add async method
This commit is contained in:
parent
721fb3e326
commit
2602cbe683
@ -161,14 +161,6 @@ class Arguments(object):
|
||||
dest='exportfilename',
|
||||
metavar='PATH',
|
||||
)
|
||||
parser.add_argument(
|
||||
'--backslap',
|
||||
help="Utilize the Backslapping approach instead of the default Backtesting. This should provide more "
|
||||
"accurate results, unless you are utilizing Min/Max function in your strategy.",
|
||||
required=False,
|
||||
dest='backslap',
|
||||
action='store_true'
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def optimizer_shared_options(parser: argparse.ArgumentParser) -> None:
|
||||
@ -236,7 +228,7 @@ class Arguments(object):
|
||||
Builds and attaches all subcommands
|
||||
:return: None
|
||||
"""
|
||||
from freqtrade.optimize import backtesting, hyperopt
|
||||
from freqtrade.optimize import backtesting, backslapping, hyperopt
|
||||
|
||||
subparsers = self.parser.add_subparsers(dest='subparser')
|
||||
|
||||
@ -246,6 +238,12 @@ class Arguments(object):
|
||||
self.optimizer_shared_options(backtesting_cmd)
|
||||
self.backtesting_options(backtesting_cmd)
|
||||
|
||||
# Add backslapping subcommand
|
||||
backslapping_cmd = subparsers.add_parser('backslapping', help='backslapping module')
|
||||
backslapping_cmd.set_defaults(func=backslapping.start)
|
||||
self.optimizer_shared_options(backslapping_cmd)
|
||||
self.backtesting_options(backslapping_cmd)
|
||||
|
||||
# Add hyperopt subcommand
|
||||
hyperopt_cmd = subparsers.add_parser('hyperopt', help='hyperopt module')
|
||||
hyperopt_cmd.set_defaults(func=hyperopt.start)
|
||||
|
@ -1,48 +1,35 @@
|
||||
import timeit
|
||||
from argparse import Namespace
|
||||
import logging
|
||||
from typing import Dict, Any
|
||||
|
||||
from pandas import DataFrame
|
||||
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.optimize.optimize import IOptimize, BacktestResult, setup_configuration
|
||||
from freqtrade.strategy import IStrategy
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
class Backslapping:
|
||||
|
||||
class Backslapping(IOptimize):
|
||||
"""
|
||||
provides a quick way to evaluate strategies over a longer term of time
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any], exchange = None) -> None:
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
"""
|
||||
constructor
|
||||
"""
|
||||
|
||||
self.config = config
|
||||
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
||||
self.ticker_interval = self.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||
self.populate_buy_trend = self.strategy.populate_buy_trend
|
||||
self.populate_sell_trend = self.strategy.populate_sell_trend
|
||||
|
||||
###
|
||||
#
|
||||
###
|
||||
if exchange is None:
|
||||
self.config['exchange']['secret'] = ''
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.exchange = Exchange(self.config)
|
||||
else:
|
||||
self.exchange = exchange
|
||||
super().__init__(config)
|
||||
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
self.stop_loss_value = self.strategy.stoploss
|
||||
|
||||
#### backslap config
|
||||
# backslap config
|
||||
'''
|
||||
Numpy arrays are used for 100x speed up
|
||||
We requires setting Int values for
|
||||
@ -81,7 +68,7 @@ class Backslapping:
|
||||
def f(self, st):
|
||||
return (timeit.default_timer() - st)
|
||||
|
||||
def run(self,args):
|
||||
def run(self, args):
|
||||
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell', 'high', 'low']
|
||||
processed = args['processed']
|
||||
@ -96,8 +83,8 @@ class Backslapping:
|
||||
if self.debug_timing: # Start timer
|
||||
fl = self.s()
|
||||
|
||||
ticker_data = self.populate_sell_trend(
|
||||
self.populate_buy_trend(pair_data))[headers].copy()
|
||||
ticker_data = self.advise_sell(self.advise_buy(pair_data, {'pair': pair}),
|
||||
{'pair': pair})[headers].copy()
|
||||
|
||||
if self.debug_timing: # print time taken
|
||||
flt = self.f(fl)
|
||||
@ -132,7 +119,7 @@ class Backslapping:
|
||||
|
||||
bslap_results_df = self.vector_fill_results_table(bslap_results_df, pair)
|
||||
else:
|
||||
from freqtrade.optimize.backtesting import BacktestResult
|
||||
|
||||
|
||||
bslap_results_df = []
|
||||
bslap_results_df = DataFrame.from_records(bslap_results_df, columns=BacktestResult._fields)
|
||||
@ -221,13 +208,13 @@ class Backslapping:
|
||||
"""
|
||||
The purpose of this def is to return the next "buy" = 1
|
||||
after t_exit_ind.
