Merge branch 'develop' of github.com:froggleston/freqtrade into reject_report

This commit is contained in:
froggleston 2022-12-08 18:48:33 +00:00
commit 6f08b610d6
35 changed files with 469 additions and 246 deletions

View File

@ -20,7 +20,7 @@ Please do not use bug reports to request new features.
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
Note: All issues other than enhancement requests will be closed without further comment if the above template is deleted or not filled out.

View File

@ -18,7 +18,7 @@ Have you search for this feature before requesting it? It's highly likely that a
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
## Describe the enhancement

View File

@ -18,7 +18,7 @@ Please do not use the question template to report bugs or to request new feature
* Operating system: ____
* Python Version: _____ (`python -V`)
* CCXT version: _____ (`pip freeze | grep ccxt`)
* Freqtrade Version: ____ (`freqtrade -V` or `docker-compose run --rm freqtrade -V` for Freqtrade running in docker)
* Freqtrade Version: ____ (`freqtrade -V` or `docker compose run --rm freqtrade -V` for Freqtrade running in docker)
## Your question

View File

@ -410,7 +410,7 @@ jobs:
python setup.py sdist bdist_wheel
- name: Publish to PyPI (Test)
uses: pypa/gh-action-pypi-publish@v1.5.1
uses: pypa/gh-action-pypi-publish@v1.6.1
if: (github.event_name == 'release')
with:
user: __token__
@ -418,7 +418,7 @@ jobs:
repository_url: https://test.pypi.org/legacy/
- name: Publish to PyPI
uses: pypa/gh-action-pypi-publish@v1.5.1
uses: pypa/gh-action-pypi-publish@v1.6.1
if: (github.event_name == 'release')
with:
user: __token__

View File

@ -5,7 +5,7 @@ You can analyze the results of backtests and trading history easily using Jupyte
## Quick start with docker
Freqtrade provides a docker-compose file which starts up a jupyter lab server.
You can run this server using the following command: `docker-compose -f docker/docker-compose-jupyter.yml up`
You can run this server using the following command: `docker compose -f docker/docker-compose-jupyter.yml up`
This will create a dockercontainer running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
Please use the link that's printed in the console after startup for simplified login.

