Rewrite to used algned numpy/dataframes

updated logic
added vector fill for abs/profit/duration in single hit on results.
This commit is contained in:
creslinux 2018-07-16 12:01:02 +00:00
parent a8b62a21cc
commit 7174f27eb8

View File

@ -10,7 +10,7 @@ from datetime import datetime
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
import arrow
from pandas import DataFrame
from pandas import DataFrame, to_datetime
from tabulate import tabulate
import freqtrade.optimize as optimize
@ -23,6 +23,7 @@ from freqtrade.misc import file_dump_json
from freqtrade.persistence import Trade
from profilehooks import profile
from collections import OrderedDict
import timeit
logger = logging.getLogger(__name__)
@ -190,6 +191,7 @@ class Backtesting(object):
return btr
return None
@profile
def backtest(self, args: Dict) -> DataFrame:
"""
Implements backtesting functionality
@ -234,10 +236,13 @@ class Backtesting(object):
# Switch List of Trade Dicts (bslap_results) to Dataframe
# Fill missing, calculable columns, profit, duration , abs etc.
bslap_results_df = DataFrame(bslap_results, columns=BacktestResult._fields)
bslap_results_df = self.vector_fill_results_table(bslap_results_df)
bslap_results_df = DataFrame(bslap_results)
bslap_results_df['open_time'] = to_datetime(bslap_results_df['open_time'])
bslap_results_df['close_time'] = to_datetime(bslap_results_df['close_time'])
### don't use this, itll drop exit type field
# bslap_results_df = DataFrame(bslap_results, columns=BacktestResult._fields)
print(bslap_results_df.dtypes)
bslap_results_df = self.vector_fill_results_table(bslap_results_df)
return bslap_results_df
@ -303,14 +308,13 @@ class Backtesting(object):
:return: bslap_results Dataframe
"""
import pandas as pd
debug = True
debug = False
# stake and fees
stake = self.config.get('stake_amount')
# TODO grab these from the environment, do not hard set
open_fee = 0.05
close_fee = 0.05
stake = 0.015
# 0.05% is 0.00,05
open_fee = 0.0000
close_fee = 0.0000
if debug:
print("Stake is,", stake, "the sum of currency to spend per trade")
print("The open fee is", open_fee, "The close fee is", close_fee)
@ -322,10 +326,6 @@ class Backtesting(object):
pd.set_option('max_colwidth', 40)
pd.set_option('precision', 12)
# Align with BT
bslap_results_df['open_time'] = pd.to_datetime(bslap_results_df['open_time'])
bslap_results_df['close_time'] = pd.to_datetime(bslap_results_df['close_time'])
# Populate duration
bslap_results_df['trade_duration'] = bslap_results_df['close_time'] - bslap_results_df['open_time']
if debug:
@ -347,29 +347,46 @@ class Backtesting(object):
if debug:
print("\n")
print(bslap_results_df[['buy_spend', 'sell_take', 'profit_percent', 'profit_abs']])
print(bslap_results_df[
['buy_sum', 'buy_fee', 'buy_spend', 'sell_sum', 'sell_take', 'profit_percent', 'profit_abs',
'exit_type']])
return bslap_results_df
def np_get_t_open_ind(self, np_buy_arr, t_exit_ind: int):
import utils_find_1st as utf1st
"""
The purpose of this def is to return the next "buy" = 1
after t_exit_ind.
The purpose of this def is to return the next "buy" = 1
after t_exit_ind.
t_exit_ind is the index the last trade exited on
or 0 if first time around this loop.
"""
t_exit_ind is the index the last trade exited on
or 0 if first time around this loop.
