diff --git a/freqtrade/freqai/prediction_models/LightGBMClassifierMultiTarget.py b/freqtrade/freqai/prediction_models/LightGBMClassifierMultiTarget.py new file mode 100644 index 000000000..d1eb6daa2 --- /dev/null +++ b/freqtrade/freqai/prediction_models/LightGBMClassifierMultiTarget.py @@ -0,0 +1,64 @@ +import logging +from typing import Any, Dict + +from lightgbm import LGBMClassifier + +from freqtrade.freqai.base_models.BaseClassifierModel import BaseClassifierModel +from freqtrade.freqai.base_models.FreqaiMultiOutputClassifier import FreqaiMultiOutputClassifier +from freqtrade.freqai.data_kitchen import FreqaiDataKitchen + + +logger = logging.getLogger(__name__) + + +class LightGBMClassifierMultiTarget(BaseClassifierModel): + """ + User created prediction model. The class needs to override three necessary + functions, predict(), train(), fit(). The class inherits ModelHandler which + has its own DataHandler where data is held, saved, loaded, and managed. + """ + + def fit(self, data_dictionary: Dict, dk: FreqaiDataKitchen, **kwargs) -> Any: + """ + User sets up the training and test data to fit their desired model here + :param data_dictionary: the dictionary constructed by DataHandler to hold + all the training and test data/labels. + """ + + lgb = LGBMClassifier(**self.model_training_parameters) + + X = data_dictionary["train_features"] + y = data_dictionary["train_labels"] + sample_weight = data_dictionary["train_weights"] + + eval_weights = None + eval_sets = [None] * y.shape[1] + + if self.freqai_info.get('data_split_parameters', {}).get('test_size', 0.1) != 0: + eval_weights = [data_dictionary["test_weights"]] + eval_sets = [(None, None)] * data_dictionary['test_labels'].shape[1] # type: ignore + for i in range(data_dictionary['test_labels'].shape[1]): + eval_sets[i] = ( # type: ignore + data_dictionary["test_features"], + data_dictionary["test_labels"].iloc[:, i] + ) + + init_model = self.get_init_model(dk.pair) + if init_model: + init_models = init_model.estimators_ + else: + init_models = [None] * y.shape[1] + + fit_params = [] + for i in range(len(eval_sets)): + fit_params.append( + {'eval_set': eval_sets[i], 'eval_sample_weight': eval_weights, + 'init_model': init_models[i]}) + + model = FreqaiMultiOutputClassifier(estimator=lgb) + thread_training = self.freqai_info.get('multitarget_parallel_training', False) + if thread_training: + model.n_jobs = y.shape[1] + model.fit(X=X, y=y, sample_weight=sample_weight, fit_params=fit_params) + + return model diff --git a/tests/freqai/test_freqai_interface.py b/tests/freqai/test_freqai_interface.py index 5b9453a4a..a49f7c882 100644 --- a/tests/freqai/test_freqai_interface.py +++ b/tests/freqai/test_freqai_interface.py @@ -79,8 +79,7 @@ def test_extract_data_and_train_model_Standard(mocker, freqai_conf, model): ('LightGBMRegressorMultiTarget', "freqai_test_multimodel_strat"), ('XGBoostRegressorMultiTarget', "freqai_test_multimodel_strat"), ('CatboostRegressorMultiTarget', "freqai_test_multimodel_strat"), - # ('LightGBMClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"), - # ('XGBoostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"), + ('LightGBMClassifierMultiTarget', "freqai_test_multimodel_classifier_strat"), ('CatboostClassifierMultiTarget', "freqai_test_multimodel_classifier_strat") ]) def test_extract_data_and_train_model_MultiTargets(mocker, freqai_conf, model, strat):