View File

@ -4,20 +4,22 @@ This page explains how to run the bot with Docker. It is not meant to work out o
## Install Docker
Start by downloading and installing Docker CE for your platform:
Start by downloading and installing Docker / Docker Desktop for your platform:
* [Mac](https://docs.docker.com/docker-for-mac/install/)
* [Windows](https://docs.docker.com/docker-for-windows/install/)
* [Linux](https://docs.docker.com/install/)
To simplify running freqtrade, [`docker-compose`](https://docs.docker.com/compose/install/) should be installed and available to follow the below [docker quick start guide](#docker-quick-start).
!!! Info "Docker compose install"
Freqtrade documentation assumes the use of Docker desktop (or the docker compose plugin).
While the docker-compose standalone installation still works, it will require changing all `docker compose` commands from `docker compose` to `docker-compose` to work (e.g. `docker compose up -d` will become `docker-compose up -d`).
## Freqtrade with docker-compose
## Freqtrade with docker
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker-compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
Freqtrade provides an official Docker image on [Dockerhub](https://hub.docker.com/r/freqtradeorg/freqtrade/), as well as a [docker compose file](https://github.com/freqtrade/freqtrade/blob/stable/docker-compose.yml) ready for usage.
!!! Note
- The following section assumes that `docker` and `docker-compose` are installed and available to the logged in user.
- The following section assumes that `docker` is installed and available to the logged in user.
- All below commands use relative directories and will have to be executed from the directory containing the `docker-compose.yml` file.
### Docker quick start
@ -31,13 +33,13 @@ cd ft_userdata/
curl https://raw.githubusercontent.com/freqtrade/freqtrade/stable/docker-compose.yml -o docker-compose.yml
# Pull the freqtrade image
docker-compose pull
docker compose pull
# Create user directory structure
docker-compose run --rm freqtrade create-userdir --userdir user_data
docker compose run --rm freqtrade create-userdir --userdir user_data
# Create configuration - Requires answering interactive questions
docker-compose run --rm freqtrade new-config --config user_data/config.json
docker compose run --rm freqtrade new-config --config user_data/config.json
```
The above snippet creates a new directory called `ft_userdata`, downloads the latest compose file and pulls the freqtrade image.
@ -64,7 +66,7 @@ The `SampleStrategy` is run by default.
Once this is done, you're ready to launch the bot in trading mode (Dry-run or Live-trading, depending on your answer to the corresponding question you made above).
``` bash
docker-compose up -d
docker compose up -d
```
!!! Warning "Default configuration"
@ -84,27 +86,27 @@ You can now access the UI by typing localhost:8080 in your browser.
#### Monitoring the bot
You can check for running instances with `docker-compose ps`.
You can check for running instances with `docker compose ps`.
This should list the service `freqtrade` as `running`. If that's not the case, best check the logs (see next point).
#### Docker-compose logs
#### Docker compose logs
Logs will be written to: `user_data/logs/freqtrade.log`.
You can also check the latest log with the command `docker-compose logs -f`.
You can also check the latest log with the command `docker compose logs -f`.
#### Database
The database will be located at: `user_data/tradesv3.sqlite`
#### Updating freqtrade with docker-compose
#### Updating freqtrade with docker
Updating freqtrade when using `docker-compose` is as simple as running the following 2 commands:
Updating freqtrade when using `docker` is as simple as running the following 2 commands:
``` bash
# Download the latest image
docker-compose pull
docker compose pull
# Restart the image
docker-compose up -d
docker compose up -d
```
This will first pull the latest image, and will then restart the container with the just pulled version.
@ -116,43 +118,43 @@ This will first pull the latest image, and will then restart the container with
Advanced users may edit the docker-compose file further to include all possible options or arguments.
All freqtrade arguments will be available by running `docker-compose run --rm freqtrade <command> <optional arguments>`.
All freqtrade arguments will be available by running `docker compose run --rm freqtrade <command> <optional arguments>`.
!!! Warning "`docker-compose` for trade commands"
Trade commands (`freqtrade trade <...>`) should not be ran via `docker-compose run` - but should use `docker-compose up -d` instead.
!!! Warning "`docker compose` for trade commands"
Trade commands (`freqtrade trade <...>`) should not be ran via `docker compose run` - but should use `docker compose up -d` instead.
This makes sure that the container is properly started (including port forwardings) and will make sure that the container will restart after a system reboot.
If you intend to use freqUI, please also ensure to adjust the [configuration accordingly](rest-api.md#configuration-with-docker), otherwise the UI will not be available.
!!! Note "`docker-compose run --rm`"
!!! Note "`docker compose run --rm`"
Including `--rm` will remove the container after completion, and is highly recommended for all modes except trading mode (running with `freqtrade trade` command).
??? Note "Using docker without docker-compose"
"`docker-compose run --rm`" will require a compose file to be provided.
??? Note "Using docker without docker"
"`docker compose run --rm`" will require a compose file to be provided.
Some freqtrade commands that don't require authentication such as `list-pairs` can be run with "`docker run --rm`" instead.
For example `docker run --rm freqtradeorg/freqtrade:stable list-pairs --exchange binance --quote BTC --print-json`.
This can be useful for fetching exchange information to add to your `config.json` without affecting your running containers.
#### Example: Download data with docker-compose
#### Example: Download data with docker
Download backtesting data for 5 days for the pair ETH/BTC and 1h timeframe from Binance. The data will be stored in the directory `user_data/data/` on the host.
``` bash
docker-compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
docker compose run --rm freqtrade download-data --pairs ETH/BTC --exchange binance --days 5 -t 1h
```
Head over to the [Data Downloading Documentation](data-download.md) for more details on downloading data.
#### Example: Backtest with docker-compose
#### Example: Backtest with docker
Run backtesting in docker-containers for SampleStrategy and specified timerange of historical data, on 5m timeframe:
``` bash
docker-compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
docker compose run --rm freqtrade backtesting --config user_data/config.json --strategy SampleStrategy --timerange 20190801-20191001 -i 5m
```
Head over to the [Backtesting Documentation](backtesting.md) to learn more.
### Additional dependencies with docker-compose
### Additional dependencies with docker
If your strategy requires dependencies not included in the default image - it will be necessary to build the image on your host.
For this, please create a Dockerfile containing installation steps for the additional dependencies (have a look at [docker/Dockerfile.custom](https://github.com/freqtrade/freqtrade/blob/develop/docker/Dockerfile.custom) for an example).
@ -166,15 +168,15 @@ You'll then also need to modify the `docker-compose.yml` file and uncomment the
dockerfile: "./Dockerfile.<yourextension>"
```
You can then run `docker-compose build --pull` to build the docker image, and run it using the commands described above.
You can then run `docker compose build --pull` to build the docker image, and run it using the commands described above.
### Plotting with docker-compose
### Plotting with docker
Commands `freqtrade plot-profit` and `freqtrade plot-dataframe` ([Documentation](plotting.md)) are available by changing the image to `*_plot` in your docker-compose.yml file.
You can then use these commands as follows:
``` bash
docker-compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
docker compose run --rm freqtrade plot-dataframe --strategy AwesomeStrategy -p BTC/ETH --timerange=20180801-20180805
```
The output will be stored in the `user_data/plot` directory, and can be opened with any modern browser.
@ -185,7 +187,7 @@ Freqtrade provides a docker-compose file which starts up a jupyter lab server.
You can run this server using the following command:
``` bash
docker-compose -f docker/docker-compose-jupyter.yml up
docker compose -f docker/docker-compose-jupyter.yml up
```
This will create a docker-container running jupyter lab, which will be accessible using `https://127.0.0.1:8888/lab`.
@ -194,7 +196,7 @@ Please use the link that's printed in the console after startup for simplified l
Since part of this image is built on your machine, it is recommended to rebuild the image from time to time to keep freqtrade (and dependencies) up-to-date.
``` bash
docker-compose -f docker/docker-compose-jupyter.yml build --no-cache
docker compose -f docker/docker-compose-jupyter.yml build --no-cache
```
## Troubleshooting