"""
# Timers, to be called if in debug
def s():
st = timeit.default_timer()
return st
def f(st):
return (timeit.default_timer() - st)
st = s()
t_open_ind: int
# Create a view on our buy index starting after last trade exit
# Search for next buy
"""
Create a view on our buy index starting after last trade exit
Search for next buy
"""
np_buy_arr_v = np_buy_arr[t_exit_ind:]
t_open_ind = utf1st.find_1st(np_buy_arr_v, 1, utf1st.cmp_equal)
t_open_ind = t_open_ind + t_exit_ind # Align numpy index
'''
If -1 is returned no buy has been found, preserve the value
'''
if t_open_ind != -1: # send back the -1 if no buys found. otherwise update index
t_open_ind = t_open_ind + t_exit_ind # Align numpy index
return t_open_ind
@profile
def backslap_pair(self, ticker_data, pair):
import pandas as pd
import numpy as np
@ -397,27 +414,12 @@ class Backtesting(object):
pd.set_option('display.width', 1000)
pd.set_option('max_colwidth', 40)
pd.set_option('precision', 12)
def s():
st = timeit.default_timer()
return st
def f(st):
return (timeit.default_timer() - st)
#### backslap config
"""
A couple legacy Pandas vars still used for pretty debug output.
If have debug enabled the code uses these fields for dataframe output
Ensure bto, sto, sco are aligned with Numpy values next
to align debug and actual. Options are:
buy - open - close - sell - high - low - np_stop_pri
"""
bto = buys_triggered_on = "close"
# sto = stops_triggered_on = "low" ## Should be low, FT uses close
# sco = stops_calculated_on = "np_stop_pri" ## should use np_stop_pri, FT uses close
sto = stops_triggered_on = "close" ## Should be low, FT uses close
sco = stops_calculated_on = "close" ## should use np_stop_pri, FT uses close
'''
Numpy arrays are used for 100x speed up
We requires setting Int values for
@ -441,7 +443,6 @@ class Backtesting(object):
### End Config
pair: str = pair
loop: int = 1
#ticker_data: DataFrame = ticker_dfs[t_file]
bslap: DataFrame = ticker_data
@ -482,223 +483,342 @@ class Backtesting(object):
print("++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Loop debug max met - breaking")
break
'''
Dev phases
Phase 1
1) Manage buy, sell, stop enter/exit
a) Find first buy index
b) Discover first stop and sell hit after buy index
c) Chose first intance as trade exit
Dev phases
Phase 1
1) Manage buy, sell, stop enter/exit
a) Find first buy index
b) Discover first stop and sell hit after buy index
c) Chose first instance as trade exit
Phase 2
2) Manage dynamic Stop and ROI Exit
a) Create trade slice from 1
b) search within trade slice for dynamice stop hit
c) search within trade slice for ROI hit
'''
Phase 2
2) Manage dynamic Stop and ROI Exit
a) Create trade slice from 1
b) search within trade slice for dynamice stop hit
c) search within trade slice for ROI hit
'''
'''
Finds index for first buy = 1 flag, use .values numpy array for speed
Create a slice, from first buy index onwards.
Slice will be used to find exit conditions after trade open
'''
if debug_timing:
st = s()
'''
0 - Find next buy entry
Finds index for first (buy = 1) flag
Requires: np_buy_arr - a 1D array of the 'buy' column. To find next "1"
Required: t_exit_ind - Either 0, first loop. Or The index we last exited on
Provides: The next "buy" index after t_exit_ind
If -1 is returned no buy has been found in remainder of array, skip to exit loop
'''
t_open_ind = self.np_get_t_open_ind(np_buy_arr, t_exit_ind)
if debug:
print("\n(0) numpy debug \nnp_get_t_open, has returned the next valid buy index as", t_open_ind)
print("If -1 there are no valid buys in the remainder of ticker data. Skipping to end of loop")
if debug_timing:
t_t = f(st)
print("0-numpy", str.format('{0:.17f}', t_t))
st = s()
'''
Calculate np_t_stop_pri (Trade Stop Price) based on the buy price
if t_open_ind != -1:
As stop in based on buy price we are interested in buy
- Buys are Triggered On np_bto, typically the CLOSE of candle
- Buys are Calculated On np_bco, default is OPEN of the next candle.
as we only see the CLOSE after it has happened.
