diff --git a/freqtrade/optimize/backtesting.py b/freqtrade/optimize/backtesting.py index 045b61a39..2629ed5fa 100644 --- a/freqtrade/optimize/backtesting.py +++ b/freqtrade/optimize/backtesting.py @@ -10,7 +10,7 @@ from datetime import datetime from typing import Any, Dict, List, NamedTuple, Optional, Tuple import arrow -from pandas import DataFrame +from pandas import DataFrame, to_datetime from tabulate import tabulate import freqtrade.optimize as optimize @@ -23,6 +23,7 @@ from freqtrade.misc import file_dump_json from freqtrade.persistence import Trade from profilehooks import profile from collections import OrderedDict +import timeit logger = logging.getLogger(__name__) @@ -190,6 +191,7 @@ class Backtesting(object): return btr return None + @profile def backtest(self, args: Dict) -> DataFrame: """ Implements backtesting functionality @@ -234,10 +236,13 @@ class Backtesting(object): # Switch List of Trade Dicts (bslap_results) to Dataframe # Fill missing, calculable columns, profit, duration , abs etc. - bslap_results_df = DataFrame(bslap_results, columns=BacktestResult._fields) - bslap_results_df = self.vector_fill_results_table(bslap_results_df) + bslap_results_df = DataFrame(bslap_results) + bslap_results_df['open_time'] = to_datetime(bslap_results_df['open_time']) + bslap_results_df['close_time'] = to_datetime(bslap_results_df['close_time']) + ### don't use this, itll drop exit type field + # bslap_results_df = DataFrame(bslap_results, columns=BacktestResult._fields) - print(bslap_results_df.dtypes) + bslap_results_df = self.vector_fill_results_table(bslap_results_df) return bslap_results_df @@ -303,14 +308,13 @@ class Backtesting(object): :return: bslap_results Dataframe """ import pandas as pd - debug = True + debug = False # stake and fees - stake = self.config.get('stake_amount') - # TODO grab these from the environment, do not hard set - open_fee = 0.05 - close_fee = 0.05 - + stake = 0.015 + # 0.05% is 0.00,05 + open_fee = 0.0000 + close_fee = 0.0000 if debug: print("Stake is,", stake, "the sum of currency to spend per trade") print("The open fee is", open_fee, "The close fee is", close_fee) @@ -322,10 +326,6 @@ class Backtesting(object): pd.set_option('max_colwidth', 40) pd.set_option('precision', 12) - # Align with BT - bslap_results_df['open_time'] = pd.to_datetime(bslap_results_df['open_time']) - bslap_results_df['close_time'] = pd.to_datetime(bslap_results_df['close_time']) - # Populate duration bslap_results_df['trade_duration'] = bslap_results_df['close_time'] - bslap_results_df['open_time'] if debug: @@ -347,29 +347,46 @@ class Backtesting(object): if debug: print("\n") - print(bslap_results_df[['buy_spend', 'sell_take', 'profit_percent', 'profit_abs']]) + print(bslap_results_df[ + ['buy_sum', 'buy_fee', 'buy_spend', 'sell_sum', 'sell_take', 'profit_percent', 'profit_abs', + 'exit_type']]) return bslap_results_df def np_get_t_open_ind(self, np_buy_arr, t_exit_ind: int): import utils_find_1st as utf1st """ - The purpose of this def is to return the next "buy" = 1 - after t_exit_ind. + The purpose of this def is to return the next "buy" = 1 + after t_exit_ind. - t_exit_ind is the index the last trade exited on - or 0 if first time around this loop. - """ + t_exit_ind is the index the last trade exited on + or 0 if first time around this loop. + """ + # Timers, to be called if in debug + def s(): + st = timeit.default_timer() + return st + def f(st): + return (timeit.default_timer() - st) + + st = s() t_open_ind: int - # Create a view on our buy index starting after last trade exit - # Search for next buy + """ + Create a view on our buy index starting after last trade exit + Search for next buy + """ np_buy_arr_v = np_buy_arr[t_exit_ind:] t_open_ind = utf1st.find_1st(np_buy_arr_v, 