reuse callback, allow user to acces all stable_baselines3 agents via config

This commit is contained in:
robcaulk
2022-08-20 16:35:29 +02:00
parent 4b9499e321
commit 3eb897c2f8
11 changed files with 295 additions and 587 deletions

View File

@@ -0,0 +1,82 @@
import logging
from typing import Any, Dict # , Tuple
# import numpy.typing as npt
import torch as th
import numpy as np
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
from pathlib import Path
logger = logging.getLogger(__name__)
class ReinforcementLearner(BaseReinforcementLearningModel):
"""
User created Reinforcement Learning Model prediction model.
"""
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
train_df = data_dictionary["train_features"]
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
policy_kwargs = dict(activation_fn=th.nn.ReLU,
net_arch=[256, 256, 128])
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
tensorboard_log=Path(dk.data_path / "tensorboard"),
**self.freqai_info['model_training_parameters']
)
model.learn(
total_timesteps=int(total_timesteps),
callback=self.eval_callback
)
if Path(dk.data_path / "best_model.zip").is_file():
logger.info('Callback found a best model.')
best_model = self.MODELCLASS.load(dk.data_path / "best_model")
return best_model
logger.info('Couldnt find best model, using final model instead.')
return model
class MyRLEnv(Base5ActionRLEnv):
"""
User can modify any part of the environment by overriding base
functions
"""
def calculate_reward(self, action):
if self._last_trade_tick is None:
return 0.
# close long
if action == Actions.Long_exit.value and self._position == Positions.Long:
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(current_price) - np.log(last_trade_price))
if action == Actions.Long_exit.value and self._position == Positions.Long:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
# close short
if action == Actions.Short_exit.value and self._position == Positions.Short:
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(last_trade_price) - np.log(current_price))
if action == Actions.Short_exit.value and self._position == Positions.Short:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
return 0.