The assumption is we have bought at first available price, the OPEN
'''
np_t_stop_pri = (np_bslap[t_open_ind + 1, np_bco] * p_stop)
"""
1 - Create view to search within for our open trade
if debug_timing:
t_t = f(st)
print("1-numpy", str.format('{0:.17f}', t_t))
st = s()
The view is our search space for the next Stop or Sell
Numpy view is employed as:
1,000 faster than pandas searches
Pandas cannot assure it will always return a view, it may make a slow copy.
"""
1)Create a View from our open trade forward
The view contains columns:
buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
The view is our search space for the next Stop or Sell
We use a numpy view:
Using a numpy for speed on views, 1,000 faster than pandas
Pandas cannot assure it will always return a view, copies are
3 orders of magnitude slower
Requires: np_bslap is our numpy array of the ticker DataFrame
Requires: t_open_ind is the index row with the buy.
Provided: np_t_open_v View of array after trade.
"""
np_t_open_v = np_bslap[t_open_ind:]
The view contains columns:
buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
"""
np_t_open_v = np_bslap[t_open_ind:]
if debug:
print("\n(1) numpy debug \nNumpy view row 0 is now Ticker_Data Index", t_open_ind)
print("Numpy View: Buy - Open - Close - Sell - High - Low")
print("Row 0", np_t_open_v[0])
print("Row 1", np_t_open_v[1], )
if debug_timing:
t_t = f(st)
print("2-numpy", str.format('{0:.17f}', t_t))
st = s()
if debug_timing:
t_t = f(st)
print("2-numpy", str.format('{0:.17f}', t_t))
st = s()
'''
Find first stop index after Trade Open:
First index in np_t_open_v (numpy view of bslap dataframe)
Using a numpy view a orders of magnitude faster
where [np_sto] (stop tiggered on variable: "close", "low" etc) < np_t_stop_pri
'''
np_t_stop_ind = utf1st.find_1st(np_t_open_v[:, np_sto],
np_t_stop_pri,
utf1st.cmp_smaller) \
+ t_open_ind
if debug_timing:
t_t = f(st)
print("3-numpy", str.format('{0:.17f}', t_t))
st = s()
'''
Find first sell index after trade open
First index in t_open_slice where ['sell'] = 1
'''
# Use numpy array for faster search for sell
# Sell uses column 3.
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
# Numpy searches 25-35x quicker than pandas on this data
np_t_sell_ind = utf1st.find_1st(np_t_open_v[:, np_sell],
1, utf1st.cmp_equal) \
+ t_open_ind
if debug_timing:
t_t = f(st)
print("4-numpy", str.format('{0:.17f}', t_t))
st = s()
'''
Determine which was hit first stop or sell, use as exit
STOP takes priority over SELL as would be 'in candle' from tick data
Sell would use Open from Next candle.
So in a draw Stop would be hit first on ticker data in live
'''
if np_t_stop_ind <= np_t_sell_ind:
t_exit_ind = np_t_stop_ind # Set Exit row index
t_exit_type = 'stop' # Set Exit type (sell|stop)
np_t_exit_pri = np_sco # The price field our STOP exit will use
else:
# move sell onto next candle, we only look back on sell
# will use the open price later.
t_exit_ind = np_t_sell_ind # Set Exit row index
t_exit_type = 'sell' # Set Exit type (sell|stop)
np_t_exit_pri = np_open # The price field our SELL exit will use
if debug_timing:
t_t = f(st)
print("5-logic", str.format('{0:.17f}', t_t))
st = s()
if debug:
'''
Print out the buys, stops, sells
Include Line before and after to for easy
Human verification
2 - Calculate our stop-loss price
As stop is based on buy price of our trade
- (BTO)Buys are Triggered On np_bto, typically the CLOSE of candle
- (BCO)Buys are Calculated On np_bco, default is OPEN of the next candle.
This is as we only see the CLOSE after it has happened.
The back test assumption is we have bought at first available price, the OPEN
Requires: np_bslap - is our numpy array of the ticker DataFrame
Requires: t_open_ind - is the index row with the first buy.