View File

@ -1,6 +1,6 @@
markdown==3.3.7
mkdocs==1.4.2
mkdocs-material==8.5.10
mkdocs-material==8.5.11
mdx_truly_sane_lists==1.3
pymdown-extensions==9.8
pymdown-extensions==9.9
jinja2==3.1.2

View File

@ -13,12 +13,12 @@ Feel free to use a visual Database editor like SqliteBrowser if you feel more co
sudo apt-get install sqlite3
```
### Using sqlite3 via docker-compose
### Using sqlite3 via docker
The freqtrade docker image does contain sqlite3, so you can edit the database without having to install anything on the host system.
``` bash
docker-compose exec freqtrade /bin/bash
docker compose exec freqtrade /bin/bash
sqlite3 <database-file>.sqlite
```

View File

@ -2,12 +2,37 @@
Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.
The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.
Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details.
## Setup
### Change Working directory to repository root
```python
import os
from pathlib import Path
# Change directory
# Modify this cell to insure that the output shows the correct path.
# Define all paths relative to the project root shown in the cell output
project_root = "somedir/freqtrade"
i=0
try:
os.chdirdir(project_root)
assert Path('LICENSE').is_file()
except:
while i<4 and (not Path('LICENSE').is_file()):
os.chdir(Path(Path.cwd(), '../'))
i+=1
project_root = Path.cwd()
print(Path.cwd())
```
### Configure Freqtrade environment
```python
from freqtrade.configuration import Configuration
# Customize these according to your needs.
@ -15,14 +40,14 @@ from freqtrade.configuration import Configuration
# Initialize empty configuration object
config = Configuration.from_files([])
# Optionally (recommended), use existing configuration file
# config = Configuration.from_files(["config.json"])
# config = Configuration.from_files(["user_data/config.json"])
# Define some constants
config["timeframe"] = "5m"
# Name of the strategy class
config["strategy"] = "SampleStrategy"
# Location of the data
data_location = config['datadir']
data_location = config["datadir"]
# Pair to analyze - Only use one pair here
pair = "BTC/USDT"
```
@ -36,12 +61,12 @@ from freqtrade.enums import CandleType
candles = load_pair_history(datadir=data_location,
timeframe=config["timeframe"],
pair=pair,
data_format = "hdf5",
data_format = "json", # Make sure to update this to your data
candle_type=CandleType.SPOT,
)
# Confirm success
print("Loaded " + str(len(candles)) + f" rows of data for {pair} from {data_location}")
print(f"Loaded {len(candles)} rows of data for {pair} from {data_location}")
candles.head()
```

View File

@ -6,14 +6,14 @@ To update your freqtrade installation, please use one of the below methods, corr
Breaking changes / changed behavior will be documented in the changelog that is posted alongside every release.
For the develop branch, please follow PR's to avoid being surprised by changes.
## docker-compose
## docker
!!! Note "Legacy installations using the `master` image"
We're switching from master to stable for the release Images - please adjust your docker-file and replace `freqtradeorg/freqtrade:master` with `freqtradeorg/freqtrade:stable`
``` bash
docker-compose pull
docker-compose up -d
docker compose pull
docker compose up -d
```
## Installation via setup script