1, utf1st.cmp_equal) - t_open_ind = t_open_ind + t_exit_ind # Align numpy index + + ''' + If -1 is returned no buy has been found, preserve the value + ''' + if t_open_ind != -1: # send back the -1 if no buys found. otherwise update index + t_open_ind = t_open_ind + t_exit_ind # Align numpy index + return t_open_ind - @profile def backslap_pair(self, ticker_data, pair): import pandas as pd import numpy as np @@ -397,27 +414,12 @@ class Backtesting(object): pd.set_option('display.width', 1000) pd.set_option('max_colwidth', 40) pd.set_option('precision', 12) - def s(): st = timeit.default_timer() return st - def f(st): return (timeit.default_timer() - st) #### backslap config - """ - A couple legacy Pandas vars still used for pretty debug output. - If have debug enabled the code uses these fields for dataframe output - - Ensure bto, sto, sco are aligned with Numpy values next - to align debug and actual. Options are: - buy - open - close - sell - high - low - np_stop_pri - """ - bto = buys_triggered_on = "close" - # sto = stops_triggered_on = "low" ## Should be low, FT uses close - # sco = stops_calculated_on = "np_stop_pri" ## should use np_stop_pri, FT uses close - sto = stops_triggered_on = "close" ## Should be low, FT uses close - sco = stops_calculated_on = "close" ## should use np_stop_pri, FT uses close ''' Numpy arrays are used for 100x speed up We requires setting Int values for @@ -441,7 +443,6 @@ class Backtesting(object): ### End Config pair: str = pair - loop: int = 1 #ticker_data: DataFrame = ticker_dfs[t_file] bslap: DataFrame = ticker_data @@ -482,223 +483,342 @@ class Backtesting(object): print("++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Loop debug max met - breaking") break ''' - Dev phases - Phase 1 - 1) Manage buy, sell, stop enter/exit - a) Find first buy index - b) Discover first stop and sell hit after buy index - c) Chose first intance as trade exit + Dev phases + Phase 1 + 1) Manage buy, sell, stop enter/exit + a) Find first buy index + b) Discover first stop and sell hit after buy index + c) Chose first instance as trade exit + + Phase 2 + 2) Manage dynamic Stop and ROI Exit + a) Create trade slice from 1 + b) search within trade slice for dynamice stop hit + c) search within trade slice for ROI hit + ''' - Phase 2 - 2) Manage dynamic Stop and ROI Exit - a) Create trade slice from 1 - b) search within trade slice for dynamice stop hit - c) search within trade slice for ROI hit - ''' - - ''' - Finds index for first buy = 1 flag, use .values numpy array for speed - - Create a slice, from first buy index onwards. - Slice will be used to find exit conditions after trade open - ''' if debug_timing: st = s() - + ''' + 0 - Find next buy entry + Finds index for first (buy = 1) flag + + Requires: np_buy_arr - a 1D array of the 'buy' column. To find next "1" + Required: t_exit_ind - Either 0, first loop. Or The index we last exited on + Provides: The next "buy" index after t_exit_ind + + If -1 is returned no buy has been found in remainder of array, skip to exit loop + ''' t_open_ind = self.np_get_t_open_ind(np_buy_arr, t_exit_ind) + if debug: + print("\n(0) numpy debug \nnp_get_t_open, has returned the next valid buy index as", t_open_ind) + print("If -1 there are no valid buys in the remainder of ticker data. Skipping to end of loop") if debug_timing: t_t = f(st) print("0-numpy", str.format('{0:.17f}', t_t)) st = s() - ''' - Calculate np_t_stop_pri (Trade Stop Price) based on the buy price + if t_open_ind != -1: - As stop in based on buy price we are interested in buy - - Buys are Triggered On np_bto, typically the CLOSE of candle - - Buys are Calculated On np_bco, default is OPEN of the next candle. - as we only see the CLOSE after it has happened. - The assumption