Requires: p_stop - is the stop rate, ie. 0.99 is -1%
Provides: np_t_stop_pri - The value stop-loss will be triggered on
'''
# Combine the np_t_stop_pri value to bslap dataframe to make debug
# life easy. This is the currenct stop price based on buy price_
# Don't care about performance in debug
# (add an extra column if printing as df has date in col1 not in npy)
bslap['np_stop_pri'] = np_t_stop_pri
np_t_stop_pri = (np_bslap[t_open_ind + 1, np_bco] * p_stop)
# Buy
print("=================== BUY ", pair)
print("Numpy Array BUY Index is:", t_open_ind)
print("DataFrame BUY Index is:", t_open_ind + 1, "displaying DF \n")
print("HINT, BUY trade should use OPEN price from next candle, i.e ", t_open_ind + 2, "\n")
op_is = t_open_ind - 1 # Print open index start, line before
op_if = t_open_ind + 3 # Print open index finish, line after
print(bslap.iloc[op_is:op_if], "\n")
print(bslap.iloc[t_open_ind + 1]['date'])
if debug:
print("\n(2) numpy debug\nStop-Loss has been calculated at:", np_t_stop_pri)
if debug_timing:
t_t = f(st)
print("2-numpy", str.format('{0:.17f}', t_t))
st = s()
# Stop - Stops trigger price sto, and price received sco. (Stop Trigger|Calculated On)
print("=================== STOP ", pair)
print("Numpy Array STOP Index is:", np_t_stop_ind)
print("DataFrame STOP Index is:", np_t_stop_ind + 1, "displaying DF \n")
print("First Stop after Trade open in candle", t_open_ind + 1, "is ", np_t_stop_ind + 1,": \n",
str.format('{0:.17f}', bslap.iloc[np_t_stop_ind][sto]),
"is less than", str.format('{0:.17f}', np_t_stop_pri))
print("If stop is first exit match sell rate is :", str.format('{0:.17f}', bslap.iloc[np_t_stop_ind][sco]))
print("HINT, STOPs should close in-candle, i.e", np_t_stop_ind + 1,
": As live STOPs are not linked to O-C times")
'''
3 - Find candle STO is under Stop-Loss After Trade opened.
st_is = np_t_stop_ind - 1 # Print stop index start, line before
st_if = np_t_stop_ind + 2 # Print stop index finish, line after
print(bslap.iloc[st_is:st_if], "\n")
where [np_sto] (stop tiggered on variable: "close", "low" etc) < np_t_stop_pri
# Sell
print("=================== SELL ", pair)
print("Numpy Array SELL Index is:", np_t_sell_ind)
print("DataFrame SELL Index is:", np_t_sell_ind + 1, "displaying DF \n")
print("First Sell Index after Trade open in in candle", np_t_sell_ind + 1)
print("HINT, if exit is SELL (not stop) trade should use OPEN price from next candle",
np_t_sell_ind + 2, "\n")
sl_is = np_t_sell_ind - 1 # Print sell index start, line before
sl_if = np_t_sell_ind + 3 # Print sell index finish, line after
print(bslap.iloc[sl_is:sl_if], "\n")
Requires: np_t_open_v Numpy view of ticker_data after trade open
Requires: np_sto User Var(STO)StopTriggeredOn. Typically set to "low" or "close"
Requires: np_t_stop_pri The stop-loss price STO must fall under to trigger stop
Provides: np_t_stop_ind The first candle after trade open where STO is under stop-loss
'''
np_t_stop_ind = utf1st.find_1st(np_t_open_v[:, np_sto],
np_t_stop_pri,
utf1st.cmp_smaller)
# Chosen Exit (stop or sell)
print("=================== EXIT ", pair)
print("Exit type is :", t_exit_type)
# print((bslap.iloc[t_exit_ind], "\n"))
print("trade exit price field is", np_t_exit_pri, "\n")
if debug:
print("\n(3) numpy debug\nNext view index with STO (stop trigger on) under Stop-Loss is", np_t_stop_ind,
". STO is using field", np_sto,
"\nFrom key: buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5\n")
'''
Trade entry is always the next candles "open" price
We trigger on close, so cannot see that till after
its closed.
