
||||
indexes[pair] = row_index
|
||||
self.dataprovider._set_dataframe_max_index(row_index)
|
||||
|
||||
# without positionstacking, we can only have one open trade per pair.
|
||||
# max_open_trades must be respected
|
||||
@@ -530,7 +531,7 @@ class Backtesting:
|
||||
open_trades[pair].append(trade)
|
||||
LocalTrade.add_bt_trade(trade)
|
||||
|
||||
for trade in open_trades[pair]:
|
||||
for trade in list(open_trades[pair]):
|
||||
# also check the buying candle for sell conditions.
|
||||
trade_entry = self._get_sell_trade_entry(trade, row)
|
||||
# Sell occurred
|
||||
@@ -561,7 +562,8 @@ class Backtesting:
|
||||
'final_balance': self.wallets.get_total(self.strategy.config['stake_currency']),
|
||||
}
|
||||
|
||||
def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, Any], timerange: TimeRange):
|
||||
def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, DataFrame],
|
||||
timerange: TimeRange):
|
||||
self.progress.init_step(BacktestState.ANALYZE, 0)
|
||||
|
||||
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
|
||||
@@ -580,7 +582,7 @@ class Backtesting:
|
||||
max_open_trades = 0
|
||||
|
||||
# need to reprocess data every time to populate signals
|
||||
preprocessed = self.strategy.ohlcvdata_to_dataframe(data)
|
||||
preprocessed = self.strategy.advise_all_indicators(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe
|
||||
preprocessed_tmp = trim_dataframes(preprocessed, timerange, self.required_startup)
|
||||
|
@@ -394,7 +394,7 @@ class Hyperopt:
|
||||
data, timerange = self.backtesting.load_bt_data()
|
||||
logger.info("Dataload complete. Calculating indicators")
|
||||
|
||||
preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data)
|
||||
preprocessed = self.backtesting.strategy.advise_all_indicators(data)
|
||||
|
||||
# Trim startup period from analyzed dataframe to get correct dates for output.
|
||||
processed = trim_dataframes(preprocessed, timerange, self.backtesting.required_startup)
|
||||
|
128
freqtrade/optimize/hyperopt_epoch_filters.py
Normal file
128
freqtrade/optimize/hyperopt_epoch_filters.py
Normal file
@@ -0,0 +1,128 @@
|
||||
import logging
|
||||
from typing import List
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def hyperopt_filter_epochs(epochs: List, filteroptions: dict, log: bool = True) -> List:
|
||||
"""
|
||||
Filter our items from the list of hyperopt results
|
||||
"""
|
||||
if filteroptions['only_best']:
|
||||
epochs = [x for x in epochs if x['is_best']]
|
||||
if filteroptions['only_profitable']:
|
||||
epochs = [x for x in epochs
|
||||
if x['results_metrics'].get('profit_total', 0) > 0]
|
||||
|
||||
epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions)
|
||||
|
||||
epochs = _hyperopt_filter_epochs_duration(epochs, filteroptions)
|
||||
|
||||
epochs = _hyperopt_filter_epochs_profit(epochs, filteroptions)
|
||||
|
||||
epochs = _hyperopt_filter_epochs_objective(epochs, filteroptions)
|
||||
if log:
|
||||
logger.info(f"{len(epochs)} " +
|
||||
("best " if filteroptions['only_best'] else "") +
|
||||
("profitable " if filteroptions['only_profitable'] else "") +
|
||||
"epochs found.")
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_trade(epochs: List, trade_count: int):
|
||||
"""
|
||||
Filter epochs with trade-counts > trades
|
||||
"""
|
||||
return [
|
||||
x for x in epochs if x['results_metrics'].get('total_trades', 0) > trade_count
|
||||
]
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_trades'] > 0:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, filteroptions['filter_min_trades'])
|
||||
|
||||
if filteroptions['filter_max_trades'] > 0:
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get('total_trades') < filteroptions['filter_max_trades']
|
||||
]
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
def get_duration_value(x):
