Merge pull request #3845 from freqtrade/feat/backtest_speedup_serialize
Backtesting should not double-loop for sell signals
This commit is contained in:
commit
667f1b8b8c
@ -4,11 +4,11 @@
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.configuration import TimeRange, remove_credentials, validate_config_consistency
|
||||
@ -28,6 +28,15 @@ from freqtrade.strategy.interface import IStrategy, SellCheckTuple, SellType
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Indexes for backtest tuples
|
||||
DATE_IDX = 0
|
||||
BUY_IDX = 1
|
||||
OPEN_IDX = 2
|
||||
CLOSE_IDX = 3
|
||||
SELL_IDX = 4
|
||||
LOW_IDX = 5
|
||||
HIGH_IDX = 6
|
||||
|
||||
|
||||
class BacktestResult(NamedTuple):
|
||||
"""
|
||||
@ -115,7 +124,7 @@ class Backtesting:
|
||||
"""
|
||||
Load strategy into backtesting
|
||||
"""
|
||||
self.strategy = strategy
|
||||
self.strategy: IStrategy = strategy
|
||||
# Set stoploss_on_exchange to false for backtesting,
|
||||
# since a "perfect" stoploss-sell is assumed anyway
|
||||
# And the regular "stoploss" function would not apply to that case
|
||||
@ -147,12 +156,14 @@ class Backtesting:
|
||||
|
||||
return data, timerange
|
||||
|
||||
def _get_ohlcv_as_lists(self, processed: Dict) -> Dict[str, DataFrame]:
|
||||
def _get_ohlcv_as_lists(self, processed: Dict[str, DataFrame]) -> Dict[str, Tuple]:
|
||||
"""
|
||||
Helper function to convert a processed dataframes into lists for performance reasons.
|
||||
|
||||
Used by backtest() - so keep this optimized for performance.
|
||||
"""
|
||||
# Every change to this headers list must evaluate further usages of the resulting tuple
|
||||
# and eventually change the constants for indexes at the top
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
|
||||
data: Dict = {}
|
||||
# Create dict with data
|
||||
@ -172,10 +183,10 @@ class Backtesting:
|
||||
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
data[pair] = [x for x in df_analyzed.itertuples()]
|
||||
data[pair] = [x for x in df_analyzed.itertuples(index=False, name=None)]
|
||||
return data
|
||||
|
||||
def _get_close_rate(self, sell_row, trade: Trade, sell: SellCheckTuple,
|
||||
def _get_close_rate(self, sell_row: Tuple, trade: Trade, sell: SellCheckTuple,
|
||||
trade_dur: int) -> float:
|
||||
"""
|
||||
Get close rate for backtesting result
|
||||
@ -186,12 +197,12 @@ class Backtesting:
|
||||
return trade.stop_loss
|
||||
elif sell.sell_type == (SellType.ROI):
|
||||
roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
|
||||
if roi is not None:
|
||||
if roi is not None and roi_entry is not None:
|
||||
if roi == -1 and roi_entry % self.timeframe_min == 0:
|
||||
# When forceselling with ROI=-1, the roi time will always be equal to trade_dur.
|
||||
# If that entry is a multiple of the timeframe (so on candle open)
|
||||
# - we'll use open instead of close
|
||||
return sell_row.open
|
||||
return sell_row[OPEN_IDX]
|
||||
|
||||
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
|
||||
close_rate = - (trade.open_rate * roi + trade.open_rate *
|
||||
@ -199,57 +210,38 @@ class Backtesting:
|
||||
|
||||
if (trade_dur > 0 and trade_dur == roi_entry
|
||||
and roi_entry % self.timeframe_min == 0
|
||||
and sell_row.open > close_rate):
|
||||
and sell_row[OPEN_IDX] > close_rate):
|
||||
# new ROI entry came into effect.
|
||||
# use Open rate if open_rate > calculated sell rate
|
||||
return sell_row.open
|
||||
return sell_row[OPEN_IDX]
|
||||
|
||||
# Use the maximum between close_rate and low as we
|
||||
# cannot sell outside of a candle.
|
||||
# Applies when a new ROI setting comes in place and the whole candle is above that.
|
||||
return max(close_rate, sell_row.low)
|
||||
return max(close_rate, sell_row[LOW_IDX])
|
||||
|
||||
else:
