Merge pull request #3231 from hroff-1902/hyperopt-cleanup6

Cleanup in Hyperopt
This commit is contained in:
Matthias 2020-04-29 06:11:17 +02:00 committed by GitHub
commit 32eaca9970
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 111 additions and 108 deletions

View File

@ -38,33 +38,33 @@ def start_hyperopt_list(args: Dict[str, Any]) -> None:
'filter_max_total_profit': config.get('hyperopt_list_max_total_profit', None)
}
trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
results_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
# Previous evaluations
trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials)
epochs = Hyperopt.load_previous_results(results_file)
total_epochs = len(epochs)
trials = _hyperopt_filter_trials(trials, filteroptions)
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
if print_colorized:
colorama_init(autoreset=True)
if not export_csv:
try:
print(Hyperopt.get_result_table(config, trials, total_epochs,
print(Hyperopt.get_result_table(config, epochs, total_epochs,
not filteroptions['only_best'], print_colorized, 0))
except KeyboardInterrupt:
print('User interrupted..')
if trials and not no_details:
sorted_trials = sorted(trials, key=itemgetter('loss'))
results = sorted_trials[0]
if epochs and not no_details:
sorted_epochs = sorted(epochs, key=itemgetter('loss'))
results = sorted_epochs[0]
Hyperopt.print_epoch_details(results, total_epochs, print_json, no_header)
if trials and export_csv:
if epochs and export_csv:
Hyperopt.export_csv_file(
config, trials, total_epochs, not filteroptions['only_best'], export_csv
config, epochs, total_epochs, not filteroptions['only_best'], export_csv
)
@ -78,8 +78,8 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
print_json = config.get('print_json', False)
no_header = config.get('hyperopt_show_no_header', False)
trials_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
results_file = (config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
n = config.get('hyperopt_show_index', -1)
filteroptions = {
@ -96,89 +96,87 @@ def start_hyperopt_show(args: Dict[str, Any]) -> None:
}
# Previous evaluations
trials = Hyperopt.load_previous_results(trials_file)
total_epochs = len(trials)
epochs = Hyperopt.load_previous_results(results_file)
total_epochs = len(epochs)
trials = _hyperopt_filter_trials(trials, filteroptions)
trials_epochs = len(trials)
epochs = _hyperopt_filter_epochs(epochs, filteroptions)
filtered_epochs = len(epochs)
if n > trials_epochs:
if n > filtered_epochs:
raise OperationalException(
f"The index of the epoch to show should be less than {trials_epochs + 1}.")
if n < -trials_epochs:
f"The index of the epoch to show should be less than {filtered_epochs + 1}.")
if n < -filtered_epochs:
raise OperationalException(
f"The index of the epoch to show should be greater than {-trials_epochs - 1}.")
f"The index of the epoch to show should be greater than {-filtered_epochs - 1}.")
# Translate epoch index from human-readable format to pythonic
if n > 0:
n -= 1
if trials:
val = trials[n]
if epochs:
val = epochs[n]
Hyperopt.print_epoch_details(val, total_epochs, print_json, no_header,
header_str="Epoch details")
def _hyperopt_filter_trials(trials: List, filteroptions: dict) -> List:
def _hyperopt_filter_epochs(epochs: List, filteroptions: dict) -> List:
"""
Filter our items from the list of hyperopt results
"""
if filteroptions['only_best']:
trials = [x for x in trials if x['is_best']]
epochs = [x for x in epochs if x['is_best']]
if filteroptions['only_profitable']:
trials = [x for x in trials if x['results_metrics']['profit'] > 0]
epochs = [x for x in epochs if x['results_metrics']['profit'] > 0]
if filteroptions['filter_min_trades'] > 0:
trials = [
x for x in trials
epochs = [
x for x in epochs
if x['results_metrics']['trade_count'] > filteroptions['filter_min_trades']
]
if filteroptions['filter_max_trades'] > 0:
trials = [
x for x in trials
epochs = [
x for x in epochs
if x['results_metrics']['trade_count'] < filteroptions['filter_max_trades']
]
if filteroptions['filter_min_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [
x for x in epochs
if x['results_metrics']['duration'] > filteroptions['filter_min_avg_time']
]
if filteroptions['filter_max_avg_time'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [
x for x in epochs
if x['results_metrics']['duration'] < filteroptions['filter_max_avg_time']
]
if filteroptions['filter_min_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
> filteroptions['filter_min_avg_profit']
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [
x for x in epochs
if x['results_metrics']['avg_profit'] > filteroptions['filter_min_avg_profit']
]
if filteroptions['filter_max_avg_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
if x['results_metrics']['avg_profit']
< filteroptions['filter_max_avg_profit']
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [
x for x in epochs
if x['results_metrics']['avg_profit'] < filteroptions['filter_max_avg_profit']
]
if filteroptions['filter_min_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [
x for x in epochs
if x['results_metrics']['profit'] > filteroptions['filter_min_total_profit']
]
if filteroptions['filter_max_total_profit'] is not None:
trials = [x for x in trials if x['results_metrics']['trade_count'] > 0]
trials = [
x for x in trials
epochs = [x for x in epochs if x['results_metrics']['trade_count'] > 0]
epochs = [
x for x in epochs
if x['results_metrics']['profit'] < filteroptions['filter_max_total_profit']
]
logger.info(f"{len(trials)} " +
logger.info(f"{len(epochs)} " +
("best " if filteroptions['only_best'] else "") +
("profitable " if filteroptions['only_profitable'] else "") +
"epochs found.")
return trials
return epochs

