initial commit
This commit is contained in:
parent
108a578772
commit
751b205618
69
freqtrade/freqai/base_models/BasePytorchModel.py
Normal file
69
freqtrade/freqai/base_models/BasePytorchModel.py
Normal file
@ -0,0 +1,69 @@
|
||||
import logging
|
||||
from time import time
|
||||
from typing import Any, Dict
|
||||
|
||||
import torch
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.freqai_interface import IFreqaiModel
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BasePytorchModel(IFreqaiModel):
|
||||
"""
|
||||
Base class for TensorFlow type models.
|
||||
User *must* inherit from this class and set fit() and predict().
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(config=kwargs['config'])
|
||||
self.dd.model_type = 'pytorch'
|
||||
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
||||
|
||||
def train(
|
||||
self, unfiltered_df: DataFrame, pair: str, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Any:
|
||||
"""
|
||||
Filter the training data and train a model to it. Train makes heavy use of the datakitchen
|
||||
for storing, saving, loading, and analyzing the data.
|
||||
:param unfiltered_df: Full dataframe for the current training period
|
||||
:param metadata: pair metadata from strategy.
|
||||
:return:
|
||||
:model: Trained model which can be used to inference (self.predict)
|
||||
"""
|
||||
|
||||
logger.info(f"-------------------- Starting training {pair} --------------------")
|
||||
|
||||
start_time = time()
|
||||
|
||||
features_filtered, labels_filtered = dk.filter_features(
|
||||
unfiltered_df,
|
||||
dk.training_features_list,
|
||||
dk.label_list,
|
||||
training_filter=True,
|
||||
)
|
||||
|
||||
# split data into train/test data.
|
||||
data_dictionary = dk.make_train_test_datasets(features_filtered, labels_filtered)
|
||||
if not self.freqai_info.get("fit_live_predictions", 0) or not self.live:
|
||||
dk.fit_labels()
|
||||
# normalize all data based on train_dataset only
|
||||
data_dictionary = dk.normalize_data(data_dictionary)
|
||||
|
||||
# optional additional data cleaning/analysis
|
||||
self.data_cleaning_train(dk)
|
||||
|
||||
logger.info(
|
||||
f"Training model on {len(dk.data_dictionary['train_features'].columns)} features"
|
||||
)
|
||||
logger.info(f"Training model on {len(data_dictionary['train_features'])} data points")
|
||||
|
||||
model = self.fit(data_dictionary, dk)
|
||||
end_time = time()
|
||||
|
||||
logger.info(f"-------------------- Done training {pair} "
|
||||
f"({end_time - start_time:.2f} secs) --------------------")
|
||||
|
||||
return model
|
51
freqtrade/freqai/base_models/PytorchModelTrainer.py
Normal file
51
freqtrade/freqai/base_models/PytorchModelTrainer.py
Normal file
@ -0,0 +1,51 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PytorchModelTrainer:
|
||||
def __init__(self, model: nn.Module, optimizer, init_model: Dict):
|
||||
self.model = model
|
||||
self.optimizer = optimizer
|
||||
if init_model:
|
||||
self.load_from_checkpoint(init_model)
|
||||
|
||||
def fit(self, tensor_dictionary, max_iters, batch_size):
|
||||
for iter in range(max_iters):
|
||||
|
||||
# todo add validation evaluation here
|
||||
|
||||
xb, yb = self.get_batch(tensor_dictionary, 'train', batch_size)
|
||||
logits, loss = self.model(xb, yb)
|
||||
|
||||
self.optimizer.zero_grad(set_to_none=True)
|
||||
loss.backward()
|
||||
self.optimizer.step()
|
||||
|
||||
def save(self, path):
|
||||
torch.save({
|
||||
'model_state_dict': self.model.state_dict(),
|
||||
'optimizer_state_dict': self.optimizer.state_dict(),
|
||||
}, path)
|
||||
|
||||
def load_from_file(self, path: Path):
|
||||
checkpoint = torch.load(path)
|
||||
return self.load_from_checkpoint(checkpoint)
|
||||
|
||||
def load_from_checkpoint(self, checkpoint: Dict):
|
||||
self.model.load_state_dict(checkpoint['model_state_dict'])
|
||||
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
||||
return self
|
||||
|
||||
@staticmethod
|
||||
def get_batch(tensor_dictionary: Dict, split: str, batch_size: int):
|
||||
ix = torch.randint(len(tensor_dictionary[f'{split}_labels']), (batch_size,))
|
||||
x = tensor_dictionary[f'{split}_features'][ix]
|
||||
y = tensor_dictionary[f'{split}_labels'][ix]
|
||||
return x, y
|
||||
|
@ -446,7 +446,9 @@ class FreqaiDataDrawer:
|
||||
dump(model, save_path / f"{dk.model_filename}_model.joblib")
|
||||
elif self.model_type == 'keras':
|
||||
model.save(save_path / f"{dk.model_filename}_model.h5")
|
||||
elif 'stable_baselines' in self.model_type or 'sb3_contrib' == self.model_type:
|
||||
elif 'stable_baselines' in self.model_type or\
|
||||
