Remove CalmarDaily hyperopt loss
This commit is contained in:
parent
88b96d5d1b
commit
5cdae2ce3f
@ -116,8 +116,7 @@ optional arguments:
|
||||
ShortTradeDurHyperOptLoss, OnlyProfitHyperOptLoss,
|
||||
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
|
||||
SortinoHyperOptLoss, SortinoHyperOptLossDaily,
|
||||
CalmarHyperOptLoss, CalmarHyperOptLossDaily,
|
||||
MaxDrawDownHyperOptLoss
|
||||
CalmarHyperOptLoss, MaxDrawDownHyperOptLoss
|
||||
--disable-param-export
|
||||
Disable automatic hyperopt parameter export.
|
||||
--ignore-missing-spaces, --ignore-unparameterized-spaces
|
||||
@ -526,7 +525,6 @@ Currently, the following loss functions are builtin:
|
||||
* `SortinoHyperOptLossDaily` - optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation.
|
||||
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum drawdown.
|
||||
* `CalmarHyperOptLoss` - Optimizes Calmar Ratio calculated on trade returns relative to max drawdown.
|
||||
* `CalmarHyperOptLossDaily` Optimizes Calmar Ratio calculated on **daily** trade returns relative to max drawdown.
|
||||
|
||||
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.
|
||||
|
||||
|
@ -25,7 +25,7 @@ ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
|
||||
HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
|
||||
'SharpeHyperOptLoss', 'SharpeHyperOptLossDaily',
|
||||
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily',
|
||||
'CalmarHyperOptLoss', 'CalmarHyperOptLossDaily',
|
||||
'CalmarHyperOptLoss',
|
||||
'MaxDrawDownHyperOptLoss']
|
||||
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
|
||||
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
|
||||
|
@ -1,81 +0,0 @@
|
||||
"""
|
||||
CalmarHyperOptLossDaily
|
||||
|
||||
This module defines the alternative HyperOptLoss class which can be used for
|
||||
Hyperoptimization.
|
||||
"""
|
||||
from datetime import datetime
|
||||
from math import sqrt as msqrt
|
||||
from typing import Any, Dict
|
||||
|
||||
from pandas import DataFrame, date_range
|
||||
|
||||
from freqtrade.optimize.hyperopt import IHyperOptLoss
|
||||
|
||||
|
||||
class CalmarHyperOptLossDaily(IHyperOptLoss):
|
||||
"""
|
||||
Defines the loss function for hyperopt.
|
||||
|
||||
This implementation uses the Calmar Ratio calculation.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def hyperopt_loss_function(
|
||||
results: DataFrame,
|
||||
trade_count: int,
|
||||
min_date: datetime,
|
||||
max_date: datetime,
|
||||
config: Dict,
|
||||
processed: Dict[str, DataFrame],
|
||||
backtest_stats: Dict[str, Any],
|
||||
*args,
|
||||
**kwargs
|
||||
) -> float:
|
||||
"""
|
||||
Objective function, returns smaller number for more optimal results.
|
||||
|
||||
Uses Calmar Ratio calculation.
|
||||
"""
|
||||
resample_freq = "1D"
|
||||
slippage_per_trade_ratio = 0.0005
|
||||
days_in_year = 365
|
||||
|
||||
# create the index within the min_date and end max_date
|
||||
t_index = date_range(
|
||||
start=min_date, end=max_date, freq=resample_freq, normalize=True
|
||||
)
|
||||
|
||||
# apply slippage per trade to profit_total
|
||||
results.loc[:, "profit_ratio_after_slippage"] = (
|
||||
results["profit_ratio"] - slippage_per_trade_ratio
|
||||
)
|
||||
|
||||
sum_daily = (
|
||||
results.resample(resample_freq, on="close_date")
|
||||
.agg({"profit_ratio_after_slippage": sum})
|
||||
.reindex(t_index)
|
||||
.fillna(0)
|
||||
)
|
||||
|
||||
total_profit = sum_daily["profit_ratio_after_slippage"]
|
||||
expected_returns_mean = total_profit.mean() * 100
|
||||
|
||||
# calculate max drawdown
|
||||
try:
|
||||
high_val = total_profit.max()
|
||||
low_val = total_profit.min()
|
||||
max_drawdown = (high_val - low_val) / high_val
|
||||
|
||||
except (ValueError, ZeroDivisionError):
|
||||
max_drawdown = 0
|
||||
|
||||
if max_drawdown != 0:
|
||||
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(days_in_year)
|
||||
else:
|
||||
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
|
||||
calmar_ratio = -20.0
|
||||
|
||||
# print(t_index, sum_daily, total_profit)
|
||||
# print(expected_returns_mean, max_drawdown, calmar_ratio)
|
||||
return -calmar_ratio
|
@ -5,7 +5,6 @@ import pytest
|
||||
|
||||
from freqtrade.exceptions import OperationalException
|
||||
from freqtrade.optimize.hyperopt_loss_short_trade_dur import ShortTradeDurHyperOptLoss
|
||||
from freqtrade.optimize.optimize_reports import generate_strategy_stats
|
||||
from freqtrade.resolvers.hyperopt_resolver import HyperOptLossResolver
|
||||
|
||||
|
||||
@ -86,7 +85,6 @@ def test_loss_calculation_has_limited_profit(hyperopt_conf, hyperopt_results) ->
|
||||
"SharpeHyperOptLoss",
|
||||
"SharpeHyperOptLossDaily",
|
||||
"MaxDrawDownHyperOptLoss",
|
||||
"CalmarHyperOptLossDaily",
|
||||
"CalmarHyperOptLoss",
|
||||
|
||||
])
|
||||
|
Loading…
Reference in New Issue
Block a user