improve DBSCAN performance for subsequent trainings
This commit is contained in:
@@ -385,7 +385,12 @@ class IFreqaiModel(ABC):
|
||||
dk.data["avg_mean_dist"] = dk.compute_distances()
|
||||
|
||||
if self.freqai_info["feature_parameters"].get("DBSCAN_outlier_pct", 0):
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=False)
|
||||
if dk.pair in self.dd.old_DBSCAN_eps:
|
||||
eps = self.dd.old_DBSCAN_eps[dk.pair]
|
||||
else:
|
||||
eps = None
|
||||
dk.use_DBSCAN_to_remove_outliers(predict=False, eps=eps)
|
||||
self.dd.old_DBSCAN_eps[dk.pair] = dk.data['DBSCAN_eps']
|
||||
|
||||
def data_cleaning_predict(self, dk: FreqaiDataKitchen, dataframe: DataFrame) -> None:
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user