Convert backtesting rows to Tuples for performance gains

This commit is contained in:
Matthias 2020-10-18 17:16:57 +02:00
parent 5d3a67d324
commit cf2ae788d7
2 changed files with 52 additions and 43 deletions

View File

@ -28,6 +28,15 @@ from freqtrade.strategy.interface import IStrategy, SellCheckTuple, SellType
logger = logging.getLogger(__name__)
# Indexes for backtest tuples
DATE_IDX = 0
BUY_IDX = 1
OPEN_IDX = 2
CLOSE_IDX = 3
SELL_IDX = 4
LOW_IDX = 5
HIGH_IDX = 6
class BacktestResult(NamedTuple):
"""
@ -115,7 +124,7 @@ class Backtesting:
"""
Load strategy into backtesting
"""
self.strategy = strategy
self.strategy: IStrategy = strategy
# Set stoploss_on_exchange to false for backtesting,
# since a "perfect" stoploss-sell is assumed anyway
# And the regular "stoploss" function would not apply to that case
@ -147,12 +156,14 @@ class Backtesting:
return data, timerange
def _get_ohlcv_as_lists(self, processed: Dict[str, DataFrame]) -> Dict[str, DataFrame]:
def _get_ohlcv_as_lists(self, processed: Dict[str, DataFrame]) -> Dict[str, Tuple]:
"""
Helper function to convert a processed dataframes into lists for performance reasons.
Used by backtest() - so keep this optimized for performance.
"""
# Every change to this headers list must evaluate further usages of the resulting tuple
# and eventually change the constants for indexes at the top
headers = ['date', 'buy', 'open', 'close', 'sell', 'low', 'high']
data: Dict = {}
# Create dict with data
@ -172,10 +183,10 @@ class Backtesting:
# Convert from Pandas to list for performance reasons
# (Looping Pandas is slow.)
data[pair] = [x for x in df_analyzed.itertuples(index=False)]
data[pair] = [x for x in df_analyzed.itertuples(index=False, name=None)]
return data
def _get_close_rate(self, sell_row, trade: Trade, sell: SellCheckTuple,
def _get_close_rate(self, sell_row: Tuple, trade: Trade, sell: SellCheckTuple,
trade_dur: int) -> float:
"""
Get close rate for backtesting result
@ -186,12 +197,12 @@ class Backtesting:
return trade.stop_loss
elif sell.sell_type == (SellType.ROI):
roi_entry, roi = self.strategy.min_roi_reached_entry(trade_dur)
if roi is not None:
if roi is not None and roi_entry is not None:
if roi == -1 and roi_entry % self.timeframe_min == 0:
# When forceselling with ROI=-1, the roi time will always be equal to trade_dur.
# If that entry is a multiple of the timeframe (so on candle open)
# - we'll use open instead of close
return sell_row.open
return sell_row[OPEN_IDX]
# - (Expected abs profit + open_rate + open_fee) / (fee_close -1)
close_rate = - (trade.open_rate * roi + trade.open_rate *
@ -199,31 +210,29 @@ class Backtesting:
if (trade_dur > 0 and trade_dur == roi_entry
and roi_entry % self.timeframe_min == 0
and sell_row.open > close_rate):
and sell_row[OPEN_IDX] > close_rate):
# new ROI entry came into effect.
# use Open rate if open_rate > calculated sell rate
return sell_row.open
return sell_row[OPEN_IDX]
# Use the maximum between close_rate and low as we
# cannot sell outside of a candle.
# Applies when a new ROI setting comes in place and the whole candle is above that.
return max(close_rate, sell_row.low)
return max(close_rate, sell_row[LOW_IDX])
else:
# This should not be reached...
return sell_row.open
return sell_row[OPEN_IDX]
else:
return sell_row.open
return sell_row[OPEN_IDX]
def _get_sell_trade_entry(self, trade: Trade, sell_row) -> Optional[BacktestResult]:
"""
sell_row is a named tuple with attributes for date, buy, open, close, sell, low, high.
"""
def _get_sell_trade_entry(self, trade: Trade, sell_row: Tuple) -> Optional[BacktestResult]:
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, sell_row.buy,
sell_row.sell, low=sell_row.low, high=sell_row.high)
sell = self.strategy.should_sell(trade, sell_row[OPEN_IDX], sell_row[DATE_IDX],
sell_row[BUY_IDX], sell_row[SELL_IDX],
low=sell_row[LOW_IDX], high=sell_row[HIGH_IDX])
if sell.sell_flag:
trade_dur = int((sell_row.date - trade.open_date).total_seconds() // 60)
trade_dur = int((sell_row[DATE_IDX] - trade.open_date).total_seconds() // 60)
closerate = self._get_close_rate(sell_row, trade, sell, trade_dur)
return BacktestResult(pair=trade.pair,
@ -232,7 +241,7 @@ class Backtesting:
open_date=trade.open_date,
open_rate=trade.open_rate,
open_fee=self.fee,
close_date=sell_row.date,
close_date=sell_row[DATE_IDX],
close_rate=closerate,
close_fee=self.fee,
amount=trade.amount,
@ -242,8 +251,8 @@ class Backtesting:
)
return None
def handle_left_open(self, open_trades: Dict[str, List],
data: Dict[str, DataFrame]) -> List[BacktestResult]:
def handle_left_open(self, open_trades: Dict[str, List[Trade]],
data: Dict[str, List[Tuple]]) -> List[BacktestResult]:
"""
Handling of left open trades at the end of backtesting
"""
@ -254,17 +263,17 @@ class Backtesting:
sell_row = data[pair][-1]
trade_entry = BacktestResult(pair=trade.pair,
profit_percent=trade.calc_profit_ratio(
rate=sell_row.open),
profit_abs=trade.calc_profit(rate=sell_row.open),
rate=sell_row[OPEN_IDX]),
profit_abs=trade.calc_profit(sell_row[OPEN_IDX]),
open_date=trade.open_date,
open_rate=trade.open_rate,
open_fee=self.fee,
close_date=sell_row.date,
close_rate=sell_row.open,
close_date=sell_row[DATE_IDX],
close_rate=sell_row[OPEN_IDX],
close_fee=self.fee,
amount=trade.amount,
trade_duration=int((
sell_row.date - trade.open_date
sell_row[DATE_IDX] - trade.open_date
).total_seconds() // 60),
open_at_end=True,
sell_reason=SellType.FORCE_SELL
@ -323,7 +332,7 @@ class Backtesting:
continue
# Waits until the time-counter reaches the start of the data for this pair.
if row.date > tmp:
if row[DATE_IDX] > tmp:
continue
indexes[pair] += 1
@ -333,14 +342,14 @@ class Backtesting:
if ((position_stacking or len(open_trades[pair]) == 0)
and max_open_trades > 0 and open_trade_count_start < max_open_trades
and tmp != end_date
and row.buy == 1 and row.sell != 1):
and row[BUY_IDX] == 1 and row[SELL_IDX] != 1):
# Enter trade
trade = Trade(
pair=pair,
open_rate=row.open,
open_date=row.date,
open_rate=row[OPEN_IDX],
open_date=row[DATE_IDX],
stake_amount=stake_amount,
amount=round(stake_amount / row.open, 8),
amount=round(stake_amount / row[OPEN_IDX], 8),
fee_open=self.fee,
fee_close=self.fee,
is_open=True,