View File

@ -652,7 +652,7 @@ Common arguments:
You can also use webserver mode via docker.
Starting a one-off container requires the configuration of the port explicitly, as ports are not exposed by default.
You can use `docker-compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
You can use `docker compose run --rm -p 127.0.0.1:8080:8080 freqtrade webserver` to start a one-off container that'll be removed once you stop it. This assumes that port 8080 is still available and no other bot is running on that port.
Alternatively, you can reconfigure the docker-compose file to have the command updated:
@ -662,7 +662,7 @@ Alternatively, you can reconfigure the docker-compose file to have the command u
--config /freqtrade/user_data/config.json
```
You can now use `docker-compose up` to start the webserver.
You can now use `docker compose up` to start the webserver.
This assumes that the configuration has a webserver enabled and configured for docker (listening port = `0.0.0.0`).
!!! Tip

View File

@ -104,13 +104,15 @@ class DataProvider:
def _emit_df(
self,
pair_key: PairWithTimeframe,
dataframe: DataFrame
dataframe: DataFrame,
new_candle: bool
) -> None:
"""
Send this dataframe as an ANALYZED_DF message to RPC
:param pair_key: PairWithTimeframe tuple
:param data: Tuple containing the DataFrame and the datetime it was cached
:param dataframe: Dataframe to emit
:param new_candle: This is a new candle
"""
if self.__rpc:
self.__rpc.send_msg(
@ -123,6 +125,11 @@ class DataProvider:
}
}
)
if new_candle:
self.__rpc.send_msg({
'type': RPCMessageType.NEW_CANDLE,
'data': pair_key,
})
def _add_external_df(
self,

View File

@ -6,7 +6,7 @@ from freqtrade.enums.exittype import ExitType
from freqtrade.enums.hyperoptstate import HyperoptState
from freqtrade.enums.marginmode import MarginMode
from freqtrade.enums.ordertypevalue import OrderTypeValues
from freqtrade.enums.rpcmessagetype import RPCMessageType, RPCRequestType
from freqtrade.enums.rpcmessagetype import NO_ECHO_MESSAGES, RPCMessageType, RPCRequestType
from freqtrade.enums.runmode import NON_UTIL_MODES, OPTIMIZE_MODES, TRADING_MODES, RunMode
from freqtrade.enums.signaltype import SignalDirection, SignalTagType, SignalType
from freqtrade.enums.state import State

View File

@ -21,6 +21,7 @@ class RPCMessageType(str, Enum):
WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df'
NEW_CANDLE = 'new_candle'
def __repr__(self):
return self.value
@ -35,3 +36,6 @@ class RPCRequestType(str, Enum):
WHITELIST = 'whitelist'
ANALYZED_DF = 'analyzed_df'
NO_ECHO_MESSAGES = (RPCMessageType.ANALYZED_DF, RPCMessageType.WHITELIST, RPCMessageType.NEW_CANDLE)

View File

@ -20,6 +20,9 @@ class Base4ActionRLEnv(BaseEnvironment):
"""
Base class for a 4 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions))
@ -92,9 +95,12 @@ class Base4ActionRLEnv(BaseEnvironment):
info = dict(
tick=self._current_tick,
action=action,
total_reward=self.total_reward,
total_profit=self._total_profit,
position=self._position.value
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
)
observation = self._get_observation()

View File

@ -21,6 +21,9 @@ class Base5ActionRLEnv(BaseEnvironment):
"""
Base class for a 5 action environment
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.actions = Actions
def set_action_space(self):
self.action_space = spaces.Discrete(len(Actions))
@ -98,9 +101,12 @@ class Base5ActionRLEnv(BaseEnvironment):
info = dict(
tick=self._current_tick,
action=action,
total_reward=self.total_reward,
total_profit=self._total_profit,
position=self._position.value
position=self._position.value,
trade_duration=self.get_trade_duration(),
current_profit_pct=self.get_unrealized_profit()
)
observation = self._get_observation()

View File

@ -2,7 +2,7 @@ import logging
import random
from abc import abstractmethod
from enum import Enum
from typing import Optional
from typing import Optional, Type
import gym
import numpy as np
@ -12,11 +12,23 @@ from gym.utils import seeding
from pandas import DataFrame
from freqtrade.data.dataprovider import DataProvider
from freqtrade.enums import RunMode
logger = logging.getLogger(__name__)
class BaseActions(Enum):
"""
Default action space, mostly used for type handling.
"""
Neutral = 0
Long_enter = 1
Long_exit = 2
Short_enter = 3
Short_exit = 4
class Positions(Enum):
Short = 0
Long = 1
@ -64,6 +76,16 @@ class BaseEnvironment(gym.Env):
else:
self.fee = 0.0015
# set here to default 5Ac, but all children envs can override this
self.actions: Type[Enum] = BaseActions
self.custom_info: dict = {}
self.live: bool = False
if dp:
self.live = dp.runmode in (RunMode.DRY_RUN, RunMode.LIVE)
if not self.live and self.add_state_info:
self.add_state_info = False
logger.warning("add_state_info is not available in backtesting. Deactivating.")
def reset_env(self, df: DataFrame, prices: DataFrame, window_size: int,