|
||||
# Duration in minutes ...
|
||||
if 'holding_avg_s' in x['results_metrics']:
|
||||
avg = x['results_metrics']['holding_avg_s']
|
||||
return avg // 60
|
||||
raise OperationalException(
|
||||
"Holding-average not available. Please omit the filter on average time, "
|
||||
"or rerun hyperopt with this version")
|
||||
|
||||
if filteroptions['filter_min_avg_time'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if get_duration_value(x) > filteroptions['filter_min_avg_time']
|
||||
]
|
||||
if filteroptions['filter_max_avg_time'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if get_duration_value(x) < filteroptions['filter_max_avg_time']
|
||||
]
|
||||
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_avg_profit'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get('profit_mean', 0) * 100
|
||||
> filteroptions['filter_min_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_max_avg_profit'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get('profit_mean', 0) * 100
|
||||
< filteroptions['filter_max_avg_profit']
|
||||
]
|
||||
if filteroptions['filter_min_total_profit'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get('profit_total_abs', 0)
|
||||
> filteroptions['filter_min_total_profit']
|
||||
]
|
||||
if filteroptions['filter_max_total_profit'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
epochs = [
|
||||
x for x in epochs
|
||||
if x['results_metrics'].get('profit_total_abs', 0)
|
||||
< filteroptions['filter_max_total_profit']
|
||||
]
|
||||
return epochs
|
||||
|
||||
|
||||
def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List:
|
||||
|
||||
if filteroptions['filter_min_objective'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
|
||||
epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']]
|
||||
if filteroptions['filter_max_objective'] is not None:
|
||||
epochs = _hyperopt_filter_epochs_trade(epochs, 0)
|
||||
|
||||
epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']]
|
||||
|
||||
return epochs
|
@@ -4,7 +4,7 @@ import logging
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timezone
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, Optional
|
||||
from typing import Any, Dict, Iterator, List, Optional, Tuple
|
||||
|
||||
import numpy as np
|
||||
import rapidjson
|
||||
@@ -15,6 +15,7 @@ from pandas import isna, json_normalize
|
||||
from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2
|
||||
from freqtrade.optimize.hyperopt_epoch_filters import hyperopt_filter_epochs
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
@@ -89,46 +90,70 @@ class HyperoptTools():
|
||||
return any(s in config['spaces'] for s in [space, 'all', 'default'])
|
||||
|
||||
@staticmethod
|
||||
def _read_results_pickle(results_file: Path) -> List:
|
||||
def _read_results(results_file: Path, batch_size: int = 10) -> Iterator[List[Any]]:
|
||||
"""
|
||||
Read hyperopt results from pickle file
|
||||
LEGACY method - new files are written as json and cannot be read with this method.
|
||||
"""
|
||||
from joblib import load
|
||||
|
||||
logger.info(f"Reading pickled epochs from '{results_file}'")
|
||||
data = load(results_file)
|
||||
return data
|
||||
|
||||
@staticmethod
|
||||
def _read_results(results_file: Path) -> List:
|
||||
"""
|
||||
Read hyperopt results from file
|
||||
Stream hyperopt results from file
|
||||
"""
|
||||
import rapidjson
|
||||
logger.info(f"Reading epochs from '{results_file}'")
|
||||
with results_file.open('r') as f:
|
||||
data = [rapidjson.loads(line) for line in f]
|
||||
return data
|
||||
data = []
|
||||
for line in f:
|
||||
data += [rapidjson.loads(line)]
|
||||
if len(data) >= batch_size:
|
||||
yield data
|
||||
data = []
|
||||
yield data
|
||||
|
||||
@staticmethod
|
||||
def load_previous_results(results_file: Path) -> List:
|
||||
"""
|
||||
Load data for epochs from the file if we have one
|
||||
"""
|
||||
epochs: List = []
|
||||
def _test_hyperopt_results_exist(results_file) -> bool:
|
||||
if results_file.is_file() and results_file.stat().st_size > 0:
|
||||
if results_file.suffix == '.pickle':
|
||||
epochs = HyperoptTools._read_results_pickle(results_file)
|
||||
else:
|
||||
epochs = HyperoptTools._read_results(results_file)
|
||||
# Detection of some old format, without 'is_best' field saved
|
||||
if epochs[0].get('is_best') is None:
|
||||
raise OperationalException(
|
||||
"Legacy hyperopt results are no longer supported."
