diff --git a/README.md b/README.md index 78ea3cecd..309fab94b 100644 --- a/README.md +++ b/README.md @@ -37,7 +37,7 @@ Please read the [exchange specific notes](docs/exchanges.md) to learn about even Exchanges confirmed working by the community: - [X] [Bitvavo](https://bitvavo.com/) -- [X] [Kukoin](https://www.kucoin.com/) +- [X] [Kucoin](https://www.kucoin.com/) ## Documentation diff --git a/build_helpers/publish_docker_arm64.sh b/build_helpers/publish_docker_arm64.sh index 08793d339..e7b69b2dc 100755 --- a/build_helpers/publish_docker_arm64.sh +++ b/build_helpers/publish_docker_arm64.sh @@ -74,7 +74,5 @@ fi docker images -if [ $? -ne 0 ]; then - echo "failed building image" - return 1 -fi +# Cleanup old images from arm64 node. +docker image prune -a --force --filter "until=24h" diff --git a/docs/bot-basics.md b/docs/bot-basics.md index 943af0362..e7ff27040 100644 --- a/docs/bot-basics.md +++ b/docs/bot-basics.md @@ -35,12 +35,13 @@ By default, loop runs every few seconds (`internals.process_throttle_secs`) and * Calls `check_buy_timeout()` strategy callback for open buy orders. * Calls `check_sell_timeout()` strategy callback for open sell orders. * Verifies existing positions and eventually places sell orders. - * Considers stoploss, ROI and sell-signal. - * Determine sell-price based on `ask_strategy` configuration setting. + * Considers stoploss, ROI and sell-signal, `custom_sell()` and `custom_stoploss()`. + * Determine sell-price based on `ask_strategy` configuration setting or by using the `custom_exit_price()` callback. * Before a sell order is placed, `confirm_trade_exit()` strategy callback is called. * Check if trade-slots are still available (if `max_open_trades` is reached). * Verifies buy signal trying to enter new positions. - * Determine buy-price based on `bid_strategy` configuration setting. + * Determine buy-price based on `bid_strategy` configuration setting, or by using the `custom_entry_price()` callback. + * Determine stake size by calling the `custom_stake_amount()` callback. * Before a buy order is placed, `confirm_trade_entry()` strategy callback is called. This loop will be repeated again and again until the bot is stopped. @@ -52,9 +53,10 @@ This loop will be repeated again and again until the bot is stopped. * Load historic data for configured pairlist. * Calls `bot_loop_start()` once. * Calculate indicators (calls `populate_indicators()` once per pair). -* Calculate buy / sell signals (calls `populate_buy_trend()` and `populate_sell_trend()` once per pair) -* Confirm trade buy / sell (calls `confirm_trade_entry()` and `confirm_trade_exit()` if implemented in the strategy) +* Calculate buy / sell signals (calls `populate_buy_trend()` and `populate_sell_trend()` once per pair). * Loops per candle simulating entry and exit points. + * Confirm trade buy / sell (calls `confirm_trade_entry()` and `confirm_trade_exit()` if implemented in the strategy). + * Call `custom_stoploss()` and `custom_sell()` to find custom exit points. * Generate backtest report output !!! Note diff --git a/docs/configuration.md b/docs/configuration.md index fd4806fe6..09198e019 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -105,11 +105,12 @@ Mandatory parameters are marked as **Required**, which means that they are requi | `ask_strategy.order_book_top` | Bot will use the top N rate in Order Book "price_side" to sell. I.e. a value of 2 will allow the bot to pick the 2nd ask rate in [Order Book Asks](#sell-price-with-orderbook-enabled)
*Defaults to `1`.*
**Datatype:** Positive Integer | `use_sell_signal` | Use sell signals produced by the strategy in addition to the `minimal_roi`. [Strategy Override](#parameters-in-the-strategy).
*Defaults to `true`.*
**Datatype:** Boolean | `sell_profit_only` | Wait until the bot reaches `sell_profit_offset` before taking a sell decision. [Strategy Override](#parameters-in-the-strategy).
*Defaults to `false`.*
**Datatype:** Boolean -| `sell_profit_offset` | Sell-signal is only active above this value. [Strategy Override](#parameters-in-the-strategy).
*Defaults to `0.0`.*
**Datatype:** Float (as ratio) +| `sell_profit_offset` | Sell-signal is only active above this value. Only active in combination with `sell_profit_only=True`. [Strategy Override](#parameters-in-the-strategy).
*Defaults to `0.0`.*
**Datatype:** Float (as ratio) | `ignore_roi_if_buy_signal` | Do not sell if the buy signal is still active. This setting takes preference over `minimal_roi` and `use_sell_signal`. [Strategy Override](#parameters-in-the-strategy).
*Defaults to `false`.*
**Datatype:** Boolean | `ignore_buying_expired_candle_after` | Specifies the number of seconds until a buy signal is no longer used.
**Datatype:** Integer | `order_types` | Configure order-types depending on the action (`"buy"`, `"sell"`, `"stoploss"`, `"stoploss_on_exchange"`). [More information below](#understand-order_types). [Strategy Override](#parameters-in-the-strategy).
**Datatype:** Dict | `order_time_in_force` | Configure time in force for buy and sell orders. [More information below](#understand-order_time_in_force). [Strategy Override](#parameters-in-the-strategy).
**Datatype:** Dict +| `custom_price_max_distance_ratio` | Configure maximum distance ratio between current and custom entry or exit price.
*Defaults to `0.02` 2%).*
**Datatype:** Positive float | `exchange.name` | **Required.** Name of the exchange class to use. [List below](#user-content-what-values-for-exchangename).
**Datatype:** String | `exchange.sandbox` | Use the 'sandbox' version of the exchange, where the exchange provides a sandbox for risk-free integration. See [here](sandbox-testing.md) in more details.
**Datatype:** Boolean | `exchange.key` | API key to use for the exchange. Only required when you are in production mode.
**Keep it in secret, do not disclose publicly.**
**Datatype:** String diff --git a/docs/developer.md b/docs/developer.md index dd56a367c..bd138212b 100644 --- a/docs/developer.md +++ b/docs/developer.md @@ -240,11 +240,18 @@ The `IProtection` parent class provides a helper method for this in `calculate_l !!! Note This section is a Work in Progress and is not a complete guide on how to test a new exchange with Freqtrade. +!!! Note + Make sure to use an up-to-date version of CCXT before running any of the below tests. + You can get the latest version of ccxt by running `pip install -U ccxt` with activated virtual environment. + Native docker is not supported for these tests, however the available dev-container will support all required actions and eventually necessary changes. + Most exchanges supported by CCXT should work out of the box. To quickly test the public endpoints of an exchange, add a configuration for your exchange to `test_ccxt_compat.py` and run these tests with `pytest --longrun tests/exchange/test_ccxt_compat.py`. Completing these tests successfully a good basis point (it's a requirement, actually), however these won't guarantee correct exchange functioning, as this only tests public endpoints, but no private endpoint (like generate order or similar). +Also try to use `freqtrade download-data` for an extended timerange and verify that the data downloaded correctly (no holes, the specified timerange was actually downloaded). + ### Stoploss On Exchange Check if the new exchange supports Stoploss on Exchange orders through their API. diff --git a/docs/exchanges.md b/docs/exchanges.md index 29b9bb533..5f54a524e 100644 --- a/docs/exchanges.md +++ b/docs/exchanges.md @@ -105,7 +105,7 @@ To use subaccounts with FTX, you need to edit the configuration and add the foll ## Kucoin -Kucoin requries a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows: +Kucoin requires a passphrase for each api key, you will therefore need to add this key into the configuration so your exchange section looks as follows: ```json "exchange": { diff --git a/docs/includes/pairlists.md b/docs/includes/pairlists.md index 995e49a2d..6e23c9003 100644 --- a/docs/includes/pairlists.md +++ b/docs/includes/pairlists.md @@ -58,7 +58,7 @@ This option must be configured along with `exchange.skip_pair_validation` in the When used in the chain of Pairlist Handlers in a non-leading position (after StaticPairList and other Pairlist Filters), `VolumePairList` considers outputs of previous Pairlist Handlers, adding its sorting/selection of the pairs by the trading volume. -When used on the leading position of the chain of Pairlist Handlers, it does not consider `pair_whitelist` configuration setting, but selects the top assets from all available markets (with matching stake-currency) on the exchange. +When used in the leading position of the chain of Pairlist Handlers, the `pair_whitelist` configuration setting is ignored. Instead, `VolumePairList` selects the top assets from all available markets with matching stake-currency on the exchange. The `refresh_period` setting allows to define the period (in seconds), at which the pairlist will be refreshed. Defaults to 1800s (30 minutes). The pairlist cache (`refresh_period`) on `VolumePairList` is only applicable to generating pairlists. @@ -74,11 +74,14 @@ Filtering instances (not the first position in the list) will not apply any cach "method": "VolumePairList", "number_assets": 20, "sort_key": "quoteVolume", + "min_value": 0, "refresh_period": 1800 } ], ``` +You can define a minimum volume with `min_value` - which will filter out pairs with a volume lower than the specified value in the specified timerange. + `VolumePairList` can also operate in an advanced mode to build volume over a given timerange of specified candle size. It utilizes exchange historical candle data, builds a typical price (calculated by (open+high+low)/3) and multiplies the typical price with every candle's volume. The sum is the `quoteVolume` over the given range. This allows different scenarios, for a more smoothened volume, when using longer ranges with larger candle sizes, or the opposite when using a short range with small candles. For convenience `lookback_days` can be specified, which will imply that 1d candles will be used for the lookback. In the example below the pairlist would be created based on the last 7 days: @@ -89,6 +92,7 @@ For convenience `lookback_days` can be specified, which will imply that 1d candl "method": "VolumePairList", "number_assets": 20, "sort_key": "quoteVolume", + "min_value": 0, "refresh_period": 86400, "lookback_days": 7 } @@ -109,6 +113,7 @@ More sophisticated approach can be used, by using `lookback_timeframe` for candl "method": "VolumePairList", "number_assets": 20, "sort_key": "quoteVolume", + "min_value": 0, "refresh_period": 3600, "lookback_timeframe": "1h", "lookback_period": 72 diff --git a/docs/index.md b/docs/index.md index 05eaa7552..fd3b8f224 100644 --- a/docs/index.md +++ b/docs/index.md @@ -47,7 +47,7 @@ Please read the [exchange specific notes](exchanges.md) to learn about eventual, Exchanges confirmed working by the community: - [X] [Bitvavo](https://bitvavo.com/) -- [X] [Kukoin](https://www.kucoin.com/) +- [X] [Kucoin](https://www.kucoin.com/) ## Requirements diff --git a/docs/requirements-docs.txt b/docs/requirements-docs.txt index 047821f2d..8fa7341c9 100644 --- a/docs/requirements-docs.txt +++ b/docs/requirements-docs.txt @@ -1,4 +1,4 @@ mkdocs==1.2.2 -mkdocs-material==7.2.2 +mkdocs-material==7.2.4 mdx_truly_sane_lists==1.2 pymdown-extensions==8.2 diff --git a/docs/strategy-advanced.md b/docs/strategy-advanced.md index 0704473fb..4409af6ea 100644 --- a/docs/strategy-advanced.md +++ b/docs/strategy-advanced.md @@ -357,6 +357,55 @@ See [Dataframe access](#dataframe-access) for more information about dataframe u --- +## Custom order price rules + +By default, freqtrade use the orderbook to automatically set an order price([Relevant documentation](configuration.md#prices-used-for-orders)), you also have the option to create custom order prices based on your strategy. + +You can use this feature by creating a `custom_entry_price()` function in your strategy file to customize entry prices and `custom_exit_price()` for exits. + +!!! Note + If your custom pricing function return None or an invalid value, price will fall back to `proposed_rate`, which is based on the regular pricing configuration. + +### Custom order entry and exit price example + +``` python +from datetime import datetime, timedelta, timezone +from freqtrade.persistence import Trade + +class AwesomeStrategy(IStrategy): + + # ... populate_* methods + + def custom_entry_price(self, pair: str, current_time: datetime, + proposed_rate, **kwargs) -> float: + + dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair, + timeframe=self.timeframe) + new_entryprice = dataframe['bollinger_10_lowerband'].iat[-1] + + return new_entryprice + + def custom_exit_price(self, pair: str, trade: Trade, + current_time: datetime, proposed_rate: float, + current_profit: float, **kwargs) -> float: + + dataframe, last_updated = self.dp.get_analyzed_dataframe(pair=pair, + timeframe=self.timeframe) + new_exitprice = dataframe['bollinger_10_upperband'].iat[-1] + + return new_exitprice + +``` + +!!! Warning + Modifying entry and exit prices will only work for limit orders. Depending on the price chosen, this can result in a lot of unfilled orders. By default the maximum allowed distance between the current price and the custom price is 2%, this value can be changed in config with the `custom_price_max_distance_ratio` parameter. + +!!! Example + If the new_entryprice is 97, the proposed_rate is 100 and the `custom_price_max_distance_ratio` is set to 2%, The retained valid custom entry price will be 98. + +!!! Warning "No backtesting support" + Custom entry-prices are currently not supported during backtesting. + ## Custom order timeout rules Simple, time-based order-timeouts can be configured either via strategy or in the configuration in the `unfilledtimeout` section. diff --git a/docs/strategy_analysis_example.md b/docs/strategy_analysis_example.md index 27192aa2f..dd7e07824 100644 --- a/docs/strategy_analysis_example.md +++ b/docs/strategy_analysis_example.md @@ -228,7 +228,7 @@ graph = generate_candlestick_graph(pair=pair, # Show graph inline # graph.show() -# Render graph in a seperate window +# Render graph in a separate window graph.show(renderer="browser") ``` diff --git a/freqtrade/commands/hyperopt_commands.py b/freqtrade/commands/hyperopt_commands.py index 4694d1111..089529d15 100755 --- a/freqtrade/commands/hyperopt_commands.py +++ b/freqtrade/commands/hyperopt_commands.py @@ -1,6 +1,6 @@ import logging from operator import itemgetter -from typing import Any, Dict, List +from typing import Any, Dict from colorama import init as colorama_init @@ -28,30 +28,12 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None: no_details = config.get('hyperopt_list_no_details', False) no_header = False - filteroptions = { - 'only_best': config.get('hyperopt_list_best', False), - 'only_profitable': config.get('hyperopt_list_profitable', False), - 'filter_min_trades': config.get('hyperopt_list_min_trades', 0), - 'filter_max_trades': config.get('hyperopt_list_max_trades', 0), - 'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None), - 'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None), - 'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None), - 'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None), - 'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None), - 'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None), - 'filter_min_objective': config.get('hyperopt_list_min_objective', None), - 'filter_max_objective': config.get('hyperopt_list_max_objective', None), - } - results_file = get_latest_hyperopt_file( config['user_data_dir'] / 'hyperopt_results', config.get('hyperoptexportfilename')) # Previous evaluations - epochs = HyperoptTools.load_previous_results(results_file) - total_epochs = len(epochs) - - epochs = hyperopt_filter_epochs(epochs, filteroptions) + epochs, total_epochs = HyperoptTools.load_filtered_results(results_file, config) if print_colorized: colorama_init(autoreset=True) @@ -59,7 +41,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None: if not export_csv: try: print(HyperoptTools.get_result_table(config, epochs, total_epochs, - not filteroptions['only_best'], + not config.get('hyperopt_list_best', False), print_colorized, 0)) except KeyboardInterrupt: print('User interrupted..') @@ -71,7 +53,7 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None: if epochs and export_csv: HyperoptTools.export_csv_file( - config, epochs, total_epochs, not filteroptions['only_best'], export_csv + config, epochs, total_epochs, not config.get('hyperopt_list_best', False), export_csv ) @@ -91,26 +73,9 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None: n = config.get('hyperopt_show_index', -1) - filteroptions = { - 'only_best': config.get('hyperopt_list_best', False), - 'only_profitable': config.get('hyperopt_list_profitable', False), - 'filter_min_trades': config.get('hyperopt_list_min_trades', 0), - 'filter_max_trades': config.get('hyperopt_list_max_trades', 0), - 'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None), - 'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None), - 'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None), - 'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None), - 'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None), - 'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None), - 'filter_min_objective': config.get('hyperopt_list_min_objective', None), - 'filter_max_objective': config.get('hyperopt_list_max_objective', None) - } - # Previous evaluations - epochs = HyperoptTools.load_previous_results(results_file) - total_epochs = len(epochs) + epochs, total_epochs = HyperoptTools.load_filtered_results(results_file, config) - epochs = hyperopt_filter_epochs(epochs, filteroptions) filtered_epochs = len(epochs) if n > filtered_epochs: @@ -137,138 +102,3 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None: HyperoptTools.show_epoch_details(val, total_epochs, print_json, no_header, header_str="Epoch details") - - -def hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List: - """ - Filter our items from the list of hyperopt results - TODO: after 2021.5 remove all "legacy" mode queries. - """ - if filteroptions['only_best']: - epochs = [x for x in epochs if x['is_best']] - if filteroptions['only_profitable']: - epochs = [x for x in epochs if x['results_metrics'].get( - 'profit', x['results_metrics'].get('profit_total', 0)) > 0] - - epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions) - - epochs = _hyperopt_filter_epochs_duration(epochs, filteroptions) - - epochs = _hyperopt_filter_epochs_profit(epochs, filteroptions) - - epochs = _hyperopt_filter_epochs_objective(epochs, filteroptions) - - logger.info(f"{len(epochs)} " + - ("best " if filteroptions['only_best'] else "") + - ("profitable " if filteroptions['only_profitable'] else "") + - "epochs found.") - return epochs - - -def _hyperopt_filter_epochs_trade(epochs: List, trade_count: int): - """ - Filter epochs with trade-counts > trades - """ - return [ - x for x in epochs - if x['results_metrics'].get( - 'trade_count', x['results_metrics'].get('total_trades', 0) - ) > trade_count - ] - - -def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List: - - if filteroptions['filter_min_trades'] > 0: - epochs = _hyperopt_filter_epochs_trade(epochs, filteroptions['filter_min_trades']) - - if filteroptions['filter_max_trades'] > 0: - epochs = [ - x for x in epochs - if x['results_metrics'].get( - 'trade_count', x['results_metrics'].get('total_trades') - ) < filteroptions['filter_max_trades'] - ] - return epochs - - -def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List: - - def get_duration_value(x): - # Duration in minutes ... - if 'duration' in x['results_metrics']: - return x['results_metrics']['duration'] - else: - # New mode - if 'holding_avg_s' in x['results_metrics']: - avg = x['results_metrics']['holding_avg_s'] - return avg // 60 - raise OperationalException( - "Holding-average not available. Please omit the filter on average time, " - "or rerun hyperopt with this version") - - if filteroptions['filter_min_avg_time'] is not None: - epochs = _hyperopt_filter_epochs_trade(epochs, 0) - epochs = [ - x for x in epochs - if get_duration_value(x) > filteroptions['filter_min_avg_time'] - ] - if filteroptions['filter_max_avg_time'] is not None: - epochs = _hyperopt_filter_epochs_trade(epochs, 0) - epochs = [ - x for x in epochs - if get_duration_value(x) < filteroptions['filter_max_avg_time'] - ] - - return epochs - - -def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List: - - if filteroptions['filter_min_avg_profit'] is not None: - epochs = _hyperopt_filter_epochs_trade(epochs, 0) - epochs = [ - x for x in epochs - if x['results_metrics'].get( - 'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100 - ) > filteroptions['filter_min_avg_profit'] - ] - if filteroptions['filter_max_avg_profit'] is not None: - epochs = _hyperopt_filter_epochs_trade(epochs, 0) - epochs = [ - x for x in epochs - if x['results_metrics'].get( - 'avg_profit', x['results_metrics'].get('profit_mean', 0) * 100 - ) < filteroptions['filter_max_avg_profit'] - ] - if filteroptions['filter_min_total_profit'] is not None: - epochs = _hyperopt_filter_epochs_trade(epochs, 0) - epochs = [ - x for x in epochs - if x['results_metrics'].get( - 'profit', x['results_metrics'].get('profit_total_abs', 0) - ) > filteroptions['filter_min_total_profit'] - ] - if filteroptions['filter_max_total_profit'] is not None: - epochs = _hyperopt_filter_epochs_trade(epochs, 0) - epochs = [ - x for x in epochs - if x['results_metrics'].get( - 'profit', x['results_metrics'].get('profit_total_abs', 0) - ) < filteroptions['filter_max_total_profit'] - ] - return epochs - - -def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List: - - if filteroptions['filter_min_objective'] is not None: - epochs = _hyperopt_filter_epochs_trade(epochs, 0) - - epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']] - if filteroptions['filter_max_objective'] is not None: - epochs = _hyperopt_filter_epochs_trade(epochs, 0) - - epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']] - - return epochs diff --git a/freqtrade/constants.py b/freqtrade/constants.py index de4bc99b4..cde276ac0 100644 --- a/freqtrade/constants.py +++ b/freqtrade/constants.py @@ -191,6 +191,9 @@ CONF_SCHEMA = { }, 'required': ['price_side'] }, + 'custom_price_max_distance_ratio': { + 'type': 'number', 'minimum': 0.0 + }, 'order_types': { 'type': 'object', 'properties': { diff --git a/freqtrade/data/btanalysis.py b/freqtrade/data/btanalysis.py index d62712cbb..7d97661c4 100644 --- a/freqtrade/data/btanalysis.py +++ b/freqtrade/data/btanalysis.py @@ -19,7 +19,7 @@ logger = logging.getLogger(__name__) BT_DATA_COLUMNS_OLD = ["pair", "profit_percent", "open_date", "close_date", "index", "trade_duration", "open_rate", "close_rate", "open_at_end", "sell_reason"] -# Mid-term format, crated by BacktestResult Named Tuple +# Mid-term format, created by BacktestResult Named Tuple BT_DATA_COLUMNS_MID = ['pair', 'profit_percent', 'open_date', 'close_date', 'trade_duration', 'open_rate', 'close_rate', 'open_at_end', 'sell_reason', 'fee_open', 'fee_close', 'amount', 'profit_abs', 'profit_ratio'] diff --git a/freqtrade/data/converter.py b/freqtrade/data/converter.py index 040f58d62..ca6464965 100644 --- a/freqtrade/data/converter.py +++ b/freqtrade/data/converter.py @@ -242,7 +242,7 @@ def convert_trades_format(config: Dict[str, Any], convert_from: str, convert_to: :param config: Config dictionary :param convert_from: Source format :param convert_to: Target format - :param erase: Erase souce data (does not apply if source and target format are identical) + :param erase: Erase source data (does not apply if source and target format are identical) """ from freqtrade.data.history.idatahandler import get_datahandler src = get_datahandler(config['datadir'], convert_from) @@ -267,7 +267,7 @@ def convert_ohlcv_format(config: Dict[str, Any], convert_from: str, convert_to: :param config: Config dictionary :param convert_from: Source format :param convert_to: Target format - :param erase: Erase souce data (does not apply if source and target format are identical) + :param erase: Erase source data (does not apply if source and target format are identical) """ from freqtrade.data.history.idatahandler import get_datahandler src = get_datahandler(config['datadir'], convert_from) diff --git a/freqtrade/data/history/history_utils.py b/freqtrade/data/history/history_utils.py index 1459dfd78..6f125aaa9 100644 --- a/freqtrade/data/history/history_utils.py +++ b/freqtrade/data/history/history_utils.py @@ -117,10 +117,11 @@ def refresh_data(datadir: Path, :param timerange: Limit data to be loaded to this timerange """ data_handler = get_datahandler(datadir, data_format) - for pair in pairs: - _download_pair_history(pair=pair, timeframe=timeframe, - datadir=datadir, timerange=timerange, - exchange=exchange, data_handler=data_handler) + for idx, pair in enumerate(pairs): + process = f'{idx}/{len(pairs)}' + _download_pair_history(pair=pair, process=process, + timeframe=timeframe, datadir=datadir, + timerange=timerange, exchange=exchange, data_handler=data_handler) def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optional[TimeRange], @@ -153,13 +154,14 @@ def _load_cached_data_for_updating(pair: str, timeframe: str, timerange: Optiona return data, start_ms -def _download_pair_history(datadir: Path, +def _download_pair_history(pair: str, *, + datadir: Path, exchange: Exchange, - pair: str, *, - new_pairs_days: int = 30, timeframe: str = '5m', - timerange: Optional[TimeRange] = None, - data_handler: IDataHandler = None) -> bool: + process: str = '', + new_pairs_days: int = 30, + data_handler: IDataHandler = None, + timerange: Optional[TimeRange] = None) -> bool: """ Download latest candles from the exchange for the pair and timeframe passed in parameters The data is downloaded starting from the last correct data that @@ -177,7 +179,7 @@ def _download_pair_history(datadir: Path, try: logger.info( - f'Download history data for pair: "{pair}", timeframe: {timeframe} ' + f'Download history data for pair: "{pair}" ({process}), timeframe: {timeframe} ' f'and store in {datadir}.' ) @@ -234,7 +236,7 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes """ pairs_not_available = [] data_handler = get_datahandler(datadir, data_format) - for pair in pairs: + for idx, pair in enumerate(pairs, start=1): if pair not in exchange.markets: pairs_not_available.append(pair) logger.info(f"Skipping pair {pair}...") @@ -247,10 +249,11 @@ def refresh_backtest_ohlcv_data(exchange: Exchange, pairs: List[str], timeframes f'Deleting existing data for pair {pair}, interval {timeframe}.') logger.info(f'Downloading pair {pair}, interval {timeframe}.') - _download_pair_history(datadir=datadir, exchange=exchange, - pair=pair, timeframe=str(timeframe), - new_pairs_days=new_pairs_days, - timerange=timerange, data_handler=data_handler) + process = f'{idx}/{len(pairs)}' + _download_pair_history(pair=pair, process=process, + datadir=datadir, exchange=exchange, + timerange=timerange, data_handler=data_handler, + timeframe=str(timeframe), new_pairs_days=new_pairs_days) return pairs_not_available diff --git a/freqtrade/edge/edge_positioning.py b/freqtrade/edge/edge_positioning.py index 9c1dd4d24..8fe87d674 100644 --- a/freqtrade/edge/edge_positioning.py +++ b/freqtrade/edge/edge_positioning.py @@ -151,7 +151,7 @@ class Edge: # Fake run-mode to Edge prior_rm = self.config['runmode'] self.config['runmode'] = RunMode.EDGE - preprocessed = self.strategy.ohlcvdata_to_dataframe(data) + preprocessed = self.strategy.advise_all_indicators(data) self.config['runmode'] = prior_rm # Print timeframe diff --git a/freqtrade/exchange/__init__.py b/freqtrade/exchange/__init__.py index 015e0c869..b0c88a51a 100644 --- a/freqtrade/exchange/__init__.py +++ b/freqtrade/exchange/__init__.py @@ -15,6 +15,7 @@ from freqtrade.exchange.exchange import (available_exchanges, ccxt_exchanges, timeframe_to_seconds, validate_exchange, validate_exchanges) from freqtrade.exchange.ftx import Ftx +from freqtrade.exchange.gateio import Gateio from freqtrade.exchange.hitbtc import Hitbtc from freqtrade.exchange.kraken import Kraken from freqtrade.exchange.kucoin import Kucoin diff --git a/freqtrade/exchange/exchange.py b/freqtrade/exchange/exchange.py index c6f60e08a..dbd72aca4 100644 --- a/freqtrade/exchange/exchange.py +++ b/freqtrade/exchange/exchange.py @@ -618,6 +618,8 @@ class Exchange: if self.exchange_has('fetchL2OrderBook'): ob = self.fetch_l2_order_book(pair, 20) ob_type = 'asks' if side == 'buy' else 'bids' + slippage = 0.05 + max_slippage_val = rate * ((1 + slippage) if side == 'buy' else (1 - slippage)) remaining_amount = amount filled_amount = 0 @@ -626,7 +628,9 @@ class Exchange: book_entry_coin_volume = book_entry[1] if remaining_amount > 0: if remaining_amount < book_entry_coin_volume: + # Orderbook at this slot bigger than remaining amount filled_amount += remaining_amount * book_entry_price + break else: filled_amount += book_entry_coin_volume * book_entry_price remaining_amount -= book_entry_coin_volume @@ -635,7 +639,14 @@ class Exchange: else: # If remaining_amount wasn't consumed completely (break was not called) filled_amount += remaining_amount * book_entry_price - forecast_avg_filled_price = filled_amount / amount + forecast_avg_filled_price = max(filled_amount, 0) / amount + # Limit max. slippage to specified value + if side == 'buy': + forecast_avg_filled_price = min(forecast_avg_filled_price, max_slippage_val) + + else: + forecast_avg_filled_price = max(forecast_avg_filled_price, max_slippage_val) + return self.price_to_precision(pair, forecast_avg_filled_price) return rate @@ -1242,7 +1253,7 @@ class Exchange: logger.debug("Refreshing candle (OHLCV) data for %d pairs", len(pair_list)) input_coroutines = [] - + cached_pairs = [] # Gather coroutines to run for pair, timeframe in set(pair_list): if (((pair, timeframe) not in self._klines) @@ -1254,6 +1265,7 @@ class Exchange: "Using cached candle (OHLCV) data for pair %s, timeframe %s ...", pair, timeframe ) + cached_pairs.append((pair, timeframe)) results = asyncio.get_event_loop().run_until_complete( asyncio.gather(*input_coroutines, return_exceptions=True)) @@ -1276,6 +1288,10 @@ class Exchange: results_df[(pair, timeframe)] = ohlcv_df if cache: self._klines[(pair, timeframe)] = ohlcv_df + # Return cached klines + for pair, timeframe in cached_pairs: + results_df[(pair, timeframe)] = self.klines((pair, timeframe), copy=False) + return results_df def _now_is_time_to_refresh(self, pair: str, timeframe: str) -> bool: @@ -1486,7 +1502,7 @@ class Exchange: :returns List of trade data """ if not self.exchange_has("fetchTrades"): - raise OperationalException("This exchange does not suport downloading Trades.") + raise OperationalException("This exchange does not support downloading Trades.") return asyncio.get_event_loop().run_until_complete( self._async_get_trade_history(pair=pair, since=since, diff --git a/freqtrade/exchange/gateio.py b/freqtrade/exchange/gateio.py new file mode 100644 index 000000000..9c910a10d --- /dev/null +++ b/freqtrade/exchange/gateio.py @@ -0,0 +1,23 @@ +""" Gate.io exchange subclass """ +import logging +from typing import Dict + +from freqtrade.exchange import Exchange + + +logger = logging.getLogger(__name__) + + +class Gateio(Exchange): + """ + Gate.io exchange class. Contains adjustments needed for Freqtrade to work + with this exchange. + + Please note that this exchange is not included in the list of exchanges + officially supported by the Freqtrade development team. So some features + may still not work as expected. + """ + + _ft_has: Dict = { + "ohlcv_candle_limit": 1000, + } diff --git a/freqtrade/freqtradebot.py b/freqtrade/freqtradebot.py index 179c99d2c..ce09e715e 100644 --- a/freqtrade/freqtradebot.py +++ b/freqtrade/freqtradebot.py @@ -479,7 +479,13 @@ class FreqtradeBot(LoggingMixin): buy_limit_requested = price else: # Calculate price - buy_limit_requested = self.exchange.get_rate(pair, refresh=True, side="buy") + proposed_buy_rate = self.exchange.get_rate(pair, refresh=True, side="buy") + custom_entry_price = strategy_safe_wrapper(self.strategy.custom_entry_price, + default_retval=proposed_buy_rate)( + pair=pair, current_time=datetime.now(timezone.utc), + proposed_rate=proposed_buy_rate) + + buy_limit_requested = self.get_valid_price(custom_entry_price, proposed_buy_rate) if not buy_limit_requested: raise PricingError('Could not determine buy price.') @@ -977,7 +983,7 @@ class FreqtradeBot(LoggingMixin): # if trade is partially complete, edit the stake details for the trade # and close the order # cancel_order may not contain the full order dict, so we need to fallback - # to the order dict aquired before cancelling. + # to the order dict acquired before cancelling. # we need to fall back to the values from order if corder does not contain these keys. trade.amount = filled_amount trade.stake_amount = trade.amount * trade.open_rate @@ -1076,6 +1082,17 @@ class FreqtradeBot(LoggingMixin): and self.strategy.order_types['stoploss_on_exchange']: limit = trade.stop_loss + # set custom_exit_price if available + proposed_limit_rate = limit + current_profit = trade.calc_profit_ratio(limit) + custom_exit_price = strategy_safe_wrapper(self.strategy.custom_exit_price, + default_retval=proposed_limit_rate)( + pair=trade.pair, trade=trade, + current_time=datetime.now(timezone.utc), + proposed_rate=proposed_limit_rate, current_profit=current_profit) + + limit = self.get_valid_price(custom_exit_price, proposed_limit_rate) + # First cancelling stoploss on exchange ... if self.strategy.order_types.get('stoploss_on_exchange') and trade.stoploss_order_id: try: @@ -1364,7 +1381,9 @@ class FreqtradeBot(LoggingMixin): if fee_currency: # fee_rate should use mean fee_rate = sum(fee_rate_array) / float(len(fee_rate_array)) if fee_rate_array else None - trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', '')) + if fee_rate is not None and fee_rate < 0.02: + # Only update if fee-rate is < 2% + trade.update_fee(fee_cost, fee_currency, fee_rate, order.get('side', '')) if not isclose(amount, order_amount, abs_tol=constants.MATH_CLOSE_PREC): logger.warning(f"Amount {amount} does not match amount {trade.amount}") @@ -1375,3 +1394,26 @@ class FreqtradeBot(LoggingMixin): amount=amount, fee_abs=fee_abs) else: return amount + + def get_valid_price(self, custom_price: float, proposed_price: float) -> float: + """ + Return the valid price. + Check if the custom price is of the good type if not return proposed_price + :return: valid price for the order + """ + if custom_price: + try: + valid_custom_price = float(custom_price) + except ValueError: + valid_custom_price = proposed_price + else: + valid_custom_price = proposed_price + + cust_p_max_dist_r = self.config.get('custom_price_max_distance_ratio', 0.02) + min_custom_price_allowed = proposed_price - (proposed_price * cust_p_max_dist_r) + max_custom_price_allowed = proposed_price + (proposed_price * cust_p_max_dist_r) + + # Bracket between min_custom_price_allowed and max_custom_price_allowed + return max( + min(valid_custom_price, max_custom_price_allowed), + min_custom_price_allowed) diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index 5e972f297..ee784200f 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -133,6 +133,9 @@ class Backtesting: self.abort = False def __del__(self): + self.cleanup() + + def cleanup(self): LoggingMixin.show_output = True PairLocks.use_db = True Trade.use_db = True @@ -219,7 +222,7 @@ class Backtesting: # Every change to this headers list must evaluate further usages of the resulting tuple # and eventually change the constants for indexes at the top headers = ['date', 'open', 'high', 'low', 'close', 'enter_long', 'exit_long', - 'enter_short', 'exit_short'] + 'enter_short', 'exit_short', 'long_tag', 'short_tag'] data: Dict = {} self.progress.init_step(BacktestState.CONVERT, len(processed)) @@ -227,21 +230,15 @@ class Backtesting: for pair, pair_data in processed.items(): self.check_abort() self.progress.increment() - has_buy_tag = 'long_tag' in pair_data - has_short_tag = 'short_tag' in pair_data - headers = headers + ['long_tag'] if has_buy_tag else headers - headers = headers + ['short_tag'] if has_short_tag else headers + if not pair_data.empty: # Cleanup from prior runs pair_data.loc[:, 'buy'] = 0 # TODO: Should be renamed to enter_long pair_data.loc[:, 'enter_short'] = 0 pair_data.loc[:, 'sell'] = 0 # TODO: should be renamed to exit_long pair_data.loc[:, 'exit_short'] = 0 - # pair_data.loc[:, 'sell'] = 0 - if has_buy_tag: - pair_data.loc[:, 'long_tag'] = None # cleanup if buy_tag is exist - if has_short_tag: - pair_data.loc[:, 'short_tag'] = None # cleanup if short_tag is exist + pair_data.loc[:, 'long_tag'] = None # cleanup if buy_tag is exist + pair_data.loc[:, 'short_tag'] = None # cleanup if short_tag is exist df_analyzed = self.strategy.advise_sell( self.strategy.advise_buy(pair_data, {'pair': pair}), @@ -256,14 +253,15 @@ class Backtesting: df_analyzed.loc[:, 'enter_short'] = df_analyzed.loc[:, 'enter_short'].shift(1) df_analyzed.loc[:, 'exit_long'] = df_analyzed.loc[:, 'exit_long'].shift(1) df_analyzed.loc[:, 'exit_short'] = df_analyzed.loc[:, 'exit_short'].shift(1) - if has_buy_tag: - df_analyzed.loc[:, 'long_tag'] = df_analyzed.loc[:, 'long_tag'].shift(1) + df_analyzed.loc[:, 'long_tag'] = df_analyzed.loc[:, 'long_tag'].shift(1) df_analyzed.drop(df_analyzed.head(1).index, inplace=True) # Update dataprovider cache self.dataprovider._set_cached_df(pair, self.timeframe, df_analyzed) + df_analyzed = df_analyzed.drop(df_analyzed.head(1).index) + # Convert from Pandas to list for performance reasons # (Looping Pandas is slow.) data[pair] = df_analyzed[headers].values.tolist() @@ -337,13 +335,14 @@ class Backtesting: def _get_sell_trade_entry(self, trade: LocalTrade, sell_row: Tuple) -> Optional[LocalTrade]: # TODO: short exits + sell_candle_time = sell_row[DATE_IDX].to_pydatetime() sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], # type: ignore - sell_row[DATE_IDX].to_pydatetime(), sell_row[BUY_IDX], + sell_candle_time, sell_row[BUY_IDX], sell_row[SELL_IDX], low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX]) if sell.sell_flag: - trade.close_date = sell_row[DATE_IDX].to_pydatetime() + trade.close_date = sell_candle_time trade.sell_reason = sell.sell_reason trade_dur = int((trade.close_date_utc - trade.open_date_utc).total_seconds() // 60) closerate = self._get_close_rate(sell_row, trade, sell, trade_dur) @@ -355,7 +354,7 @@ class Backtesting: rate=closerate, time_in_force=time_in_force, sell_reason=sell.sell_reason, - current_time=sell_row[DATE_IDX].to_pydatetime()): + current_time=sell_candle_time): return None trade.close(closerate, show_msg=False) @@ -494,6 +493,8 @@ class Backtesting: for i, pair in enumerate(data): row_index = indexes[pair] try: + # Row is treated as "current incomplete candle". + # Buy / sell signals are shifted by 1 to compensate for this. row = data[pair][row_index] except IndexError: # missing Data for one pair at the end. @@ -505,8 +506,8 @@ class Backtesting: continue row_index += 1 - self.dataprovider._set_dataframe_max_index(row_index) indexes[pair] = row_index + self.dataprovider._set_dataframe_max_index(row_index) # without positionstacking, we can only have one open trade per pair. # max_open_trades must be respected @@ -530,7 +531,7 @@ class Backtesting: open_trades[pair].append(trade) LocalTrade.add_bt_trade(trade) - for trade in open_trades[pair]: + for trade in list(open_trades[pair]): # also check the buying candle for sell conditions. trade_entry = self._get_sell_trade_entry(trade, row) # Sell occurred @@ -561,7 +562,8 @@ class Backtesting: 'final_balance': self.wallets.get_total(self.strategy.config['stake_currency']), } - def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, Any], timerange: TimeRange): + def backtest_one_strategy(self, strat: IStrategy, data: Dict[str, DataFrame], + timerange: TimeRange): self.progress.init_step(BacktestState.ANALYZE, 0) logger.info("Running backtesting for Strategy %s", strat.get_strategy_name()) @@ -580,7 +582,7 @@ class Backtesting: max_open_trades = 0 # need to reprocess data every time to populate signals - preprocessed = self.strategy.ohlcvdata_to_dataframe(data) + preprocessed = self.strategy.advise_all_indicators(data) # Trim startup period from analyzed dataframe preprocessed_tmp = trim_dataframes(preprocessed, timerange, self.required_startup) diff --git a/freqtrade/optimize/hyperopt.py b/freqtrade/optimize/hyperopt.py index 0db78aa39..901900121 100644 --- a/freqtrade/optimize/hyperopt.py +++ b/freqtrade/optimize/hyperopt.py @@ -394,7 +394,7 @@ class Hyperopt: data, timerange = self.backtesting.load_bt_data() logger.info("Dataload complete. Calculating indicators") - preprocessed = self.backtesting.strategy.ohlcvdata_to_dataframe(data) + preprocessed = self.backtesting.strategy.advise_all_indicators(data) # Trim startup period from analyzed dataframe to get correct dates for output. processed = trim_dataframes(preprocessed, timerange, self.backtesting.required_startup) diff --git a/freqtrade/optimize/hyperopt_epoch_filters.py b/freqtrade/optimize/hyperopt_epoch_filters.py new file mode 100644 index 000000000..80cc89d4b --- /dev/null +++ b/freqtrade/optimize/hyperopt_epoch_filters.py @@ -0,0 +1,128 @@ +import logging +from typing import List + +from freqtrade.exceptions import OperationalException + + +logger = logging.getLogger(__name__) + + +def hyperopt_filter_epochs(epochs: List, filteroptions: dict, log: bool = True) -> List: + """ + Filter our items from the list of hyperopt results + """ + if filteroptions['only_best']: + epochs = [x for x in epochs if x['is_best']] + if filteroptions['only_profitable']: + epochs = [x for x in epochs + if x['results_metrics'].get('profit_total', 0) > 0] + + epochs = _hyperopt_filter_epochs_trade_count(epochs, filteroptions) + + epochs = _hyperopt_filter_epochs_duration(epochs, filteroptions) + + epochs = _hyperopt_filter_epochs_profit(epochs, filteroptions) + + epochs = _hyperopt_filter_epochs_objective(epochs, filteroptions) + if log: + logger.info(f"{len(epochs)} " + + ("best " if filteroptions['only_best'] else "") + + ("profitable " if filteroptions['only_profitable'] else "") + + "epochs found.") + return epochs + + +def _hyperopt_filter_epochs_trade(epochs: List, trade_count: int): + """ + Filter epochs with trade-counts > trades + """ + return [ + x for x in epochs if x['results_metrics'].get('total_trades', 0) > trade_count + ] + + +def _hyperopt_filter_epochs_trade_count(epochs: List, filteroptions: dict) -> List: + + if filteroptions['filter_min_trades'] > 0: + epochs = _hyperopt_filter_epochs_trade(epochs, filteroptions['filter_min_trades']) + + if filteroptions['filter_max_trades'] > 0: + epochs = [ + x for x in epochs + if x['results_metrics'].get('total_trades') < filteroptions['filter_max_trades'] + ] + return epochs + + +def _hyperopt_filter_epochs_duration(epochs: List, filteroptions: dict) -> List: + + def get_duration_value(x): + # Duration in minutes ... + if 'holding_avg_s' in x['results_metrics']: + avg = x['results_metrics']['holding_avg_s'] + return avg // 60 + raise OperationalException( + "Holding-average not available. Please omit the filter on average time, " + "or rerun hyperopt with this version") + + if filteroptions['filter_min_avg_time'] is not None: + epochs = _hyperopt_filter_epochs_trade(epochs, 0) + epochs = [ + x for x in epochs + if get_duration_value(x) > filteroptions['filter_min_avg_time'] + ] + if filteroptions['filter_max_avg_time'] is not None: + epochs = _hyperopt_filter_epochs_trade(epochs, 0) + epochs = [ + x for x in epochs + if get_duration_value(x) < filteroptions['filter_max_avg_time'] + ] + + return epochs + + +def _hyperopt_filter_epochs_profit(epochs: List, filteroptions: dict) -> List: + + if filteroptions['filter_min_avg_profit'] is not None: + epochs = _hyperopt_filter_epochs_trade(epochs, 0) + epochs = [ + x for x in epochs + if x['results_metrics'].get('profit_mean', 0) * 100 + > filteroptions['filter_min_avg_profit'] + ] + if filteroptions['filter_max_avg_profit'] is not None: + epochs = _hyperopt_filter_epochs_trade(epochs, 0) + epochs = [ + x for x in epochs + if x['results_metrics'].get('profit_mean', 0) * 100 + < filteroptions['filter_max_avg_profit'] + ] + if filteroptions['filter_min_total_profit'] is not None: + epochs = _hyperopt_filter_epochs_trade(epochs, 0) + epochs = [ + x for x in epochs + if x['results_metrics'].get('profit_total_abs', 0) + > filteroptions['filter_min_total_profit'] + ] + if filteroptions['filter_max_total_profit'] is not None: + epochs = _hyperopt_filter_epochs_trade(epochs, 0) + epochs = [ + x for x in epochs + if x['results_metrics'].get('profit_total_abs', 0) + < filteroptions['filter_max_total_profit'] + ] + return epochs + + +def _hyperopt_filter_epochs_objective(epochs: List, filteroptions: dict) -> List: + + if filteroptions['filter_min_objective'] is not None: + epochs = _hyperopt_filter_epochs_trade(epochs, 0) + + epochs = [x for x in epochs if x['loss'] < filteroptions['filter_min_objective']] + if filteroptions['filter_max_objective'] is not None: + epochs = _hyperopt_filter_epochs_trade(epochs, 0) + + epochs = [x for x in epochs if x['loss'] > filteroptions['filter_max_objective']] + + return epochs diff --git a/freqtrade/optimize/hyperopt_tools.py b/freqtrade/optimize/hyperopt_tools.py index 52aa85c84..b2e024f65 100755 --- a/freqtrade/optimize/hyperopt_tools.py +++ b/freqtrade/optimize/hyperopt_tools.py @@ -4,7 +4,7 @@ import logging from copy import deepcopy from datetime import datetime, timezone from pathlib import Path -from typing import Any, Dict, List, Optional +from typing import Any, Dict, Iterator, List, Optional, Tuple import numpy as np import rapidjson @@ -15,6 +15,7 @@ from pandas import isna, json_normalize from freqtrade.constants import FTHYPT_FILEVERSION, USERPATH_STRATEGIES from freqtrade.exceptions import OperationalException from freqtrade.misc import deep_merge_dicts, round_coin_value, round_dict, safe_value_fallback2 +from freqtrade.optimize.hyperopt_epoch_filters import hyperopt_filter_epochs logger = logging.getLogger(__name__) @@ -89,46 +90,70 @@ class HyperoptTools(): return any(s in config['spaces'] for s in [space, 'all', 'default']) @staticmethod - def _read_results_pickle(results_file: Path) -> List: + def _read_results(results_file: Path, batch_size: int = 10) -> Iterator[List[Any]]: """ - Read hyperopt results from pickle file - LEGACY method - new files are written as json and cannot be read with this method. - """ - from joblib import load - - logger.info(f"Reading pickled epochs from '{results_file}'") - data = load(results_file) - return data - - @staticmethod - def _read_results(results_file: Path) -> List: - """ - Read hyperopt results from file + Stream hyperopt results from file """ import rapidjson logger.info(f"Reading epochs from '{results_file}'") with results_file.open('r') as f: - data = [rapidjson.loads(line) for line in f] - return data + data = [] + for line in f: + data += [rapidjson.loads(line)] + if len(data) >= batch_size: + yield data + data = [] + yield data @staticmethod - def load_previous_results(results_file: Path) -> List: - """ - Load data for epochs from the file if we have one - """ - epochs: List = [] + def _test_hyperopt_results_exist(results_file) -> bool: if results_file.is_file() and results_file.stat().st_size > 0: if results_file.suffix == '.pickle': - epochs = HyperoptTools._read_results_pickle(results_file) - else: - epochs = HyperoptTools._read_results(results_file) - # Detection of some old format, without 'is_best' field saved - if epochs[0].get('is_best') is None: + raise OperationalException( + "Legacy hyperopt results are no longer supported." + "Please rerun hyperopt or use an older version to load this file." + ) + return True + else: + # No file found. + return False + + @staticmethod + def load_filtered_results(results_file: Path, config: Dict[str, Any]) -> Tuple[List, int]: + filteroptions = { + 'only_best': config.get('hyperopt_list_best', False), + 'only_profitable': config.get('hyperopt_list_profitable', False), + 'filter_min_trades': config.get('hyperopt_list_min_trades', 0), + 'filter_max_trades': config.get('hyperopt_list_max_trades', 0), + 'filter_min_avg_time': config.get('hyperopt_list_min_avg_time', None), + 'filter_max_avg_time': config.get('hyperopt_list_max_avg_time', None), + 'filter_min_avg_profit': config.get('hyperopt_list_min_avg_profit', None), + 'filter_max_avg_profit': config.get('hyperopt_list_max_avg_profit', None), + 'filter_min_total_profit': config.get('hyperopt_list_min_total_profit', None), + 'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None), + 'filter_min_objective': config.get('hyperopt_list_min_objective', None), + 'filter_max_objective': config.get('hyperopt_list_max_objective', None), + } + if not HyperoptTools._test_hyperopt_results_exist(results_file): + # No file found. + return [], 0 + + epochs = [] + total_epochs = 0 + for epochs_tmp in HyperoptTools._read_results(results_file): + if total_epochs == 0 and epochs_tmp[0].get('is_best') is None: raise OperationalException( "The file with HyperoptTools results is incompatible with this version " "of Freqtrade and cannot be loaded.") - logger.info(f"Loaded {len(epochs)} previous evaluations from disk.") - return epochs + total_epochs += len(epochs_tmp) + epochs += hyperopt_filter_epochs(epochs_tmp, filteroptions, log=False) + + logger.info(f"Loaded {total_epochs} previous evaluations from disk.") + + # Final filter run ... + epochs = hyperopt_filter_epochs(epochs, filteroptions, log=True) + + return epochs, total_epochs @staticmethod def show_epoch_details(results, total_epochs: int, print_json: bool, @@ -433,21 +458,14 @@ class HyperoptTools(): trials['Best'] = '' trials['Stake currency'] = config['stake_currency'] - if 'results_metrics.total_trades' in trials: - base_metrics = ['Best', 'current_epoch', 'results_metrics.total_trades', - 'results_metrics.profit_mean', 'results_metrics.profit_median', - 'results_metrics.profit_total', - 'Stake currency', - 'results_metrics.profit_total_abs', 'results_metrics.holding_avg', - 'loss', 'is_initial_point', 'is_best'] - perc_multi = 100 - else: - perc_multi = 1 - base_metrics = ['Best', 'current_epoch', 'results_metrics.trade_count', - 'results_metrics.avg_profit', 'results_metrics.median_profit', - 'results_metrics.total_profit', - 'Stake currency', 'results_metrics.profit', 'results_metrics.duration', - 'loss', 'is_initial_point', 'is_best'] + base_metrics = ['Best', 'current_epoch', 'results_metrics.total_trades', + 'results_metrics.profit_mean', 'results_metrics.profit_median', + 'results_metrics.profit_total', + 'Stake currency', + 'results_metrics.profit_total_abs', 'results_metrics.holding_avg', + 'loss', 'is_initial_point', 'is_best'] + perc_multi = 100 + param_metrics = [("params_dict."