reward_kwargs: dict, starting_point=True):
"""
@ -118,6 +140,19 @@ class BaseEnvironment(gym.Env):
return [seed]
def reset(self):
"""
Reset is called at the beginning of every episode
"""
# custom_info is used for episodic reports and tensorboard logging
self.custom_info["Invalid"] = 0
self.custom_info["Hold"] = 0
self.custom_info["Unknown"] = 0
self.custom_info["pnl_factor"] = 0
self.custom_info["duration_factor"] = 0
self.custom_info["reward_exit"] = 0
self.custom_info["reward_hold"] = 0
for action in self.actions:
self.custom_info[f"{action.name}"] = 0
self._done = False
@ -160,7 +195,7 @@ class BaseEnvironment(gym.Env):
"""
features_window = self.signal_features[(
self._current_tick - self.window_size):self._current_tick]
if self.add_state_info:
if self.add_state_info and self.live:
features_and_state = DataFrame(np.zeros((len(features_window), 3)),
columns=['current_profit_pct',
'position',
@ -271,6 +306,13 @@ class BaseEnvironment(gym.Env):
def current_price(self) -> float:
return self.prices.iloc[self._current_tick].open
def get_actions(self) -> Type[Enum]:
"""
Used by SubprocVecEnv to get actions from
initialized env for tensorboard callback
"""
return self.actions
# Keeping around incase we want to start building more complex environment
# templates in the future.
# def most_recent_return(self):

View File

@ -21,7 +21,8 @@ from freqtrade.exceptions import OperationalException
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.freqai_interface import IFreqaiModel
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv
from freqtrade.freqai.RL.BaseEnvironment import Positions
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, Positions
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
from freqtrade.persistence import Trade
@ -44,8 +45,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
'cpu_count', 1), max(int(self.max_system_threads / 2), 1))
th.set_num_threads(self.max_threads)
self.reward_params = self.freqai_info['rl_config']['model_reward_parameters']
self.train_env: Union[SubprocVecEnv, gym.Env] = None
self.eval_env: Union[SubprocVecEnv, gym.Env] = None
self.train_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.eval_env: Union[SubprocVecEnv, Type[gym.Env]] = gym.Env()
self.eval_callback: Optional[EvalCallback] = None
self.model_type = self.freqai_info['rl_config']['model_type']
self.rl_config = self.freqai_info['rl_config']
@ -65,6 +66,8 @@ class BaseReinforcementLearningModel(IFreqaiModel):
self.unset_outlier_removal()
self.net_arch = self.rl_config.get('net_arch', [128, 128])
self.dd.model_type = import_str
self.tensorboard_callback: TensorboardCallback = \
TensorboardCallback(verbose=1, actions=BaseActions)
def unset_outlier_removal(self):
"""
@ -156,6 +159,9 @@ class BaseReinforcementLearningModel(IFreqaiModel):
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path))
actions = self.train_env.get_actions()
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)
@abstractmethod
def fit(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen, **kwargs):
"""

View File

@ -0,0 +1,60 @@
from enum import Enum
from typing import Any, Dict, Type, Union
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.logger import HParam
from freqtrade.freqai.RL.BaseEnvironment import BaseActions, BaseEnvironment
class TensorboardCallback(BaseCallback):
"""
Custom callback for plotting additional values in tensorboard and
episodic summary reports.
"""
def __init__(self, verbose=1, actions: Type[Enum] = BaseActions):
super(TensorboardCallback, self).__init__(verbose)
self.model: Any = None
self.logger = None # type: Any
self.training_env: BaseEnvironment = None # type: ignore
self.actions: Type[Enum] = actions
def _on_training_start(self) -> None:
hparam_dict = {
"algorithm": self.model.__class__.__name__,
"learning_rate": self.model.learning_rate,
# "gamma": self.model.gamma,
# "gae_lambda": self.model.gae_lambda,
# "batch_size": self.model.batch_size,
# "n_steps": self.model.n_steps,
}
metric_dict: Dict[str, Union[float, int]] = {
"eval/mean_reward": 0,
"rollout/ep_rew_mean": 0,
"rollout/ep_len_mean": 0,
"train/value_loss": 0,
"train/explained_variance": 0,
}
self.logger.record(
"hparams",
HParam(hparam_dict, metric_dict),
exclude=("stdout", "log", "json", "csv"),
)
def _on_step(self) -> bool:
custom_info = self.training_env.get_attr("custom_info")[0]
self.logger.record("_state/position", self.locals["infos"][0]["position"])
self.logger.record("_state/trade_duration", self.locals["infos"][0]["trade_duration"])
self.logger.record("_state/current_profit_pct", self.locals["infos"]
[0]["current_profit_pct"])
self.logger.record("_reward/total_profit", self.locals["infos"][0]["total_profit"])
self.logger.record("_reward/total_reward", self.locals["infos"][0]["total_reward"])