|
||||
# This should not be reached...
|
||||
return sell_row.open
|
||||
return sell_row[OPEN_IDX]
|
||||
else:
|
||||
return sell_row.open
|
||||
return sell_row[OPEN_IDX]
|
||||
|
||||
def _get_sell_trade_entry(
|
||||
self, pair: str, buy_row: DataFrame,
|
||||
partial_ohlcv: List, trade_count_lock: Dict,
|
||||
stake_amount: float, max_open_trades: int) -> Optional[BacktestResult]:
|
||||
def _get_sell_trade_entry(self, trade: Trade, sell_row: Tuple) -> Optional[BacktestResult]:
|
||||
|
||||
trade = Trade(
|
||||
pair=pair,
|
||||
open_rate=buy_row.open,
|
||||
open_date=buy_row.date,
|
||||
stake_amount=stake_amount,
|
||||
amount=round(stake_amount / buy_row.open, 8),
|
||||
fee_open=self.fee,
|
||||
fee_close=self.fee,
|
||||
is_open=True,
|
||||
)
|
||||
logger.debug(f"{pair} - Backtesting emulates creation of new trade: {trade}.")
|
||||
# calculate win/lose forwards from buy point
|
||||
for sell_row in partial_ohlcv:
|
||||
if max_open_trades > 0:
|
||||
# Increase trade_count_lock for every iteration
|
||||
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
|
||||
|
||||
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, sell_row.buy,
|
||||
sell_row.sell, low=sell_row.low, high=sell_row.high)
|
||||
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], sell_row[DATE_IDX],
|
||||
sell_row[BUY_IDX], sell_row[SELL_IDX],
|
||||
low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX])
|
||||
if sell.sell_flag:
|
||||
trade_dur = int((sell_row.date - buy_row.date).total_seconds() // 60)
|
||||
trade_dur = int((sell_row[DATE_IDX] - trade.open_date).total_seconds() // 60)
|
||||
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
|
||||
|
||||
return BacktestResult(pair=pair,
|
||||
return BacktestResult(pair=trade.pair,
|
||||
profit_percent=trade.calc_profit_ratio(rate=closerate),
|
||||
profit_abs=trade.calc_profit(rate=closerate),
|
||||
open_date=buy_row.date,
|
||||
open_rate=buy_row.open,
|
||||
open_date=trade.open_date,
|
||||
open_rate=trade.open_rate,
|
||||
open_fee=self.fee,
|
||||
close_date=sell_row.date,
|
||||
close_date=sell_row[DATE_IDX],
|
||||
close_rate=closerate,
|
||||
close_fee=self.fee,
|
||||
amount=trade.amount,
|
||||
@ -257,33 +249,40 @@ class Backtesting:
|
||||
open_at_end=False,
|
||||
sell_reason=sell.sell_type
|
||||
)
|
||||
if partial_ohlcv:
|
||||
# no sell condition found - trade stil open at end of backtest period
|
||||
sell_row = partial_ohlcv[-1]
|
||||
bt_res = BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_ratio(rate=sell_row.open),
|
||||
profit_abs=trade.calc_profit(rate=sell_row.open),
|
||||
open_date=buy_row.date,
|
||||
open_rate=buy_row.open,
|
||||
return None
|
||||
|
||||
def handle_left_open(self, open_trades: Dict[str, List[Trade]],
|
||||
data: Dict[str, List[Tuple]]) -> List[BacktestResult]:
|
||||
"""
|
||||
Handling of left open trades at the end of backtesting
|
||||
"""
|
||||
trades = []
|
||||
for pair in open_trades.keys():
|
||||
if len(open_trades[pair]) > 0:
|
||||
for trade in open_trades[pair]:
|
||||
sell_row = data[pair][-1]
|
||||
trade_entry = BacktestResult(pair=trade.pair,
|
||||
profit_percent=trade.calc_profit_ratio(
|
||||
rate=sell_row[OPEN_IDX]),
|
||||
profit_abs=trade.calc_profit(sell_row[OPEN_IDX]),
|
||||
open_date=trade.open_date,
|
||||
open_rate=trade.open_rate,
|
||||
open_fee=self.fee,
|
||||
close_date=sell_row.date,
|
||||
close_rate=sell_row.open,
|
||||
close_date=sell_row[DATE_IDX],
|
||||
close_rate=sell_row[OPEN_IDX],
|
||||
close_fee=self.fee,
|
||||