View File

@@ -0,0 +1,255 @@
import logging
import torch as th
from typing import Any, Dict, List, Optional, Tuple, Type, Union
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
from stable_baselines3 import DQN
from stable_baselines3.common.buffers import ReplayBuffer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from pathlib import Path
from stable_baselines3.dqn.policies import (CnnPolicy, DQNPolicy, MlpPolicy,
QNetwork)
from torch import nn
import gym
from stable_baselines3.common.torch_layers import (BaseFeaturesExtractor,
FlattenExtractor)
from stable_baselines3.common.type_aliases import GymEnv, Schedule
from stable_baselines3.common.policies import BasePolicy
logger = logging.getLogger(__name__)
class ReinforcementLearnerCustomAgent(BaseReinforcementLearningModel):
"""
User can customize agent by defining the class and using it directly.
Here the example is "TDQN"
"""
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
train_df = data_dictionary["train_features"]
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
policy_kwargs = dict(activation_fn=th.nn.ReLU,
net_arch=[256, 256, 128])
# TDQN is a custom agent defined below
model = TDQN(self.policy_type, self.train_env,
tensorboard_log=Path(dk.data_path / "tensorboard"),
policy_kwargs=policy_kwargs,
**self.freqai_info['model_training_parameters']
)
model.learn(
total_timesteps=int(total_timesteps),
callback=self.eval_callback
)
if Path(dk.data_path / "best_model.zip").is_file():
logger.info('Callback found a best model.')
best_model = self.MODELCLASS.load(dk.data_path / "best_model")
return best_model
logger.info('Couldnt find best model, using final model instead.')
return model
# User creates their custom agent and networks as shown below
def create_mlp_(
input_dim: int,
output_dim: int,
net_arch: List[int],
activation_fn: Type[nn.Module] = nn.ReLU,
squash_output: bool = False,
) -> List[nn.Module]:
dropout = 0.2
if len(net_arch) > 0:
number_of_neural = net_arch[0]
modules = [
nn.Linear(input_dim, number_of_neural),
nn.BatchNorm1d(number_of_neural),
nn.LeakyReLU(),
nn.Dropout(dropout),
nn.Linear(number_of_neural, number_of_neural),
nn.BatchNorm1d(number_of_neural),
nn.LeakyReLU(),
nn.Dropout(dropout),
nn.Linear(number_of_neural, number_of_neural),
nn.BatchNorm1d(number_of_neural),
nn.LeakyReLU(),
nn.Dropout(dropout),
nn.Linear(number_of_neural, number_of_neural),
nn.BatchNorm1d(number_of_neural),
nn.LeakyReLU(),
nn.Dropout(dropout),
nn.Linear(number_of_neural, output_dim)
]
return modules
class TDQNetwork(QNetwork):
def __init__(self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
features_extractor: nn.Module,
features_dim: int,
net_arch: Optional[List[int]] = None,
activation_fn: Type[nn.Module] = nn.ReLU,
normalize_images: bool = True
):
super().__init__(
observation_space=observation_space,
action_space=action_space,
features_extractor=features_extractor,
features_dim=features_dim,
net_arch=net_arch,
activation_fn=activation_fn,
normalize_images=normalize_images
)
action_dim = self.action_space.n
q_net = create_mlp_(self.features_dim, action_dim, self.net_arch, self.activation_fn)
self.q_net = nn.Sequential(*q_net).apply(self.init_weights)
def init_weights(self, m):
if type(m) == nn.Linear:
th.nn.init.kaiming_uniform_(m.weight)
class TDQNPolicy(DQNPolicy):
def __init__(
self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
lr_schedule: Schedule,
net_arch: Optional[List[int]] = None,
activation_fn: Type[nn.Module] = nn.ReLU,
features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor,
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
normalize_images: bool = True,
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
optimizer_kwargs: Optional[Dict[str, Any]] = None,
):
super().__init__(
observation_space=observation_space,
action_space=action_space,
lr_schedule=lr_schedule,
net_arch=net_arch,
activation_fn=activation_fn,
features_extractor_class=features_extractor_class,
features_extractor_kwargs=features_extractor_kwargs,
normalize_images=normalize_images,
optimizer_class=optimizer_class,
optimizer_kwargs=optimizer_kwargs
)
@staticmethod
def init_weights(module: nn.Module, gain: float = 1) -> None:
"""
Orthogonal initialization (used in PPO and A2C)
"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
nn.init.kaiming_uniform_(module.weight)
if module.bias is not None:
module.bias.data.fill_(0.0)
def make_q_net(self) -> TDQNetwork:
# Make sure we always have separate networks for features extractors etc
net_args = self._update_features_extractor(self.net_args, features_extractor=None)
return TDQNetwork(**net_args).to(self.device)
class TMultiInputPolicy(TDQNPolicy):
def __init__(
self,
observation_space: gym.spaces.Space,
action_space: gym.spaces.Space,
lr_schedule: Schedule,
net_arch: Optional[List[int]] = None,
activation_fn: Type[nn.Module] = nn.ReLU,
features_extractor_class: Type[BaseFeaturesExtractor] = FlattenExtractor,
features_extractor_kwargs: Optional[Dict[str, Any]] = None,
normalize_images: bool = True,
optimizer_class: Type[th.optim.Optimizer] = th.optim.Adam,
optimizer_kwargs: Optional[Dict[str, Any]] = None,
):
super().__init__(
observation_space,
action_space,
lr_schedule,
net_arch,
activation_fn,
features_extractor_class,
features_extractor_kwargs,
normalize_images,
optimizer_class,
optimizer_kwargs,
)
class TDQN(DQN):
policy_aliases: Dict[str, Type[BasePolicy]] = {
"MlpPolicy": MlpPolicy,
"CnnPolicy": CnnPolicy,
"TMultiInputPolicy": TMultiInputPolicy,
}
def __init__(
self,
policy: Union[str, Type[TDQNPolicy]],
env: Union[GymEnv, str],
learning_rate: Union[float, Schedule] = 1e-4,
buffer_size: int = 1000000, # 1e6
learning_starts: int = 50000,
batch_size: int = 32,
tau: float = 1.0,
gamma: float = 0.99,
train_freq: Union[int, Tuple[int, str]] = 4,
gradient_steps: int = 1,
replay_buffer_class: Optional[ReplayBuffer] = None,
replay_buffer_kwargs: Optional[Dict[str, Any]] = None,
optimize_memory_usage: bool = False,
target_update_interval: int = 10000,
exploration_fraction: float = 0.1,
exploration_initial_eps: float = 1.0,
exploration_final_eps: float = 0.05,
max_grad_norm: float = 10,
tensorboard_log: Optional[Path] = None,
create_eval_env: bool = False,
policy_kwargs: Optional[Dict[str, Any]] = None,
verbose: int = 1,
seed: Optional[int] = None,
device: Union[th.device, str] = "auto",
_init_setup_model: bool = True,
):
super().__init__(
policy=policy,
env=env,
learning_rate=learning_rate,
buffer_size=buffer_size,
learning_starts=learning_starts,
batch_size=batch_size,
tau=tau,
gamma=gamma,
train_freq=train_freq,
gradient_steps=gradient_steps,
replay_buffer_class=replay_buffer_class, # No action noise
replay_buffer_kwargs=replay_buffer_kwargs,
optimize_memory_usage=optimize_memory_usage,
target_update_interval=target_update_interval,
exploration_fraction=exploration_fraction,
exploration_initial_eps=exploration_initial_eps,
exploration_final_eps=exploration_final_eps,
max_grad_norm=max_grad_norm,
tensorboard_log=tensorboard_log,
create_eval_env=create_eval_env,
policy_kwargs=policy_kwargs,
verbose=verbose,
seed=seed,
device=device,
_init_setup_model=_init_setup_model
)

