add LightGBMClassifierMultiTarget. add test

This commit is contained in:
robcaulk 2022-11-11 17:45:53 +01:00
parent 63458a6130
commit 66514e84e4
2 changed files with 65 additions and 2 deletions

View File

@ -0,0 +1,64 @@
import logging
from typing import Any, Dict
from lightgbm import LGBMClassifier
from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel
from freqtrade.freqai.base_models.FreqaiMultiOutputClassifier import FreqaiMultiOutputClassifier
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class LightGBMClassifierMultiTarget(BaseClassifierModel):
"""
User created prediction model. The class needs to override three necessary
functions, predict(), train(), fit(). The class inherits ModelHandler which
has its own DataHandler where data is held, saved, loaded, and managed.
"""
def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any:
"""
User sets up the training and test data to fit their desired model here
:param data_dictionary: the dictionary constructed by DataHandler to hold
all the training and test data/labels.
"""
lgb = LGBMClassifier(**self.model_training_parameters)
X = data_dictionary["train_features"]
y = data_dictionary["train_labels"]
sample_weight = data_dictionary["train_weights"]
eval_weights = None
eval_sets = [None] * y.shape[1]
if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0:
eval_weights = [data_dictionary["test_weights"]]
eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore
for i in range(data_dictionary['test_labels'].shape[1]):
eval_sets[i] = ( # type: ignore
data_dictionary["test_features"],
data_dictionary["test_labels"].iloc[:, i]
)
init_model = self.get_init_model(dk.pair)
if init_model:
init_models = init_model.estimators_
else:
init_models = [None] * y.shape[1]
fit_params = []
for i in range(len(eval_sets)):
fit_params.append(
{'eval_set': eval_sets[i], 'eval_sample_weight': eval_weights,
'init_model': init_models[i]})
model = FreqaiMultiOutputClassifier(estimator=lgb)
thread_training = self.freqai_info.get('multitarget_parallel_training', False)
if thread_training:
model.n_jobs = y.shape[1]
model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params)
return model

View File

@ -79,8 +79,7 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model):
('LightGBMRegressorMultiTarget', "freqai_test_multimodel_strat"), ('LightGBMRegressorMultiTarget', "freqai_test_multimodel_strat"),
('XGBoostRegressorMultiTarget', "freqai_test_multimodel_strat"), ('XGBoostRegressorMultiTarget', "freqai_test_multimodel_strat"),
('CatboostRegressorMultiTarget', "freqai_test_multimodel_strat"), ('CatboostRegressorMultiTarget', "freqai_test_multimodel_strat"),
# ('LightGBMClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"), ('LightGBMClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"),
# ('XGBoostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"),
('CatboostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat") ('CatboostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat")
]) ])
def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model, strat): def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model, strat):