Merge commit '1134c81aad049d4357c8f299ffc801218f3d9574' into feature/objectify

This commit is contained in:
Gerald Lonlas 2018-03-03 16:42:37 -08:00
commit 38510d4b03
11 changed files with 285 additions and 75 deletions

View File

@ -172,19 +172,17 @@ class Analyze(object):
:return True if bot should sell at current rate
"""
current_profit = trade.calc_profit_percent(current_rate)
if self.strategy.stoploss is not None and current_profit < float(self.strategy.stoploss):
if self.strategy.stoploss is not None and current_profit < self.strategy.stoploss:
self.logger.debug('Stop loss hit.')
return True
# Check if time matches and current rate is above threshold
time_diff = (current_time.timestamp() - trade.open_date.timestamp()) / 60
for duration_string, threshold in self.strategy.minimal_roi.items():
duration = float(duration_string)
if time_diff > duration and current_profit > threshold:
return True
if time_diff < duration:
for duration, threshold in self.strategy.minimal_roi.items():
if time_diff <= duration:
return False
if current_profit > threshold:
return True
return False

View File

@ -67,5 +67,5 @@ def file_dump_json(filename, data) -> None:
:param data: JSON Data to save
:return:
"""
with open(filename, 'w') as file:
json.dump(data, file)
with open(filename, 'w') as fp:
json.dump(data, fp, default=str)

