improved buy signal strategy
This commit is contained in:
parent
272abed807
commit
44cdf3e0c2
44
analyze.py
44
analyze.py
@ -43,15 +43,20 @@ def parse_ticker_dataframe(ticker: list, minimum_date: arrow.Arrow) -> DataFrame
|
||||
.sort_values('date')
|
||||
return df[df['date'].map(arrow.get) > minimum_date]
|
||||
|
||||
|
||||
def populate_indicators(dataframe: DataFrame) -> DataFrame:
|
||||
"""
|
||||
Adds several different TA indicators to the given DataFrame
|
||||
"""
|
||||
dataframe['ema'] = ta.EMA(dataframe, timeperiod=33)
|
||||
dataframe['sar'] = ta.SAR(dataframe, 0.02, 0.22)
|
||||
dataframe['adx'] = ta.ADX(dataframe)
|
||||
|
||||
stoch = ta.STOCHF(dataframe)
|
||||
dataframe['fastd'] = stoch['fastd']
|
||||
dataframe['fastk'] = stoch['fastk']
|
||||
dataframe['blower'] = ta.BBANDS(dataframe, nbdevup=2, nbdevdn=2)['lowerband']
|
||||
dataframe['cci'] = ta.CCI(dataframe, timeperiod=5)
|
||||
dataframe['sma'] = ta.SMA(dataframe, timeperiod=100)
|
||||
dataframe['tema'] = ta.TEMA(dataframe, timeperiod=4)
|
||||
dataframe['mfi'] = ta.MFI(dataframe)
|
||||
return dataframe
|
||||
|
||||
|
||||
@ -61,26 +66,14 @@ def populate_buy_trend(dataframe: DataFrame) -> DataFrame:
|
||||
:param dataframe: DataFrame
|
||||
:return: DataFrame with buy column
|
||||
"""
|
||||
prev_sar = dataframe['sar'].shift(1)
|
||||
prev_close = dataframe['close'].shift(1)
|
||||
prev_sar2 = dataframe['sar'].shift(2)
|
||||
prev_close2 = dataframe['close'].shift(2)
|
||||
|
||||
# wait for stable turn from bearish to bullish market
|
||||
dataframe.loc[
|
||||
(dataframe['close'] > dataframe['sar']) &
|
||||
(prev_close > prev_sar) &
|
||||
(prev_close2 < prev_sar2),
|
||||
'swap'
|
||||
] = 1
|
||||
|
||||
# consider prices above ema to be in upswing
|
||||
dataframe.loc[dataframe['ema'] <= dataframe['close'], 'upswing'] = 1
|
||||
|
||||
dataframe.loc[
|
||||
(dataframe['upswing'] == 1) &
|
||||
(dataframe['swap'] == 1) &
|
||||
(dataframe['adx'] > 25), # adx over 25 tells there's enough momentum
|
||||
(dataframe['close'] < dataframe['sma']) &
|
||||
(dataframe['cci'] < -100) &
|
||||
(dataframe['tema'] <= dataframe['blower']) &
|
||||
(dataframe['mfi'] < 30) &
|
||||
(dataframe['fastd'] < 20) &
|
||||
(dataframe['adx'] > 20),
|
||||
'buy'] = 1
|
||||
dataframe.loc[dataframe['buy'] == 1, 'buy_price'] = dataframe['close']
|
||||
|
||||
@ -147,12 +140,13 @@ def plot_dataframe(dataframe: DataFrame, pair: str) -> None:
|
||||
ax1.plot(dataframe.index.values, dataframe['sar'], 'g_', label='pSAR')
|
||||
ax1.plot(dataframe.index.values, dataframe['close'], label='close')
|
||||
# ax1.plot(dataframe.index.values, dataframe['sell'], 'ro', label='sell')
|
||||
ax1.plot(dataframe.index.values, dataframe['ema'], '--', label='EMA(20)')
|
||||
ax1.plot(dataframe.index.values, dataframe['buy'], 'bo', label='buy')
|
||||
ax1.plot(dataframe.index.values, dataframe['sma'], '--', label='SMA')
|
||||
ax1.plot(dataframe.index.values, dataframe['buy_price'], 'bo', label='buy')
|
||||
ax1.legend()
|
||||
|
||||
ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
|
||||
ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
|
||||
# ax2.plot(dataframe.index.values, dataframe['adx'], label='ADX')
|
||||
ax2.plot(dataframe.index.values, dataframe['mfi'], label='MFI')
|
||||
# ax2.plot(dataframe.index.values, [25] * len(dataframe.index.values))
|
||||
ax2.legend()
|
||||
|
||||
# Fine-tune figure; make subplots close to each other and hide x ticks for
|
||||
|
Loading…
Reference in New Issue
Block a user