print("If -1 returned there is no stop found to end of view, then next two array lines are garbage")
print("Row", np_t_stop_ind, np_t_open_v[np_t_stop_ind])
print("Row", np_t_stop_ind + 1, np_t_open_v[np_t_stop_ind + 1])
if debug_timing:
t_t = f(st)
print("3-numpy", str.format('{0:.17f}', t_t))
st = s()
The exception to this is a STOP which is calculated in candle
'''
if debug_timing:
t_t = f(st)
print("6-depra", str.format('{0:.17f}', t_t))
st = s()
'''
4 - Find first sell index after trade open
## use numpy view "np_t_open_v" for speed. Columns are
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
# exception is 6 which is use the stop value.
First index in the view np_t_open_v where ['sell'] = 1
np_trade_enter_price = np_bslap[t_open_ind + 1, np_open]
if t_exit_type == 'stop':
if np_t_exit_pri == 6:
np_trade_exit_price = np_t_stop_pri
Requires: np_t_open_v - view of ticker_data from buy onwards
Requires: no_sell - integer '3', the buy column in the array
Provides: np_t_sell_ind index of view where first sell=1 after buy
'''
# Use numpy array for faster search for sell
# Sell uses column 3.
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
# Numpy searches 25-35x quicker than pandas on this data
np_t_sell_ind = utf1st.find_1st(np_t_open_v[:, np_sell],
1, utf1st.cmp_equal)
if debug:
print("\n(4) numpy debug\nNext view index with sell = 1 is ", np_t_sell_ind)
print("If 0 or less is returned there is no sell found to end of view, then next lines garbage")
print("Row", np_t_sell_ind, np_t_open_v[np_t_stop_ind])
print("Row", np_t_sell_ind + 1, np_t_open_v[np_t_stop_ind + 1])
if debug_timing:
t_t = f(st)
print("4-numpy", str.format('{0:.17f}', t_t))
st = s()
'''
5 - Determine which was hit first a stop or sell
To then use as exit index price-field (sell on buy, stop on stop)
STOP takes priority over SELL as would be 'in candle' from tick data
Sell would use Open from Next candle.
So in a draw Stop would be hit first on ticker data in live
Validity of when types of trades may be executed can be summarised as:
Tick View
index index Buy Sell open low close high Stop price
open 2am 94 -1 0 0 ----- ------ ------ ----- -----
open 3am 95 0 1 0 ----- ------ trg buy ----- -----
open 4am 96 1 0 1 Enter trgstop trg sel ROI out Stop out
open 5am 97 2 0 0 Exit ------ ------- ----- -----
open 6am 98 3 0 0 ----- ------ ------- ----- -----
-1 means not found till end of view i.e no valid Stop found. Exclude from match.
Stop tiggering in 1, candle we bought at OPEN is valid.
Buys and sells are triggered at candle close
Both with action their postions at the open of the next candle Index + 1
Stop and buy Indexes are on the view. To map to the ticker dataframe
the t_open_ind index should be summed.
np_t_stop_ind: Stop Found index in view
t_exit_ind : Sell found in view
t_open_ind : Where view was started on ticker_data
TODO: fix this frig for logig test,, case/switch/dictionary would be better...