+param) for param in results[0]['params_dict'].keys()] trials = trials[base_metrics + param_metrics] @@ -475,11 +493,6 @@ class HyperoptTools(): trials['Avg profit'] = trials['Avg profit'].apply( lambda x: f'{x * perc_multi:,.2f}%' if not isna(x) else "" ) - if perc_multi == 1: - trials['Avg duration'] = trials['Avg duration'].apply( - lambda x: f'{x:,.1f} m' if isinstance( - x, float) else f"{x.total_seconds() // 60:,.1f} m" if not isna(x) else "" - ) trials['Objective'] = trials['Objective'].apply( lambda x: f'{x:,.5f}' if x != 100000 else "" ) diff --git a/freqtrade/persistence/models.py b/freqtrade/persistence/models.py index 2d8aa0738..3b26ab81f 100644 --- a/freqtrade/persistence/models.py +++ b/freqtrade/persistence/models.py @@ -166,7 +166,7 @@ class Order(_DECL_BASE): self.ft_is_open = True if self.status in ('closed', 'canceled', 'cancelled'): self.ft_is_open = False - if order.get('filled', 0) > 0: + if (order.get('filled', 0.0) or 0.0) > 0: self.order_filled_date = datetime.now(timezone.utc) self.order_update_date = datetime.now(timezone.utc) @@ -451,12 +451,12 @@ class LocalTrade(): LocalTrade.trades_open = [] LocalTrade.total_profit = 0 - def adjust_min_max_rates(self, current_price: float) -> None: + def adjust_min_max_rates(self, current_price: float, current_price_low: float) -> None: """ Adjust the max_rate and min_rate. """ self.max_rate = max(current_price, self.max_rate or self.open_rate) - self.min_rate = min(current_price, self.min_rate or self.open_rate) + self.min_rate = min(current_price_low, self.min_rate or self.open_rate) def adjust_stop_loss(self, current_price: float, stoploss: float, initial: bool = False) -> None: diff --git a/freqtrade/plot/plotting.py b/freqtrade/plot/plotting.py index 2fbf343ce..509c03e90 100644 --- a/freqtrade/plot/plotting.py +++ b/freqtrade/plot/plotting.py @@ -538,7 +538,7 @@ def load_and_plot_trades(config: Dict[str, Any]): - Initializes plot-script - Get candle (OHLCV) data - Generate Dafaframes populated with indicators and signals based on configured strategy - - Load trades excecuted during the selected period + - Load trades executed during the selected period - Generate Plotly plot objects - Generate plot files :return: None diff --git a/freqtrade/plugins/pairlist/IPairList.py b/freqtrade/plugins/pairlist/IPairList.py index bfde2ace0..0155f918b 100644 --- a/freqtrade/plugins/pairlist/IPairList.py +++ b/freqtrade/plugins/pairlist/IPairList.py @@ -150,18 +150,20 @@ class IPairList(LoggingMixin, ABC): for pair in pairlist: # pair is not in the generated dynamic market or has the wrong stake currency if pair not in markets: - logger.warning(f"Pair {pair} is not compatible with exchange " - f"{self._exchange.name}. Removing it from whitelist..") + self.log_once(f"Pair {pair} is not compatible with exchange " + f"{self._exchange.name}. Removing it from whitelist..", + logger.warning) continue if not self._exchange.market_is_tradable(markets[pair]): - logger.warning(f"Pair {pair} is not tradable with Freqtrade." - "Removing it from whitelist..") + self.log_once(f"Pair {pair} is not tradable with Freqtrade." + "Removing it from whitelist..", logger.warning) continue if self._exchange.get_pair_quote_currency(pair) != self._config['stake_currency']: - logger.warning(f"Pair {pair} is not compatible with your stake currency " - f"{self._config['stake_currency']}. Removing it from whitelist..") + self.log_once(f"Pair {pair} is not compatible with your stake currency " + f"{self._config['stake_currency']}. Removing it from whitelist..", + logger.warning) continue # Check if market is active diff --git a/freqtrade/plugins/pairlist/VolumePairList.py b/freqtrade/plugins/pairlist/VolumePairList.py index 901fde2d0..c70e4a904 100644 --- a/freqtrade/plugins/pairlist/VolumePairList.py +++ b/freqtrade/plugins/pairlist/VolumePairList.py @@ -4,6 +4,7 @@ Volume PairList provider Provides dynamic pair list based on trade volumes """ import logging +from functools import partial from typing import Any, Dict, List import arrow @@ -115,7 +116,7 @@ class VolumePairList(IPairList): pairlist = self._pair_cache.get('pairlist') if pairlist: # Item found - no refresh necessary - return pairlist + return pairlist.copy() else: # Use fresh pairlist # Check if pair quote currency equals to the stake currency. @@ -126,7 +127,7 @@ class VolumePairList(IPairList): pairlist = [s['symbol'] for s in filtered_tickers] pairlist = self.filter_pairlist(pairlist, tickers) - self._pair_cache['pairlist'] = pairlist + self._pair_cache['pairlist'] = pairlist.copy() return pairlist @@ -203,7 +204,7 @@ class VolumePairList(IPairList): # Validate whitelist to only have active market pairs pairs = self._whitelist_for_active_markets([s['symbol'] for s in sorted_tickers]) - pairs = self.verify_blacklist(pairs, logger.info) + pairs = self.verify_blacklist(pairs, partial(self.log_once, logmethod=logger.info)) # Limit pairlist to the requested number of pairs pairs = pairs[:self._number_pairs] diff --git a/freqtrade/plugins/pairlist/rangestabilityfilter.py b/freqtrade/plugins/pairlist/rangestabilityfilter.py index ef7f2cbcb..3e5a002ff 100644 --- a/freqtrade/plugins/pairlist/rangestabilityfilter.py +++ b/freqtrade/plugins/pairlist/rangestabilityfilter.py @@ -120,5 +120,6 @@ class RangeStabilityFilter(IPairList): logger.info) result = False self._pair_cache[pair] = result - + else: + self.log_once(f"Removed {pair} from whitelist, no candles found.", logger.info) return result diff --git a/freqtrade/rpc/api_server/api_v1.py b/freqtrade/rpc/api_server/api_v1.py index f2361fda8..7e613f184 100644 --- a/freqtrade/rpc/api_server/api_v1.py +++ b/freqtrade/rpc/api_server/api_v1.py @@ -223,11 +223,11 @@ def list_strategies(config=Depends(get_config)): @router.get('/strategy/{strategy}', response_model=StrategyResponse, tags=['strategy']) def get_strategy(strategy: str, config=Depends(get_config)): - config = deepcopy(config) + config_ = deepcopy(config) from freqtrade.resolvers.strategy_resolver import StrategyResolver try: - strategy_obj = StrategyResolver._load_strategy(strategy, config, - extra_dir=config.get('strategy_path')) + strategy_obj = StrategyResolver._load_strategy(strategy, config_, + extra_dir=config_.get('strategy_path')) except OperationalException: raise HTTPException(status_code=404, detail='Strategy not found') diff --git a/freqtrade/rpc/api_server/uvicorn_threaded.py b/freqtrade/rpc/api_server/uvicorn_threaded.py index 2f72cb74c..b63999f51 100644 --- a/freqtrade/rpc/api_server/uvicorn_threaded.py +++ b/freqtrade/rpc/api_server/uvicorn_threaded.py @@ -32,8 +32,11 @@ class UvicornServer(uvicorn.Server): asyncio_setup() else: asyncio.set_event_loop(uvloop.new_event_loop()) - - loop = asyncio.get_event_loop() + try: + loop = asyncio.get_event_loop() + except RuntimeError: + # When running in a thread, we'll not have an eventloop yet. + loop = asyncio.new_event_loop() loop.run_until_complete(self.serve(sockets=sockets)) @contextlib.contextmanager diff --git a/freqtrade/rpc/api_server/web_ui.py b/freqtrade/rpc/api_server/web_ui.py index 76c8ed8f2..b04269c61 100644 --- a/freqtrade/rpc/api_server/web_ui.py +++ b/freqtrade/rpc/api_server/web_ui.py @@ -29,6 +29,16 @@ async def ui_version(): } +def is_relative_to(path, base) -> bool: + # Helper function simulating behaviour of is_relative_to, which was only added in python 3.9 + try: + path.relative_to(base) + return True + except ValueError: + pass + return False + + @router_ui.get('/{rest_of_path:path}', include_in_schema=False) async def index_html(rest_of_path: str): """ @@ -37,8 +47,11 @@ async def index_html(rest_of_path: str): if rest_of_path.startswith('api') or rest_of_path.startswith('.'): raise HTTPException(status_code=404, detail="Not Found") uibase = Path(__file__).parent / 'ui/installed/' - if (uibase / rest_of_path).is_file(): - return FileResponse(str(uibase / rest_of_path)) + filename = uibase / rest_of_path + # It's security relevant to check "relative_to". + # Without this, Directory-traversal is possible. + if filename.is_file() and is_relative_to(filename, uibase): + return FileResponse(str(filename)) index_file = uibase / 'index.html' if not index_file.is_file(): diff --git a/freqtrade/rpc/fiat_convert.py b/freqtrade/rpc/fiat_convert.py index cdc09b437..f4e82261e 100644 --- a/freqtrade/rpc/fiat_convert.py +++ b/freqtrade/rpc/fiat_convert.py @@ -5,7 +5,7 @@ e.g BTC to USD import datetime import logging -from typing import Dict +from typing import Dict, List from cachetools.ttl import TTLCache from pycoingecko import CoinGeckoAPI @@ -25,8 +25,7 @@ class CryptoToFiatConverter: """ __instance = None _coingekko: CoinGeckoAPI = None - - _cryptomap: Dict = {} + _coinlistings: List[Dict] = [] _backoff: float = 0.0 def __new__(cls): @@ -49,9 +48,8 @@ class CryptoToFiatConverter: def _load_cryptomap(self) -> None: try: - coinlistings = self._coingekko.get_coins_list() - # Create mapping table from symbol to coingekko_id - self._cryptomap = {x['symbol']: x['id'] for x in coinlistings} + # Use list-comprehension to ensure we get a list. + self._coinlistings = [x for x in self._coingekko.get_coins_list()] except RequestException as request_exception: if "429" in str(request_exception): logger.warning( @@ -69,6 +67,24 @@ class CryptoToFiatConverter: logger.error( f"Could not load FIAT Cryptocurrency map for the following problem: {exception}") + def _get_gekko_id(self, crypto_symbol): + if not self._coinlistings: + if self._backoff <= datetime.datetime.now().timestamp(): + self._load_cryptomap() + # Still not loaded. + if not self._coinlistings: + return None + else: + return None + found = [x for x in self._coinlistings if x['symbol'] == crypto_symbol] + if len(found) == 1: + return found[0]['id'] + + if len(found) > 0: + # Wrong! + logger.warning(f"Found multiple mappings in goingekko for {crypto_symbol}.") + return None + def convert_amount(self, crypto_amount: float, crypto_symbol: str, fiat_symbol: str) -> float: """ Convert an amount of crypto-currency to fiat @@ -143,22 +159,14 @@ class CryptoToFiatConverter: if crypto_symbol == fiat_symbol: return 1.0 - if self._cryptomap == {}: - if self._backoff <= datetime.datetime.now().timestamp(): - self._load_cryptomap() - # return 0.0 if we still don't have data to check, no reason to proceed - if self._cryptomap == {}: - return 0.0 - else: - return 0.0 + _gekko_id = self._get_gekko_id(crypto_symbol) - if crypto_symbol not in self._cryptomap: + if not _gekko_id: # return 0 for unsupported stake currencies (fiat-convert should not break the bot) logger.warning("unsupported crypto-symbol %s - returning 0.0", crypto_symbol) return 0.0 try: - _gekko_id = self._cryptomap[crypto_symbol] return float( self._coingekko.get_price( ids=_gekko_id, diff --git a/freqtrade/rpc/rpc.py b/freqtrade/rpc/rpc.py index 902975fde..0264003a5 100644 --- a/freqtrade/rpc/rpc.py +++ b/freqtrade/rpc/rpc.py @@ -776,7 +776,7 @@ class RPC: if has_content: dataframe.loc[:, '__date_ts'] = dataframe.loc[:, 'date'].view(int64) // 1000 // 1000 - # Move open to seperate column when signal for easy plotting + # Move open to separate column when signal for easy plotting if 'buy' in dataframe.columns: buy_mask = (dataframe['buy'] == 1) buy_signals = int(buy_mask.sum()) diff --git a/freqtrade/strategy/interface.py b/freqtrade/strategy/interface.py index f721acafb..c6cf7c0dc 100644 --- a/freqtrade/strategy/interface.py +++ b/freqtrade/strategy/interface.py @@ -281,6 +281,43 @@ class IStrategy(ABC, HyperStrategyMixin): """ return self.stoploss + def custom_entry_price(self, pair: str, current_time: datetime, proposed_rate: float, + **kwargs) -> float: + """ + Custom entry price logic, returning the new entry price. + + For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/ + + When not implemented by a strategy, returns None, orderbook is used to set entry price + + :param pair: Pair that's currently analyzed + :param current_time: datetime object, containing the current datetime + :param proposed_rate: Rate, calculated based on pricing settings in ask_strategy. + :param **kwargs: Ensure to keep this here so updates to this won't break your strategy. + :return float: New entry price value if provided + """ + return proposed_rate + + def custom_exit_price(self, pair: str, trade: Trade, + current_time: datetime, proposed_rate: float, + current_profit: float, **kwargs) -> float: + """ + Custom exit price logic, returning the new exit price. + + For full documentation please go to https://www.freqtrade.io/en/latest/strategy-advanced/ + + When not implemented by a strategy, returns None, orderbook is used to set exit price + + :param pair: Pair that's currently analyzed + :param trade: trade object. + :param current_time: datetime object, containing the current datetime + :param proposed_rate: Rate, calculated based on pricing settings in ask_strategy. + :param current_profit: Current profit (as ratio), calculated based on current_rate. + :param **kwargs: Ensure to keep this here so updates to this won't break your strategy. + :return float: New exit price value if provided + """ + return proposed_rate + def custom_sell(self, pair: str, trade: Trade, current_time: datetime, current_rate: float, current_profit: float, **kwargs) -> Optional[Union[str, bool]]: """ @@ -591,7 +628,7 @@ class IStrategy(ABC, HyperStrategyMixin): current_rate = rate current_profit = trade.calc_profit_ratio(current_rate) - trade.adjust_min_max_rates(high or current_rate) + trade.adjust_min_max_rates(high or current_rate, low or current_rate) stoplossflag = self.stop_loss_reached(current_rate=current_rate, trade=trade, current_time=date, current_profit=current_profit, @@ -761,7 +798,7 @@ class IStrategy(ABC, HyperStrategyMixin): else: return current_profit > roi - def ohlcvdata_to_dataframe(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]: + def advise_all_indicators(self, data: Dict[str, DataFrame]) -> Dict[str, DataFrame]: """ Populates indicators for given candle (OHLCV) data (for multiple pairs) Does not run advise_buy or advise_sell! diff --git a/freqtrade/templates/base_config.json.j2 b/freqtrade/templates/base_config.json.j2 index 03a6c4855..a5782f7cd 100644 --- a/freqtrade/templates/base_config.json.j2 +++ b/freqtrade/templates/base_config.json.j2 @@ -25,7 +25,7 @@ "ask_strategy": { "price_side": "ask", "use_order_book": true, - "order_book_top": 1, + "order_book_top": 1 }, {{ exchange | indent(4) }}, "pairlists": [ diff --git a/requirements-dev.txt b/requirements-dev.txt index c1f7d6486..67ee0035b 100644 --- a/requirements-dev.txt +++ b/requirements-dev.txt @@ -6,7 +6,7 @@ coveralls==3.2.0 flake8==3.9.2 flake8-type-annotations==0.1.0 -flake8-tidy-imports==4.3.0 +flake8-tidy-imports==4.4.1 mypy==0.910 pytest==6.2.4 pytest-asyncio==0.15.1 @@ -19,7 +19,7 @@ isort==5.9.3 nbconvert==6.1.0 # mypy types -types-cachetools==0.1.9 -types-filelock==0.1.4 -types-requests==2.25.1 -types-tabulate==0.1.1 +types-cachetools==4.2.0 +types-filelock==0.1.5 +types-requests==2.25.6 +types-tabulate==0.8.2 diff --git a/requirements-plot.txt b/requirements-plot.txt index e03fd4d66..d835ed5d9 100644 --- a/requirements-plot.txt +++ b/requirements-plot.txt @@ -1,5 +1,5 @@ # Include all requirements to run the bot. -r requirements.txt -plotly==5.1.0 +plotly==5.2.1 diff --git a/requirements.txt b/requirements.txt index 6c2ef56c3..1bccbd725 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,11 +1,11 @@ -numpy==1.21.1 -pandas==1.3.1 +numpy==1.21.2 +pandas==1.3.2 -ccxt==1.54.24 +ccxt==1.55.28 # Pin cryptography for now due to rust build errors with piwheels cryptography==3.4.7 aiohttp==3.7.4.post0 -SQLAlchemy==1.4.22 +SQLAlchemy==1.4.23 python-telegram-bot==13.7 arrow==1.1.1 cachetools==4.2.2 @@ -32,7 +32,7 @@ sdnotify==0.3.2 # API Server fastapi==0.68.0 -uvicorn==0.14.0 +uvicorn==0.15.0 pyjwt==2.1.0 aiofiles==0.7.0 @@ -40,4 +40,4 @@ aiofiles==0.7.0 colorama==0.4.4 # Building config files