View File

@ -102,43 +102,35 @@ class Backtesting(object):
])
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt)
def _get_sell_trade_entry(self, pair, row, buy_subset, ticker, trade_count_lock, args):
def _get_sell_trade_entry(self, pair, buy_row, partial_ticker, trade_count_lock, args):
stake_amount = args['stake_amount']
max_open_trades = args.get('max_open_trades', 0)
trade = Trade(
open_rate=row.close,
open_date=row.Index,
open_rate=buy_row.close,
open_date=buy_row.date,
stake_amount=stake_amount,
amount=stake_amount / row.open,
amount=stake_amount / buy_row.open,
fee=exchange.get_fee()
)
# calculate win/lose forwards from buy point
sell_subset = ticker[ticker.index > row.Index][['close', 'sell', 'buy']]
for row2 in sell_subset.itertuples(index=True):
for sell_row in partial_ticker:
if max_open_trades > 0:
# Increase trade_count_lock for every iteration
trade_count_lock[row2.Index] = trade_count_lock.get(row2.Index, 0) + 1
trade_count_lock[sell_row.date] = trade_count_lock.get(sell_row.date, 0) + 1
buy_signal = row2.buy
if(
self.analyze.should_sell(
trade=trade,
rate=row2.close,
date=row2.Index,
buy=buy_signal,
sell=row2.sell
)
):
buy_signal = sell_row.buy
if self.analyze.should_sell(trade, sell_row.close, sell_row.date, buy_signal,
sell_row.sell):
return \
row2, \
sell_row, \
(
pair,
trade.calc_profit_percent(rate=row2.close),
trade.calc_profit(rate=row2.close),
(row2.Index - row.Index).seconds // 60
),\
row2.Index
trade.calc_profit_percent(rate=sell_row.close),
trade.calc_profit(rate=sell_row.close),
(sell_row.date - buy_row.date).seconds // 60
), \
sell_row.date
return None
def backtest(self, args) -> DataFrame:
@ -159,6 +151,7 @@ class Backtesting(object):
stoploss: use stoploss
:return: DataFrame
"""
headers = ['date', 'buy', 'open', 'close', 'sell']
processed = args['processed']
max_open_trades = args.get('max_open_trades', 0)
realistic = args.get('realistic', True)
@ -167,37 +160,28 @@ class Backtesting(object):
trades = []
trade_count_lock = {}
for pair, pair_data in processed.items():
pair_data['buy'], pair_data['sell'] = 0, 0
ticker = self.populate_sell_trend(
self.populate_buy_trend(pair_data)
)
if 'date' in ticker:
ticker.set_index('date', inplace=True)
# for each buy point
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
ticker_data = self.populate_sell_trend(self.populate_buy_trend(pair_data))[headers]
ticker = [x for x in ticker_data.itertuples()]
lock_pair_until = None
headers = ['buy', 'open', 'close', 'sell']
buy_subset = ticker[(ticker.buy == 1) & (ticker.sell == 0)][headers]
for row in buy_subset.itertuples(index=True):
for index, row in enumerate(ticker):
if row.buy == 0 or row.sell == 1:
continue # skip rows where no buy signal or that would immediately sell off
if realistic:
if lock_pair_until is not None and row.Index <= lock_pair_until:
if lock_pair_until is not None and row.date <= lock_pair_until:
continue
if max_open_trades > 0:
# Check if max_open_trades has already been reached for the given date
if not trade_count_lock.get(row.Index, 0) < max_open_trades:
if not trade_count_lock.get(row.date, 0) < max_open_trades:
continue
if max_open_trades > 0:
# Increase lock
trade_count_lock[row.Index] = trade_count_lock.get(row.Index, 0) + 1
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
ret = self._get_sell_trade_entry(
pair=pair,
row=row,
buy_subset=buy_subset,
ticker=ticker,
trade_count_lock=trade_count_lock,
args=args
)
ret = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
trade_count_lock, args)
if ret:
row2, trade_entry, next_date = ret
@ -208,9 +192,9 @@ class Backtesting(object):
# record a tuple of pair, current_profit_percent,
# entry-date, duration
records.append((pair, trade_entry[1],
row.Index.strftime('%s'),
row2.Index.strftime('%s'),
row.Index, trade_entry[3]))
row.date.strftime('%s'),
row2.date.strftime('%s'),
row.date, trade_entry[3]))
# For now export inside backtest(), maybe change so that backtest()
# returns a tuple like: (dataframe, records, logs, etc)
if record and record.find('trades') >= 0:
@ -226,6 +210,8 @@ class Backtesting(object):
"""
data = {}
pairs = self.config['exchange']['pair_whitelist']
self.logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
self.logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
if self.config.get('live'):
self.logger.info('Downloading data for all pairs in whitelist ...')
@ -233,8 +219,6 @@ class Backtesting(object):
data[pair] = exchange.get_ticker_history(pair, self.ticker_interval)
else:
self.logger.info('Using local backtesting data (using whitelist in given config) ...')
self.logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
self.logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
timerange = Arguments.parse_timerange(self.config.get('timerange'))
data = optimize.load_data(

View File

@ -240,15 +240,15 @@ class Hyperopt(Backtesting):
return trade_loss + profit_loss + duration_loss
@staticmethod
def generate_roi_table(params) -> Dict[str, float]:
def generate_roi_table(params) -> Dict[int, float]:
"""
Generate the ROI table thqt will be used by Hyperopt
"""
roi_table = {}
roi_table["0"] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[str(params['roi_t3'])] = params['roi_p1'] + params['roi_p2']
roi_table[str(params['roi_t3'] + params['roi_t2'])] = params['roi_p1']
roi_table[str(params['roi_t3'] + params['roi_t2'] + params['roi_t1'])] = 0
roi_table[0] = params['roi_p1'] + params['roi_p2'] + params['roi_p3']
roi_table[params['roi_t3']] = params['roi_p1'] + params['roi_p2']
roi_table[params['roi_t3'] + params['roi_t2']] = params['roi_p1']
roi_table[params['roi_t3'] + params['roi_t2'] + params['roi_t1']] = 0
return roi_table

View File

@ -58,11 +58,11 @@ class Strategy(object):
# Minimal ROI designed for the strategy
self.minimal_roi = OrderedDict(sorted(
self.custom_strategy.minimal_roi.items(),
key=lambda tuple: float(tuple[0]))) # sort after converting to number
{int(key): value for (key, value) in self.custom_strategy.minimal_roi.items()}.items(),
key=lambda tuple: tuple[0])) # sort after converting to number
# Optimal stoploss designed for the strategy
self.stoploss = self.custom_strategy.stoploss
self.stoploss = float(self.custom_strategy.stoploss)
self.ticker_interval = self.custom_strategy.ticker_interval