is we have bought at first available price, the OPEN - ''' - np_t_stop_pri = (np_bslap[t_open_ind + 1, np_bco] * p_stop) + """ + 1 - Create view to search within for our open trade + + The view is our search space for the next Stop or Sell + Numpy view is employed as: + 1,000 faster than pandas searches + Pandas cannot assure it will always return a view, it may make a slow copy. + + The view contains columns: + buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 + + Requires: np_bslap is our numpy array of the ticker DataFrame + Requires: t_open_ind is the index row with the buy. + Provided: np_t_open_v View of array after trade. + """ + np_t_open_v = np_bslap[t_open_ind:] - if debug_timing: - t_t = f(st) - print("1-numpy", str.format('{0:.17f}', t_t)) - st = s() + if debug: + print("\n(1) numpy debug \nNumpy view row 0 is now Ticker_Data Index", t_open_ind) + print("Numpy View: Buy - Open - Close - Sell - High - Low") + print("Row 0", np_t_open_v[0]) + print("Row 1", np_t_open_v[1], ) + if debug_timing: + t_t = f(st) + print("2-numpy", str.format('{0:.17f}', t_t)) + st = s() - """ - 1)Create a View from our open trade forward - - The view is our search space for the next Stop or Sell - We use a numpy view: - Using a numpy for speed on views, 1,000 faster than pandas - Pandas cannot assure it will always return a view, copies are - 3 orders of magnitude slower - - The view contains columns: - buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - """ - np_t_open_v = np_bslap[t_open_ind:] - - if debug_timing: - t_t = f(st) - print("2-numpy", str.format('{0:.17f}', t_t)) - st = s() - - ''' - Find first stop index after Trade Open: - - First index in np_t_open_v (numpy view of bslap dataframe) - Using a numpy view a orders of magnitude faster - - where [np_sto] (stop tiggered on variable: "close", "low" etc) < np_t_stop_pri - ''' - np_t_stop_ind = utf1st.find_1st(np_t_open_v[:, np_sto], - np_t_stop_pri, - utf1st.cmp_smaller) \ - + t_open_ind - - if debug_timing: - t_t = f(st) - print("3-numpy", str.format('{0:.17f}', t_t)) - st = s() - - ''' - Find first sell index after trade open - - First index in t_open_slice where ['sell'] = 1 - ''' - # Use numpy array for faster search for sell - # Sell uses column 3. - # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - # Numpy searches 25-35x quicker than pandas on this data - - np_t_sell_ind = utf1st.find_1st(np_t_open_v[:, np_sell], - 1, utf1st.cmp_equal) \ - + t_open_ind - - if debug_timing: - t_t = f(st) - print("4-numpy", str.format('{0:.17f}', t_t)) - st = s() - - ''' - Determine which was hit first stop or sell, use as exit - - STOP takes priority over SELL as would be 'in candle' from tick data - Sell would use Open from Next candle. - So in a draw Stop would be hit first on ticker data in live - ''' - if np_t_stop_ind <= np_t_sell_ind: - t_exit_ind = np_t_stop_ind # Set Exit row index - t_exit_type = 'stop' # Set Exit type (sell|stop) - np_t_exit_pri = np_sco # The price field our STOP exit will use - else: - # move sell onto next candle, we only look back on sell - # will use the open price later. - t_exit_ind = np_t_sell_ind # Set Exit row index - t_exit_type = 'sell' # Set Exit type (sell|stop) - np_t_exit_pri = np_open # The price field our SELL exit will use - - if debug_timing: - t_t = f(st) - print("5-logic", str.format('{0:.17f}', t_t)) - st = s() - - if debug: ''' - Print out the buys, stops, sells - Include Line before and after to for easy - Human verification + 2 - Calculate our stop-loss price + + As stop is based on buy price of our trade + - (BTO)Buys are Triggered On np_bto, typically the CLOSE of candle + - (BCO)Buys are Calculated On np_bco, default is OPEN of the next candle. + This is as we only see the CLOSE after it