diff --git a/freqtrade/freqai/data_kitchen.py b/freqtrade/freqai/data_kitchen.py index 35f51baed..7a885659d 100644 --- a/freqtrade/freqai/data_kitchen.py +++ b/freqtrade/freqai/data_kitchen.py @@ -654,6 +654,80 @@ class FreqaiDataKitchen: ) return + + def compute_inlier_metric(self) -> None: + """ + + Compute inlier metric from backwards distance distributions. + This metric defines how well features from a timepoint fit + into previous timepoints. + """ + + import scipy.stats as ss + + nmb_previous_points = self.data['InlierMetric_nmb_points'] + weibull_percentile = self.data['InlierMetric_weib_perc'] + + train_ft_df = self.data_dictionary['train_features'] + train_ft_df_reindexed = train_ft_df.reindex( + index=np.flip(train_ft_df.index) + ) + + pairwise = pd.DataFrame( + np.triu( + pairwise_distances(train_ft_df_reindexed, n_jobs=self.thread_count) + ), + columns=train_ft_df_reindexed.index, + index=train_ft_df_reindexed.index + ) + pairwise = pairwise.round(5) + + column_labels = [ + '{}{}'.format('d', i) for i in range(1, nmb_previous_points+1) + ] + distances = pd.DataFrame( + columns=column_labels, index=train_ft_df.index + ) + for index in train_ft_df.index[nmb_previous_points]: + current_row = pairwise.loc[[index]] + current_row_no_zeros = current_row.loc[ + :, (current_row!=0).any(axis=0) + ] + distances.loc[[index]] = current_row_no_zeros.iloc[ + :, :nmb_previous_points + ] + distances = distances.replace([np.inf, -np.inf], np.nan) + drop_index = pd.isnull(distances).any(1) + distances = distances[drop_index==0] + + inliers = pd.DataFrame(index=distances.index) + for key in distances.keys(): + current_distances = distances[key].dropna() + fit_params = ss.weibull_min.fit(current_distances) + cutoff = ss.weibull_min.ppf(weibull_percentile, *fit_params) + is_inlier = np.where( + current_distances<=cutoff, 1, 0 + ) + df_inlier = pd.DataFrame( + {key+'_IsInlier':is_inlier}, index=distances.index + ) + inliers = pd.concat( + [inliers, df_inlier], axis=1 + ) + + self.data_dictionary['train_features'] = pd.DataFrame( + data=inliers.sum(axis=1)/nmb_previous_points, + columns=['inlier_metric'], + index = train_ft_df.index + ) + + percent_outliers = np.round( + 100*(1-self.data_dictionary['iniler_metric'].sum()/ + len(train_ft_df.index)), 2 + ) + logger.info('{percent_outliers}%% of data points were identified as outliers') + + return None def find_features(self, dataframe: DataFrame) -> None: """