|
||||
"Please rerun hyperopt or use an older version to load this file."
|
||||
)
|
||||
return True
|
||||
else:
|
||||
# No file found.
|
||||
return False
|
||||
|
||||
@staticmethod
|
||||
def load_filtered_results(results_file: Path, config: Dict[str, Any]) -> Tuple[List, int]:
|
||||
filteroptions = {
|
||||
'only_best': config.get('hyperopt_list_best', False),
|
||||
'only_profitable': config.get('hyperopt_list_profitable', False),
|
||||
'filter_min_trades': config.get('hyperopt_list_min_trades', 0),
|
||||
'filter_max_trades': config.get('hyperopt_list_max_trades', 0),
|
||||
'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None),
|
||||
'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None),
|
||||
'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None),
|
||||
'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None),
|
||||
'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None),
|
||||
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None),
|
||||
'filter_min_objective': config.get('hyperopt_list_min_objective', None),
|
||||
'filter_max_objective': config.get('hyperopt_list_max_objective', None),
|
||||
}
|
||||
if not HyperoptTools._test_hyperopt_results_exist(results_file):
|
||||
# No file found.
|
||||
return [], 0
|
||||
|
||||
epochs = []
|
||||
total_epochs = 0
|
||||
for epochs_tmp in HyperoptTools._read_results(results_file):
|
||||
if total_epochs == 0 and epochs_tmp[0].get('is_best') is None:
|
||||
raise OperationalException(
|
||||
"The file with HyperoptTools results is incompatible with this version "
|
||||
"of Freqtrade and cannot be loaded.")
|
||||
logger.info(f"Loaded {len(epochs)} previous evaluations from disk.")
|
||||
return epochs
|
||||
total_epochs += len(epochs_tmp)
|
||||
epochs += hyperopt_filter_epochs(epochs_tmp, filteroptions, log=False)
|
||||
|
||||
logger.info(f"Loaded {total_epochs} previous evaluations from disk.")
|
||||
|
||||
# Final filter run ...
|
||||
epochs = hyperopt_filter_epochs(epochs, filteroptions, log=True)
|
||||
|
||||
return epochs, total_epochs
|
||||
|
||||
@staticmethod
|
||||
def show_epoch_details(results, total_epochs: int, print_json: bool,
|
||||
@@ -433,21 +458,14 @@ class HyperoptTools():
|
||||
trials['Best'] = ''
|
||||
trials['Stake currency'] = config['stake_currency']
|
||||
|
||||
if 'results_metrics.total_trades' in trials:
|
||||
base_metrics = ['Best', 'current_epoch', 'results_metrics.total_trades',
|
||||
'results_metrics.profit_mean', 'results_metrics.profit_median',
|
||||
'results_metrics.profit_total',
|
||||
'Stake currency',
|
||||
'results_metrics.profit_total_abs', 'results_metrics.holding_avg',
|
||||
'loss', 'is_initial_point', 'is_best']
|
||||
perc_multi = 100
|
||||
else:
|
||||
perc_multi = 1
|
||||
base_metrics = ['Best', 'current_epoch', 'results_metrics.trade_count',
|
||||
'results_metrics.avg_profit', 'results_metrics.median_profit',
|
||||
'results_metrics.total_profit',
|
||||
'Stake currency', 'results_metrics.profit', 'results_metrics.duration',
|
||||
'loss', 'is_initial_point', 'is_best']
|
||||
base_metrics = ['Best', 'current_epoch', 'results_metrics.total_trades',
|
||||
'results_metrics.profit_mean', 'results_metrics.profit_median',
|
||||
'results_metrics.profit_total',
|
||||
'Stake currency',
|
||||
'results_metrics.profit_total_abs', 'results_metrics.holding_avg',
|