interactively questionary==1.10.0 -prompt-toolkit==3.0.19 +prompt-toolkit==3.0.20 diff --git a/setup.sh b/setup.sh index a85bd3104..feb0241f8 100755 --- a/setup.sh +++ b/setup.sh @@ -163,7 +163,7 @@ function update() { # Reset Develop or Stable branch function reset() { echo "----------------------------" - echo "Reseting branch and virtual env" + echo "Resetting branch and virtual env" echo "----------------------------" if [ "1" == $(git branch -vv |grep -cE "\* develop|\* stable") ] diff --git a/tests/commands/test_commands.py b/tests/commands/test_commands.py index c0268038a..fc5101979 100644 --- a/tests/commands/test_commands.py +++ b/tests/commands/test_commands.py @@ -938,247 +938,261 @@ def test_start_test_pairlist(mocker, caplog, tickers, default_conf, capsys): pytest.fail(f'Expected well formed JSON, but failed to parse: {captured.out}') -def test_hyperopt_list(mocker, capsys, caplog, saved_hyperopt_results, - saved_hyperopt_results_legacy, tmpdir): +def test_hyperopt_list(mocker, capsys, caplog, saved_hyperopt_results, tmpdir): csv_file = Path(tmpdir) / "test.csv" - for res in (saved_hyperopt_results, saved_hyperopt_results_legacy): - mocker.patch( - 'freqtrade.optimize.hyperopt_tools.HyperoptTools.load_previous_results', - MagicMock(return_value=res) + mocker.patch( + 'freqtrade.optimize.hyperopt_tools.HyperoptTools._test_hyperopt_results_exist', + return_value=True ) - args = [ - "hyperopt-list", - "--no-details", - "--no-color", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 1/12", " 2/12", " 3/12", " 4/12", " 5/12", - " 6/12", " 7/12", " 8/12", " 9/12", " 10/12", - " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--best", - "--no-details", - "--no-color", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 1/12", " 5/12", " 10/12"]) - assert all(x not in captured.out - for x in [" 2/12", " 3/12", " 4/12", " 6/12", " 7/12", " 8/12", " 9/12", - " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--profitable", - "--no-details", - "--no-color", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 2/12", " 10/12"]) - assert all(x not in captured.out - for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", - " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--profitable", - "--no-color", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 2/12", " 10/12", "Best result:", "Buy hyperspace params", - "Sell hyperspace params", "ROI table", "Stoploss"]) - assert all(x not in captured.out - for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", - " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--no-details", - "--no-color", - "--min-trades", "20", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 3/12", " 6/12", " 7/12", " 9/12", " 11/12"]) - assert all(x not in captured.out - for x in [" 1/12", " 2/12", " 4/12", " 5/12", " 8/12", " 10/12", " 12/12"]) - args = [ - "hyperopt-list", - "--profitable", - "--no-details", - "--no-color", - "--max-trades", "20", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 2/12", " 10/12"]) - assert all(x not in captured.out - for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", - " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--profitable", - "--no-details", - "--no-color", - "--min-avg-profit", "0.11", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 2/12"]) - assert all(x not in captured.out - for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", - " 10/12", " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--no-details", - "--no-color", - "--max-avg-profit", "0.10", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 1/12", " 3/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", - " 11/12"]) - assert all(x not in captured.out - for x in [" 2/12", " 4/12", " 10/12", " 12/12"]) - args = [ - "hyperopt-list", - "--no-details", - "--no-color", - "--min-total-profit", "0.4", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 10/12"]) - assert all(x not in captured.out - for x in [" 1/12", " 2/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", - " 9/12", " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--no-details", - "--no-color", - "--max-total-profit", "0.4", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 1/12", " 2/12", " 3/12", " 5/12", " 6/12", " 7/12", " 8/12", - " 9/12", " 11/12"]) - assert all(x not in captured.out - for x in [" 4/12", " 10/12", " 12/12"]) - args = [ - "hyperopt-list", - "--no-details", - "--no-color", - "--min-objective", "0.1", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 10/12"]) - assert all(x not in captured.out - for x in [" 1/12", " 2/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", - " 9/12", " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--no-details", - "--max-objective", "0.1", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 1/12", " 2/12", " 3/12", " 5/12", " 6/12", " 7/12", " 8/12", - " 9/12", " 11/12"]) - assert all(x not in captured.out - for x in [" 4/12", " 10/12", " 12/12"]) - args = [ - "hyperopt-list", - "--profitable", - "--no-details", - "--no-color", - "--min-avg-time", "2000", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 10/12"]) - assert all(x not in captured.out - for x in [" 1/12", " 2/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", - " 8/12", " 9/12", " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--no-details", - "--no-color", - "--max-avg-time", "1500", - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - assert all(x in captured.out - for x in [" 2/12", " 6/12"]) - assert all(x not in captured.out - for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 7/12", " 8/12" - " 9/12", " 10/12", " 11/12", " 12/12"]) - args = [ - "hyperopt-list", - "--no-details", - "--no-color", - "--export-csv", - str(csv_file), - ] - pargs = get_args(args) - pargs['config'] = None - start_hyperopt_list(pargs) - captured = capsys.readouterr() - log_has("CSV file created: test_file.csv", caplog) - assert csv_file.is_file() - line = csv_file.read_text() - assert ('Best,1,2,-1.25%,-1.2222,-0.00125625,,-2.51,"3,930.0 m",0.43662' in line - or "Best,1,2,-1.25%,-1.2222,-0.00125625,,-2.51,2 days 17:30:00,0.43662" in line) - csv_file.unlink() + def fake_iterator(*args, **kwargs): + yield from [saved_hyperopt_results] + + mocker.patch( + 'freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results', + side_effect=fake_iterator + ) + + args = [ + "hyperopt-list", + "--no-details", + "--no-color", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 1/12", " 2/12", " 3/12", " 4/12", " 5/12", + " 6/12", " 7/12", " 8/12", " 9/12", " 10/12", + " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--best", + "--no-details", + "--no-color", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 1/12", " 5/12", " 10/12"]) + assert all(x not in captured.out + for x in [" 2/12", " 3/12", " 4/12", " 6/12", " 7/12", " 8/12", " 9/12", + " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--profitable", + "--no-details", + "--no-color", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 2/12", " 10/12"]) + assert all(x not in captured.out + for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", + " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--profitable", + "--no-color", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 2/12", " 10/12", "Best result:", "Buy hyperspace params", + "Sell hyperspace params", "ROI table", "Stoploss"]) + assert all(x not in captured.out + for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", + " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--no-details", + "--no-color", + "--min-trades", "20", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 3/12", " 6/12", " 7/12", " 9/12", " 11/12"]) + assert all(x not in captured.out + for x in [" 1/12", " 2/12", " 4/12", " 5/12", " 8/12", " 10/12", " 12/12"]) + args = [ + "hyperopt-list", + "--profitable", + "--no-details", + "--no-color", + "--max-trades", "20", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 2/12", " 10/12"]) + assert all(x not in captured.out + for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", + " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--profitable", + "--no-details", + "--no-color", + "--min-avg-profit", "0.11", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 2/12"]) + assert all(x not in captured.out + for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", + " 10/12", " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--no-details", + "--no-color", + "--max-avg-profit", "0.10", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 1/12", " 3/12", " 5/12", " 6/12", " 7/12", " 8/12", " 9/12", + " 11/12"]) + assert all(x not in captured.out + for x in [" 2/12", " 4/12", " 10/12", " 12/12"]) + args = [ + "hyperopt-list", + "--no-details", + "--no-color", + "--min-total-profit", "0.4", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 10/12"]) + assert all(x not in captured.out + for x in [" 1/12", " 2/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", + " 9/12", " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--no-details", + "--no-color", + "--max-total-profit", "0.4", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 1/12", " 2/12", " 3/12", " 5/12", " 6/12", " 7/12", " 8/12", + " 9/12", " 11/12"]) + assert all(x not in captured.out + for x in [" 4/12", " 10/12", " 12/12"]) + args = [ + "hyperopt-list", + "--no-details", + "--no-color", + "--min-objective", "0.1", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 10/12"]) + assert all(x not in captured.out + for x in [" 1/12", " 2/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", " 8/12", + " 9/12", " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--no-details", + "--max-objective", "0.1", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 1/12", " 2/12", " 3/12", " 5/12", " 6/12", " 7/12", " 8/12", + " 9/12", " 11/12"]) + assert all(x not in captured.out + for x in [" 4/12", " 10/12", " 12/12"]) + args = [ + "hyperopt-list", + "--profitable", + "--no-details", + "--no-color", + "--min-avg-time", "2000", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 10/12"]) + assert all(x not in captured.out + for x in [" 1/12", " 2/12", " 3/12", " 4/12", " 5/12", " 6/12", " 7/12", + " 8/12", " 9/12", " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--no-details", + "--no-color", + "--max-avg-time", "1500", + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + assert all(x in captured.out + for x in [" 2/12", " 6/12"]) + assert all(x not in captured.out + for x in [" 1/12", " 3/12", " 4/12", " 5/12", " 7/12", " 8/12" + " 9/12", " 10/12", " 11/12", " 12/12"]) + args = [ + "hyperopt-list", + "--no-details", + "--no-color", + "--export-csv", + str(csv_file), + ] + pargs = get_args(args) + pargs['config'] = None + start_hyperopt_list(pargs) + captured = capsys.readouterr() + log_has("CSV file created: test_file.csv", caplog) + assert csv_file.is_file() + line = csv_file.read_text() + assert ('Best,1,2,-1.25%,-1.2222,-0.00125625,,-2.51,"3,930.0 m",0.43662' in line + or "Best,1,2,-1.25%,-1.2222,-0.00125625,,-2.51,2 days 17:30:00,0.43662" in line) + csv_file.unlink() def test_hyperopt_show(mocker, capsys, saved_hyperopt_results): mocker.patch( - 'freqtrade.optimize.hyperopt_tools.HyperoptTools.load_previous_results', - MagicMock(return_value=saved_hyperopt_results) + 'freqtrade.optimize.hyperopt_tools.HyperoptTools._test_hyperopt_results_exist', + return_value=True + ) + + def fake_iterator(*args, **kwargs): + yield from [saved_hyperopt_results] + + mocker.patch( + 'freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results', + side_effect=fake_iterator ) mocker.patch('freqtrade.commands.hyperopt_commands.show_backtest_result') diff --git a/tests/conftest.py b/tests/conftest.py index 859c34aae..2b75956c4 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -1851,138 +1851,6 @@ def open_trade(): ) -@pytest.fixture -def saved_hyperopt_results_legacy(): - return [ - { - 'loss': 0.4366182531161519, - 'params_dict': { - 'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1190, 'roi_t2': 541, 'roi_t3': 408, 'roi_p1': 0.026035863879169705, 'roi_p2': 0.12508730043628782, 'roi_p3': 0.27766427921605896, 'stoploss': -0.2562930402099556}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 15, 'fastd-value': 20, 'adx-value': 25, 'rsi-value': 28, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 88, 'sell-fastd-value': 97, 'sell-adx-value': 51, 'sell-rsi-value': 67, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.4287874435315165, 408: 0.15112316431545753, 949: 0.026035863879169705, 2139: 0}, 'stoploss': {'stoploss': -0.2562930402099556}}, # noqa: E501 - 'results_metrics': {'trade_count': 2, 'avg_profit': -1.254995, 'median_profit': -1.2222, 'total_profit': -0.00125625, 'profit': -2.50999, 'duration': 3930.0}, # noqa: E501 - 'results_explanation': ' 2 trades. Avg profit -1.25%. Total profit -0.00125625 BTC ( -2.51Σ%). Avg duration 3930.0 min.', # noqa: E501 - 'total_profit': -0.00125625, - 'current_epoch': 1, - 'is_initial_point': True, - 'is_best': True - }, { - 'loss': 20.0, - 'params_dict': { - 'mfi-value': 17, 'fastd-value': 38, 'adx-value': 48, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 96, 'sell-fastd-value': 68, 'sell-adx-value': 63, 'sell-rsi-value': 81, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal', 'roi_t1': 334, 'roi_t2': 683, 'roi_t3': 140, 'roi_p1': 0.06403981740598495, 'roi_p2': 0.055519840060645045, 'roi_p3': 0.3253712811342459, 'stoploss': -0.338070047333259}, # noqa: E501 - 'params_details': { - 'buy': {'mfi-value': 17, 'fastd-value': 38, 'adx-value': 48, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, # noqa: E501 - 'sell': {'sell-mfi-value': 96, 'sell-fastd-value': 68, 'sell-adx-value': 63, 'sell-rsi-value': 81, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal'}, # noqa: E501 - 'roi': {0: 0.4449309386008759, 140: 0.11955965746663, 823: 0.06403981740598495, 1157: 0}, # noqa: E501 - 'stoploss': {'stoploss': -0.338070047333259}}, - 'results_metrics': {'trade_count': 1, 'avg_profit': 0.12357, 'median_profit': -1.2222, 'total_profit': 6.185e-05, 'profit': 0.12357, 'duration': 1200.0}, # noqa: E501 - 'results_explanation': ' 1 trades. Avg profit 0.12%. Total profit 0.00006185 BTC ( 0.12Σ%). Avg duration 1200.0 min.', # noqa: E501 - 'total_profit': 6.185e-05, - 'current_epoch': 2, - 'is_initial_point': True, - 'is_best': False - }, { - 'loss': 14.241196856510731, - 'params_dict': {'mfi-value': 25, 'fastd-value': 16, 'adx-value': 29, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 98, 'sell-fastd-value': 72, 'sell-adx-value': 51, 'sell-rsi-value': 82, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 889, 'roi_t2': 533, 'roi_t3': 263, 'roi_p1': 0.04759065393663096, 'roi_p2': 0.1488819964638463, 'roi_p3': 0.4102801822104605, 'stoploss': -0.05394588767607611}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 25, 'fastd-value': 16, 'adx-value': 29, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 98, 'sell-fastd-value': 72, 'sell-adx-value': 51, 'sell-rsi-value': 82, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.6067528326109377, 263: 0.19647265040047726, 796: 0.04759065393663096, 1685: 0}, 'stoploss': {'stoploss': -0.05394588767607611}}, # noqa: E501 - 'results_metrics': {'trade_count': 621, 'avg_profit': -0.43883302093397747, 'median_profit': -1.2222, 'total_profit': -0.13639474, 'profit': -272.515306, 'duration': 1691.207729468599}, # noqa: E501 - 'results_explanation': ' 621 trades. Avg profit -0.44%. Total profit -0.13639474 BTC (-272.52Σ%). Avg duration 1691.2 min.', # noqa: E501 - 'total_profit': -0.13639474, - 'current_epoch': 3, - 'is_initial_point': True, - 'is_best': False - }, { - 'loss': 100000, - 'params_dict': {'mfi-value': 13, 'fastd-value': 35, 'adx-value': 39, 'rsi-value': 29, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 87, 'sell-fastd-value': 54, 'sell-adx-value': 63, 'sell-rsi-value': 93, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1402, 'roi_t2': 676, 'roi_t3': 215, 'roi_p1': 0.06264755784937427, 'roi_p2': 0.14258587851894644, 'roi_p3': 0.20671291201040828, 'stoploss': -0.11818343570194478}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 13, 'fastd-value': 35, 'adx-value': 39, 'rsi-value': 29, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 87, 'sell-fastd-value': 54, 'sell-adx-value': 63, 'sell-rsi-value': 93, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.411946348378729, 215: 0.2052334363683207, 891: 0.06264755784937427, 2293: 0}, 'stoploss': {'stoploss': -0.11818343570194478}}, # noqa: E501 - 'results_metrics': {'trade_count': 0, 'avg_profit': None, 'median_profit': None, 'total_profit': 0, 'profit': 0.0, 'duration': None}, # noqa: E501 - 'results_explanation': ' 0 trades. Avg profit nan%. Total profit 0.00000000 BTC ( 0.00Σ%). Avg duration