83 lines
3.4 KiB
Python
83 lines
3.4 KiB
Python
import logging
|
|
from typing import Any, Dict # , Tuple
|
|
|
|
# import numpy.typing as npt
|
|
import torch as th
|
|
import numpy as np
|
|
from freqtrade.freqai.data_kitchen import FreqaiDataKitchen
|
|
from freqtrade.freqai.RL.Base5ActionRLEnv import Actions, Base5ActionRLEnv, Positions
|
|
from freqtrade.freqai.RL.BaseReinforcementLearningModel import BaseReinforcementLearningModel
|
|
from pathlib import Path
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ReinforcementLearner(BaseReinforcementLearningModel):
|
|
"""
|
|
User created Reinforcement Learning Model prediction model.
|
|
"""
|
|
|
|
def fit_rl(self, data_dictionary: Dict[str, Any], dk: FreqaiDataKitchen):
|
|
|
|
train_df = data_dictionary["train_features"]
|
|
total_timesteps = self.freqai_info["rl_config"]["train_cycles"] * len(train_df)
|
|
|
|
policy_kwargs = dict(activation_fn=th.nn.ReLU,
|
|
net_arch=[256, 256, 128])
|
|
|
|
model = self.MODELCLASS(self.policy_type, self.train_env, policy_kwargs=policy_kwargs,
|
|
tensorboard_log=Path(dk.data_path / "tensorboard"),
|
|
**self.freqai_info['model_training_parameters']
|
|
)
|
|
|
|
model.learn(
|
|
total_timesteps=int(total_timesteps),
|
|
callback=self.eval_callback
|
|
)
|
|
|
|
if Path(dk.data_path / "best_model.zip").is_file():
|
|
logger.info('Callback found a best model.')
|
|
best_model = self.MODELCLASS.load(dk.data_path / "best_model")
|
|
return best_model
|
|
|
|
logger.info('Couldnt find best model, using final model instead.')
|
|
|
|
return model
|
|
|
|
|
|
class MyRLEnv(Base5ActionRLEnv):
|
|
"""
|
|
User can modify any part of the environment by overriding base
|
|
functions
|
|
"""
|
|
def calculate_reward(self, action):
|
|
|
|
if self._last_trade_tick is None:
|
|
return 0.
|
|
|
|
# close long
|
|
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
|
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
|
return float(np.log(current_price) - np.log(last_trade_price))
|
|
|
|
if action == Actions.Long_exit.value and self._position == Positions.Long:
|
|
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
|
last_trade_price = self.add_buy_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
current_price = self.add_sell_fee(self.prices.iloc[self._current_tick].open)
|
|
return float((np.log(current_price) - np.log(last_trade_price)) * 2)
|
|
|
|
# close short
|
|
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
|
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
|
return float(np.log(last_trade_price) - np.log(current_price))
|
|
|
|
if action == Actions.Short_exit.value and self._position == Positions.Short:
|
|
if self.close_trade_profit[-1] > self.profit_aim * self.rr:
|
|
last_trade_price = self.add_sell_fee(self.prices.iloc[self._last_trade_tick].open)
|
|
current_price = self.add_buy_fee(self.prices.iloc[self._current_tick].open)
|
|
return float((np.log(last_trade_price) - np.log(current_price)) * 2)
|
|
|
|
return 0.
|