View File

@ -285,6 +285,7 @@ def ticker_history_without_bv():
]
# FIX: Perhaps change result fixture to use BTC_UNITEST instead?
@pytest.fixture
def result():
with open('freqtrade/tests/testdata/BTC_ETH-1.json') as data_file:

View File

@ -1,12 +1,14 @@
# pragma pylint: disable=missing-docstring, W0212, line-too-long, C0103, unused-argument
import json
import random
import math
from typing import List
from copy import deepcopy
from unittest.mock import MagicMock
from arrow import Arrow
import pandas as pd
import numpy as np
from freqtrade import optimize
from freqtrade.optimize.backtesting import Backtesting, start, setup_configuration
from freqtrade.arguments import Arguments
@ -96,6 +98,70 @@ def mocked_load_data(datadir, pairs=[], ticker_interval=0, refresh_pairs=False,
return pairdata
# use for mock freqtrade.exchange.get_ticker_history'
def _load_pair_as_ticks(pair, tickfreq):
ticks = optimize.load_data(None, ticker_interval=tickfreq, pairs=[pair])
ticks = trim_dictlist(ticks, -200)
return ticks[pair]
# FIX: fixturize this?
def _make_backtest_conf(conf=None, pair='BTC_UNITEST', record=None):
data = optimize.load_data(None, ticker_interval=8, pairs=[pair])
data = trim_dictlist(data, -200)
return {
'stake_amount': conf['stake_amount'],
'processed': _BACKTESTING.tickerdata_to_dataframe(data),
'max_open_trades': 10,
'realistic': True,
'record': record
}
def _trend(signals, buy_value, sell_value):
n = len(signals['low'])
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(signals['buy'])):
if random.random() > 0.5: # Both buy and sell signals at same timeframe
buy[i] = buy_value
sell[i] = sell_value
signals['buy'] = buy
signals['sell'] = sell
return signals
def _trend_alternate(dataframe=None):
signals = dataframe
low = signals['low']
n = len(low)
buy = np.zeros(n)
sell = np.zeros(n)
for i in range(0, len(buy)):
if i % 2 == 0:
buy[i] = 1
else:
sell[i] = 1
signals['buy'] = buy
signals['sell'] = sell
return dataframe
def _run_backtest_1(fun, backtest_conf):
# strategy is a global (hidden as a singleton), so we
# emulate strategy being pure, by override/restore here
# if we dont do this, the override in strategy will carry over
# to other tests
old_buy = _BACKTESTING.populate_buy_trend
old_sell = _BACKTESTING.populate_sell_trend
_BACKTESTING.populate_buy_trend = fun # Override
_BACKTESTING.populate_sell_trend = fun # Override
results = _BACKTESTING.backtest(backtest_conf)
_BACKTESTING.populate_buy_trend = old_buy # restore override
_BACKTESTING.populate_sell_trend = old_sell # restore override
return results
# Unit tests
def test_setup_configuration_without_arguments(mocker, default_conf, caplog) -> None:
"""
@ -418,3 +484,125 @@ def test_backtest_pricecontours(default_conf) -> None:
tests = [['raise', 17], ['lower', 0], ['sine', 17]]
for [contour, numres] in tests:
simple_backtest(default_conf, contour, numres)
# Test backtest using offline data (testdata directory)
def test_backtest_ticks(default_conf):
ticks = [1, 5]
fun = _BACKTESTING.populate_buy_trend
for tick in ticks:
backtest_conf = _make_backtest_conf(conf=default_conf)
results = _run_backtest_1(fun, backtest_conf)
assert not results.empty
def test_backtest_clash_buy_sell(default_conf):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None):