nan min.', # noqa: E501 - 'total_profit': 0, 'current_epoch': 4, 'is_initial_point': True, 'is_best': False - }, { - 'loss': 0.22195522184191518, - 'params_dict': {'mfi-value': 17, 'fastd-value': 21, 'adx-value': 38, 'rsi-value': 33, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 87, 'sell-fastd-value': 82, 'sell-adx-value': 78, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 1269, 'roi_t2': 601, 'roi_t3': 444, 'roi_p1': 0.07280999507931168, 'roi_p2': 0.08946698095898986, 'roi_p3': 0.1454876733325284, 'stoploss': -0.18181041180901014}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 17, 'fastd-value': 21, 'adx-value': 38, 'rsi-value': 33, 'mfi-enabled': True, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 87, 'sell-fastd-value': 82, 'sell-adx-value': 78, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.3077646493708299, 444: 0.16227697603830155, 1045: 0.07280999507931168, 2314: 0}, 'stoploss': {'stoploss': -0.18181041180901014}}, # noqa: E501 - 'results_metrics': {'trade_count': 14, 'avg_profit': -0.3539515, 'median_profit': -1.2222, 'total_profit': -0.002480140000000001, 'profit': -4.955321, 'duration': 3402.8571428571427}, # noqa: E501 - 'results_explanation': ' 14 trades. Avg profit -0.35%. Total profit -0.00248014 BTC ( -4.96Σ%). Avg duration 3402.9 min.', # noqa: E501 - 'total_profit': -0.002480140000000001, - 'current_epoch': 5, - 'is_initial_point': True, - 'is_best': True - }, { - 'loss': 0.545315889154162, - 'params_dict': {'mfi-value': 22, 'fastd-value': 43, 'adx-value': 46, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'bb_lower', 'sell-mfi-value': 87, 'sell-fastd-value': 65, 'sell-adx-value': 94, 'sell-rsi-value': 63, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 319, 'roi_t2': 556, 'roi_t3': 216, 'roi_p1': 0.06251955472249589, 'roi_p2': 0.11659519602202795, 'roi_p3': 0.0953744132197762, 'stoploss': -0.024551752215582423}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 22, 'fastd-value': 43, 'adx-value': 46, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'bb_lower'}, 'sell': {'sell-mfi-value': 87, 'sell-fastd-value': 65, 'sell-adx-value': 94, 'sell-rsi-value': 63, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.2744891639643, 216: 0.17911475074452382, 772: 0.06251955472249589, 1091: 0}, 'stoploss': {'stoploss': -0.024551752215582423}}, # noqa: E501 - 'results_metrics': {'trade_count': 39, 'avg_profit': -0.21400679487179478, 'median_profit': -1.2222, 'total_profit': -0.0041773, 'profit': -8.346264999999997, 'duration': 636.9230769230769}, # noqa: E501 - 'results_explanation': ' 39 trades. Avg profit -0.21%. Total profit -0.00417730 BTC ( -8.35Σ%). Avg duration 636.9 min.', # noqa: E501 - 'total_profit': -0.0041773, - 'current_epoch': 6, - 'is_initial_point': True, - 'is_best': False - }, { - 'loss': 4.713497421432944, - 'params_dict': {'mfi-value': 13, 'fastd-value': 41, 'adx-value': 21, 'rsi-value': 29, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower', 'sell-mfi-value': 99, 'sell-fastd-value': 60, 'sell-adx-value': 81, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 771, 'roi_t2': 620, 'roi_t3': 145, 'roi_p1': 0.0586919200378493, 'roi_p2': 0.04984118697312542, 'roi_p3': 0.37521058680247044, 'stoploss': -0.14613268022709905}, # noqa: E501 - 'params_details': { - 'buy': {'mfi-value': 13, 'fastd-value': 41, 'adx-value': 21, 'rsi-value': 29, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower'}, 'sell': {'sell-mfi-value': 99, 'sell-fastd-value': 60, 'sell-adx-value': 81, 'sell-rsi-value': 69, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': False, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.4837436938134452, 145: 0.10853310701097472, 765: 0.0586919200378493, 1536: 0}, # noqa: E501 - 'stoploss': {'stoploss': -0.14613268022709905}}, # noqa: E501 - 'results_metrics': {'trade_count': 318, 'avg_profit': -0.39833954716981146, 'median_profit': -1.2222, 'total_profit': -0.06339929, 'profit': -126.67197600000004, 'duration': 3140.377358490566}, # noqa: E501 - 'results_explanation': ' 318 trades. Avg profit -0.40%. Total profit -0.06339929 BTC (-126.67Σ%). Avg duration 3140.4 min.', # noqa: E501 - 'total_profit': -0.06339929, - 'current_epoch': 7, - 'is_initial_point': True, - 'is_best': False - }, { - 'loss': 20.0, # noqa: E501 - 'params_dict': {'mfi-value': 24, 'fastd-value': 43, 'adx-value': 33, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'sar_reversal', 'sell-mfi-value': 89, 'sell-fastd-value': 74, 'sell-adx-value': 70, 'sell-rsi-value': 70, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': False, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal', 'roi_t1': 1149, 'roi_t2': 375, 'roi_t3': 289, 'roi_p1': 0.05571820757172588, 'roi_p2': 0.0606240398618907, 'roi_p3': 0.1729012220156157, 'stoploss': -0.1588514289110401}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 24, 'fastd-value': 43, 'adx-value': 33, 'rsi-value': 20, 'mfi-enabled': False, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': True, 'trigger': 'sar_reversal'}, 'sell': {'sell-mfi-value': 89, 'sell-fastd-value': 74, 'sell-adx-value': 70, 'sell-rsi-value': 70, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': False, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal'}, 'roi': {0: 0.2892434694492323, 289: 0.11634224743361658, 664: 0.05571820757172588, 1813: 0}, 'stoploss': {'stoploss': -0.1588514289110401}}, # noqa: E501 - 'results_metrics': {'trade_count': 1, 'avg_profit': 0.0, 'median_profit': 0.0, 'total_profit': 0.0, 'profit': 0.0, 'duration': 5340.0}, # noqa: E501 - 'results_explanation': ' 1 trades. Avg profit 0.00%. Total profit 0.00000000 BTC ( 0.00Σ%). Avg duration 5340.0 min.', # noqa: E501 - 'total_profit': 0.0, - 'current_epoch': 8, - 'is_initial_point': True, - 'is_best': False - }, { - 'loss': 2.4731817780991223, - 'params_dict': {'mfi-value': 22, 'fastd-value': 20, 'adx-value': 29, 'rsi-value': 40, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'sar_reversal', 'sell-mfi-value': 97, 'sell-fastd-value': 65, 'sell-adx-value': 81, 'sell-rsi-value': 64, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1012, 'roi_t2': 584, 'roi_t3': 422, 'roi_p1': 0.036764323603472565, 'roi_p2': 0.10335480573205287, 'roi_p3': 0.10322347377503042, 'stoploss': -0.2780610808108503}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 22, 'fastd-value': 20, 'adx-value': 29, 'rsi-value': 40, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'sar_reversal'}, 'sell': {'sell-mfi-value': 97, 'sell-fastd-value': 65, 'sell-adx-value': 81, 'sell-rsi-value': 64, 'sell-mfi-enabled': True, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.2433426031105559, 422: 0.14011912933552545, 1006: 0.036764323603472565, 2018: 0}, 'stoploss': {'stoploss': -0.2780610808108503}}, # noqa: E501 - 'results_metrics': {'trade_count': 229, 'avg_profit': -0.38433433624454144, 'median_profit': -1.2222, 'total_profit': -0.044050070000000004, 'profit': -88.01256299999999, 'duration': 6505.676855895196}, # noqa: E501 - 'results_explanation': ' 229 trades. Avg profit -0.38%. Total profit -0.04405007 BTC ( -88.01Σ%). Avg duration 6505.7 min.', # noqa: E501 - 'total_profit': -0.044050070000000004, # noqa: E501 - 'current_epoch': 9, - 'is_initial_point': True, - 'is_best': False - }, { - 'loss': -0.2604606005845212, # noqa: E501 - 'params_dict': {'mfi-value': 23, 'fastd-value': 24, 'adx-value': 22, 'rsi-value': 24, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal', 'sell-mfi-value': 97, 'sell-fastd-value': 70, 'sell-adx-value': 64, 'sell-rsi-value': 80, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal', 'roi_t1': 792, 'roi_t2': 464, 'roi_t3': 215, 'roi_p1': 0.04594053535385903, 'roi_p2': 0.09623192684243963, 'roi_p3': 0.04428219070850663, 'stoploss': -0.16992287161634415}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 23, 'fastd-value': 24, 'adx-value': 22, 'rsi-value': 24, 'mfi-enabled': False, 'fastd-enabled': False, 'adx-enabled': False, 'rsi-enabled': True, 'trigger': 'macd_cross_signal'}, 'sell': {'sell-mfi-value': 97, 'sell-fastd-value': 70, 'sell-adx-value': 64, 'sell-rsi-value': 80, 'sell-mfi-enabled': False, 'sell-fastd-enabled': True, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-sar_reversal'}, 'roi': {0: 0.18645465290480528, 215: 0.14217246219629864, 679: 0.04594053535385903, 1471: 0}, 'stoploss': {'stoploss': -0.16992287161634415}}, # noqa: E501 - 'results_metrics': {'trade_count': 4, 'avg_profit': 0.1080385, 'median_profit': -1.2222, 'total_profit': 0.00021629, 'profit': 0.432154, 'duration': 2850.0}, # noqa: E501 - 'results_explanation': ' 4 trades. Avg profit 0.11%. Total profit 0.00021629 BTC ( 0.43Σ%). Avg duration 2850.0 min.', # noqa: E501 - 'total_profit': 0.00021629, - 'current_epoch': 10, - 'is_initial_point': True, - 'is_best': True - }, { - 'loss': 4.876465945994304, # noqa: E501 - 'params_dict': {'mfi-value': 20, 'fastd-value': 32, 'adx-value': 49, 'rsi-value': 23, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower', 'sell-mfi-value': 75, 'sell-fastd-value': 56, 'sell-adx-value': 61, 'sell-rsi-value': 62, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal', 'roi_t1': 579, 'roi_t2': 614, 'roi_t3': 273, 'roi_p1': 0.05307643172744114, 'roi_p2': 0.1352282078262871, 'roi_p3': 0.1913307406325751, 'stoploss': -0.25728526022513887}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 20, 'fastd-value': 32, 'adx-value': 49, 'rsi-value': 23, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': False, 'rsi-enabled': False, 'trigger': 'bb_lower'}, 'sell': {'sell-mfi-value': 75, 'sell-fastd-value': 56, 'sell-adx-value': 61, 'sell-rsi-value': 62, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-macd_cross_signal'}, 'roi': {0: 0.3796353801863034, 273: 0.18830463955372825, 887: 0.05307643172744114, 1466: 0}, 'stoploss': {'stoploss': -0.25728526022513887}}, # noqa: E501 - 'results_metrics': {'trade_count': 117, 'avg_profit': -1.2698609145299145, 'median_profit': -1.2222, 'total_profit': -0.07436117, 'profit': -148.573727, 'duration': 4282.5641025641025}, # noqa: E501 - 'results_explanation': ' 117 trades. Avg profit -1.27%. Total profit -0.07436117 BTC (-148.57Σ%). Avg duration 4282.6 min.', # noqa: E501 - 'total_profit': -0.07436117, - 'current_epoch': 11, - 'is_initial_point': True, - 'is_best': False - }, { - 'loss': 100000, - 'params_dict': {'mfi-value': 10, 'fastd-value': 36, 'adx-value': 31, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'sar_reversal', 'sell-mfi-value': 80, 'sell-fastd-value': 71, 'sell-adx-value': 60, 'sell-rsi-value': 85, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper', 'roi_t1': 1156, 'roi_t2': 581, 'roi_t3': 408, 'roi_p1': 0.06860454019988212, 'roi_p2': 0.12473718444931989, 'roi_p3': 0.2896360635226823, 'stoploss': -0.30889015124682806}, # noqa: E501 - 'params_details': {'buy': {'mfi-value': 10, 'fastd-value': 36, 'adx-value': 31, 'rsi-value': 22, 'mfi-enabled': True, 'fastd-enabled': True, 'adx-enabled': True, 'rsi-enabled': False, 'trigger': 'sar_reversal'}, 'sell': {'sell-mfi-value': 80, 'sell-fastd-value': 71, 'sell-adx-value': 60, 'sell-rsi-value': 85, 'sell-mfi-enabled': False, 'sell-fastd-enabled': False, 'sell-adx-enabled': True, 'sell-rsi-enabled': True, 'sell-trigger': 'sell-bb_upper'}, 'roi': {0: 0.4829777881718843, 408: 0.19334172464920202, 989: 0.06860454019988212, 2145: 0}, 'stoploss': {'stoploss': -0.30889015124682806}}, # noqa: E501 - 'results_metrics': {'trade_count': 0, 'avg_profit': None, 'median_profit': None, 'total_profit': 0, 'profit': 0.0, 'duration': None}, # noqa: E501 - 'results_explanation': ' 0 trades. Avg profit nan%. Total profit 0.00000000 BTC ( 0.00Σ%). Avg duration nan min.', # noqa: E501 - 'total_profit': 0, - 'current_epoch': 12, - 'is_initial_point': True, - 'is_best': False - } - ] - - @pytest.fixture def saved_hyperopt_results(): hyperopt_res = [ diff --git a/tests/data/test_converter.py b/tests/data/test_converter.py index 802fd4b12..6c95a9f18 100644 --- a/tests/data/test_converter.py +++ b/tests/data/test_converter.py @@ -119,7 +119,7 @@ def test_ohlcv_fill_up_missing_data2(caplog): # 3rd candle has been filled row = data2.loc[2, :] assert row['volume'] == 0 - # close shoult match close of previous candle + # close should match close of previous candle assert row['close'] == data.loc[1, 'close'] assert row['open'] == row['close'] assert row['high'] == row['close'] diff --git a/tests/data/test_dataprovider.py b/tests/data/test_dataprovider.py index e43309743..0f42068c1 100644 --- a/tests/data/test_dataprovider.py +++ b/tests/data/test_dataprovider.py @@ -66,7 +66,7 @@ def test_historic_ohlcv_dataformat(mocker, default_conf, ohlcv_history): hdf5loadmock.assert_not_called() jsonloadmock.assert_called_once() - # Swiching to dataformat hdf5 + # Switching to dataformat hdf5 hdf5loadmock.reset_mock() jsonloadmock.reset_mock() default_conf["dataformat_ohlcv"] = "hdf5" diff --git a/tests/data/test_history.py b/tests/data/test_history.py index d203d0792..e9d2c3638 100644 --- a/tests/data/test_history.py +++ b/tests/data/test_history.py @@ -133,8 +133,8 @@ def test_load_data_with_new_pair_1min(ohlcv_history_list, mocker, caplog, load_pair_history(datadir=tmpdir1, timeframe='1m', pair='MEME/BTC') assert file.is_file() assert log_has_re( - 'Download history data for pair: "MEME/BTC", timeframe: 1m ' - 'and store in .*', caplog + r'Download history data for pair: "MEME/BTC" \(0/1\), timeframe: 1m ' + r'and store in .*', caplog ) @@ -200,15 +200,15 @@ def test_load_cached_data_for_updating(mocker, testdatadir) -> None: assert start_ts == test_data[0][0] - 1000 # timeframe starts in the center of the cached data - # should return the chached data w/o the last item + # should return the cached data w/o the last item timerange = TimeRange('date', None, test_data[0][0] / 1000 + 1, 0) data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m', timerange, data_handler) assert_frame_equal(data, test_data_df.iloc[:-1]) assert test_data[-2][0] <= start_ts < test_data[-1][0] - # timeframe starts after the chached data - # should return the chached data w/o the last item + # timeframe starts after the cached data + # should return the cached data w/o the last item timerange = TimeRange('date', None, test_data[-1][0] / 1000 + 100, 0) data, start_ts = _load_cached_data_for_updating('UNITTEST/BTC', '1m', timerange, data_handler) assert_frame_equal(data, test_data_df.iloc[:-1]) @@ -278,8 +278,10 @@ def test_download_pair_history2(mocker, default_conf, testdatadir) -> None: return_value=None) mocker.patch('freqtrade.exchange.Exchange.get_historic_ohlcv', return_value=tick) exchange = get_patched_exchange(mocker, default_conf) - _download_pair_history(testdatadir, exchange, pair="UNITTEST/BTC", timeframe='1m') - _download_pair_history(testdatadir, exchange, pair="UNITTEST/BTC", timeframe='3m') + _download_pair_history(datadir=testdatadir, exchange=exchange, pair="UNITTEST/BTC", + timeframe='1m') + _download_pair_history(datadir=testdatadir, exchange=exchange, pair="UNITTEST/BTC", + timeframe='3m') assert json_dump_mock.call_count == 2 @@ -381,7 +383,7 @@ def test_get_timerange(default_conf, mocker, testdatadir) -> None: default_conf.update({'strategy': 'DefaultStrategy'}) strategy = StrategyResolver.load_strategy(default_conf) - data = strategy.ohlcvdata_to_dataframe( + data = strategy.advise_all_indicators( load_data( datadir=testdatadir, timeframe='1m', @@ -399,7 +401,7 @@ def test_validate_backtest_data_warn(default_conf, mocker, caplog, testdatadir) default_conf.update({'strategy': 'DefaultStrategy'}) strategy = StrategyResolver.load_strategy(default_conf) - data = strategy.ohlcvdata_to_dataframe( + data = strategy.advise_all_indicators( load_data( datadir=testdatadir, timeframe='1m', @@ -424,7 +426,7 @@ def test_validate_backtest_data(default_conf, mocker, caplog, testdatadir) -> No strategy = StrategyResolver.load_strategy(default_conf) timerange = TimeRange('index', 'index', 200, 250) - data = strategy.ohlcvdata_to_dataframe( + data = strategy.advise_all_indicators( load_data( datadir=testdatadir, timeframe='5m', diff --git a/tests/exchange/test_ccxt_compat.py b/tests/exchange/test_ccxt_compat.py index dce10da84..3a32d108b 100644 --- a/tests/exchange/test_ccxt_compat.py +++ b/tests/exchange/test_ccxt_compat.py @@ -42,6 +42,11 @@ EXCHANGES = { 'hasQuoteVolume': True, 'timeframe': '5m', }, + 'gateio': { + 'pair': 'BTC/USDT', + 'hasQuoteVolume': True, + 'timeframe': '5m', + }, } @@ -142,8 +147,8 @@ class TestCCXTExchange(): def test_ccxt_get_fee(self, exchange): exchange, exchangename = exchange pair = EXCHANGES[exchangename]['pair'] - - assert 0 < exchange.get_fee(pair, 'limit', 'buy') < 1 - assert 0 < exchange.get_fee(pair, 'limit', 'sell') < 1 - assert 0 < exchange.get_fee(pair, 'market', 'buy') < 1 - assert 0 < exchange.get_fee(pair, 'market', 'sell') < 1 + threshold = 0.01 + assert 0 < exchange.get_fee(pair, 'limit', 'buy') < threshold + assert 0 < exchange.get_fee(pair, 'limit', 'sell') < threshold + assert 0 < exchange.get_fee(pair, 'market', 'buy') < threshold + assert 0 < exchange.get_fee(pair, 'market', 'sell') < threshold diff --git a/tests/exchange/test_exchange.py b/tests/exchange/test_exchange.py index a3ebbe8bd..27eeed39b 100644 --- a/tests/exchange/test_exchange.py +++ b/tests/exchange/test_exchange.py @@ -984,16 +984,21 @@ def test_create_dry_run_order_limit_fill(default_conf, mocker, side, startprice, assert order['fee'] -@pytest.mark.parametrize("side,amount,endprice", [ - ("buy", 1, 25.566), - ("buy", 100, 25.5672), # Requires interpolation - ("buy", 1000, 25.575), # More than orderbook return - ("sell", 1, 25.563), - ("sell", 100, 25.5625), # Requires interpolation - ("sell", 1000, 25.5555), # More than orderbook return +@pytest.mark.parametrize("side,rate,amount,endprice", [ + # spread is 25.263-25.266 + ("buy", 25.564, 1, 25.566), + ("buy", 25.564, 100, 25.5672), # Requires interpolation + ("buy", 25.590, 100, 25.5672), # Price above spread ... average is lower + ("buy", 25.564, 1000, 25.575), # More than orderbook return + ("buy", 24.000, 100000, 25.200), # Run into max_slippage of 5% + ("sell", 25.564, 1, 25.563), + ("sell", 25.564, 100, 25.5625), # Requires interpolation + ("sell", 25.510, 100, 25.5625), # price below spread - average is higher + ("sell", 25.564, 1000, 25.5555), # More than orderbook return + ("sell", 27, 10000, 25.65), # max-slippage 5% ]) @pytest.mark.parametrize("exchange_name", EXCHANGES) -def test_create_dry_run_order_market_fill(default_conf, mocker, side, amount, endprice, +def test_create_dry_run_order_market_fill(default_conf, mocker, side, rate, amount, endprice, exchange_name, order_book_l2_usd): default_conf['dry_run'] = True exchange = get_patched_exchange(mocker, default_conf, id=exchange_name) @@ -1003,7 +1008,7 @@ def test_create_dry_run_order_market_fill(default_conf, mocker, side, amount, en ) order = exchange.create_dry_run_order( - pair='LTC/USDT', ordertype='market', side=side, amount=amount, rate=25.5) + pair='LTC/USDT', ordertype='market', side=side, amount=amount, rate=rate) assert 'id' in order assert f'dry_run_{side}_' in order["id"] assert order["side"] == side @@ -1559,13 +1564,16 @@ def test_refresh_latest_ohlcv(mocker, default_conf, caplog) -> None: pairs = [('IOTA/ETH', '5m'), ('XRP/ETH', '5m')] # empty dicts assert not exchange._klines - exchange.refresh_latest_ohlcv(pairs, cache=False) + res = exchange.refresh_latest_ohlcv(pairs, cache=False) # No caching assert not exchange._klines + + assert len(res) == len(pairs) assert exchange._api_async.fetch_ohlcv.call_count == 2 exchange._api_async.fetch_ohlcv.reset_mock() - exchange.refresh_latest_ohlcv(pairs) + res = exchange.refresh_latest_ohlcv(pairs) + assert len(res) == len(pairs) assert log_has(f'Refreshing candle (OHLCV) data for {len(pairs)} pairs', caplog) assert exchange._klines @@ -1582,12 +1590,16 @@ def test_refresh_latest_ohlcv(mocker, default_conf, caplog) -> None: assert exchange.klines(pair, copy=False) is exchange.klines(pair, copy=False) # test caching - exchange.refresh_latest_ohlcv([('IOTA/ETH', '5m'), ('XRP/ETH', '5m')]) + res = exchange.refresh_latest_ohlcv([('IOTA/ETH', '5m'), ('XRP/ETH', '5m')]) + assert len(res) == len(pairs) assert exchange._api_async.fetch_ohlcv.call_count == 2 assert log_has(f"Using cached candle (OHLCV) data for pair {pairs[0][0]}, " f"timeframe {pairs[0][1]} ...", caplog) + res = exchange.refresh_latest_ohlcv([('IOTA/ETH', '5m'), ('XRP/ETH', '5m'), ('XRP/ETH', '1d')], + cache=False) + assert len(res) == 3 @pytest.mark.asyncio @@ -2177,7 +2189,7 @@ def test_get_historic_trades_notsupported(default_conf, mocker, caplog, exchange pair = 'ETH/BTC' with pytest.raises(OperationalException, - match="This exchange does not suport downloading Trades."): + match="This exchange does not support downloading Trades."): exchange.get_historic_trades(pair, since=trades_history[0][0], until=trades_history[-1][0]) diff --git a/tests/optimize/__init__.py b/tests/optimize/__init__.py index dffe3209f..c40d11456 100644 --- a/tests/optimize/__init__.py +++ b/tests/optimize/__init__.py @@ -56,4 +56,6 @@ def _build_backtest_dataframe(data): # Ensure floats are in place for column in ['open', 'high', 'low', 'close', 'volume']: frame[column] = frame[column].astype('float64') + if 'buy_tag' not in columns: + frame['buy_tag'] = None return frame diff --git a/tests/optimize/test_backtesting.py b/tests/optimize/test_backtesting.py index deaaf9f2f..998b2d837 100644 --- a/tests/optimize/test_backtesting.py +++ b/tests/optimize/test_backtesting.py @@ -1,6 +1,7 @@ # pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument import random +from datetime import timedelta from pathlib import Path from unittest.mock import MagicMock, PropertyMock @@ -85,7 +86,7 @@ def simple_backtest(config, contour, mocker, testdatadir) -> None: backtesting._set_strategy(backtesting.strategylist[0]) data = load_data_test(contour, testdatadir) - processed = backtesting.strategy.ohlcvdata_to_dataframe(data) + processed = backtesting.strategy.advise_all_indicators(data) min_date, max_date = get_timerange(processed) assert isinstance(processed, dict) results = backtesting.backtest( @@ -107,7 +108,7 @@ def _make_backtest_conf(mocker, datadir, conf=None, pair='UNITTEST/BTC'): patch_exchange(mocker) backtesting = Backtesting(conf) backtesting._set_strategy(backtesting.strategylist[0]) - processed = backtesting.strategy.ohlcvdata_to_dataframe(data) + processed = backtesting.strategy.advise_all_indicators(data) min_date, max_date = get_timerange(processed) return { 'processed': processed, @@ -289,7 +290,7 @@ def test_backtesting_init(mocker, default_conf, order_types) -> None: backtesting._set_strategy(backtesting.strategylist[0]) assert backtesting.config == default_conf assert backtesting.timeframe == '5m' - assert callable(backtesting.strategy.ohlcvdata_to_dataframe) + assert callable(backtesting.strategy.advise_all_indicators) assert callable(backtesting.strategy.advise_buy) assert callable(backtesting.strategy.advise_sell) assert isinstance(backtesting.strategy.dp, DataProvider) @@ -335,14 +336,14 @@ def test_data_to_dataframe_bt(default_conf, mocker, testdatadir) -> None: fill_up_missing=True) backtesting = Backtesting(default_conf) backtesting._set_strategy(backtesting.strategylist[0]) - processed = backtesting.strategy.ohlcvdata_to_dataframe(data) + processed = backtesting.strategy.advise_all_indicators(data) assert len(processed['UNITTEST/BTC']) == 102 # Load strategy to compare the result between Backtesting function and strategy are the same default_conf.update({'strategy': 'DefaultStrategy'}) strategy = StrategyResolver.load_strategy(default_conf) - processed2 = strategy.ohlcvdata_to_dataframe(data) + processed2 = strategy.advise_all_indicators(data) assert processed['UNITTEST/BTC'].equals(processed2['UNITTEST/BTC']) @@ -535,6 +536,8 @@ def test_backtest__enter_trade(default_conf, fee, mocker) -> None: trade = backtesting._enter_trade(pair, row=row) assert trade is None + backtesting.cleanup() + def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None: default_conf['use_sell_signal'] = False @@ -547,7 +550,7 @@ def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None: timerange = TimeRange('date', None, 1517227800, 0) data = history.load_data(datadir=testdatadir, timeframe='5m', pairs=['UNITTEST/BTC'], timerange=timerange) - processed = backtesting.strategy.ohlcvdata_to_dataframe(data) + processed = backtesting.strategy.advise_all_indicators(data) min_date, max_date = get_timerange(processed) result = backtesting.backtest( processed=processed, @@ -581,7 +584,7 @@ def test_backtest_one(default_conf, fee, mocker, testdatadir) -> None: 'initial_stop_loss_ratio': [-0.1, -0.1], 'stop_loss_abs': [0.0940005, 0.09272236], 'stop_loss_ratio': [-0.1, -0.1], - 'min_rate': [0.1038, 0.10302485], + 'min_rate': [0.10370188, 0.10300000000000001], 'max_rate': [0.10501, 0.1038888], 'is_open': [False, False], 'buy_tag': [None, None], @@ -612,7 +615,7 @@ def test_backtest_1min_timeframe(default_conf, fee, mocker, testdatadir) -> None timerange = TimeRange.parse_timerange('1510688220-1510700340') data = history.load_data(datadir=testdatadir, timeframe='1m', pairs=['UNITTEST/BTC'], timerange=timerange) - processed = backtesting.strategy.ohlcvdata_to_dataframe(data) + processed = backtesting.strategy.advise_all_indicators(data) min_date, max_date = get_timerange(processed) results = backtesting.backtest( processed=processed, @@ -631,7 +634,7 @@ def test_processed(default_conf, mocker, testdatadir) -> None: backtesting._set_strategy(backtesting.strategylist[0]) dict_of_tickerrows = load_data_test('raise', testdatadir) - dataframes = backtesting.strategy.ohlcvdata_to_dataframe(dict_of_tickerrows) + dataframes = backtesting.strategy.advise_all_indicators(dict_of_tickerrows) dataframe = dataframes['UNITTEST/BTC'] cols = dataframe.columns # assert the dataframe got some of the indicator columns @@ -739,8 +742,13 @@ def test_backtest_alternate_buy_sell(default_conf, fee, mocker, testdatadir): # 100 buys signals results = result['results'] assert len(results) == 100 - # Cached data should be 200 (no change since required_startup is 0) - assert len(backtesting.dataprovider.get_analyzed_dataframe('UNITTEST/BTC', '1m')[0]) == 200 + # Cached data should be 200 + analyzed_df = backtesting.dataprovider.get_analyzed_dataframe('UNITTEST/BTC', '1m')[0] + assert len(analyzed_df) == 200 + # Expect last candle to be 1 below end date (as the last candle is assumed as "incomplete" + # during backtesting) + expected_last_candle_date = backtest_conf['end_date'] - timedelta(minutes=1) + assert analyzed_df.iloc[-1]['date'].to_pydatetime() == expected_last_candle_date # One trade was force-closed at the end assert len(results.loc[results['is_open']]) == 0 @@ -772,7 +780,8 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir) data = trim_dictlist(data, -500) # Remove data for one pair from the beginning of the data - data[pair] = data[pair][tres:].reset_index() + if tres > 0: + data[pair] = data[pair][tres:].reset_index() default_conf['timeframe'] = '5m' backtesting = Backtesting(default_conf) @@ -780,7 +789,7 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir) backtesting.strategy.advise_buy = _trend_alternate_hold # Override backtesting.strategy.advise_sell = _trend_alternate_hold # Override - processed = backtesting.strategy.ohlcvdata_to_dataframe(data) + processed = backtesting.strategy.advise_all_indicators(data) min_date, max_date = get_timerange(processed) backtest_conf = { 'processed': processed, @@ -798,8 +807,11 @@ def test_backtest_multi_pair(default_conf, fee, mocker, tres, pair, testdatadir) assert len(evaluate_result_multi(results['results'], '5m', 3)) == 0 # Cached data correctly removed amounts - removed_candles = len(data[pair]) - 1 - backtesting.strategy.startup_candle_count + offset = 1 if tres == 0 else 0 + removed_candles = len(data[pair]) - offset - backtesting.strategy.startup_candle_count assert len(backtesting.dataprovider.get_analyzed_dataframe(pair, '5m')[0]) == removed_candles + assert len(backtesting.dataprovider.get_analyzed_dataframe( + 'NXT/BTC', '5m')[0]) == len(data['NXT/BTC']) - 1 - backtesting.strategy.startup_candle_count backtest_conf = { 'processed': processed, diff --git a/tests/optimize/test_hyperopt.py b/tests/optimize/test_hyperopt.py index dab10fc89..feb416c4a 100644 --- a/tests/optimize/test_hyperopt.py +++ b/tests/optimize/test_hyperopt.py @@ -354,7 +354,7 @@ def test_start_calls_optimizer(mocker, hyperopt_conf, capsys) -> None: del hyperopt_conf['timeframe'] hyperopt = Hyperopt(hyperopt_conf) - hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock() + hyperopt.backtesting.strategy.advise_all_indicators = MagicMock() hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={}) hyperopt.start() @@ -429,7 +429,7 @@ def test_hyperopt_format_results(hyperopt): def test_populate_indicators(hyperopt, testdatadir) -> None: data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True) - dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data) + dataframes = hyperopt.backtesting.strategy.advise_all_indicators(data) dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'}) @@ -441,7 +441,7 @@ def test_populate_indicators(hyperopt, testdatadir) -> None: def test_buy_strategy_generator(hyperopt, testdatadir) -> None: data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True) - dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data) + dataframes = hyperopt.backtesting.strategy.advise_all_indicators(data) dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'}) @@ -470,7 +470,7 @@ def test_buy_strategy_generator(hyperopt, testdatadir) -> None: def test_sell_strategy_generator(hyperopt, testdatadir) -> None: data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], fill_up_missing=True) - dataframes = hyperopt.backtesting.strategy.ohlcvdata_to_dataframe(data) + dataframes = hyperopt.backtesting.strategy.advise_all_indicators(data) dataframe = hyperopt.custom_hyperopt.populate_indicators(dataframes['UNITTEST/BTC'], {'pair': 'UNITTEST/BTC'}) @@ -671,7 +671,7 @@ def test_print_json_spaces_all(mocker, hyperopt_conf, capsys) -> None: }) hyperopt = Hyperopt(hyperopt_conf) - hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock() + hyperopt.backtesting.strategy.advise_all_indicators = MagicMock() hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={}) hyperopt.start() @@ -724,7 +724,7 @@ def test_print_json_spaces_default(mocker, hyperopt_conf, capsys) -> None: hyperopt_conf.update({'print_json': True}) hyperopt = Hyperopt(hyperopt_conf) - hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock() + hyperopt.backtesting.strategy.advise_all_indicators = MagicMock() hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={}) hyperopt.start() @@ -772,7 +772,7 @@ def test_print_json_spaces_roi_stoploss(mocker, hyperopt_conf, capsys) -> None: }) hyperopt = Hyperopt(hyperopt_conf) - hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock() + hyperopt.backtesting.strategy.advise_all_indicators = MagicMock() hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={}) hyperopt.start() @@ -816,7 +816,7 @@ def test_simplified_interface_roi_stoploss(mocker, hyperopt_conf, capsys) -> Non hyperopt_conf.update({'spaces': 'roi stoploss'}) hyperopt = Hyperopt(hyperopt_conf) - hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock() + hyperopt.backtesting.strategy.advise_all_indicators = MagicMock() hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={}) del hyperopt.custom_hyperopt.__class__.buy_strategy_generator @@ -855,7 +855,7 @@ def test_simplified_interface_all_failed(mocker, hyperopt_conf) -> None: hyperopt_conf.update({'spaces': 'all', }) hyperopt = Hyperopt(hyperopt_conf) - hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock() + hyperopt.backtesting.strategy.advise_all_indicators = MagicMock() hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={}) del hyperopt.custom_hyperopt.__class__.buy_strategy_generator @@ -897,7 +897,7 @@ def test_simplified_interface_buy(mocker, hyperopt_conf, capsys) -> None: hyperopt_conf.update({'spaces': 'buy'}) hyperopt = Hyperopt(hyperopt_conf) - hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock() + hyperopt.backtesting.strategy.advise_all_indicators = MagicMock() hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={}) # TODO: sell_strategy_generator() is actually not called because @@ -951,7 +951,7 @@ def test_simplified_interface_sell(mocker, hyperopt_conf, capsys) -> None: hyperopt_conf.update({'spaces': 'sell', }) hyperopt = Hyperopt(hyperopt_conf) - hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock() + hyperopt.backtesting.strategy.advise_all_indicators = MagicMock() hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={}) # TODO: buy_strategy_generator() is actually not called because @@ -996,7 +996,7 @@ def test_simplified_interface_failed(mocker, hyperopt_conf, method, space) -> No hyperopt_conf.update({'spaces': space}) hyperopt = Hyperopt(hyperopt_conf) - hyperopt.backtesting.strategy.ohlcvdata_to_dataframe = MagicMock() + hyperopt.backtesting.strategy.advise_all_indicators = MagicMock() hyperopt.custom_hyperopt.generate_roi_table = MagicMock(return_value={}) delattr(hyperopt.custom_hyperopt.