|
||||
|
||||
This function will also check is the stop limit for the pair has been reached.
|
||||
|
||||
This function will also check is the stop limit for the pair has been reached.
|
||||
if stop_stops is the limit and stop_stops_count it the number of times the stop has been hit.
|
||||
|
||||
t_exit_ind is the index the last trade exited on
|
||||
or 0 if first time around this loop.
|
||||
|
||||
|
||||
stop_stops i
|
||||
"""
|
||||
debug = self.debug
|
||||
@ -379,7 +366,7 @@ class Backslapping:
|
||||
a) Find first buy index
|
||||
b) Discover first stop and sell hit after buy index
|
||||
c) Chose first instance as trade exit
|
||||
|
||||
|
||||
Phase 2
|
||||
2) Manage dynamic Stop and ROI Exit
|
||||
a) Create trade slice from 1
|
||||
@ -392,14 +379,14 @@ class Backslapping:
|
||||
'''
|
||||
0 - Find next buy entry
|
||||
Finds index for first (buy = 1) flag
|
||||
|
||||
|
||||
Requires: np_buy_arr - a 1D array of the 'buy' column. To find next "1"
|
||||
Required: t_exit_ind - Either 0, first loop. Or The index we last exited on
|
||||
Requires: np_buy_arr_len - length of pair array.
|
||||
Requires: stops_stops - number of stops allowed before stop trading a pair
|
||||
Requires: np_buy_arr_len - length of pair array.
|
||||
Requires: stops_stops - number of stops allowed before stop trading a pair
|
||||
Requires: stop_stop_counts - count of stops hit in the pair
|
||||
Provides: The next "buy" index after t_exit_ind
|
||||
|
||||
|
||||
If -1 is returned no buy has been found in remainder of array, skip to exit loop
|
||||
'''
|
||||
t_open_ind = self.np_get_t_open_ind(np_buy_arr, t_exit_ind, np_buy_arr_len, stop_stops, stop_stops_count)
|
||||
@ -416,19 +403,19 @@ class Backslapping:
|
||||
|
||||
"""
|
||||
1 - Create views to search within for our open trade
|
||||
|
||||
|
||||
The views are our search space for the next Stop or Sell
|
||||
Numpy view is employed as:
|
||||
1,000 faster than pandas searches
|
||||
Pandas cannot assure it will always return a view, it may make a slow copy.
|
||||
|
||||
|
||||
The view contains columns:
|
||||
buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5
|
||||
|
||||
|
||||
Requires: np_bslap is our numpy array of the ticker DataFrame
|
||||
Requires: t_open_ind is the index row with the buy.
|
||||
Provides: np_t_open_v View of array after buy.
|
||||
Provides: np_t_open_v_stop View of array after buy +1
|
||||
Provides: np_t_open_v_stop View of array after buy +1
|
||||
(Stop will search in here to prevent stopping in the past)
|
||||
"""
|
||||
np_t_open_v = np_bslap[t_open_ind:]
|
||||
@ -446,13 +433,13 @@ class Backslapping:
|
||||
|
||||
'''
|
||||
2 - Calculate our stop-loss price
|
||||
|
||||
|
||||
As stop is based on buy price of our trade
|
||||
- (BTO)Buys are Triggered On np_bto, typically the CLOSE of candle
|
||||
- (BCO)Buys are Calculated On np_bco, default is OPEN of the next candle.