buy_value = 1
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(conf=default_conf)
results = _run_backtest_1(fun, backtest_conf)
assert results.empty
def test_backtest_only_sell(default_conf):
# Override the default buy trend function in our default_strategy
def fun(dataframe=None):
buy_value = 0
sell_value = 1
return _trend(dataframe, buy_value, sell_value)
backtest_conf = _make_backtest_conf(conf=default_conf)
results = _run_backtest_1(fun, backtest_conf)
assert results.empty
def test_backtest_alternate_buy_sell(default_conf):
backtest_conf = _make_backtest_conf(conf=default_conf, pair='BTC_UNITEST')
results = _run_backtest_1(_trend_alternate, backtest_conf)
assert len(results) == 3
def test_backtest_record(default_conf, mocker):
names = []
records = []
mocker.patch(
'freqtrade.optimize.backtesting.file_dump_json',
new=lambda n, r: (names.append(n), records.append(r))
)
backtest_conf = _make_backtest_conf(
conf=default_conf,
pair='BTC_UNITEST',
record="trades"
)
results = _run_backtest_1(_trend_alternate, backtest_conf)
assert len(results) == 3
# Assert file_dump_json was only called once
assert names == ['backtest-result.json']
records = records[0]
# Ensure records are of correct type
assert len(records) == 3
# ('BTC_UNITEST', 0.00331158, '1510684320', '1510691700', 0, 117)
# Below follows just a typecheck of the schema/type of trade-records
oix = None
for (pair, profit, date_buy, date_sell, buy_index, dur) in records:
assert pair == 'BTC_UNITEST'
isinstance(profit, float)
# FIX: buy/sell should be converted to ints
isinstance(date_buy, str)
isinstance(date_sell, str)
isinstance(buy_index, pd._libs.tslib.Timestamp)
if oix:
assert buy_index > oix
oix = buy_index
assert dur > 0
def test_backtest_start_live(default_conf, mocker, caplog):
default_conf['exchange']['pair_whitelist'] = ['BTC_UNITEST']
mocker.patch('freqtrade.exchange.get_ticker_history',
new=lambda n, i: _load_pair_as_ticks(n, i))
mocker.patch('freqtrade.optimize.backtesting.Backtesting.backtest', MagicMock())
mocker.patch('freqtrade.optimize.backtesting.Backtesting._generate_text_table', MagicMock())
mocker.patch('freqtrade.configuration.open', mocker.mock_open(
read_data=json.dumps(default_conf)
))
args = MagicMock()
args.ticker_interval = 1
args.level = 10
args.live = True
args.datadir = None
args.export = None
args.strategy = 'default_strategy'
args.timerange = '-100' # needed due to MagicMock malleability
args = [
'--config', 'config.json',
'--strategy', 'default_strategy',
'backtesting',
'--ticker-interval', '1',
'--live',
'--timerange', '-100'
]
args = get_args(args)
start(args)
# check the logs, that will contain the backtest result
exists = [
'Parameter -i/--ticker-interval detected ...',
'Using ticker_interval: 1 ...',
'Parameter -l/--live detected ...',
'Using max_open_trades: 1 ...',
'Parameter --timerange detected: -100 ..',
'Parameter --datadir detected: freqtrade/tests/testdata ...',
'Using stake_currency: BTC ...',
'Using stake_amount: 0.001 ...',
'Downloading data for all pairs in whitelist ...',
'Measuring data from 2017-11-14T19:32:00+00:00 up to 2017-11-14T22:59:00+00:00 (0 days)..'
]
for line in exists:
tt.log_has(line, caplog.record_tuples)