View File

@ -75,8 +75,8 @@ class Hyperopt:
self.custom_hyperoptloss = HyperOptLossResolver.load_hyperoptloss(self.config)
self.calculate_loss = self.custom_hyperoptloss.hyperopt_loss_function
self.trials_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
self.results_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_results.pickle')
self.data_pickle_file = (self.config['user_data_dir'] /
'hyperopt_results' / 'hyperopt_tickerdata.pkl')
self.total_epochs = config.get('epochs', 0)
@ -88,10 +88,10 @@ class Hyperopt:
else:
logger.info("Continuing on previous hyperopt results.")
self.num_trials_saved = 0
self.num_epochs_saved = 0
# Previous evaluations
self.trials: List = []
self.epochs: List = []
# Populate functions here (hasattr is slow so should not be run during "regular" operations)
if hasattr(self.custom_hyperopt, 'populate_indicators'):
@ -132,7 +132,7 @@ class Hyperopt:
"""
Remove hyperopt pickle files to restart hyperopt.
"""
for f in [self.data_pickle_file, self.trials_file]:
for f in [self.data_pickle_file, self.results_file]:
p = Path(f)
if p.is_file():
logger.info(f"Removing `{p}`.")
@ -151,27 +151,26 @@ class Hyperopt:
# and the values are taken from the list of parameters.
return {d.name: v for d, v in zip(dimensions, raw_params)}
def save_trials(self, final: bool = False) -> None:
def _save_results(self) -> None:
"""
Save hyperopt trials to file
Save hyperopt results to file
"""
num_trials = len(self.trials)
if num_trials > self.num_trials_saved:
logger.debug(f"Saving {num_trials} {plural(num_trials, 'epoch')}.")
dump(self.trials, self.trials_file)
self.num_trials_saved = num_trials
if final:
logger.info(f"{num_trials} {plural(num_trials, 'epoch')} "
f"saved to '{self.trials_file}'.")
num_epochs = len(self.epochs)
if num_epochs > self.num_epochs_saved:
logger.debug(f"Saving {num_epochs} {plural(num_epochs, 'epoch')}.")
dump(self.epochs, self.results_file)
self.num_epochs_saved = num_epochs
logger.debug(f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
f"saved to '{self.results_file}'.")
@staticmethod
def _read_trials(trials_file: Path) -> List:
def _read_results(results_file: Path) -> List:
"""
Read hyperopt trials file
Read hyperopt results from file
"""
logger.info("Reading Trials from '%s'", trials_file)
trials = load(trials_file)
return trials
logger.info("Reading epochs from '%s'", results_file)
data = load(results_file)
return data
def _get_params_details(self, params: Dict) -> Dict:
"""
@ -588,19 +587,20 @@ class Hyperopt:
wrap_non_picklable_objects(self.generate_optimizer))(v, i) for v in asked)
@staticmethod
def load_previous_results(trials_file: Path) -> List:
def load_previous_results(results_file: Path) -> List:
"""
Load data for epochs from the file if we have one
"""
trials: List = []
if trials_file.is_file() and trials_file.stat().st_size > 0:
trials = Hyperopt._read_trials(trials_file)
if trials[0].get('is_best') is None:
epochs: List = []
if results_file.is_file() and results_file.stat().st_size > 0:
epochs = Hyperopt._read_results(results_file)
# Detection of some old format, without 'is_best' field saved
if epochs[0].get('is_best') is None:
raise OperationalException(
"The file with Hyperopt results is incompatible with this version "
"of Freqtrade and cannot be loaded.")
logger.info(f"Loaded {len(trials)} previous evaluations from disk.")
return trials
logger.info(f"Loaded {len(epochs)} previous evaluations from disk.")
return epochs
def _set_random_state(self, random_state: Optional[int]) -> int:
return random_state or random.randint(1, 2**16 - 1)
@ -628,7 +628,7 @@ class Hyperopt:
self.backtesting.exchange = None # type: ignore
self.backtesting.pairlists = None # type: ignore
self.trials = self.load_previous_results(self.trials_file)
self.epochs = self.load_previous_results(self.results_file)
cpus = cpu_count()
logger.info(f"Found {cpus} CPU cores. Let's make them scream!")
@ -698,23 +698,25 @@ class Hyperopt:
if is_best:
self.current_best_loss = val['loss']
self.trials.append(val)
self.epochs.append(val)
# Save results after each best epoch and every 100 epochs
if is_best or current % 100 == 0:
self.save_trials()
self._save_results()
pbar.update(current)
except KeyboardInterrupt:
print('User interrupted..')
self.save_trials(final=True)
self._save_results()
logger.info(f"{self.num_epochs_saved} {plural(self.num_epochs_saved, 'epoch')} "
f"saved to '{self.results_file}'.")
if self.trials:
sorted_trials = sorted(self.trials, key=itemgetter('loss'))
results = sorted_trials[0]
self.print_epoch_details(results, self.total_epochs, self.print_json)
if self.epochs:
sorted_epochs = sorted(self.epochs, key=itemgetter('loss'))
best_epoch = sorted_epochs[0]
self.print_epoch_details(best_epoch, self.total_epochs, self.print_json)
else:
# This is printed when Ctrl+C is pressed quickly, before first epochs have
# a chance to be evaluated.