__class__, method) diff --git a/tests/optimize/test_hyperopt_tools.py b/tests/optimize/test_hyperopt_tools.py index 44b4a7a03..cbcb13384 100644 --- a/tests/optimize/test_hyperopt_tools.py +++ b/tests/optimize/test_hyperopt_tools.py @@ -10,7 +10,7 @@ import rapidjson from freqtrade.constants import FTHYPT_FILEVERSION from freqtrade.exceptions import OperationalException from freqtrade.optimize.hyperopt_tools import HyperoptTools, hyperopt_serializer -from tests.conftest import log_has, log_has_re +from tests.conftest import log_has # Functions for recurrent object patching @@ -20,9 +20,14 @@ def create_results() -> List[Dict]: def test_save_results_saves_epochs(hyperopt, tmpdir, caplog) -> None: + + hyperopt.results_file = Path(tmpdir / 'ut_results.fthypt') + + hyperopt_epochs = HyperoptTools.load_filtered_results(hyperopt.results_file, {}) + assert hyperopt_epochs == ([], 0) + # Test writing to temp dir and reading again epochs = create_results() - hyperopt.results_file = Path(tmpdir / 'ut_results.fthypt') caplog.set_level(logging.DEBUG) @@ -33,36 +38,28 @@ def test_save_results_saves_epochs(hyperopt, tmpdir, caplog) -> None: hyperopt._save_result(epochs[0]) assert log_has(f"2 epochs saved to '{hyperopt.results_file}'.", caplog) - hyperopt_epochs = HyperoptTools.load_previous_results(hyperopt.results_file) + hyperopt_epochs = HyperoptTools.load_filtered_results(hyperopt.results_file, {}) assert len(hyperopt_epochs) == 2 + assert hyperopt_epochs[1] == 2 + assert len(hyperopt_epochs[0]) == 2 - -def test_load_previous_results(testdatadir, caplog) -> None: - - results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle' - - hyperopt_epochs = HyperoptTools.load_previous_results(results_file) - - assert len(hyperopt_epochs) == 5 - assert log_has_re(r"Reading pickled epochs from .*", caplog) - - caplog.clear() - - # Modern version - results_file = testdatadir / 'strategy_SampleStrategy.fthypt' - - hyperopt_epochs = HyperoptTools.load_previous_results(results_file) - - assert len(hyperopt_epochs) == 5 - assert log_has_re(r"Reading epochs from .*", caplog) + result_gen = HyperoptTools._read_results(hyperopt.results_file, 1) + epoch = next(result_gen) + assert len(epoch) == 1 + assert epoch[0] == epochs[0] + epoch = next(result_gen) + assert len(epoch) == 1 + epoch = next(result_gen) + assert len(epoch) == 0 + with pytest.raises(StopIteration): + next(result_gen) def test_load_previous_results2(mocker, testdatadir, caplog) -> None: - mocker.patch('freqtrade.optimize.hyperopt_tools.HyperoptTools._read_results_pickle', - return_value=[{'asdf': '222'}]) results_file = testdatadir / 'hyperopt_results_SampleStrategy.pickle' - with pytest.raises(OperationalException, match=r"The file .* incompatible.*"): - HyperoptTools.load_previous_results(results_file) + with pytest.raises(OperationalException, + match=r"Legacy hyperopt results are no longer supported.*"): + HyperoptTools.load_filtered_results(results_file, {}) @pytest.mark.parametrize("spaces, expected_results", [ diff --git a/tests/rpc/test_fiat_convert.py b/tests/rpc/test_fiat_convert.py index 9fb1122f5..2fe5d4a56 100644 --- a/tests/rpc/test_fiat_convert.py +++ b/tests/rpc/test_fiat_convert.py @@ -22,7 +22,7 @@ def test_fiat_convert_is_supported(mocker): def test_fiat_convert_find_price(mocker): fiat_convert = CryptoToFiatConverter() - fiat_convert._cryptomap = {} + fiat_convert._coinlistings = {} fiat_convert._backoff = 0 mocker.patch('freqtrade.rpc.fiat_convert.CryptoToFiatConverter._load_cryptomap', return_value=None) @@ -44,7 +44,7 @@ def test_fiat_convert_find_price(mocker): def test_fiat_convert_unsupported_crypto(mocker, caplog): - mocker.patch('freqtrade.rpc.fiat_convert.CryptoToFiatConverter._cryptomap', return_value=[]) + mocker.patch('freqtrade.rpc.fiat_convert.CryptoToFiatConverter._coinlistings', return_value=[]) fiat_convert = CryptoToFiatConverter() assert fiat_convert._find_price(crypto_symbol='CRYPTO_123', fiat_symbol='EUR') == 0.0 assert log_has('unsupported crypto-symbol CRYPTO_123 - returning 0.0', caplog) @@ -88,9 +88,9 @@ def test_fiat_convert_two_FIAT(mocker): def test_loadcryptomap(mocker): fiat_convert = CryptoToFiatConverter() - assert len(fiat_convert._cryptomap) == 2 + assert len(fiat_convert._coinlistings) == 2 - assert fiat_convert._cryptomap["btc"] == "bitcoin" + assert fiat_convert._get_gekko_id("btc") == "bitcoin" def test_fiat_init_network_exception(mocker): @@ -102,11 +102,10 @@ def test_fiat_init_network_exception(mocker): ) # with pytest.raises(RequestEsxception): fiat_convert = CryptoToFiatConverter() - fiat_convert._cryptomap = {} + fiat_convert._coinlistings = {} fiat_convert._load_cryptomap() - length_cryptomap = len(fiat_convert._cryptomap) - assert length_cryptomap == 0 + assert len(fiat_convert._coinlistings) == 0 def test_fiat_convert_without_network(mocker): @@ -132,11 +131,10 @@ def test_fiat_too_many_requests_response(mocker, caplog): ) # with pytest.raises(RequestEsxception): fiat_convert = CryptoToFiatConverter() - fiat_convert._cryptomap = {} + fiat_convert._coinlistings = {} fiat_convert._load_cryptomap() - length_cryptomap = len(fiat_convert._cryptomap) - assert length_cryptomap == 0 + assert len(fiat_convert._coinlistings) == 0 assert fiat_convert._backoff > datetime.datetime.now().timestamp() assert log_has( 'Too many requests for Coingecko API, backing off and trying again later.', @@ -144,20 +142,33 @@ def test_fiat_too_many_requests_response(mocker, caplog): ) +def test_fiat_multiple_coins(mocker, caplog): + fiat_convert = CryptoToFiatConverter() + fiat_convert._coinlistings = [ + {'id': 'helium', 'symbol': 'hnt', 'name': 'Helium'}, + {'id': 'hymnode', 'symbol': 'hnt', 'name': 'Hymnode'}, + {'id': 'bitcoin', 'symbol': 'btc', 'name': 'Bitcoin'}, + ] + + assert fiat_convert._get_gekko_id('btc') == 'bitcoin' + assert fiat_convert._get_gekko_id('hnt') is None + + assert log_has('Found multiple mappings in goingekko for hnt.', caplog) + + def test_fiat_invalid_response(mocker, caplog): # Because CryptoToFiatConverter is a Singleton we reset the listings - listmock = MagicMock(return_value="{'novalidjson':DEADBEEFf}") + listmock = MagicMock(return_value=None) mocker.patch.multiple( 'freqtrade.rpc.fiat_convert.CoinGeckoAPI', get_coins_list=listmock, ) # with pytest.raises(RequestEsxception): fiat_convert = CryptoToFiatConverter() - fiat_convert._cryptomap = {} + fiat_convert._coinlistings = [] fiat_convert._load_cryptomap() - length_cryptomap = len(fiat_convert._cryptomap) - assert length_cryptomap == 0 + assert len(fiat_convert._coinlistings) == 0 assert log_has_re('Could not load FIAT Cryptocurrency map for the following problem: .*', caplog) diff --git a/tests/rpc/test_rpc_apiserver.py b/tests/rpc/test_rpc_apiserver.py index 1517b6fcc..3d02e8188 100644 --- a/tests/rpc/test_rpc_apiserver.py +++ b/tests/rpc/test_rpc_apiserver.py @@ -109,6 +109,11 @@ def test_api_ui_fallback(botclient): rc = client_get(client, "/something") assert rc.status_code == 200 + # Test directory traversal + rc = client_get(client, '%2F%2F%2Fetc/passwd') + assert rc.status_code == 200 + assert '`freqtrade install-ui`' in rc.text + def test_api_ui_version(botclient, mocker): ftbot, client = botclient diff --git a/tests/strategy/test_interface.py b/tests/strategy/test_interface.py index 5aa18c7db..af603e611 100644 --- a/tests/strategy/test_interface.py +++ b/tests/strategy/test_interface.py @@ -232,25 +232,25 @@ def test_assert_df(ohlcv_history, caplog): _STRATEGY.disable_dataframe_checks = False -def test_ohlcvdata_to_dataframe(default_conf, testdatadir) -> None: +def test_advise_all_indicators(default_conf, testdatadir) -> None: default_conf.update({'strategy': 'DefaultStrategy'}) strategy = StrategyResolver.load_strategy(default_conf) timerange = TimeRange.parse_timerange('1510694220-1510700340') data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange, fill_up_missing=True) - processed = strategy.ohlcvdata_to_dataframe(data) + processed = strategy.advise_all_indicators(data) assert len(processed['UNITTEST/BTC']) == 102 # partial candle was removed -def test_ohlcvdata_to_dataframe_copy(mocker, default_conf, testdatadir) -> None: +def test_advise_all_indicators_copy(mocker, default_conf, testdatadir) -> None: default_conf.update({'strategy': 'DefaultStrategy'}) strategy = StrategyResolver.load_strategy(default_conf) aimock = mocker.patch('freqtrade.strategy.interface.IStrategy.advise_indicators') timerange = TimeRange.parse_timerange('1510694220-1510700340') data = load_data(testdatadir, '1m', ['UNITTEST/BTC'], timerange=timerange, fill_up_missing=True) - strategy.ohlcvdata_to_dataframe(data) + strategy.advise_all_indicators(data) assert aimock.call_count == 1 # Ensure that a copy of the dataframe is passed to advice_indicators assert aimock.call_args_list[0][0][0] is not data @@ -402,7 +402,7 @@ def test_stop_loss_reached(default_conf, fee, profit, adjusted, expected, traili exchange='binance', open_rate=1, ) - trade.adjust_min_max_rates(trade.open_rate) + trade.adjust_min_max_rates(trade.open_rate, trade.open_rate) strategy.trailing_stop = trailing strategy.trailing_stop_positive = -0.05 strategy.use_custom_stoploss = custom @@ -556,6 +556,7 @@ def test__analyze_ticker_internal_skip_analyze(ohlcv_history, mocker, caplog) -> def test_is_pair_locked(default_conf): default_conf.update({'strategy': 'DefaultStrategy'}) PairLocks.timeframe = default_conf['timeframe'] + PairLocks.use_db = True strategy = StrategyResolver.load_strategy(default_conf) # No lock should be present assert len(PairLocks.get_pair_locks(None)) == 0 @@ -633,7 +634,7 @@ def test_strategy_safe_wrapper_error(caplog, error): assert ret caplog.clear() - # Test supressing error + # Test suppressing error ret = strategy_safe_wrapper(failing_method, message='DeadBeef', supress_error=True)() assert log_has_re(r'DeadBeef.*', caplog) diff --git a/tests/test_freqtradebot.py b/tests/test_freqtradebot.py index 7c37bb269..1cd8cc06b 100644 --- a/tests/test_freqtradebot.py +++ b/tests/test_freqtradebot.py @@ -904,6 +904,40 @@ def test_execute_buy(mocker, default_conf, fee, limit_buy_order, limit_buy_order with pytest.raises(PricingError, match="Could not determine buy price."): freqtrade.execute_buy(pair, stake_amount) + # In case of custom entry price + mocker.patch('freqtrade.exchange.Exchange.get_rate', return_value=0.50) + limit_buy_order['status'] = 'open' + limit_buy_order['id'] = '5566' + freqtrade.strategy.custom_entry_price = lambda **kwargs: 0.508 + assert freqtrade.execute_buy(pair, stake_amount) + trade = Trade.query.all()[6] + assert trade + assert trade.open_rate_requested == 0.508 + + # In case of custom entry price set to None + limit_buy_order['status'] = 'open' + limit_buy_order['id'] = '5567' + freqtrade.strategy.custom_entry_price = lambda **kwargs: None + + mocker.patch.multiple( + 'freqtrade.exchange.Exchange', + get_rate=MagicMock(return_value=10), + ) + + assert freqtrade.execute_buy(pair, stake_amount) + trade = Trade.query.all()[7] + assert trade + assert trade.open_rate_requested == 10 + + # In case of custom entry price not float type + limit_buy_order['status'] = 'open' + limit_buy_order['id'] = '5568' + freqtrade.strategy.custom_entry_price = lambda **kwargs: "string price" + assert freqtrade.execute_buy(pair, stake_amount) + trade = Trade.query.all()[8] + assert trade + assert trade.open_rate_requested == 10 + def test_execute_buy_confirm_error(mocker, default_conf, fee, limit_buy_order) -> None: freqtrade = get_patched_freqtradebot(mocker, default_conf) @@ -2716,6 +2750,70 @@ def test_execute_sell_down(default_conf, ticker, fee, ticker_sell_down, mocker) } == last_msg +def test_execute_sell_custom_exit_price(default_conf, ticker, fee, ticker_sell_up, mocker) -> None: + rpc_mock = patch_RPCManager(mocker) + patch_exchange(mocker) + mocker.patch.multiple( + 'freqtrade.exchange.Exchange', + fetch_ticker=ticker, + get_fee=fee, + _is_dry_limit_order_filled=MagicMock(return_value=False), + ) + patch_whitelist(mocker, default_conf) + freqtrade = FreqtradeBot(default_conf) + patch_get_signal(freqtrade) + freqtrade.strategy.confirm_trade_exit = MagicMock(return_value=False) + + # Create some test data + freqtrade.enter_positions() + rpc_mock.reset_mock() + + trade = Trade.query.first() + assert trade + assert freqtrade.strategy.confirm_trade_exit.call_count == 0 + + # Increase the price and sell it + mocker.patch.multiple( + 'freqtrade.exchange.Exchange', + fetch_ticker=ticker_sell_up + ) + + freqtrade.strategy.confirm_trade_exit = MagicMock(return_value=True) + + # Set a custom exit price + freqtrade.strategy.custom_exit_price = lambda **kwargs: 1.170e-05 + + freqtrade.execute_sell(trade=trade, limit=ticker_sell_up()['bid'], + sell_reason=SellCheckTuple(sell_type=SellType.SELL_SIGNAL)) + + # Sell price must be different to default bid price + + assert freqtrade.strategy.confirm_trade_exit.call_count == 1 + + assert rpc_mock.call_count == 1 + last_msg = rpc_mock.call_args_list[-1][0][0] + assert { + 'trade_id': 1, + 'type': RPCMessageType.SELL, + 'exchange': 'Binance', + 'pair': 'ETH/BTC', + 'gain': 'profit', + 'limit': 1.170e-05, + 'amount': 91.07468123, + 'order_type': 'limit', + 'open_rate': 1.098e-05, + 'current_rate': 1.173e-05, + 'profit_amount': 6.041e-05, + 'profit_ratio': 0.06025919, + 'stake_currency': 'BTC', + 'fiat_currency': 'USD', + 'sell_reason': SellType.SELL_SIGNAL.value, + 'open_date': ANY, + 'close_date': ANY, + 'close_rate': ANY, + } == last_msg + + def test_execute_sell_down_stoploss_on_exchange_dry_run(default_conf, ticker, fee, ticker_sell_down, mocker) -> None: rpc_mock = patch_RPCManager(mocker) @@ -4503,3 +4601,43 @@ def test_refind_lost_order(mocker, default_conf, fee, caplog): freqtrade.refind_lost_order(trades[4]) assert log_has(f"Error updating {order['id']}.", caplog) + + +def test_get_valid_price(mocker, default_conf) -> None: + patch_RPCManager(mocker) + patch_exchange(mocker) + freqtrade = FreqtradeBot(default_conf) + freqtrade.config['custom_price_max_distance_ratio'] = 0.02 + + custom_price_string = "10" + custom_price_badstring = "10abc" + custom_price_float = 10.0 + custom_price_int = 10 + + custom_price_over_max_alwd = 11.0 + custom_price_under_min_alwd = 9.0 + proposed_price = 10.1 + + valid_price_from_string = freqtrade.get_valid_price(custom_price_string, proposed_price) + valid_price_from_badstring = freqtrade.get_valid_price(custom_price_badstring, proposed_price) + valid_price_from_int = freqtrade.get_valid_price(custom_price_int, proposed_price) + valid_price_from_float = freqtrade.get_valid_price(custom_price_float, proposed_price) + + valid_price_at_max_alwd = freqtrade.get_valid_price(custom_price_over_max_alwd, proposed_price) + valid_price_at_min_alwd = freqtrade.get_valid_price(custom_price_under_min_alwd, proposed_price) + + assert isinstance(valid_price_from_string, float) + assert isinstance(valid_price_from_badstring, float) + assert isinstance(valid_price_from_int, float) + assert isinstance(valid_price_from_float, float) + + assert valid_price_from_string == custom_price_float + assert valid_price_from_badstring == proposed_price + assert valid_price_from_int == custom_price_int + assert valid_price_from_float == custom_price_float + + assert valid_price_at_max_alwd < custom_price_over_max_alwd + assert valid_price_at_max_alwd > proposed_price + + assert valid_price_at_min_alwd > custom_price_under_min_alwd + assert valid_price_at_min_alwd < proposed_price diff --git a/tests/test_persistence.py b/tests/test_persistence.py index 836dd29df..911d7d6c2 100644 --- a/tests/test_persistence.py +++ b/tests/test_persistence.py @@ -1587,25 +1587,30 @@ def test_adjust_min_max_rates(fee): open_rate=1, ) - trade.adjust_min_max_rates(trade.open_rate) + trade.adjust_min_max_rates(trade.open_rate, trade.open_rate) assert trade.max_rate == 1 assert trade.min_rate == 1 # check min adjusted, max remained - trade.adjust_min_max_rates(0.96) + trade.adjust_min_max_rates(0.96, 0.96) assert trade.max_rate == 1 assert trade.min_rate == 0.96 # check max adjusted, min remains - trade.adjust_min_max_rates(1.05) + trade.adjust_min_max_rates(1.05, 1.05) assert trade.max_rate == 1.05 assert trade.min_rate == 0.96 # current rate "in the middle" - no adjustment - trade.adjust_min_max_rates(1.03) + trade.adjust_min_max_rates(1.03, 1.03) assert trade.max_rate == 1.05 assert trade.min_rate == 0.96 + # current rate "in the middle" - no adjustment + trade.adjust_min_max_rates(1.10, 0.91) + assert trade.max_rate == 1.10 + assert trade.min_rate == 0.91 + @pytest.mark.usefixtures("init_persistence") @pytest.mark.parametrize('use_db', [True, False]) @@ -2099,6 +2104,11 @@ def test_update_order_from_ccxt(caplog): assert o.ft_is_open assert o.order_filled_date is None + # Order is unfilled, "filled" not set + # https://github.com/freqtrade/freqtrade/issues/5404 + ccxt_order.update({'filled': None, 'remaining': 20.0, 'status': 'canceled'}) + o.update_from_ccxt_object(ccxt_order) + # Order has been closed ccxt_order.update({'filled': 20.0, 'remaining': 0.0, 'status': 'closed'}) o.update_from_ccxt_object(ccxt_order)