||||
'loss', 'is_initial_point', 'is_best']
|
||||
perc_multi = 100
|
||||
|
||||
param_metrics = [("params_dict."+param) for param in results[0]['params_dict'].keys()]
|
||||
trials = trials[base_metrics + param_metrics]
|
||||
|
||||
@@ -475,11 +493,6 @@ class HyperoptTools():
|
||||
trials['Avg profit'] = trials['Avg profit'].apply(
|
||||
lambda x: f'{x * perc_multi:,.2f}%' if not isna(x) else ""
|
||||
)
|
||||
if perc_multi == 1:
|
||||
trials['Avg duration'] = trials['Avg duration'].apply(
|
||||
lambda x: f'{x:,.1f} m' if isinstance(
|
||||
x, float) else f"{x.total_seconds() // 60:,.1f} m" if not isna(x) else ""
|
||||
)
|
||||
trials['Objective'] = trials['Objective'].apply(
|
||||
lambda x: f'{x:,.5f}' if x != 100000 else ""
|
||||
)
|
||||
|
@@ -166,7 +166,7 @@ class Order(_DECL_BASE):
|
||||
self.ft_is_open = True
|
||||
if self.status in ('closed', 'canceled', 'cancelled'):
|
||||
self.ft_is_open = False
|
||||
if order.get('filled', 0) > 0:
|
||||
if (order.get('filled', 0.0) or 0.0) > 0:
|
||||
self.order_filled_date = datetime.now(timezone.utc)
|
||||
self.order_update_date = datetime.now(timezone.utc)
|
||||
|
||||
@@ -451,12 +451,12 @@ class LocalTrade():
|
||||
LocalTrade.trades_open = []
|
||||
LocalTrade.total_profit = 0
|
||||
|
||||
def adjust_min_max_rates(self, current_price: float) -> None:
|
||||
def adjust_min_max_rates(self, current_price: float, current_price_low: float) -> None:
|
||||
"""
|
||||
Adjust the max_rate and min_rate.
|
||||
"""
|
||||
self.max_rate = max(current_price, self.max_rate or self.open_rate)
|
||||
self.min_rate = min(current_price, self.min_rate or self.open_rate)
|
||||
self.min_rate = min(current_price_low, self.min_rate or self.open_rate)
|
||||
|
||||
def adjust_stop_loss(self, current_price: float, stoploss: float,
|
||||
initial: bool = False) -> None:
|
||||
|
@@ -538,7 +538,7 @@ def load_and_plot_trades(config: Dict[str, Any]):
|
||||
- Initializes plot-script
|
||||
- Get candle (OHLCV) data
|
||||
- Generate Dafaframes populated with indicators and signals based on configured strategy
|
||||
- Load trades excecuted during the selected period
|
||||
- Load trades executed during the selected period
|
||||
- Generate Plotly plot objects
|
||||
- Generate plot files
|
||||
:return: None
|
||||
|
@@ -150,18 +150,20 @@ class IPairList(LoggingMixin, ABC):
|
||||
for pair in pairlist:
|
||||
# pair is not in the generated dynamic market or has the wrong stake currency
|
||||
if pair not in markets:
|
||||
logger.warning(f"Pair {pair} is not compatible with exchange "
|
||||
f"{self._exchange.name}. Removing it from whitelist..")
|
||||
self.log_once(f"Pair {pair} is not compatible with exchange "
|
||||
f"{self._exchange.name}. Removing it from whitelist..",
|
||||
logger.warning)
|
||||
continue
|
||||
|
||||
if not self._exchange.market_is_tradable(markets[pair]):
|
||||
logger.warning(f"Pair {pair} is not tradable with Freqtrade."
|
||||
"Removing it from whitelist..")
|
||||
self.log_once(f"Pair {pair} is not tradable with Freqtrade."
|
||||
"Removing it from whitelist..", logger.warning)
|
||||
continue
|
||||
|
||||
if self._exchange.get_pair_quote_currency(pair) != self._config['stake_currency']:
|
||||
logger.warning(f"Pair {pair} is not compatible with your stake currency "
|
||||
f"{self._config['stake_currency']}. Removing it from whitelist..")