|
||||
This is as we only see the CLOSE after it has happened.
|
||||
The back test assumption is we have bought at first available price, the OPEN
|
||||
|
||||
|
||||
Requires: np_bslap - is our numpy array of the ticker DataFrame
|
||||
Requires: t_open_ind - is the index row with the first buy.
|
||||
Requires: p_stop - is the stop rate, ie. 0.99 is -1%
|
||||
@ -469,9 +456,9 @@ class Backslapping:
|
||||
|
||||
'''
|
||||
3 - Find candle STO is under Stop-Loss After Trade opened.
|
||||
|
||||
|
||||
where [np_sto] (stop tiggered on variable: "close", "low" etc) < np_t_stop_pri
|
||||
|
||||
|
||||
Requires: np_t_open_v_stop Numpy view of ticker_data after buy row +1 (when trade was opened)
|
||||
Requires: np_sto User Var(STO)StopTriggeredOn. Typically set to "low" or "close"
|
||||
Requires: np_t_stop_pri The stop-loss price STO must fall under to trigger stop
|
||||
@ -501,9 +488,9 @@ class Backslapping:
|
||||
|
||||
'''
|
||||
4 - Find first sell index after trade open
|
||||
|
||||
|
||||
First index in the view np_t_open_v where ['sell'] = 1
|
||||
|
||||
|
||||
Requires: np_t_open_v - view of ticker_data from buy onwards
|
||||
Requires: no_sell - integer '3', the buy column in the array
|
||||
Provides: np_t_sell_ind index of view where first sell=1 after buy
|
||||
@ -528,13 +515,13 @@ class Backslapping:
|
||||
'''
|
||||
5 - Determine which was hit first a stop or sell
|
||||
To then use as exit index price-field (sell on buy, stop on stop)
|
||||
|
||||
|
||||
STOP takes priority over SELL as would be 'in candle' from tick data
|
||||
Sell would use Open from Next candle.
|
||||
So in a draw Stop would be hit first on ticker data in live
|
||||
|
||||
|
||||
Validity of when types of trades may be executed can be summarised as:
|
||||
|
||||
|
||||
Tick View
|
||||
index index Buy Sell open low close high Stop price
|
||||
open 2am 94 -1 0 0 ----- ------ ------ ----- -----
|
||||
@ -542,25 +529,25 @@ class Backslapping:
|
||||
open 4am 96 1 0 1 Enter trgstop trg sel ROI out Stop out
|
||||
open 5am 97 2 0 0 Exit ------ ------- ----- -----
|
||||
open 6am 98 3 0 0 ----- ------ ------- ----- -----
|
||||
|
||||
|
||||
-1 means not found till end of view i.e no valid Stop found. Exclude from match.
|
||||
Stop tiggering and closing in 96-1, the candle we bought at OPEN in, is valid.
|
||||
|
||||
|
||||
Buys and sells are triggered at candle close
|
||||
Both will open their postions at the open of the next candle. i/e + 1 index
|
||||
|
||||
|
||||
Stop and buy Indexes are on the view. To map to the ticker dataframe
|
||||
the t_open_ind index should be summed.
|
||||
|
||||
|
||||
np_t_stop_ind: Stop Found index in view
|
||||
t_exit_ind : Sell found in view
|
||||
t_open_ind : Where view was started on ticker_data
|
||||
|
||||
|
||||
TODO: fix this frig for logic test,, case/switch/dictionary would be better...
|
||||
more so when later testing many options, dynamic stop / roi etc
|
||||
cludge - Setting np_t_sell_ind as 9999999999 when -1 (not found)
|
||||
cludge - Setting np_t_stop_ind as 9999999999 when -1 (not found)
|
||||
|
||||
|
||||
'''
|
||||
if debug:
|
||||
print("\n(5) numpy debug\nStop or Sell Logic Processing")
|
||||
@ -730,7 +717,7 @@ class Backslapping:
|
||||
if t_exit_last >= t_exit_ind or t_exit_last == -1:
|
||||
"""
|
||||
Break loop and go on to next pair.
