Add inlier metric computation

This commit is contained in:
th0rntwig 2022-08-18 14:44:49 +02:00 committed by robcaulk
parent 16af10a5bc
commit 52ee7fc981

View File

@ -654,6 +654,80 @@ class FreqaiDataKitchen:
) )
return return
def compute_inlier_metric(self) -> None:
"""
Compute inlier metric from backwards distance distributions.
This metric defines how well features from a timepoint fit
into previous timepoints.
"""
import scipy.stats as ss
nmb_previous_points = self.data['InlierMetric_nmb_points']
weibull_percentile = self.data['InlierMetric_weib_perc']
train_ft_df = self.data_dictionary['train_features']
train_ft_df_reindexed = train_ft_df.reindex(
index=np.flip(train_ft_df.index)
)
pairwise = pd.DataFrame(
np.triu(
pairwise_distances(train_ft_df_reindexed, n_jobs=self.thread_count)
),
columns=train_ft_df_reindexed.index,
index=train_ft_df_reindexed.index
)
pairwise = pairwise.round(5)
column_labels = [
'{}{}'.format('d', i) for i in range(1, nmb_previous_points+1)
]
distances = pd.DataFrame(
columns=column_labels, index=train_ft_df.index
)
for index in train_ft_df.index[nmb_previous_points]:
current_row = pairwise.loc[[index]]
current_row_no_zeros = current_row.loc[
:, (current_row!=0).any(axis=0)
]
distances.loc[[index]] = current_row_no_zeros.iloc[
:, :nmb_previous_points
]
distances = distances.replace([np.inf, -np.inf], np.nan)
drop_index = pd.isnull(distances).any(1)
distances = distances[drop_index==0]
inliers = pd.DataFrame(index=distances.index)
for key in distances.keys():
current_distances = distances[key].dropna()
fit_params = ss.weibull_min.fit(current_distances)
cutoff = ss.weibull_min.ppf(weibull_percentile, *fit_params)
is_inlier = np.where(
current_distances<=cutoff, 1, 0
)
df_inlier = pd.DataFrame(
{key+'_IsInlier':is_inlier}, index=distances.index
)
inliers = pd.concat(
[inliers, df_inlier], axis=1
)
self.data_dictionary['train_features'] = pd.DataFrame(
data=inliers.sum(axis=1)/nmb_previous_points,
columns=['inlier_metric'],
index = train_ft_df.index
)
percent_outliers = np.round(
100*(1-self.data_dictionary['iniler_metric'].sum()/
len(train_ft_df.index)), 2
)
logger.info('{percent_outliers}%% of data points were identified as outliers')
return None
def find_features(self, dataframe: DataFrame) -> None: def find_features(self, dataframe: DataFrame) -> None:
""" """