self.logger.record_mean("_reward/mean_trade_duration", self.locals["infos"]
[0]["trade_duration"])
self.logger.record("_actions/action", self.locals["infos"][0]["action"])
self.logger.record("_actions/_Invalid", custom_info["Invalid"])
self.logger.record("_actions/_Unknown", custom_info["Unknown"])
self.logger.record("_actions/Hold", custom_info["Hold"])
for action in self.actions:
self.logger.record(f"_actions/{action.name}", custom_info[action.name])
return True

View File

@ -462,10 +462,10 @@ class FreqaiDataKitchen:
:param df: Dataframe containing all candles to run the entire backtest. Here
it is sliced down to just the present training period.
"""
df = df.loc[df["date"] >= timerange.startdt, :]
if not self.live:
df = df.loc[df["date"] < timerange.stopdt, :]
df = df.loc[(df["date"] >= timerange.startdt) & (df["date"] < timerange.stopdt), :]
else:
df = df.loc[df["date"] >= timerange.startdt, :]
return df

View File

@ -282,10 +282,10 @@ class IFreqaiModel(ABC):
train_it += 1
total_trains = len(dk.backtesting_timeranges)
self.training_timerange = tr_train
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
len_backtest_df = len(dataframe.loc[(dataframe["date"] >= tr_backtest.startdt) & (
dataframe["date"] < tr_backtest.stopdt), :])
if not self.ensure_data_exists(dataframe_backtest, tr_backtest, pair):
if not self.ensure_data_exists(len_backtest_df, tr_backtest, pair):
continue
self.log_backtesting_progress(tr_train, pair, train_it, total_trains)
@ -298,13 +298,15 @@ class IFreqaiModel(ABC):
dk.set_new_model_names(pair, timestamp_model_id)
if dk.check_if_backtest_prediction_is_valid(len(dataframe_backtest)):
if dk.check_if_backtest_prediction_is_valid(len_backtest_df):
self.dd.load_metadata(dk)
dk.find_features(dataframe_train)
dk.find_features(dataframe)
self.check_if_feature_list_matches_strategy(dk)
append_df = dk.get_backtesting_prediction()
dk.append_predictions(append_df)
else:
dataframe_train = dk.slice_dataframe(tr_train, dataframe)
dataframe_backtest = dk.slice_dataframe(tr_backtest, dataframe)
if not self.model_exists(dk):
dk.find_features(dataframe_train)
dk.find_labels(dataframe_train)
@ -804,16 +806,16 @@ class IFreqaiModel(ABC):
self.pair_it = 1
self.current_candle = self.dd.current_candle
def ensure_data_exists(self, dataframe_backtest: DataFrame,
def ensure_data_exists(self, len_dataframe_backtest: int,
tr_backtest: TimeRange, pair: str) -> bool:
"""
Check if the dataframe is empty, if not, report useful information to user.
:param dataframe_backtest: the backtesting dataframe, maybe empty.
:param len_dataframe_backtest: the len of backtesting dataframe
:param tr_backtest: current backtesting timerange.
:param pair: current pair
:return: if the data exists or not
"""
if self.config.get("freqai_backtest_live_models", False) and len(dataframe_backtest) == 0:
if self.config.get("freqai_backtest_live_models", False) and len_dataframe_backtest == 0:
logger.info(f"No data found for pair {pair} from "
f"from { tr_backtest.start_fmt} to {tr_backtest.stop_fmt}. "
"Probably more than one training within the same candle period.")

View File

@ -71,7 +71,7 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
model.learn(
total_timesteps=int(total_timesteps),
callback=self.eval_callback
callback=[self.eval_callback, self.tensorboard_callback]
)
if Path(dk.data_path / "best_model.zip").is_file():
@ -100,17 +100,24 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
"""
# first, penalize if the action is not valid
if not self._is_valid(action):
self.custom_info["Invalid"] += 1
return -2
pnl = self.get_unrealized_profit()
factor = 100.
# reward agent for entering trades
if (action in (Actions.Long_enter.value, Actions.Short_enter.value)
if (action == Actions.Long_enter.value
and self._position == Positions.Neutral):
self.custom_info[f"{Actions.Long_enter.name}"] += 1
return 25
if (action == Actions.Short_enter.value
and self._position == Positions.Neutral):
self.custom_info[f"{Actions.Short_enter.name}"] += 1
return 25
# discourage agent from not entering trades
if action == Actions.Neutral.value and self._position == Positions.Neutral:
self.custom_info[f"{Actions.Neutral.name}"] += 1
return -1
max_trade_duration = self.rl_config.get('max_trade_duration_candles', 300)
@ -124,18 +131,22 @@ class ReinforcementLearner(BaseReinforcementLearningModel):
# discourage sitting in position
if (self._position in (Positions.Short, Positions.Long) and
action == Actions.Neutral.value):
self.custom_info["Hold"] += 1
return -1 * trade_duration / max_trade_duration
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
self.custom_info[f"{Actions.Long_exit.name}"] += 1
return float(pnl * factor)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
if pnl > self.profit_aim * self.rr:
factor *= self.rl_config['model_reward_parameters'].get('win_reward_factor', 2)