View File

@ -1,5 +1,6 @@
# pragma pylint: disable=missing-docstring,W0212,C0103
import locale
import logging
from datetime import datetime
from pathlib import Path
from typing import Dict, List
@ -56,14 +57,14 @@ def hyperopt_results():
# Functions for recurrent object patching
def create_trials(mocker, hyperopt, testdatadir) -> List[Dict]:
def create_results(mocker, hyperopt, testdatadir) -> List[Dict]:
"""
When creating trials, mock the hyperopt Trials so that *by default*
When creating results, mock the hyperopt so that *by default*
- we don't create any pickle'd files in the filesystem
- we might have a pickle'd file so make sure that we return
false when looking for it
"""
hyperopt.trials_file = testdatadir / 'optimize/ut_trials.pickle'
hyperopt.results_file = testdatadir / 'optimize/ut_results.pickle'
mocker.patch.object(Path, "is_file", MagicMock(return_value=False))
stat_mock = MagicMock()
@ -477,28 +478,30 @@ def test_no_log_if_loss_does_not_improve(hyperopt, caplog) -> None:
assert caplog.record_tuples == []
def test_save_trials_saves_trials(mocker, hyperopt, testdatadir, caplog) -> None:
trials = create_trials(mocker, hyperopt, testdatadir)
def test_save_results_saves_epochs(mocker, hyperopt, testdatadir, caplog) -> None:
epochs = create_results(mocker, hyperopt, testdatadir)
mock_dump = mocker.patch('freqtrade.optimize.hyperopt.dump', return_value=None)
trials_file = testdatadir / 'optimize' / 'ut_trials.pickle'
results_file = testdatadir / 'optimize' / 'ut_results.pickle'
hyperopt.trials = trials
hyperopt.save_trials(final=True)
assert log_has(f"1 epoch saved to '{trials_file}'.", caplog)
caplog.set_level(logging.DEBUG)
hyperopt.epochs = epochs
hyperopt._save_results()
assert log_has(f"1 epoch saved to '{results_file}'.", caplog)
mock_dump.assert_called_once()
hyperopt.trials = trials + trials
hyperopt.save_trials(final=True)
assert log_has(f"2 epochs saved to '{trials_file}'.", caplog)
hyperopt.epochs = epochs + epochs
hyperopt._save_results()
assert log_has(f"2 epochs saved to '{results_file}'.", caplog)
def test_read_trials_returns_trials_file(mocker, hyperopt, testdatadir, caplog) -> None:
trials = create_trials(mocker, hyperopt, testdatadir)
mock_load = mocker.patch('freqtrade.optimize.hyperopt.load', return_value=trials)
trials_file = testdatadir / 'optimize' / 'ut_trials.pickle'
hyperopt_trial = hyperopt._read_trials(trials_file)
assert log_has(f"Reading Trials from '{trials_file}'", caplog)
assert hyperopt_trial == trials
def test_read_results_returns_epochs(mocker, hyperopt, testdatadir, caplog) -> None:
epochs = create_results(mocker, hyperopt, testdatadir)
mock_load = mocker.patch('freqtrade.optimize.hyperopt.load', return_value=epochs)
results_file = testdatadir / 'optimize' / 'ut_results.pickle'
hyperopt_epochs = hyperopt._read_results(results_file)
assert log_has(f"Reading epochs from '{results_file}'", caplog)
assert hyperopt_epochs == epochs
mock_load.assert_called_once()