|
||||
self.log_once(f"Pair {pair} is not compatible with your stake currency "
|
||||
f"{self._config['stake_currency']}. Removing it from whitelist..",
|
||||
logger.warning)
|
||||
continue
|
||||
|
||||
# Check if market is active
|
||||
|
@@ -4,6 +4,7 @@ Volume PairList provider
|
||||
Provides dynamic pair list based on trade volumes
|
||||
"""
|
||||
import logging
|
||||
from functools import partial
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import arrow
|
||||
@@ -115,7 +116,7 @@ class VolumePairList(IPairList):
|
||||
pairlist = self._pair_cache.get('pairlist')
|
||||
if pairlist:
|
||||
# Item found - no refresh necessary
|
||||
return pairlist
|
||||
return pairlist.copy()
|
||||
else:
|
||||
# Use fresh pairlist
|
||||
# Check if pair quote currency equals to the stake currency.
|
||||
@@ -126,7 +127,7 @@ class VolumePairList(IPairList):
|
||||
pairlist = [s['symbol'] for s in filtered_tickers]
|
||||
|
||||
pairlist = self.filter_pairlist(pairlist, tickers)
|
||||
self._pair_cache['pairlist'] = pairlist
|
||||
self._pair_cache['pairlist'] = pairlist.copy()
|
||||
|
||||
return pairlist
|
||||
|
||||
@@ -203,7 +204,7 @@ class VolumePairList(IPairList):
|
||||
|
||||
# Validate whitelist to only have active market pairs
|
||||
pairs = self._whitelist_for_active_markets([s['symbol'] for s in sorted_tickers])
|
||||
pairs = self.verify_blacklist(pairs, logger.info)
|
||||
pairs = self.verify_blacklist(pairs, partial(self.log_once, logmethod=logger.info))
|
||||
# Limit pairlist to the requested number of pairs
|
||||
pairs = pairs[:self._number_pairs]
|
||||
|
||||
|
@@ -120,5 +120,6 @@ class RangeStabilityFilter(IPairList):
|
||||
logger.info)
|
||||
result = False
|
||||
self._pair_cache[pair] = result
|
||||
|
||||
else:
|
||||
self.log_once(f"Removed {pair} from whitelist, no candles found.", logger.info)
|
||||
return result
|
||||
|
@@ -223,11 +223,11 @@ def list_strategies(config=Depends(get_config)):
|
||||
@router.get('/strategy/{strategy}', response_model=StrategyResponse, tags=['strategy'])
|
||||
def get_strategy(strategy: str, config=Depends(get_config)):
|
||||
|
||||
config = deepcopy(config)
|
||||
config_ = deepcopy(config)
|
||||
from freqtrade.resolvers.strategy_resolver import StrategyResolver
|
||||
try:
|
||||
strategy_obj = StrategyResolver._load_strategy(strategy, config,
|
||||
extra_dir=config.get('strategy_path'))
|
||||
strategy_obj = StrategyResolver._load_strategy(strategy, config_,
|
||||
extra_dir=config_.get('strategy_path'))
|
||||
except OperationalException:
|
||||
raise HTTPException(status_code=404, detail='Strategy not found')
|
||||
|
||||
|
@@ -32,8 +32,11 @@ class UvicornServer(uvicorn.Server):
|
||||
asyncio_setup()
|
||||
else:
|
||||
asyncio.set_event_loop(uvloop.new_event_loop())
|
||||
|
||||
loop = asyncio.get_event_loop()
|
||||
try:
|
||||
loop = asyncio.get_event_loop()
|
||||
except RuntimeError:
|
||||
# When running in a thread, we'll not have an eventloop yet.
|
||||
loop = asyncio.new_event_loop()
|
||||
loop.run_until_complete(self.serve(sockets=sockets))
|
||||
|
||||
@contextlib.contextmanager
|
||||
|
@@ -29,6 +29,16 @@ async def ui_version():
|
||||
}
|
||||
|
||||
|
||||
def is_relative_to(path, base) -> bool:
|
||||
# Helper function simulating behaviour of is_relative_to, which was only added in python 3.9
|
||||
try:
|
||||
path.relative_to(base)
|
||||
return True
|
||||
except ValueError:
|
||||
pass
|
||||
return False
|
||||
|
||||
|
||||
@router_ui.get('/{rest_of_path:path}', include_in_schema=False)
|
||||
async def index_html(rest_of_path: str):
|
||||
"""
|
||||
@@ -37,8 +47,11 @@ async def index_html(rest_of_path: str):
|
||||
if rest_of_path.startswith('api') or rest_of_path.startswith('.'):
|
||||
raise HTTPException(status_code=404, detail="Not Found")
|
||||
uibase = Path(__file__).parent / 'ui/installed/'
|
||||
if (uibase / rest_of_path).is_file():
|
||||
return FileResponse(str(uibase / rest_of_path))
|
||||
filename = uibase / rest_of_path
|
||||
# It's security relevant to check "relative_to".
|
||||
# Without this, Directory-traversal is possible.
|
||||
if filename.is_file() and is_relative_to(filename, uibase):
|
||||
return FileResponse(str(filename))
|
||||
|
||||
index_file = uibase / 'index.html'
|
||||
if not index_file.is_file():
|
||||
|
@@ -5,7 +5,7 @@ e.g BTC to USD
|
||||
|
||||
import datetime
|
||||
import logging
|
||||
from typing import Dict
|
||||
from typing import Dict, List
|
||||
|
||||
from cachetools.ttl import TTLCache
|
||||
from pycoingecko import CoinGeckoAPI
|
||||
@@ -25,8 +25,7 @@ class CryptoToFiatConverter:
|
||||
"""
|
||||
__instance = None
|
||||
_coingekko: CoinGeckoAPI = None
|
||||
|
||||
_cryptomap: Dict = {}
|
||||
_coinlistings: List[Dict] = []
|
||||
_backoff: float = 0.0
|
||||
|
||||
def __new__(cls):
|
||||
@@ -49,9 +48,8 @@ class CryptoToFiatConverter:
|
||||
|
||||
def _load_cryptomap(self) -> None:
|
||||
try:
|
||||
coinlistings = self._coingekko.get_coins_list()
|
||||
# Create mapping table from symbol to coingekko_id
|
||||
self._cryptomap = {x['symbol']: x['id'] for x in coinlistings}
|
||||
# Use list-comprehension to ensure we get a list.
|
||||
self._coinlistings = [x for x in self._coingekko.get_coins_list()]
|
||||
except RequestException as request_exception:
|
||||
if "429" in str(request_exception):
|
||||
logger.warning(
|
||||
@@ -69,6 +67,24 @@ class CryptoToFiatConverter:
|
||||
logger.error(
|
||||
f"Could not load FIAT Cryptocurrency map for the following problem: {exception}")
|
||||
|
||||
def _get_gekko_id(self, crypto_symbol):
|
||||
if not self._coinlistings:
|
||||
if self._backoff <= datetime.datetime.now().timestamp():
|
||||
self._load_cryptomap()
|
||||
# Still not loaded.
|
||||
if not self._coinlistings:
|
||||
return None
|
||||
else:
|
||||
return None
|
||||
found = [x for x in self._coinlistings if x['symbol'] == crypto_symbol]
|
||||
if len(found) == 1:
|
||||
return found[0]['id']
|
||||
|
||||
if len(found) > 0:
|
||||
# Wrong!
|
||||
logger.warning(f"Found multiple mappings in goingekko for {crypto_symbol}.")