View File

@@ -0,0 +1,84 @@
import logging
from typing import Any, Dict # , Tuple
# import numpy.typing as npt
import torch as th
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.vec_env import SubprocVecEnv
from freqtrade.freqai.RL.BaseReinforcementLearningModel import (BaseReinforcementLearningModel,
make_env)
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from pathlib import Path
logger = logging.getLogger(__name__)
class ReinforcementLearner_multiproc(BaseReinforcementLearningModel):
"""
User created Reinforcement Learning Model prediction model.
"""
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
train_df = data_dictionary["train_features"]
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
# model arch
policy_kwargs = dict(activation_fn=th.nn.ReLU,
net_arch=[512, 512, 512])
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
tensorboard_log=Path(dk.data_path / "tensorboard"),
**self.freqai_info['model_training_parameters']
)
model.learn(
total_timesteps=int(total_timesteps),
callback=self.eval_callback
)
if Path(dk.data_path / "best_model.zip").is_file():
logger.info('Callback found a best model.')
best_model = self.MODELCLASS.load(dk.data_path / "best_model")
return best_model
logger.info('Couldnt find best model, using final model instead.')
return model
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test, dk):
"""
If user has particular environment configuration needs, they can do that by
overriding this function. In the present case, the user wants to setup training
environments for multiple workers.
"""
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
# environments
if not self.train_env:
env_id = "train_env"
num_cpu = int(self.freqai_info["data_kitchen_thread_count"] / 2)
self.train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
self.reward_params, self.CONV_WIDTH) for i
in range(num_cpu)])
eval_env_id = 'eval_env'
self.eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
self.reward_params, self.CONV_WIDTH, monitor=True) for i
in range(num_cpu)])
self.eval_callback = EvalCallback(self.eval_env, deterministic=True,
render=False, eval_freq=eval_freq,
best_model_save_path=dk.data_path)
else:
self.train_env.env_method('reset')
self.eval_env.env_method('reset')
self.train_env.env_method('reset_env', train_df, prices_train,
self.CONV_WIDTH, self.reward_params)
self.eval_env.env_method('reset_env', train_df, prices_train,
self.CONV_WIDTH, self.reward_params)
self.eval_callback.__init__(self.eval_env, deterministic=True,
render=False, eval_freq=eval_freq,
best_model_save_path=dk.data_path)