more so when later testing many options, dynamic stop / roi etc
cludge - Im setting np_t_sell_ind as 9999999999 when -1 (not found)
cludge - Im setting np_t_stop_ind as 9999999999 when -1 (not found)
'''
if debug:
print("\n(5) numpy debug\nStop or Sell Logic Processing")
# cludge for logic test (-1) means it was not found, set crazy high to lose < test
np_t_sell_ind = 99999999 if np_t_sell_ind <= 0 else np_t_sell_ind
np_t_stop_ind = 99999999 if np_t_stop_ind == -1 else np_t_stop_ind
# Stoploss trigger found before a sell =1
if np_t_stop_ind < 99999999 and np_t_stop_ind <= np_t_sell_ind:
t_exit_ind = t_open_ind + np_t_stop_ind # Set Exit row index
t_exit_type = 'stop' # Set Exit type (stop)
np_t_exit_pri = np_sco # The price field our STOP exit will use
if debug:
print("Type STOP is first exit condition. "
"At view index:", np_t_stop_ind, ". Ticker data exit index is", t_exit_ind)
# Buy = 1 found before a stoploss triggered
elif np_t_sell_ind < 99999999 and np_t_sell_ind < np_t_stop_ind:
# move sell onto next candle, we only look back on sell
# will use the open price later.
t_exit_ind = t_open_ind + np_t_sell_ind + 1 # Set Exit row index
t_exit_type = 'sell' # Set Exit type (sell)
np_t_exit_pri = np_open # The price field our SELL exit will use
if debug:
print("Type SELL is first exit condition. "
"At view index", np_t_sell_ind, ". Ticker data exit index is", t_exit_ind)
# No stop or buy left in view - set t_exit_last -1 to handle gracefully
else:
t_exit_last: int = -1 # Signal loop to exit, no buys or sells found.
t_exit_type = "No Exit"
np_t_exit_pri = 999 # field price should be calculated on. 999 a non-existent column
if debug:
print("No valid STOP or SELL found. Signalling t_exit_last to gracefully exit")
# TODO: fix having to cludge/uncludge this ..
# Undo cludge
np_t_sell_ind = -1 if np_t_sell_ind == 99999999 else np_t_sell_ind
np_t_stop_ind = -1 if np_t_stop_ind == 99999999 else np_t_stop_ind
if debug_timing:
t_t = f(st)
print("5-logic", str.format('{0:.17f}', t_t))
st = s()
if debug:
'''
Print out the buys, stops, sells
Include Line before and after to for easy
Human verification
'''
# Combine the np_t_stop_pri value to bslap dataframe to make debug
# life easy. This is the current stop price based on buy price_
# This is slow but don't care about performance in debug
#
# When referencing equiv np_column, as example np_sto, its 5 in numpy and 6 in df, so +1
# as there is no data column in the numpy array.
bslap['np_stop_pri'] = np_t_stop_pri
# Buy
print("\n\nDATAFRAME DEBUG =================== BUY ", pair)
print("Numpy Array BUY Index is:", 0)
print("DataFrame BUY Index is:", t_open_ind, "displaying DF \n")
print("HINT, BUY trade should use OPEN price from next candle, i.e ", t_open_ind + 1)
op_is = t_open_ind - 1 # Print open index start, line before
op_if = t_open_ind + 3 # Print open index finish, line after
print(bslap.iloc[op_is:op_if], "\n")
# Stop - Stops trigger price np_sto (+1 for pandas column), and price received np_sco +1. (Stop Trigger|Calculated On)
if np_t_stop_ind < 0:
print("DATAFRAME DEBUG =================== STOP ", pair)
print("No STOPS were found until the end of ticker data file\n")
else:
print("DATAFRAME DEBUG =================== STOP ", pair)
print("Numpy Array STOP Index is:", np_t_stop_ind, "View starts at index", t_open_ind)
df_stop_index = (t_open_ind + np_t_stop_ind)
print("DataFrame STOP Index is:", df_stop_index, "displaying DF \n")
print("First Stoploss trigger after Trade entered at OPEN in candle", t_open_ind + 1, "is ",
df_stop_index, ": \n",
str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sto + 1]),
"is less than", str.format('{0:.17f}', np_t_stop_pri))
print("A stoploss exit will be calculated at rate:",
str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sco + 1]))
print("\nHINT, STOPs should exit in-candle, i.e", df_stop_index,