|
||||
return None
|
||||
|
||||
def convert_amount(self, crypto_amount: float, crypto_symbol: str, fiat_symbol: str) -> float:
|
||||
"""
|
||||
Convert an amount of crypto-currency to fiat
|
||||
@@ -143,22 +159,14 @@ class CryptoToFiatConverter:
|
||||
if crypto_symbol == fiat_symbol:
|
||||
return 1.0
|
||||
|
||||
if self._cryptomap == {}:
|
||||
if self._backoff <= datetime.datetime.now().timestamp():
|
||||
self._load_cryptomap()
|
||||
# return 0.0 if we still don't have data to check, no reason to proceed
|
||||
if self._cryptomap == {}:
|
||||
return 0.0
|
||||
else:
|
||||
return 0.0
|
||||
_gekko_id = self._get_gekko_id(crypto_symbol)
|
||||
|
||||
if crypto_symbol not in self._cryptomap:
|
||||
if not _gekko_id:
|
||||
# return 0 for unsupported stake currencies (fiat-convert should not break the bot)
|
||||
logger.warning("unsupported crypto-symbol %s - returning 0.0", crypto_symbol)
|
||||
return 0.0
|
||||
|
||||
try:
|
||||
_gekko_id = self._cryptomap[crypto_symbol]
|
||||
return float(
|
||||
self._coingekko.get_price(
|
||||
ids=_gekko_id,
|
||||
|
@@ -776,7 +776,7 @@ class RPC:
|
||||
if has_content:
|
||||
|
||||
dataframe.loc[:, '__date_ts'] = dataframe.loc[:, 'date'].view(int64) // 1000 // 1000
|
||||
# Move open to seperate column when signal for easy plotting
|
||||
# Move open to separate column when signal for easy plotting
|
||||
if 'buy' in dataframe.columns:
|
||||
buy_mask = (dataframe['buy'] == 1)
|
||||
buy_signals = int(buy_mask.sum())
|
||||
|
@@ -281,6 +281,43 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
"""
|
||||
return self.stoploss
|
||||
|
||||
def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float,
|
||||
**kwargs) -> float:
|
||||
"""
|
||||
Custom entry price logic, returning the new entry price.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns None, orderbook is used to set entry price
|
||||
|
||||
:param pair: Pair that's currently analyzed
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param proposed_rate: Rate, calculated based on pricing settings in ask_strategy.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: New entry price value if provided
|
||||
"""
|
||||
return proposed_rate
|
||||
|
||||
def custom_exit_price(self, pair: str, trade: Trade,
|
||||
current_time: datetime, proposed_rate: float,
|
||||
current_profit: float, **kwargs) -> float:
|
||||
"""
|
||||
Custom exit price logic, returning the new exit price.
|
||||
|
||||
For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/
|
||||
|
||||
When not implemented by a strategy, returns None, orderbook is used to set exit price
|
||||
|
||||
:param pair: Pair that's currently analyzed
|
||||
:param trade: trade object.
|
||||
:param current_time: datetime object, containing the current datetime
|
||||
:param proposed_rate: Rate, calculated based on pricing settings in ask_strategy.
|
||||
:param current_profit: Current profit (as ratio), calculated based on current_rate.
|
||||
:param **kwargs: Ensure to keep this here so updates to this won't break your strategy.
|
||||
:return float: New exit price value if provided
|
||||
"""
|
||||
return proposed_rate
|
||||
|
||||
def custom_sell(self, pair: str, trade: Trade, current_time: datetime, current_rate: float,
|
||||
current_profit: float, **kwargs) -> Optional[Union[str, bool]]:
|
||||
"""
|
||||
@@ -591,7 +628,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
current_rate = rate
|
||||
current_profit = trade.calc_profit_ratio(current_rate)
|
||||
|
||||
trade.adjust_min_max_rates(high or current_rate)
|
||||
trade.adjust_min_max_rates(high or current_rate, low or current_rate)
|
||||
|
||||
stoplossflag = self.stop_loss_reached(current_rate=current_rate, trade=trade,
|
||||
current_time=date, current_profit=current_profit,
|
||||
@@ -761,7 +798,7 @@ class IStrategy(ABC, HyperStrategyMixin):
|
||||
else:
|
||||
return current_profit > roi
|
||||
|
||||
def ohlcvdata_to_dataframe(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
|
||||
def advise_all_indicators(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
|
||||
"""
|
||||
Populates indicators for given candle (OHLCV) data (for multiple pairs)
|
||||
Does not run advise_buy or advise_sell!
|
||||
|
@@ -25,7 +25,7 @@
|
||||
"ask_strategy": {
|
||||
"price_side": "ask",
|
||||
"use_order_book": true,
|
||||
"order_book_top": 1,
|
||||
"order_book_top": 1
|
||||
},
|
||||
{{ exchange | indent(4) }},
|
||||
"pairlists": [
|
||||
|
Reference in New Issue
Block a user