View File

@@ -1,104 +0,0 @@
import gc
import logging
from typing import Any, Dict # , Tuple
import numpy as np
# import numpy.typing as npt
import torch as th
from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.monitor import Monitor
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
from freqtrade.freqai.RL.Base3ActionRLEnv import Actions, Base3ActionRLEnv, Positions
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
logger = logging.getLogger(__name__)
class ReinforcementLearningPPO(BaseReinforcementLearningModel):
"""
User created Reinforcement Learning Model prediction model.
"""
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
path = dk.data_path
eval_callback = EvalCallback(self.eval_env, best_model_save_path=f"{path}/",
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
deterministic=True, render=False)
# model arch
policy_kwargs = dict(activation_fn=th.nn.ReLU,
net_arch=[256, 256, 128])
model = PPO('MlpPolicy', self.train_env, policy_kwargs=policy_kwargs,
tensorboard_log=f"{path}/ppo/tensorboard/",
**self.freqai_info['model_training_parameters']
)
model.learn(
total_timesteps=int(total_timesteps),
callback=eval_callback
)
del model
best_model = PPO.load(dk.data_path / "best_model")
print('Training finished!')
gc.collect()
return best_model
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test):
"""
User overrides this as shown here if they are using a custom MyRLEnv
"""
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
# environments
if not self.train_env:
self.train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
reward_kwargs=self.reward_params)
self.eval_env = Monitor(MyRLEnv(df=test_df, prices=prices_test,
window_size=self.CONV_WIDTH,
reward_kwargs=self.reward_params), ".")
else:
self.train_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
self.eval_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
self.train_env.reset()
self.eval_env.reset()
class MyRLEnv(Base3ActionRLEnv):
"""
User can override any function in BaseRLEnv and gym.Env
"""
def calculate_reward(self, action):
if self._last_trade_tick is None:
return 0.
# close long
if (action == Actions.Short.value or
action == Actions.Neutral.value) and self._position == Positions.Long:
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(current_price) - np.log(last_trade_price))
# close short
if (action == Actions.Long.value or
action == Actions.Neutral.value) and self._position == Positions.Short:
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(last_trade_price) - np.log(current_price))
return 0.

View File

@@ -1,132 +0,0 @@
import logging
from typing import Any, Dict # , Tuple
import numpy as np
# import numpy.typing as npt
import torch as th
from stable_baselines3.common.monitor import Monitor
from typing import Callable
from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.vec_env import SubprocVecEnv
from stable_baselines3.common.utils import set_random_seed
from freqtrade.freqai.RL.Base3ActionRLEnv import Base3ActionRLEnv, Actions, Positions
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
import gym
logger = logging.getLogger(__name__)
def make_env(env_id: str, rank: int, seed: int, train_df, price,
reward_params, window_size, monitor=False) -> Callable:
"""
Utility function for multiprocessed env.
:param env_id: (str) the environment ID
:param num_env: (int) the number of environment you wish to have in subprocesses
:param seed: (int) the inital seed for RNG
:param rank: (int) index of the subprocess
:return: (Callable)
"""
def _init() -> gym.Env:
env = MyRLEnv(df=train_df, prices=price, window_size=window_size,
reward_kwargs=reward_params, id=env_id, seed=seed + rank)
if monitor:
env = Monitor(env, ".")
return env
set_random_seed(seed)
return _init
class ReinforcementLearningPPO_multiproc(BaseReinforcementLearningModel):
"""
User created Reinforcement Learning Model prediction model.
"""
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
path = dk.data_path
eval_callback = EvalCallback(self.eval_env, best_model_save_path=f"{path}/",
log_path=f"{path}/ppo/logs/", eval_freq=int(eval_freq),
deterministic=True, render=False)
# model arch
policy_kwargs = dict(activation_fn=th.nn.ReLU,
net_arch=[512, 512, 512])
model = PPO('MlpPolicy', self.train_env, policy_kwargs=policy_kwargs,
tensorboard_log=f"{path}/ppo/tensorboard/",
**self.freqai_info['model_training_parameters']
)
model.learn(
total_timesteps=int(total_timesteps),
callback=eval_callback
)
best_model = PPO.load(dk.data_path / "best_model")
print('Training finished!')
return best_model
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test):
"""
User overrides this in their prediction model if they are custom a MyRLEnv. Othwerwise
leaving this will default to Base5ActEnv
"""
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
# environments
if not self.train_env:
env_id = "train_env"
num_cpu = int(self.freqai_info["data_kitchen_thread_count"] / 2)
self.train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
self.reward_params, self.CONV_WIDTH) for i
in range(num_cpu)])
eval_env_id = 'eval_env'
self.eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
self.reward_params, self.CONV_WIDTH, monitor=True) for i
in range(num_cpu)])
else:
self.train_env.env_method('reset_env', train_df, prices_train,
self.CONV_WIDTH, self.reward_params)
self.eval_env.env_method('reset_env', train_df, prices_train,
self.CONV_WIDTH, self.reward_params)
self.train_env.env_method('reset')
self.eval_env.env_method('reset')
class MyRLEnv(Base3ActionRLEnv):
"""
User can override any function in BaseRLEnv and gym.Env
"""
def calculate_reward(self, action):
if self._last_trade_tick is None:
return 0.
# close long
if (action == Actions.Short.value or
action == Actions.Neutral.value) and self._position == Positions.Long:
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(current_price) - np.log(last_trade_price))
# close short
if (action == Actions.Long.value or
action == Actions.Neutral.value) and self._position == Positions.Short:
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(last_trade_price) - np.log(current_price))
return 0.