View File

@ -2,6 +2,7 @@
import os
from copy import deepcopy
from unittest.mock import MagicMock
import pandas as pd
from freqtrade.optimize.hyperopt import Hyperopt
import freqtrade.tests.conftest as tt # test tools
@ -157,7 +158,7 @@ def test_fmin_best_results(mocker, default_conf, caplog) -> None:
'"uptrend_long_ema": {\n "enabled": true\n },',
'"uptrend_short_ema": {\n "enabled": false\n },',
'"uptrend_sma": {\n "enabled": false\n }',
'ROI table:\n{\'0\': 6.0, \'3.0\': 3.0, \'5.0\': 1.0, \'6.0\': 0}',
'ROI table:\n{0: 6.0, 3.0: 3.0, 5.0: 1.0, 6.0: 0}',
'Best Result:\nfoo'
]
for line in exists:
@ -275,7 +276,7 @@ def test_roi_table_generation() -> None:
}
hyperopt = _HYPEROPT
assert hyperopt.generate_roi_table(params) == {'0': 6, '15': 3, '25': 1, '30': 0}
assert hyperopt.generate_roi_table(params) == {0: 6, 15: 3, 25: 1, 30: 0}
def test_start_calls_fmin(mocker, default_conf) -> None:
@ -319,3 +320,36 @@ def test_start_uses_mongotrials(mocker, default_conf) -> None:
hyperopt.start()
mock_mongotrials.assert_called_once()
mock_fmin.assert_called_once()
# test log_trials_result
# test buy_strategy_generator def populate_buy_trend
# test optimizer if 'ro_t1' in params
def test_format_results():
"""
Test Hyperopt.format_results()
"""
trades = [
('BTC_ETH', 2, 2, 123),
('BTC_LTC', 1, 1, 123),
('BTC_XRP', -1, -2, -246)
]
labels = ['currency', 'profit_percent', 'profit_BTC', 'duration']
df = pd.DataFrame.from_records(trades, columns=labels)
x = Hyperopt.format_results(df)
assert x.find(' 66.67%')
def test_signal_handler(mocker):
"""
Test Hyperopt.signal_handler()
"""
m = MagicMock()
mocker.patch('sys.exit', m)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.save_trials', m)
mocker.patch('freqtrade.optimize.hyperopt.Hyperopt.log_trials_result', m)
hyperopt = _HYPEROPT
hyperopt.signal_handler(9, None)
assert m.call_count == 3

View File

@ -55,7 +55,7 @@ def test_strategy(result):
strategy = Strategy({'strategy': 'default_strategy'})
assert hasattr(strategy.custom_strategy, 'minimal_roi')
assert strategy.minimal_roi['0'] == 0.04
assert strategy.minimal_roi[0] == 0.04
assert hasattr(strategy.custom_strategy, 'stoploss')
assert strategy.stoploss == -0.10
@ -83,7 +83,7 @@ def test_strategy_override_minimal_roi(caplog):
strategy = Strategy(config)
assert hasattr(strategy.custom_strategy, 'minimal_roi')
assert strategy.minimal_roi['0'] == 0.5
assert strategy.minimal_roi[0] == 0.5
assert ('freqtrade.strategy.strategy',
logging.INFO,
'Override strategy \'minimal_roi\' with value in config file.'
@ -136,8 +136,8 @@ def test_strategy_singleton():
strategy1 = Strategy({'strategy': 'default_strategy'})
assert hasattr(strategy1.custom_strategy, 'minimal_roi')
assert strategy1.minimal_roi['0'] == 0.04
assert strategy1.minimal_roi[0] == 0.04
strategy2 = Strategy()
assert hasattr(strategy2.custom_strategy, 'minimal_roi')
assert strategy2.minimal_roi['0'] == 0.04
assert strategy2.minimal_roi[0] == 0.04

View File

@ -43,6 +43,11 @@ def test_analyze_object() -> None:
assert hasattr(Analyze, 'min_roi_reached')
def test_dataframe_correct_length(result):
dataframe = Analyze.parse_ticker_dataframe(result)
assert len(result.index) == len(dataframe.index)
def test_dataframe_correct_columns(result):
assert result.columns.tolist() == \
['close', 'high', 'low', 'open', 'date', 'volume']