": As live STOPs are not linked to O-C times")
st_is = df_stop_index - 1 # Print stop index start, line before
st_if = df_stop_index + 2 # Print stop index finish, line after
print(bslap.iloc[st_is:st_if], "\n")
# Sell
if np_t_sell_ind < 0:
print("DATAFRAME DEBUG =================== SELL ", pair)
print("No SELLS were found till the end of ticker data file\n")
else:
print("DATAFRAME DEBUG =================== SELL ", pair)
print("Numpy View SELL Index is:", np_t_sell_ind, "View starts at index", t_open_ind)
df_sell_index = (t_open_ind + np_t_sell_ind)
print("DataFrame SELL Index is:", df_sell_index, "displaying DF \n")
print("First Sell Index after Trade open is in candle", df_sell_index)
print("HINT, if exit is SELL (not stop) trade should use OPEN price from next candle",
df_sell_index + 1)
sl_is = df_sell_index - 1 # Print sell index start, line before
sl_if = df_sell_index + 3 # Print sell index finish, line after
print(bslap.iloc[sl_is:sl_if], "\n")
# Chosen Exit (stop or sell)
print("DATAFRAME DEBUG =================== EXIT ", pair)
print("Exit type is :", t_exit_type)
print("trade exit price field is", np_t_exit_pri, "\n")
if debug_timing:
t_t = f(st)
print("6-depra", str.format('{0:.17f}', t_t))
st = s()
## use numpy view "np_t_open_v" for speed. Columns are
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
# exception is 6 which is use the stop value.
# TODO no! this is hard coded bleh fix this open
np_trade_enter_price = np_bslap[t_open_ind + 1, np_open]
if t_exit_type == 'stop':
if np_t_exit_pri == 6:
np_trade_exit_price = np_t_stop_pri
else:
np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri]
if t_exit_type == 'sell':
np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri]
if t_exit_type == 'sell':
np_trade_exit_price = np_bslap[t_exit_ind + 1, np_t_exit_pri]
if debug_timing:
t_t = f(st)
print("7-numpy", str.format('{0:.17f}', t_t))
st = s()
# Catch no exit found
if t_exit_type == "No Exit":
np_trade_exit_price = 0
if debug:
print("//////////////////////////////////////////////")
print("+++++++++++++++++++++++++++++++++ Trade Enter ")
print("np_trade Enterprice is ", str.format('{0:.17f}', np_trade_enter_price))
print("--------------------------------- Trade Exit ")
print("Trade Exit Type is ", t_exit_type)
print("np_trade Exit Price is", str.format('{0:.17f}', np_trade_exit_price))
print("//////////////////////////////////////////////")
if debug_timing:
t_t = f(st)
print("7-numpy", str.format('{0:.17f}', t_t))
st = s()
if debug:
print("//////////////////////////////////////////////")
print("+++++++++++++++++++++++++++++++++ Trade Enter ")
print("np_trade Enter Price is ", str.format('{0:.17f}', np_trade_enter_price))
print("--------------------------------- Trade Exit ")
print("Trade Exit Type is ", t_exit_type)
print("np_trade Exit Price is", str.format('{0:.17f}', np_trade_exit_price))
print("//////////////////////////////////////////////")
else: # no buys were found, step 0 returned -1
# Gracefully exit the loop
t_exit_last == -1
if debug:
print("\n(E) No buys were found in remaining ticker file. Exiting", pair)
# Loop control - catch no closed trades.
if debug:
@ -706,87 +826,47 @@ class Backtesting(object):
" Dataframe Exit Index is: ", t_exit_ind)
print("Exit Index Last, Exit Index Now Are: ", t_exit_last, t_exit_ind)
if t_exit_last >= t_exit_ind:
if t_exit_last >= t_exit_ind or t_exit_last == -1:
"""
When last trade exit equals index of last exit, there is no
opportunity to close any more trades.
Break loop and go on to next pair.
TODO
add handing here to record none closed open trades
When last trade exit equals index of last exit, there is no
opportunity to close any more trades.
"""
# TODO :add handing here to record none closed open trades
if debug:
print(bslap_pair_results)
break
else:
"""
Add trade to backtest looking results list of dicts
Loop back to look for more trades.