View File

@@ -1,115 +0,0 @@
import logging
from typing import Any, Dict # Optional
import torch as th
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.monitor import Monitor
from freqtrade.freqai.RL.Base5ActionRLEnv import Base5ActionRLEnv, Actions, Positions
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
from freqtrade.freqai.RL.TDQNagent import TDQN
from stable_baselines3 import DQN
from stable_baselines3.common.buffers import ReplayBuffer
import numpy as np
import gc
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
class ReinforcementLearningTDQN(BaseReinforcementLearningModel):
"""
User created Reinforcement Learning Model prediction model.
"""
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
path = dk.data_path
eval_callback = EvalCallback(self.eval_env, best_model_save_path=f"{path}/",
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
deterministic=True, render=False)
# model arch
policy_kwargs = dict(activation_fn=th.nn.ReLU,
net_arch=[256, 256, 128])
model = TDQN('TMultiInputPolicy', self.train_env,
tensorboard_log=f"{path}/tdqn/tensorboard/",
policy_kwargs=policy_kwargs,
replay_buffer_class=ReplayBuffer,
**self.freqai_info['model_training_parameters']
)
model.learn(
total_timesteps=int(total_timesteps),
callback=eval_callback
)
del model
best_model = DQN.load(dk.data_path / "best_model")
print('Training finished!')
gc.collect()
return best_model
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test):
"""
User overrides this as shown here if they are using a custom MyRLEnv
"""
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
# environments
if not self.train_env:
self.train_env = MyRLEnv(df=train_df, prices=prices_train, window_size=self.CONV_WIDTH,
reward_kwargs=self.reward_params)
self.eval_env = Monitor(MyRLEnv(df=test_df, prices=prices_test,
window_size=self.CONV_WIDTH,
reward_kwargs=self.reward_params), ".")
else:
self.train_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
self.eval_env.reset_env(train_df, prices_train, self.CONV_WIDTH, self.reward_params)
self.train_env.reset()
self.eval_env.reset()
# User can inherit and customize 5 action environment
class MyRLEnv(Base5ActionRLEnv):
"""
User can override any function in BaseRLEnv and gym.Env. Here the user
Adds 5 actions.
"""
def calculate_reward(self, action):
if self._last_trade_tick is None:
return 0.
# close long
if action == Actions.Long_sell.value and self._position == Positions.Long:
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(current_price) - np.log(last_trade_price))
if action == Actions.Long_sell.value and self._position == Positions.Long:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
# close short
if action == Actions.Short_buy.value and self._position == Positions.Short:
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(last_trade_price) - np.log(current_price))
if action == Actions.Short_buy.value and self._position == Positions.Short:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
return 0.