has happened. + The back test assumption is we have bought at first available price, the OPEN + + Requires: np_bslap - is our numpy array of the ticker DataFrame + Requires: t_open_ind - is the index row with the first buy. + Requires: p_stop - is the stop rate, ie. 0.99 is -1% + Provides: np_t_stop_pri - The value stop-loss will be triggered on ''' - # Combine the np_t_stop_pri value to bslap dataframe to make debug - # life easy. This is the currenct stop price based on buy price_ - # Don't care about performance in debug - # (add an extra column if printing as df has date in col1 not in npy) - bslap['np_stop_pri'] = np_t_stop_pri + np_t_stop_pri = (np_bslap[t_open_ind + 1, np_bco] * p_stop) - # Buy - print("=================== BUY ", pair) - print("Numpy Array BUY Index is:", t_open_ind) - print("DataFrame BUY Index is:", t_open_ind + 1, "displaying DF \n") - print("HINT, BUY trade should use OPEN price from next candle, i.e ", t_open_ind + 2, "\n") - op_is = t_open_ind - 1 # Print open index start, line before - op_if = t_open_ind + 3 # Print open index finish, line after - print(bslap.iloc[op_is:op_if], "\n") - print(bslap.iloc[t_open_ind + 1]['date']) + if debug: + print("\n(2) numpy debug\nStop-Loss has been calculated at:", np_t_stop_pri) + if debug_timing: + t_t = f(st) + print("2-numpy", str.format('{0:.17f}', t_t)) + st = s() - # Stop - Stops trigger price sto, and price received sco. (Stop Trigger|Calculated On) - print("=================== STOP ", pair) - print("Numpy Array STOP Index is:", np_t_stop_ind) - print("DataFrame STOP Index is:", np_t_stop_ind + 1, "displaying DF \n") - print("First Stop after Trade open in candle", t_open_ind + 1, "is ", np_t_stop_ind + 1,": \n", - str.format('{0:.17f}', bslap.iloc[np_t_stop_ind][sto]), - "is less than", str.format('{0:.17f}', np_t_stop_pri)) - print("If stop is first exit match sell rate is :", str.format('{0:.17f}', bslap.iloc[np_t_stop_ind][sco])) - print("HINT, STOPs should close in-candle, i.e", np_t_stop_ind + 1, - ": As live STOPs are not linked to O-C times") + ''' + 3 - Find candle STO is under Stop-Loss After Trade opened. + + where [np_sto] (stop tiggered on variable: "close", "low" etc) < np_t_stop_pri + + Requires: np_t_open_v Numpy view of ticker_data after trade open + Requires: np_sto User Var(STO)StopTriggeredOn. Typically set to "low" or "close" + Requires: np_t_stop_pri The stop-loss price STO must fall under to trigger stop + Provides: np_t_stop_ind The first candle after trade open where STO is under stop-loss + ''' + np_t_stop_ind = utf1st.find_1st(np_t_open_v[:, np_sto], + np_t_stop_pri, + utf1st.cmp_smaller) - st_is = np_t_stop_ind - 1 # Print stop index start, line before - st_if = np_t_stop_ind + 2 # Print stop index finish, line after - print(bslap.iloc[st_is:st_if], "\n") + if debug: + print("\n(3) numpy debug\nNext view index with STO (stop trigger on) under Stop-Loss is", np_t_stop_ind, + ". STO is using field", np_sto, + "\nFrom key: buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5\n") - # Sell - print("=================== SELL ", pair) - print("Numpy Array SELL Index is:", np_t_sell_ind) - print("DataFrame SELL Index is:", np_t_sell_ind + 1, "displaying DF \n") - print("First Sell Index after Trade open in in candle", np_t_sell_ind + 1) - print("HINT, if exit is SELL (not stop) trade should use OPEN price from next candle", - np_t_sell_ind + 2, "\n") - sl_is = np_t_sell_ind - 1 # Print sell index start, line before - sl_if = np_t_sell_ind + 3 # Print sell index finish, line after - print(bslap.iloc[sl_is:sl_if], "\n") + print("If -1 returned there is no stop found to end of view, then next two array lines are garbage") + print("Row", np_t_stop_ind, np_t_open_v[np_t_stop_ind]) + print("Row", np_t_stop_ind + 1, np_t_open_v[np_t_stop_ind + 1]) + if debug_timing: + t_t = f(st) + print("3-numpy", str.format('{0:.17f}', t_t)) + st = s() - # Chosen Exit (stop or sell) - print("=================== EXIT ", pair) - print("Exit type is :", t_exit_type) - # print((bslap.iloc[t_exit_ind], "\n")) - print("trade exit price field is", np_t_exit_pri, "\n") + ''' + 4 - Find first sell index after trade open + + First index in the view np_t_open_v where ['sell'] = 1 + + Requires: np_t_open_v - view of ticker_data from buy onwards + Requires: no_sell - integer '3', the buy column in the array + Provides: np_t_sell_ind index of view where first sell=1 after buy + ''' + # Use numpy array for faster search for sell + # Sell uses column 3. + # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 + # Numpy searches 25-35x quicker than pandas on this data - ''' - Trade entry is always the next candles "open" price - We trigger on close, so cannot see that till after - its closed. + np_t_sell_ind = utf1st.find_1st(np_t_open_v[:, np_sell], + 1, utf1st.cmp_equal) + if debug: + print("\n(4) numpy debug\nNext view index with sell = 1 is ", np_t_sell_ind) + print("If 0 or less is returned there is no sell found to end of view, then next lines garbage") + print("Row", np_t_sell_ind, np_t_open_v[np_t_stop_ind]) + print("Row", np_t_sell_ind + 1, np_t_open_v[np_t_stop_ind + 1]) + if debug_timing: + t_t = f(st) + print("4-numpy", str.format('{0:.17f}', t_t)) + st = s() - The exception to this is a STOP which is calculated in candle - ''' - if debug_timing: - t_t = f(st) - print("6-depra", str.format('{0:.17f}', t_t)) - st = s() + ''' + 5 - Determine which was hit first a stop or sell + To then use as exit index price-field (sell on buy, stop on stop) + + STOP takes priority over SELL as would be 'in candle' from tick data + Sell would use Open from Next candle. + So in a draw Stop would be hit first on ticker data in live + + Validity of when types of trades may be executed can be summarised as: + + Tick View + index index Buy Sell open low close high Stop price + open 2am 94 -1 0 0 ----- ------ ------ ----- ----- + open 3am 95 0 1 0 ----- ------ trg buy ----- ----- + open 4am 96 1 0 1 Enter trgstop trg sel ROI out Stop out + open 5am 97 2 0 0 Exit ------ ------- ----- ----- + open 6am 98 3 0 0 ----- ------ ------- ----- ----- + + -1 means not found till end of view i.e no valid Stop found. Exclude from match. + Stop tiggering in 1, candle we bought at OPEN is valid. + + Buys and sells are triggered at candle close + Both with action their postions at the open of the next candle Index + 1 + + Stop and buy Indexes are on the view. To map to the ticker dataframe + the t_open_ind index should be summed. + + np_t_stop_ind: Stop Found index in view + t_exit_ind : Sell found in view + t_open_ind : Where view was started on ticker_data + + TODO: fix this frig for logig test,, case/switch/dictionary would be better... + more so when later testing many options, dynamic stop / roi etc + cludge - Im setting np_t_sell_ind as 9999999999 when -1 (not found) + cludge - Im setting np_t_stop_ind as 9999999999 when -1 (not found) + + ''' + if debug: + print("\n(5) numpy debug\nStop or Sell Logic Processing") - ## use numpy view "np_t_open_v" for speed. Columns are - # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - # exception is 6 which is use the stop value. + # cludge for logic test (-1) means it was not found, set crazy high to lose < test + np_t_sell_ind = 99999999 if np_t_sell_ind <= 0 else np_t_sell_ind + np_t_stop_ind = 99999999 if np_t_stop_ind == -1 else np_t_stop_ind - np_trade_enter_price = np_bslap[t_open_ind + 1, np_open] - if t_exit_type == 'stop': - if np_t_exit_pri == 6: - np_trade_exit_price = np_t_stop_pri + # Stoploss