self.custom_info[f"{Actions.Short_exit.name}"] += 1
return float(pnl * factor)
self.custom_info["Unknown"] += 1
return 0.

View File

@ -1,7 +1,6 @@
import logging
from typing import Any, Dict # , Tuple
from typing import Any, Dict
# import numpy.typing as npt
from pandas import DataFrame
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.vec_env import SubprocVecEnv
@ -9,6 +8,7 @@ from stable_baselines3.common.vec_env import SubprocVecEnv
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.prediction_models.ReinforcementLearner import ReinforcementLearner
from freqtrade.freqai.RL.BaseReinforcementLearningModel import make_env
from freqtrade.freqai.RL.TensorboardCallback import TensorboardCallback
logger = logging.getLogger(__name__)
@ -49,3 +49,6 @@ class ReinforcementLearner_multiproc(ReinforcementLearner):
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=len(train_df),
best_model_save_path=str(dk.data_path))
actions = self.train_env.env_method("get_actions")[0]
self.tensorboard_callback = TensorboardCallback(verbose=1, actions=actions)

View File

@ -37,7 +37,8 @@ logger = logging.getLogger(__name__)
# 2.16: Additional daily metrics
# 2.17: Forceentry - leverage, partial force_exit
# 2.20: Add websocket endpoints
API_VERSION = 2.20
# 2.21: Add new_candle messagetype
API_VERSION = 2.21
# Public API, requires no auth.
router_public = APIRouter()

View File

@ -6,7 +6,7 @@ from collections import deque
from typing import Any, Dict, List
from freqtrade.constants import Config
from freqtrade.enums import RPCMessageType
from freqtrade.enums import NO_ECHO_MESSAGES, RPCMessageType
from freqtrade.rpc import RPC, RPCHandler
@ -67,7 +67,7 @@ class RPCManager:
'status': 'stopping bot'
}
"""
if msg.get('type') not in (RPCMessageType.ANALYZED_DF, RPCMessageType.WHITELIST):
if msg.get('type') not in NO_ECHO_MESSAGES:
logger.info('Sending rpc message: %s', msg)
if 'pair' in msg:
msg.update({

View File

@ -68,6 +68,7 @@ class Webhook(RPCHandler):
RPCMessageType.PROTECTION_TRIGGER_GLOBAL,
RPCMessageType.WHITELIST,
RPCMessageType.ANALYZED_DF,
RPCMessageType.NEW_CANDLE,
RPCMessageType.STRATEGY_MSG):
# Don't fail for non-implemented types
return None

View File

@ -739,10 +739,10 @@ class IStrategy(ABC, HyperStrategyMixin):
"""
pair = str(metadata.get('pair'))
new_candle = self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']
# Test if seen this pair and last candle before.
# always run if process_only_new_candles is set to false
if (not self.process_only_new_candles or
self._last_candle_seen_per_pair.get(pair, None) != dataframe.iloc[-1]['date']):
if not self.process_only_new_candles or new_candle:
# Defs that only make change on new candle data.
dataframe = self.analyze_ticker(dataframe, metadata)
@ -751,7 +751,7 @@ class IStrategy(ABC, HyperStrategyMixin):
candle_type = self.config.get('candle_type_def', CandleType.SPOT)
self.dp._set_cached_df(pair, self.timeframe, dataframe, candle_type=candle_type)
self.dp._emit_df((pair, self.timeframe, candle_type), dataframe)
self.dp._emit_df((pair, self.timeframe, candle_type), dataframe, new_candle)
else:
logger.debug("Skipping TA Analysis for already analyzed candle")

View File

@ -7,14 +7,17 @@
"# Strategy analysis example\n",
"\n",
"Debugging a strategy can be time-consuming. Freqtrade offers helper functions to visualize raw data.\n",
"The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location."
"The following assumes you work with SampleStrategy, data for 5m timeframe from Binance and have downloaded them into the data directory in the default location.\n",
"Please follow the [documentation](https://www.freqtrade.io/en/stable/data-download/) for more details."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup"
"## Setup\n",
"\n",
"### Change Working directory to repository root"
]
},
{
@ -23,7 +26,38 @@
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from pathlib import Path\n",
"\n",
"# Change directory\n",
"# Modify this cell to insure that the output shows the correct path.\n",
"# Define all paths relative to the project root shown in the cell output\n",
"project_root = \"somedir/freqtrade\"\n",
"i=0\n",
"try:\n",
" os.chdirdir(project_root)\n",
" assert Path('LICENSE').is_file()\n",
"except:\n",
" while i<4 and (not Path('LICENSE').is_file()):\n",
" os.chdir(Path(Path.cwd(), '../'))\n",
" i+=1\n",
" project_root = Path.cwd()\n",
"print(Path.cwd())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Configure Freqtrade environment"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from freqtrade.configuration import Configuration\n",
"\n",
"# Customize these according to your needs.\n",
@ -31,14 +65,14 @@
"# Initialize empty configuration object\n",
"config = Configuration.from_files([])\n",
"# Optionally (recommended), use existing configuration file\n",
"# config = Configuration.from_files([\"config.json\"])\n",