View File

@@ -1,148 +0,0 @@
import logging
from typing import Any, Dict # Optional
import torch as th
import numpy as np
import gym
from typing import Callable
from stable_baselines3.common.callbacks import EvalCallback
# EvalCallback , StopTrainingOnNoModelImprovement, StopTrainingOnRewardThreshold
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.vec_env import SubprocVecEnv
from stable_baselines3.common.utils import set_random_seed
from stable_baselines3 import DQN
from freqtrade.freqai.RL.Base5ActionRLEnv import Base5ActionRLEnv, Actions, Positions
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
from freqtrade.freqai.RL.TDQNagent import TDQN
from stable_baselines3.common.buffers import ReplayBuffer
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
logger = logging.getLogger(__name__)
def make_env(env_id: str, rank: int, seed: int, train_df, price,
reward_params, window_size, monitor=False) -> Callable:
"""
Utility function for multiprocessed env.
:param env_id: (str) the environment ID
:param num_env: (int) the number of environment you wish to have in subprocesses
:param seed: (int) the inital seed for RNG
:param rank: (int) index of the subprocess
:return: (Callable)
"""
def _init() -> gym.Env:
env = MyRLEnv(df=train_df, prices=price, window_size=window_size,
reward_kwargs=reward_params, id=env_id, seed=seed + rank)
if monitor:
env = Monitor(env, ".")
return env
set_random_seed(seed)
return _init
class ReinforcementLearningTDQN_multiproc(BaseReinforcementLearningModel):
"""
User created Reinforcement Learning Model prediction model.
"""
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
eval_freq = self.freqai_info["rl_config"]["eval_cycles"] * len(test_df)
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
path = dk.data_path
eval_callback = EvalCallback(self.eval_env, best_model_save_path=f"{path}/",
log_path=f"{path}/tdqn/logs/", eval_freq=int(eval_freq),
deterministic=True, render=False)
# model arch
policy_kwargs = dict(activation_fn=th.nn.ReLU,
net_arch=[512, 512, 512])
model = TDQN('TMultiInputPolicy', self.train_env,
policy_kwargs=policy_kwargs,
tensorboard_log=f"{path}/tdqn/tensorboard/",
replay_buffer_class=ReplayBuffer,
**self.freqai_info['model_training_parameters']
)
model.learn(
total_timesteps=int(total_timesteps),
callback=eval_callback
)
best_model = DQN.load(dk.data_path / "best_model.zip")
print('Training finished!')
return best_model
def set_train_and_eval_environments(self, data_dictionary, prices_train, prices_test):
"""
User overrides this in their prediction model if they are custom a MyRLEnv. Othwerwise
leaving this will default to Base5ActEnv
"""
train_df = data_dictionary["train_features"]
test_df = data_dictionary["test_features"]
# environments
if not self.train_env:
env_id = "train_env"
num_cpu = int(self.freqai_info["data_kitchen_thread_count"] / 2)
self.train_env = SubprocVecEnv([make_env(env_id, i, 1, train_df, prices_train,
self.reward_params, self.CONV_WIDTH) for i
in range(num_cpu)])
eval_env_id = 'eval_env'
self.eval_env = SubprocVecEnv([make_env(eval_env_id, i, 1, test_df, prices_test,
self.reward_params, self.CONV_WIDTH, monitor=True) for i
in range(num_cpu)])
else:
self.train_env.env_method('reset_env', train_df, prices_train,
self.CONV_WIDTH, self.reward_params)
self.eval_env.env_method('reset_env', train_df, prices_train,
self.CONV_WIDTH, self.reward_params)
self.train_env.env_method('reset')
self.eval_env.env_method('reset')
# User can inherit and customize 5 action environment
class MyRLEnv(Base5ActionRLEnv):
"""
User can override any function in BaseRLEnv and gym.Env. Here the user
Adds 5 actions.
"""
def calculate_reward(self, action):
if self._last_trade_tick is None:
return 0.
# close long
if action == Actions.Long_sell.value and self._position == Positions.Long:
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(current_price) - np.log(last_trade_price))
if action == Actions.Long_sell.value and self._position == Positions.Long:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
# close short
if action == Actions.Short_buy.value and self._position == Positions.Short:
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
return float(np.log(last_trade_price) - np.log(current_price))
if action == Actions.Short_buy.value and self._position == Positions.Short:
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
return 0.