"""
if debug_timing:
t_t = f(st)
print("8a-IfEls", str.format('{0:.17f}', t_t))
st = s()
# Index will change if incandle stop or look back as close Open and Sell
if t_exit_type == 'stop':
close_index: int = t_exit_ind + 1
elif t_exit_type == 'sell':
close_index: int = t_exit_ind + 2
else:
close_index: int = t_exit_ind + 1
if debug_timing:
t_t = f(st)
print("8b-Index", str.format('{0:.17f}', t_t))
st = s()
# # Profit ABS.
# # sumrecieved((rate * numTokens) * fee) - sumpaid ((rate * numTokens) * fee)
# sumpaid: float = (np_trade_enter_price * stake)
# sumpaid_fee: float = sumpaid * open_fee
# sumrecieved: float = (np_trade_exit_price * stake)
# sumrecieved_fee: float = sumrecieved * close_fee
# profit_abs: float = sumrecieved - sumpaid - sumpaid_fee - sumrecieved_fee
if debug_timing:
t_t = f(st)
print("8d---ABS", str.format('{0:.17f}', t_t))
st = s()
Add trade to backtest looking results list of dicts
Loop back to look for more trades.
"""
# Build trade dictionary
## In general if a field can be calculated later from other fields leave blank here
## Its X(numer of trades faster) to calc all in a single vector than 1 trade at a time
## Its X(number of trades faster) to calc all in a single vector than 1 trade at a time
# create a new dict
close_index: int = t_exit_ind
bslap_result = {} # Must have at start or we end up with a list of multiple same last result
bslap_result["pair"] = pair
bslap_result["profit_percent"] = "1" # To be 1 vector calc across trades when loop complete
bslap_result["profit_abs"] = "1" # To be 1 vector calc across trades when loop complete
bslap_result["profit_percent"] = "" # To be 1 vector calc across trades when loop complete
bslap_result["profit_abs"] = "" # To be 1 vector calc across trades when loop complete
bslap_result["open_time"] = np_bslap_dates[t_open_ind + 1] # use numpy array, pandas 20x slower
bslap_result["close_time"] = np_bslap_dates[close_index] # use numpy array, pandas 20x slower
bslap_result["open_index"] = t_open_ind + 2 # +1 between np and df, +1 as we buy on next.
bslap_result["open_index"] = t_open_ind + 1 # +1 as we buy on next.
bslap_result["close_index"] = close_index
bslap_result["trade_duration"] = "1" # To be 1 vector calc across trades when loop complete
bslap_result["trade_duration"] = "" # To be 1 vector calc across trades when loop complete
bslap_result["open_at_end"] = False
bslap_result["open_rate"] = round(np_trade_enter_price, 15)
bslap_result["close_rate"] = round(np_trade_exit_price, 15)
bslap_result["exit_type"] = t_exit_type
if debug_timing:
t_t = f(st)
print("8e-trade", str.format('{0:.17f}', t_t))
st = s()
# Add trade dictionary to list
# append the dict to the list and print list
bslap_pair_results.append(bslap_result)
if debug:
print(bslap_pair_results)
if debug_timing:
t_t = f(st)
print("8f--list", str.format('{0:.17f}', t_t))
st = s()
print("The trade dict is: \n", bslap_result)
print("Trades dicts in list after append are: \n ", bslap_pair_results)
"""
Loop back to start. t_exit_last becomes where loop
@ -802,9 +882,6 @@ class Backtesting(object):
# Send back List of trade dicts
return bslap_pair_results
def start(self) -> None:
"""
Run a backtesting end-to-end
@ -868,9 +945,9 @@ class Backtesting(object):
self._store_backtest_result(self.config.get('exportfilename'), results)
logger.info(
'\n================================================= '
'BACKTESTING REPORT'
' ==================================================\n'
'\n====================================================== '
'BackSLAP REPORT'
' =======================================================\n'
'%s',
self._generate_text_table(
data,