flake happy
This commit is contained in:
parent
1be4c59481
commit
66c2bdd65a
24
freqtrade/vendor/qtpylib/indicators.py
vendored
24
freqtrade/vendor/qtpylib/indicators.py
vendored
@ -260,7 +260,7 @@ def rolling_std(series, window=200, min_periods=None):
|
||||
else:
|
||||
try:
|
||||
return series.rolling(window=window, min_periods=min_periods).std()
|
||||
except Exception as e:
|
||||
except Exception as e: # noqa: F841
|
||||
return pd.Series(series).rolling(window=window, min_periods=min_periods).std()
|
||||
|
||||
# ---------------------------------------------
|
||||
@ -273,7 +273,7 @@ def rolling_mean(series, window=200, min_periods=None):
|
||||
else:
|
||||
try:
|
||||
return series.rolling(window=window, min_periods=min_periods).mean()
|
||||
except Exception as e:
|
||||
except Exception as e: # noqa: F841
|
||||
return pd.Series(series).rolling(window=window, min_periods=min_periods).mean()
|
||||
|
||||
# ---------------------------------------------
|
||||
@ -283,7 +283,7 @@ def rolling_min(series, window=14, min_periods=None):
|
||||
min_periods = window if min_periods is None else min_periods
|
||||
try:
|
||||
return series.rolling(window=window, min_periods=min_periods).min()
|
||||
except Exception as e:
|
||||
except Exception as e: # noqa: F841
|
||||
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
|
||||
|
||||
|
||||
@ -293,7 +293,7 @@ def rolling_max(series, window=14, min_periods=None):
|
||||
min_periods = window if min_periods is None else min_periods
|
||||
try:
|
||||
return series.rolling(window=window, min_periods=min_periods).min()
|
||||
except Exception as e:
|
||||
except Exception as e: # noqa: F841
|
||||
return pd.Series(series).rolling(window=window, min_periods=min_periods).min()
|
||||
|
||||
|
||||
@ -303,7 +303,7 @@ def rolling_weighted_mean(series, window=200, min_periods=None):
|
||||
min_periods = window if min_periods is None else min_periods
|
||||
try:
|
||||
return series.ewm(span=window, min_periods=min_periods).mean()
|
||||
except Exception as e:
|
||||
except Exception as e: # noqa: F841
|
||||
return pd.ewma(series, span=window, min_periods=min_periods)
|
||||
|
||||
|
||||
@ -366,7 +366,8 @@ def rolling_vwap(bars, window=200, min_periods=None):
|
||||
min_periods=min_periods).sum()
|
||||
right = volume.rolling(window=window, min_periods=min_periods).sum()
|
||||
|
||||
return pd.Series(index=bars.index, data=(left / right)).replace([np.inf, -np.inf], float('NaN')).ffill()
|
||||
return pd.Series(index=bars.index, data=(left / right)
|
||||
).replace([np.inf, -np.inf], float('NaN')).ffill()
|
||||
|
||||
|
||||
# ---------------------------------------------
|
||||
@ -460,7 +461,7 @@ def returns(series):
|
||||
try:
|
||||
res = (series / series.shift(1) -
|
||||
1).replace([np.inf, -np.inf], float('NaN'))
|
||||
except Exception as e:
|
||||
except Exception as e: # noqa: F841
|
||||
res = nans(len(series))
|
||||
|
||||
return pd.Series(index=series.index, data=res)
|
||||
@ -472,7 +473,7 @@ def log_returns(series):
|
||||
try:
|
||||
res = np.log(series / series.shift(1)
|
||||
).replace([np.inf, -np.inf], float('NaN'))
|
||||
except Exception as e:
|
||||
except Exception as e: # noqa: F841
|
||||
res = nans(len(series))
|
||||
|
||||
return pd.Series(index=series.index, data=res)
|
||||
@ -485,7 +486,7 @@ def implied_volatility(series, window=252):
|
||||
logret = np.log(series / series.shift(1)
|
||||
).replace([np.inf, -np.inf], float('NaN'))
|
||||
res = numpy_rolling_std(logret, window) * np.sqrt(window)
|
||||
except Exception as e:
|
||||
except Exception as e: # noqa: F841
|
||||
res = nans(len(series))
|
||||
|
||||
return pd.Series(index=series.index, data=res)
|
||||
@ -542,7 +543,10 @@ def stoch(df, window=14, d=3, k=3, fast=False):
|
||||
my_df['rolling_max'] = df['high'].rolling(window).max()
|
||||
my_df['rolling_min'] = df['low'].rolling(window).min()
|
||||
|
||||
my_df['fast_k'] = 100 * (df['close'] - my_df['rolling_min'])/(my_df['rolling_max'] - my_df['rolling_min'])
|
||||
my_df['fast_k'] = (
|
||||
100 * (df['close'] - my_df['rolling_min']) /
|
||||
(my_df['rolling_max'] - my_df['rolling_min'])
|
||||
)
|
||||
my_df['fast_d'] = my_df['fast_k'].rolling(d).mean()
|
||||
|
||||
if fast:
|
||||
|
Loading…
Reference in New Issue
Block a user