View File

@ -94,14 +94,14 @@ class Hyperopt:
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_indicators'):
self.backtesting.strategy.advise_indicators = \
self.custom_hyperopt.populate_indicators # type: ignore
self.backtesting.strategy.advise_indicators = ( # type: ignore
self.custom_hyperopt.populate_indicators) # type: ignore
if hasattr(self.custom_hyperopt, 'populate_buy_trend'):
self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.populate_buy_trend # type: ignore
self.backtesting.strategy.advise_buy = ( # type: ignore
self.custom_hyperopt.populate_buy_trend) # type: ignore
if hasattr(self.custom_hyperopt, 'populate_sell_trend'):
self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.populate_sell_trend # type: ignore
self.backtesting.strategy.advise_sell = ( # type: ignore
self.custom_hyperopt.populate_sell_trend) # type: ignore
# Use max_open_trades for hyperopt as well, except --disable-max-market-positions is set
if self.config.get('use_max_market_positions', True):
@ -508,16 +508,16 @@ class Hyperopt:
params_details = self._get_params_details(params_dict)
if self.has_space('roi'):
self.backtesting.strategy.minimal_roi = \
self.custom_hyperopt.generate_roi_table(params_dict)
self.backtesting.strategy.minimal_roi = ( # type: ignore
self.custom_hyperopt.generate_roi_table(params_dict))
if self.has_space('buy'):
self.backtesting.strategy.advise_buy = \
self.custom_hyperopt.buy_strategy_generator(params_dict)
self.backtesting.strategy.advise_buy = ( # type: ignore
self.custom_hyperopt.buy_strategy_generator(params_dict))
if self.has_space('sell'):
self.backtesting.strategy.advise_sell = \
self.custom_hyperopt.sell_strategy_generator(params_dict)
self.backtesting.strategy.advise_sell = ( # type: ignore
self.custom_hyperopt.sell_strategy_generator(params_dict))
if self.has_space('stoploss'):
self.backtesting.strategy.stoploss = params_dict['stoploss']