trigger found before a sell =1 + if np_t_stop_ind < 99999999 and np_t_stop_ind <= np_t_sell_ind: + t_exit_ind = t_open_ind + np_t_stop_ind # Set Exit row index + t_exit_type = 'stop' # Set Exit type (stop) + np_t_exit_pri = np_sco # The price field our STOP exit will use + if debug: + print("Type STOP is first exit condition. " + "At view index:", np_t_stop_ind, ". Ticker data exit index is", t_exit_ind) + + # Buy = 1 found before a stoploss triggered + elif np_t_sell_ind < 99999999 and np_t_sell_ind < np_t_stop_ind: + # move sell onto next candle, we only look back on sell + # will use the open price later. + t_exit_ind = t_open_ind + np_t_sell_ind + 1 # Set Exit row index + t_exit_type = 'sell' # Set Exit type (sell) + np_t_exit_pri = np_open # The price field our SELL exit will use + if debug: + print("Type SELL is first exit condition. " + "At view index", np_t_sell_ind, ". Ticker data exit index is", t_exit_ind) + + # No stop or buy left in view - set t_exit_last -1 to handle gracefully else: + t_exit_last: int = -1 # Signal loop to exit, no buys or sells found. + t_exit_type = "No Exit" + np_t_exit_pri = 999 # field price should be calculated on. 999 a non-existent column + if debug: + print("No valid STOP or SELL found. Signalling t_exit_last to gracefully exit") + + # TODO: fix having to cludge/uncludge this .. + # Undo cludge + np_t_sell_ind = -1 if np_t_sell_ind == 99999999 else np_t_sell_ind + np_t_stop_ind = -1 if np_t_stop_ind == 99999999 else np_t_stop_ind + + if debug_timing: + t_t = f(st) + print("5-logic", str.format('{0:.17f}', t_t)) + st = s() + + if debug: + ''' + Print out the buys, stops, sells + Include Line before and after to for easy + Human verification + ''' + # Combine the np_t_stop_pri value to bslap dataframe to make debug + # life easy. This is the current stop price based on buy price_ + # This is slow but don't care about performance in debug + # + # When referencing equiv np_column, as example np_sto, its 5 in numpy and 6 in df, so +1 + # as there is no data column in the numpy array. + bslap['np_stop_pri'] = np_t_stop_pri + + # Buy + print("\n\nDATAFRAME DEBUG =================== BUY ", pair) + print("Numpy Array BUY Index is:", 0) + print("DataFrame BUY Index is:", t_open_ind, "displaying DF \n") + print("HINT, BUY trade should use OPEN price from next candle, i.e ", t_open_ind + 1) + op_is = t_open_ind - 1 # Print open index start, line before + op_if = t_open_ind + 3 # Print open index finish, line after + print(bslap.iloc[op_is:op_if], "\n") + + # Stop - Stops trigger price np_sto (+1 for pandas column), and price received np_sco +1. (Stop Trigger|Calculated On) + if np_t_stop_ind < 0: + print("DATAFRAME DEBUG =================== STOP ", pair) + print("No STOPS were found until the end of ticker data file\n") + else: + print("DATAFRAME DEBUG =================== STOP ", pair) + print("Numpy Array STOP Index is:", np_t_stop_ind, "View starts at index", t_open_ind) + df_stop_index = (t_open_ind + np_t_stop_ind) + + print("DataFrame STOP Index is:", df_stop_index, "displaying DF \n") + print("First Stoploss trigger after Trade entered at OPEN in candle", t_open_ind + 1, "is ", + df_stop_index, ": \n", + str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sto + 1]), + "is less than", str.format('{0:.17f}', np_t_stop_pri)) + + print("A stoploss exit will be calculated at rate:", + str.format('{0:.17f}', bslap.iloc[df_stop_index][np_sco + 1])) + + print("\nHINT, STOPs should exit in-candle, i.e", df_stop_index, + ": As live STOPs are not linked to O-C times") + + st_is = df_stop_index - 1 # Print stop index start, line before + st_if = df_stop_index + 2 # Print stop index finish, line after + print(bslap.iloc[st_is:st_if], "\n") + + # Sell + if np_t_sell_ind < 0: + print("DATAFRAME DEBUG =================== SELL ", pair) + print("No SELLS were found till the end of ticker data file\n") + else: + print("DATAFRAME DEBUG =================== SELL ", pair) + print("Numpy View SELL Index is:", np_t_sell_ind, "View starts at index", t_open_ind) + df_sell_index = (t_open_ind + np_t_sell_ind) + + print("DataFrame SELL Index is:", df_sell_index, "displaying DF \n") + print("First Sell Index after Trade open is in candle", df_sell_index) + print("HINT, if exit is SELL (not stop) trade should use OPEN price from next candle", + df_sell_index + 1) + sl_is = df_sell_index - 1 # Print sell index start, line before + sl_if = df_sell_index + 3 # Print sell index finish, line after + print(bslap.iloc[sl_is:sl_if], "\n") + + # Chosen Exit (stop or sell) + + print("DATAFRAME DEBUG =================== EXIT ", pair) + print("Exit type is :", t_exit_type) + print("trade exit price field is", np_t_exit_pri, "\n") + + if debug_timing: + t_t = f(st) + print("6-depra", str.format('{0:.17f}', t_t)) + st = s() + + ## use numpy view "np_t_open_v" for speed. Columns are + # buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 + # exception is 6 which is use the stop value. + + # TODO no! this is hard coded bleh fix this open + np_trade_enter_price = np_bslap[t_open_ind + 1, np_open] + if t_exit_type == 'stop': + if np_t_exit_pri == 6: + np_trade_exit_price = np_t_stop_pri + else: + np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri] + if t_exit_type == 'sell': np_trade_exit_price = np_bslap[t_exit_ind, np_t_exit_pri] - if t_exit_type == 'sell': - np_trade_exit_price = np_bslap[t_exit_ind + 1, np_t_exit_pri] - if debug_timing: - t_t = f(st) - print("7-numpy", str.format('{0:.17f}', t_t)) - st = s() + # Catch no exit found + if t_exit_type == "No Exit": + np_trade_exit_price = 0 - if debug: - print("//////////////////////////////////////////////") - print("+++++++++++++++++++++++++++++++++ Trade Enter ") - print("np_trade Enterprice is ", str.format('{0:.17f}', np_trade_enter_price)) - print("--------------------------------- Trade Exit ") - print("Trade Exit Type is ", t_exit_type) - print("np_trade Exit Price is", str.format('{0:.17f}', np_trade_exit_price)) - print("//////////////////////////////////////////////") + if debug_timing: + t_t = f(st) + print("7-numpy", str.format('{0:.17f}', t_t)) + st = s() + + if debug: + print("//////////////////////////////////////////////") + print("+++++++++++++++++++++++++++++++++ Trade Enter ") + print("np_trade Enter Price is ", str.format('{0:.17f}', np_trade_enter_price)) + print("--------------------------------- Trade Exit ") + print("Trade Exit Type is ", t_exit_type) + print("np_trade Exit Price is", str.format('{0:.17f}', np_trade_exit_price)) + print("//////////////////////////////////////////////") + + else: # no buys were found, step 0 returned -1 + # Gracefully exit the loop + t_exit_last == -1 + if debug: + print("\n(E) No buys were found in remaining ticker file. Exiting", pair) # Loop control - catch no closed trades. if debug: @@ -706,87 +826,47 @@ class Backtesting(object): " Dataframe Exit Index is: ", t_exit_ind) print("Exit Index Last, Exit Index Now Are: ", t_exit_last, t_exit_ind) - if t_exit_last >= t_exit_ind: + if t_exit_last >= t_exit_ind or t_exit_last == -1: """ + Break loop and go on to next pair. + When last trade exit equals index of last exit, there is no opportunity to close any more trades. - - Break loop and go on to next pair. - - TODO - add handing here to record none closed open trades """ - + # TODO :add handing here to record none closed open trades if debug: print(bslap_pair_results) - break else: """ - Add trade to backtest looking results list of dicts - Loop back to look for more trades. - """ - if debug_timing: - t_t = f(st) - print("8a-IfEls", str.format('{0:.17f}', t_t)) - st = s() - # Index will change if incandle stop or look back as close Open and Sell - if t_exit_type == 'stop': - close_index: int = t_exit_ind + 1 - elif t_exit_type == 'sell': - close_index: int = t_exit_ind + 2 - else: - close_index: int = t_exit_ind + 1 - - if debug_timing: - t_t = f(st) - print("8b-Index", str.format('{0:.17f}', t_t)) - st = s() - - # # Profit ABS. - # # sumrecieved((rate * numTokens) * fee) - sumpaid ((rate * numTokens) * fee) - # sumpaid: float = (np_trade_enter_price * stake) - # sumpaid_fee: float = sumpaid * open_fee - # sumrecieved: float = (np_trade_exit_price * stake) - # sumrecieved_fee: float = sumrecieved * close_fee - # profit_abs: float = sumrecieved - sumpaid - sumpaid_fee - sumrecieved_fee - - if debug_timing: - t_t = f(st) - print("8d---ABS", str.format('{0:.17f}', t_t)) - st = s() - + Add trade to backtest looking results list of dicts + Loop back to look for more trades. + """ # Build trade dictionary ## In general if a field can be calculated later from other fields leave blank here - ## Its X(numer of trades faster) to calc all in a single vector than 1 trade at a time + ## Its X(number of trades faster) to calc all in a single vector than 1 trade at a time + # create a new dict + close_index: int = t_exit_ind + bslap_result = {} # Must have at start or we end up with a list of multiple same last result bslap_result["pair"] = pair - bslap_result["profit_percent"] = "1" # To be 1 vector calc across trades when loop complete - bslap_result["profit_abs"] = "1" # To be 1 vector calc across trades when loop complete + bslap_result["profit_percent"] = "" # To be 1 vector calc across trades when loop complete + bslap_result["profit_abs"] = "" # To be 1 vector calc across trades when loop complete bslap_result["open_time"] = np_bslap_dates[t_open_ind + 1] # use numpy array, pandas 20x slower bslap_result["close_time"] = np_bslap_dates[close_index] # use numpy array, pandas 20x slower - bslap_result["open_index"] = t_open_ind + 2 # +1 between np and df, +1 as we buy on next. + bslap_result["open_index"] = t_open_ind + 1 # +1 as we buy on next. bslap_result["close_index"] = close_index - bslap_result["trade_duration"] = "1" # To be 1 vector calc across trades when loop complete + bslap_result["trade_duration"] = "" # To be 1 vector calc across trades when loop complete bslap_result["open_at_end"] = False bslap_result["open_rate"] = round(np_trade_enter_price, 15) bslap_result["close_rate"] = round(np_trade_exit_price, 15) bslap_result["exit_type"] = t_exit_type - - if debug_timing: - t_t = f(st) - print("8e-trade", str.format('{0:.17f}', t_t)) - st = s() - # Add trade dictionary to list + # append the dict to the list and print list bslap_pair_results.append(bslap_result) if debug: - print(bslap_pair_results) - - if debug_timing: - t_t = f(st) - print("8f--list", str.format('{0:.17f}', t_t)) - st = s() + print("The trade dict is: \n", bslap_result) + print("Trades dicts in list after append are: \n ", bslap_pair_results) """ Loop back to start. t_exit_last becomes where loop @@ -802,9 +882,6 @@ class Backtesting(object): # Send back List of trade dicts return bslap_pair_results - - - def start(self) -> None: """ Run a backtesting end-to-end @@ -868,9 +945,9 @@ class Backtesting(object): self._store_backtest_result(self.config.get('exportfilename'), results) logger.info( - '\n================================================= ' - 'BACKTESTING REPORT' - ' ==================================================\n' + '\n====================================================== ' + 'BackSLAP REPORT' + ' =======================================================\n' '%s', self._generate_text_table( data,