initial commit
This commit is contained in:
@@ -0,0 +1,97 @@
|
||||
import logging
|
||||
|
||||
from typing import Dict
|
||||
from typing import Any, Dict, Tuple
|
||||
import numpy.typing as npt
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
from pandas import DataFrame
|
||||
|
||||
from torch.nn import functional as F
|
||||
|
||||
from freqtrade.freqai.base_models.BasePytorchModel import BasePytorchModel
|
||||
from freqtrade.freqai.base_models.PytorchModelTrainer import PytorchModelTrainer
|
||||
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
||||
from freqtrade.freqai.prediction_models.PytorchMLPModel import MLP
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class PytorchClassifierMultiTarget(BasePytorchModel):
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
# todo move to config
|
||||
self.n_hidden = 1024
|
||||
self.labels = ['0.0', '1.0', '2.0']
|
||||
self.max_iters = 100
|
||||
self.batch_size = 64
|
||||
self.learning_rate = 3e-4
|
||||
|
||||
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
|
||||
"""
|
||||
User sets up the training and test data to fit their desired model here
|
||||
:param tensor_dictionary: the dictionary constructed by DataHandler to hold
|
||||
all the training and test data/labels.
|
||||
"""
|
||||
n_features = data_dictionary['train_features'].shape[-1]
|
||||
tensor_dictionary = self.convert_data_to_tensors(data_dictionary)
|
||||
model = MLP(
|
||||
input_dim=n_features,
|
||||
hidden_dim=self.n_hidden,
|
||||
output_dim=len(self.labels)
|
||||
)
|
||||
model.to(self.device)
|
||||
optimizer = torch.optim.AdamW(model.parameters(), lr=self.learning_rate)
|
||||
init_model = self.get_init_model(dk.pair)
|
||||
trainer = PytorchModelTrainer(model, optimizer, init_model=init_model)
|
||||
trainer.fit(tensor_dictionary, self.max_iters, self.batch_size)
|
||||
return trainer
|
||||
|
||||
def predict(
|
||||
self, unfiltered_df: DataFrame, dk: FreqaiDataKitchen, **kwargs
|
||||
) -> Tuple[DataFrame, npt.NDArray[np.int_]]:
|
||||
"""
|
||||
Filter the prediction features data and predict with it.
|
||||
:param unfiltered_df: Full dataframe for the current backtest period.
|
||||
:return:
|
||||
:pred_df: dataframe containing the predictions
|
||||
:do_predict: np.array of 1s and 0s to indicate places where freqai needed to remove
|
||||
data (NaNs) or felt uncertain about data (PCA and DI index)
|
||||
"""
|
||||
|
||||
dk.find_features(unfiltered_df)
|
||||
filtered_df, _ = dk.filter_features(
|
||||
unfiltered_df, dk.training_features_list, training_filter=False
|
||||
)
|
||||
filtered_df = dk.normalize_data_from_metadata(filtered_df)
|
||||
dk.data_dictionary["prediction_features"] = filtered_df
|
||||
|
||||
self.data_cleaning_predict(dk)
|
||||
dk.data_dictionary["prediction_features"] = torch.tensor(
|
||||
dk.data_dictionary["prediction_features"].values
|
||||
).to(self.device)
|
||||
|
||||
logits, _ = self.model.model(dk.data_dictionary["prediction_features"])
|
||||
probs = F.softmax(logits, dim=-1)
|
||||
label_ints = torch.argmax(probs, dim=-1)
|
||||
|
||||
pred_df_prob = DataFrame(probs.detach().numpy(), columns=self.labels)
|
||||
pred_df = DataFrame(label_ints, columns=dk.label_list).astype(float).astype(str)
|
||||
pred_df = pd.concat([pred_df, pred_df_prob], axis=1)
|
||||
return (pred_df, dk.do_predict)
|
||||
|
||||
def convert_data_to_tensors(self, data_dictionary: Dict) -> Dict:
|
||||
tensor_dictionary = {}
|
||||
for split in ['train', 'test']:
|
||||
tensor_dictionary[f'{split}_features'] = torch.tensor(
|
||||
data_dictionary[f'{split}_features'].values
|
||||
).to(self.device)
|
||||
tensor_dictionary[f'{split}_labels'] = torch.tensor(
|
||||
data_dictionary[f'{split}_labels'].astype(float).values
|
||||
).long().to(self.device)
|
||||
|
||||
return tensor_dictionary
|
31
freqtrade/freqai/prediction_models/PytorchMLPModel.py
Normal file
31
freqtrade/freqai/prediction_models/PytorchMLPModel.py
Normal file
@@ -0,0 +1,31 @@
|
||||
import logging
|
||||
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class MLP(nn.Module):
|
||||
def __init__(self, input_dim, hidden_dim, output_dim):
|
||||
super(MLP, self).__init__()
|
||||
self.input_layer = nn.Linear(input_dim, hidden_dim)
|
||||
self.hidden_layer = nn.Linear(hidden_dim, hidden_dim)
|
||||
self.output_layer = nn.Linear(hidden_dim, output_dim)
|
||||
self.relu = nn.ReLU()
|
||||
self.dropout = nn.Dropout(p=0.2)
|
||||
|
||||
def forward(self, x, targets=None):
|
||||
x = self.relu(self.input_layer(x))
|
||||
x = self.dropout(x)
|
||||
x = self.relu(self.hidden_layer(x))
|
||||
x = self.dropout(x)
|
||||
logits = self.output_layer(x)
|
||||
|
||||
if targets is None:
|
||||
return logits, None
|
||||
|
||||
loss = F.cross_entropy(logits, targets.squeeze())
|
||||
return logits, loss
|
Reference in New Issue
Block a user