amount=trade.amount,
|
||||
trade_duration=int((
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
sell_row[DATE_IDX] - trade.open_date
|
||||
).total_seconds() // 60),
|
||||
open_at_end=True,
|
||||
sell_reason=SellType.FORCE_SELL
|
||||
)
|
||||
logger.debug(f"{pair} - Force selling still open trade, "
|
||||
f"profit percent: {bt_res.profit_percent}, "
|
||||
f"profit abs: {bt_res.profit_abs}")
|
||||
|
||||
return bt_res
|
||||
return None
|
||||
trades.append(trade_entry)
|
||||
return trades
|
||||
|
||||
def backtest(self, processed: Dict, stake_amount: float,
|
||||
start_date: arrow.Arrow, end_date: arrow.Arrow,
|
||||
start_date: datetime, end_date: datetime,
|
||||
max_open_trades: int = 0, position_stacking: bool = False) -> DataFrame:
|
||||
"""
|
||||
Implement backtesting functionality
|
||||
@ -305,19 +304,21 @@ class Backtesting:
|
||||
f"max_open_trades: {max_open_trades}, position_stacking: {position_stacking}"
|
||||
)
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
|
||||
# Use dict of lists with data for performance
|
||||
# (looping lists is a lot faster than pandas DataFrames)
|
||||
data: Dict = self._get_ohlcv_as_lists(processed)
|
||||
|
||||
lock_pair_until: Dict = {}
|
||||
# Indexes per pair, so some pairs are allowed to have a missing start.
|
||||
indexes: Dict = {}
|
||||
tmp = start_date + timedelta(minutes=self.timeframe_min)
|
||||
|
||||
open_trades: Dict[str, List] = defaultdict(list)
|
||||
open_trade_count = 0
|
||||
|
||||
# Loop timerange and get candle for each pair at that point in time
|
||||
while tmp < end_date:
|
||||
while tmp <= end_date:
|
||||
open_trade_count_start = open_trade_count
|
||||
|
||||
for i, pair in enumerate(data):
|
||||
if pair not in indexes:
|
||||
@ -331,42 +332,52 @@ class Backtesting:
|
||||
continue
|
||||
|
||||
# Waits until the time-counter reaches the start of the data for this pair.
|
||||
if row.date > tmp.datetime:
|
||||
if row[DATE_IDX] > tmp:
|
||||
continue
|
||||
|
||||
indexes[pair] += 1
|
||||
|
||||
if row.buy == 0 or row.sell == 1:
|
||||
continue # skip rows where no buy signal or that would immediately sell off
|
||||
|
||||
if (not position_stacking and pair in lock_pair_until
|
||||
and row.date <= lock_pair_until[pair]):
|
||||
# without positionstacking, we can only have one open trade per pair.
|
||||
continue
|
||||
|
||||
if max_open_trades > 0:
|
||||
# Check if max_open_trades has already been reached for the given date
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
# max_open_trades must be respected
|
||||
# don't open on the last row
|
||||
if ((position_stacking or len(open_trades[pair]) == 0)
|
||||
and max_open_trades > 0 and open_trade_count_start < max_open_trades
|
||||
and tmp != end_date
|
||||
and row[BUY_IDX] == 1 and row[SELL_IDX] != 1):
|
||||
# Enter trade
|
||||
trade = Trade(
|
||||
pair=pair,
|
||||
open_rate=row[OPEN_IDX],
|
||||
open_date=row[DATE_IDX],
|
||||
stake_amount=stake_amount,
|
||||
amount=round(stake_amount / row[OPEN_IDX], 8),
|
||||
fee_open=self.fee,
|
||||
fee_close=self.fee,
|
||||
is_open=True,
|
||||
)
|
||||
# TODO: hacky workaround to avoid opening > max_open_trades
|
||||
# This emulates previous behaviour - not sure if this is correct
|
||||
# Prevents buying if the trade-slot was freed in this candle
|
||||
open_trade_count_start += 1
|
||||
open_trade_count += 1
|
||||
# logger.debug(f"{pair} - Backtesting emulates creation of new trade: {trade}.")
|
||||
open_trades[pair].append(trade)
|
||||
|
||||
for trade in open_trades[pair]:
|
||||
# since indexes has been incremented before, we need to go one step back to
|
||||
# also check the buying candle for sell conditions.
|
||||
trade_entry = self._get_sell_trade_entry(pair, row, data[pair][indexes[pair]-1:],
|
||||
trade_count_lock, stake_amount,
|
||||
max_open_trades)
|
||||
|
||||
trade_entry = self._get_sell_trade_entry(trade, row)
|
||||
# Sell occured
|
||||
if trade_entry:
|
||||
logger.debug(f"{pair} - Locking pair till "
|
||||
f"close_date={trade_entry.close_date}")
|
||||
lock_pair_until[pair] = trade_entry.close_date
|
||||
# logger.debug(f"{pair} - Backtesting sell {trade}")
|
||||
open_trade_count -= 1
|
||||
open_trades[pair].remove(trade)
|
||||
trades.append(trade_entry)
|
||||
else:
|
||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||
lock_pair_until[pair] = end_date.datetime
|
||||
|
||||
# Move time one configured time_interval ahead.
|
||||
tmp += timedelta(minutes=self.timeframe_min)
|
||||
|
||||
trades += self.handle_left_open(open_trades, data=data)
|
||||
|
||||
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||
|
||||
def start(self) -> None:
|
||||
@ -412,8 +423,8 @@ class Backtesting:
|
||||
results = self.backtest(
|
||||
processed=preprocessed,
|
||||
stake_amount=self.config['stake_amount'],
|
||||
start_date=min_date,
|
||||
end_date=max_date,
|
||||
start_date=min_date.datetime,
|
||||
end_date=max_date.datetime,
|
||||
max_open_trades=max_open_trades,
|
||||
position_stacking=position_stacking,
|
||||
)
|
||||
|
@ -94,14 +94,14 @@ class Hyperopt:
|
||||
|
||||
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
|
||||
if hasattr(self.custom_hyperopt, 'populate_indicators'):
|
||||
self.backtesting.strategy.advise_indicators = \
|
||||
self.custom_hyperopt.populate_indicators # type: ignore
|
||||
self.backtesting.strategy.advise_indicators = ( # type: ignore
|
||||
self.custom_hyperopt.populate_indicators) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
|
||||
self.backtesting.strategy.advise_buy = \
|
||||
self.custom_hyperopt.populate_buy_trend # type: ignore
|
||||
self.backtesting.strategy.advise_buy = ( # type: ignore
|
||||
self.custom_hyperopt.populate_buy_trend) # type: ignore
|
||||
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
|
||||
self.backtesting.strategy.advise_sell = \
|
||||
self.custom_hyperopt.populate_sell_trend # type: ignore
|
||||
self.backtesting.strategy.advise_sell = ( # type: ignore
|
||||
self.custom_hyperopt.populate_sell_trend) # type: ignore
|
||||
|
||||
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
|
||||
if self.config.get('use_max_market_positions', True):
|
||||
@ -508,16 +508,16 @@ class Hyperopt:
|
||||
params_details = self._get_params_details(params_dict)
|
||||
|
||||
if self.has_space('roi'):
|
||||
self.backtesting.strategy.minimal_roi = \
|
||||
self.custom_hyperopt.generate_roi_table(params_dict)
|
||||
self.backtesting.strategy.minimal_roi = ( # type: ignore
|
||||
self.custom_hyperopt.generate_roi_table(params_dict))
|
||||
|
||||
if self.has_space('buy'):
|
||||
self.backtesting.strategy.advise_buy = \
|
||||
self.custom_hyperopt.buy_strategy_generator(params_dict)
|
||||
self.backtesting.strategy.advise_buy = ( # type: ignore
|
||||
self.custom_hyperopt.buy_strategy_generator(params_dict))
|
||||
|
||||
if self.has_space('sell'):
|
||||
self.backtesting.strategy.advise_sell = \
|
||||
self.custom_hyperopt.sell_strategy_generator(params_dict)
|
||||
self.backtesting.strategy.advise_sell = ( # type: ignore
|
||||
self.custom_hyperopt.sell_strategy_generator(params_dict))
|
||||
|
||||
if self.has_space('stoploss'):
|
||||
self.backtesting.strategy.stoploss = params_dict['stoploss']
|
||||
@ -538,8 +538,8 @@ class Hyperopt:
|
||||
backtesting_results = self.backtesting.backtest(
|
||||
processed=processed,
|
||||
stake_amount=self.config['stake_amount'],
|
||||
start_date=min_date,
|
||||
end_date=max_date,
|
||||
start_date=min_date.datetime,
|
||||
end_date=max_date.datetime,
|
||||
max_open_trades=self.max_open_trades,
|
||||
position_stacking=self.position_stacking,
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user