'sb3_contrib' == self.model_type or\
|
||||
'pytorch' == self.model_type:
|
||||
model.save(save_path / f"{dk.model_filename}_model.zip")
|
||||
|
||||
if dk.svm_model is not None:
|
||||
@ -537,6 +539,9 @@ class FreqaiDataDrawer:
|
||||
self.model_type, self.freqai_info['rl_config']['model_type'])
|
||||
MODELCLASS = getattr(mod, self.freqai_info['rl_config']['model_type'])
|
||||
model = MODELCLASS.load(dk.data_path / f"{dk.model_filename}_model")
|
||||
elif self.model_type == 'pytorch':
|
||||
import torch
|
||||
model = torch.load(dk.data_path / f"{dk.model_filename}_model.zip")
|
||||
|
||||
if Path(dk.data_path / f"{dk.model_filename}_svm_model.joblib").is_file():
|
||||
dk.svm_model = load(dk.data_path / f"{dk.model_filename}_svm_model.joblib")
|
||||
|
@ -0,0 +1,97 @@
|
||||
import logging
|
||||
|
||||
from typing import Dict
|
||||
from typing import Any, Dict, Tuple
|
||||
import numpy.typing as npt
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
from pandas import DataFrame
|
||||
|
||||
from torch.nn import functional as F
|
||||
|
||||
from freqtrade.freqai.base_models.BasePytorchModel import BasePytorchModel
|
||||
from freqtrade.freqai.base_models.PytorchModelTrainer import PytorchModelTrainer
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.PytorchMLPModel import MLP
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PytorchClassifierMultiTarget(BasePytorchModel):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# todo move to config
|
||||
self.n_hidden = 1024
|
||||
self.labels = ['0.0', '1.0', '2.0']
|
||||
self.max_iters = 100
|
||||
self.batch_size = 64
|
||||
self.learning_rate = 3e-4
|
||||
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param tensor_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
n_features = data_dictionary['train_features'].shape[-1]
|
||||
tensor_dictionary = self.convert_data_to_tensors(data_dictionary)
|
||||
model = MLP(
|
||||
input_dim=n_features,
|
||||
hidden_dim=self.n_hidden,
|
||||
output_dim=len(self.labels)
|
||||
)
|
||||
model.to(self.device)
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
trainer = PytorchModelTrainer(model, optimizer, init_model=init_model)
|
||||
trainer.fit(tensor_dictionary, self.max_iters, self.batch_size)
|
||||
return trainer
|
||||
|
||||
def predict(
|
||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param unfiltered_df: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:pred_df: dataframe containing the predictions
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_df)
|
||||
filtered_df, _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
|
||||
self.data_cleaning_predict(dk)
|
||||
dk.data_dictionary["prediction_features"] = torch.tensor(
|
||||
dk.data_dictionary["prediction_features"].values
|
||||
).to(self.device)
|
||||
|
||||
logits, _ = self.model.model(dk.data_dictionary["prediction_features"])
|
||||
probs = F.softmax(logits, dim=-1)
|
||||
label_ints = torch.argmax(probs, dim=-1)
|
||||
|
||||
pred_df_prob = DataFrame(probs.detach().numpy(), columns=self.labels)
|
||||
pred_df = DataFrame(label_ints, columns=dk.label_list).astype(float).astype(str)
|
||||
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
def convert_data_to_tensors(self, data_dictionary: Dict) -> Dict:
|
||||
tensor_dictionary = {}
|
||||
for split in ['train', 'test']:
|
||||
tensor_dictionary[f'{split}_features'] = torch.tensor(
|
||||
data_dictionary[f'{split}_features'].values
|
||||
).to(self.device)
|
||||
tensor_dictionary[f'{split}_labels'] = torch.tensor(
|
||||
data_dictionary[f'{split}_labels'].astype(float).values
|
||||
).long().to(self.device)
|
||||
|
||||
return tensor_dictionary
|
31
freqtrade/freqai/prediction_models/PytorchMLPModel.py
Normal file
31
freqtrade/freqai/prediction_models/PytorchMLPModel.py
Normal file
@ -0,0 +1,31 @@
|
||||
import logging
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim, output_dim):
|
||||
super(MLP, self).__init__()
|
||||
self.input_layer = nn.Linear(input_dim, hidden_dim)
|
||||
self.hidden_layer = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.output_layer = nn.Linear(hidden_dim, output_dim)
|
||||
self.relu = nn.ReLU()
|
||||
self.dropout = nn.Dropout(p=0.2)
|
||||
|
||||
def forward(self, x, targets=None):
|
||||
x = self.relu(self.input_layer(x))
|
||||
x = self.dropout(x)
|
||||
x = self.relu(self.hidden_layer(x))
|
||||
x = self.dropout(x)
|
||||
logits = self.output_layer(x)
|
||||
|
||||
if targets is None:
|
||||
return logits, None
|
||||
|
||||
loss = F.cross_entropy(logits, targets.squeeze())
|
||||
return logits, loss
|
Loading…
Reference in New Issue
Block a user