"# config = Configuration.from_files([\"user_data/config.json\"])\n",
"\n",
"# Define some constants\n",
"config[\"timeframe\"] = \"5m\"\n",
"# Name of the strategy class\n",
"config[\"strategy\"] = \"SampleStrategy\"\n",
"# Location of the data\n",
"data_location = config['datadir']\n",
"data_location = config[\"datadir\"]\n",
"# Pair to analyze - Only use one pair here\n",
"pair = \"BTC/USDT\""
]
@ -56,12 +90,12 @@
"candles = load_pair_history(datadir=data_location,\n",
" timeframe=config[\"timeframe\"],\n",
" pair=pair,\n",
" data_format = \"hdf5\",\n",
" data_format = \"json\", # Make sure to update this to your data\n",
" candle_type=CandleType.SPOT,\n",
" )\n",
"\n",
"# Confirm success\n",
"print(\"Loaded \" + str(len(candles)) + f\" rows of data for {pair} from {data_location}\")\n",
"print(f\"Loaded {len(candles)} rows of data for {pair} from {data_location}\")\n",
"candles.head()"
]
},
@ -365,7 +399,7 @@
"metadata": {
"file_extension": ".py",
"kernelspec": {
"display_name": "Python 3.9.7 64-bit ('trade_397')",
"display_name": "Python 3.9.7 64-bit",
"language": "python",
"name": "python3"
},

View File

@ -15,7 +15,7 @@ pytest==7.2.0
pytest-asyncio==0.20.2
pytest-cov==4.0.0
pytest-mock==3.10.0
pytest-random-order==1.0.4
pytest-random-order==1.1.0
isort==5.10.1
# For datetime mocking
time-machine==2.8.2

View File

@ -1,8 +1,8 @@
numpy==1.23.5
pandas==1.5.1
pandas==1.5.2
pandas-ta==0.3.14b
ccxt==2.2.36
ccxt==2.2.67
# Pin cryptography for now due to rust build errors with piwheels
cryptography==38.0.1; platform_machine == 'armv7l'
cryptography==38.0.4; platform_machine != 'armv7l'
@ -13,7 +13,7 @@ arrow==1.2.3
cachetools==4.2.2
requests==2.28.1
urllib3==1.26.13
jsonschema==4.17.1
jsonschema==4.17.3
TA-Lib==0.4.25
technical==1.3.0
tabulate==0.9.0
@ -30,13 +30,13 @@ py_find_1st==1.1.5
# Load ticker files 30% faster
python-rapidjson==1.9
# Properly format api responses
orjson==3.8.2
orjson==3.8.3
# Notify systemd
sdnotify==0.3.2
# API Server
fastapi==0.87.0
fastapi==0.88.0
pydantic==1.10.2
uvicorn==0.20.0
pyjwt==2.6.0

View File

@ -207,12 +207,18 @@ def test_emit_df(mocker, default_conf, ohlcv_history):
assert send_mock.call_count == 0
# Rpc is added, we call emit, should call send_msg
dataprovider._emit_df(pair, ohlcv_history)
dataprovider._emit_df(pair, ohlcv_history, False)
assert send_mock.call_count == 1
send_mock.reset_mock()
dataprovider._emit_df(pair, ohlcv_history, True)
assert send_mock.call_count == 2
send_mock.reset_mock()
# No rpc added, emit called, should not call send_msg
dataprovider_no_rpc._emit_df(pair, ohlcv_history)
assert send_mock.call_count == 1
dataprovider_no_rpc._emit_df(pair, ohlcv_history, False)
assert send_mock.call_count == 0
def test_refresh(mocker, default_conf, ohlcv_history):

View File

@ -224,6 +224,11 @@ class TestCCXTExchange():
for val in [1, 2, 5, 25, 100]:
l2 = exchange.fetch_l2_order_book(pair, val)
if not l2_limit_range or val in l2_limit_range:
if val > 50:
# Orderbooks are not always this deep.
assert val - 5 < len(l2['asks']) <= val
assert val - 5 < len(l2['bids']) <= val
else:
assert len(l2['asks']) == val
assert len(l2['bids']) == val
else:

View File

@ -237,7 +237,6 @@ def test_start_backtesting(mocker, freqai_conf, model, num_files, strat, caplog)
df = freqai.cache_corr_pairlist_dfs(df, freqai.dk)
for i in range(5):
df[f'%-constant_{i}'] = i
# df.loc[:, f'%-constant_{i}'] = i
metadata = {"pair": "LTC/BTC"}
freqai.start_backtesting(df, metadata, freqai.dk)

View File

@ -588,7 +588,7 @@ def test_api_show_config(botclient):
assert 'unfilledtimeout' in response
assert 'version' in response
assert 'api_version' in response
assert 2.1 <= response['api_version'] <= 2.2
assert 2.1 <= response['api_version'] < 3.0
def test_api_daily(botclient, mocker, ticker, fee, markets):

View File

@ -12,6 +12,7 @@ from unittest.mock import ANY, MagicMock
import arrow
import pytest
import time_machine
from pandas import DataFrame
from telegram import Chat, Message, ReplyKeyboardMarkup, Update
from telegram.error import BadRequest, NetworkError, TelegramError
@ -1906,6 +1907,7 @@ def test_send_msg_entry_fill_notification(default_conf, mocker, message_type, en
def test_send_msg_sell_notification(default_conf, mocker) -> None:
with time_machine.travel("2022-09-01 05:00:00 +00:00", tick=False):
telegram, _, msg_mock = get_telegram_testobject(mocker, default_conf)
old_convamount = telegram._rpc._fiat_converter.convert_amount
@ -2065,6 +2067,7 @@ def test_send_msg_sell_fill_notification(default_conf, mocker, direction,
default_conf['telegram']['notification_settings']['exit_fill'] = 'on'
telegram, _, msg_mock = get_telegram_testobject(mocker, default_conf)
with time_machine.travel("2022-09-01 05:00:00 +00:00", tick=False):
telegram.send_msg({
'type': RPCMessageType.EXIT_FILL,
'trade_id': 1,