|
||||
|
||||
|
||||
When last trade exit equals index of last exit, there is no
|
||||
opportunity to close any more trades.
|
||||
"""
|
||||
@ -763,7 +750,7 @@ class Backslapping:
|
||||
bslap_result["open_rate"] = round(np_trade_enter_price, 15)
|
||||
bslap_result["close_rate"] = round(np_trade_exit_price, 15)
|
||||
bslap_result["exit_type"] = t_exit_type
|
||||
bslap_result["sell_reason"] = t_exit_type #duplicated, but I don't care
|
||||
bslap_result["sell_reason"] = t_exit_type # duplicated, but I don't care
|
||||
# append the dict to the list and print list
|
||||
bslap_pair_results.append(bslap_result)
|
||||
|
||||
@ -787,3 +774,18 @@ class Backslapping:
|
||||
|
||||
# Send back List of trade dicts
|
||||
return bslap_pair_results
|
||||
|
||||
|
||||
def start(args: Namespace) -> None:
|
||||
"""
|
||||
Start Backtesting script
|
||||
:param args: Cli args from Arguments()
|
||||
:return: None
|
||||
"""
|
||||
# Initialize configuration
|
||||
config = setup_configuration(args)
|
||||
logger.info('Starting freqtrade in Backtesting mode')
|
||||
|
||||
# Initialize backtesting object
|
||||
backslapping = Backslapping(config)
|
||||
backslapping.start()
|
||||
|
@ -4,51 +4,21 @@
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
import logging
|
||||
import operator
|
||||
from argparse import Namespace
|
||||
from datetime import datetime, timedelta
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame, to_datetime
|
||||
from tabulate import tabulate
|
||||
from pandas import DataFrame
|
||||
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade import DependencyException, constants
|
||||
from freqtrade.optimize.optimize import IOptimize, BacktestResult, setup_configuration
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import file_dump_json
|
||||
from freqtrade.optimize.backslapping import Backslapping
|
||||
from freqtrade.persistence import Trade
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
from collections import OrderedDict
|
||||
import timeit
|
||||
from time import sleep
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BacktestResult(NamedTuple):
|
||||
"""
|
||||
NamedTuple Defining BacktestResults inputs.
|
||||
"""
|
||||
pair: str
|
||||
profit_percent: float
|
||||
profit_abs: float
|
||||
open_time: datetime
|
||||
close_time: datetime
|
||||
open_index: int
|
||||
close_index: int
|
||||
trade_duration: float
|
||||
open_at_end: bool
|
||||
open_rate: float
|
||||
close_rate: float
|
||||
sell_reason: SellType
|
||||
|
||||
|
||||
class Backtesting(object):
|
||||
class Backtesting(IOptimize):
|
||||
"""
|
||||
Backtesting class, this class contains all the logic to run a backtest
|
||||
|
||||
@ -58,139 +28,7 @@ class Backtesting(object):
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
self.strategy: IStrategy = StrategyResolver(self.config).strategy
|
||||
self.ticker_interval = self.strategy.ticker_interval
|
||||
self.tickerdata_to_dataframe = self.strategy.tickerdata_to_dataframe
|
||||
self.advise_buy = self.strategy.advise_buy
|
||||
self.advise_sell = self.strategy.advise_sell
|
||||
|
||||
# Reset keys for backtesting
|
||||
self.config['exchange']['key'] = ''
|
||||
self.config['exchange']['secret'] = ''
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.exchange = Exchange(self.config)
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
self.stop_loss_value = self.strategy.stoploss
|
||||
|
||||
#### backslap config
|
||||
'''
|
||||
Numpy arrays are used for 100x speed up
|
||||
We requires setting Int values for
|
||||
buy stop triggers and stop calculated on
|
||||
# buy 0 - open 1 - close 2 - sell 3 - high 4 - low 5 - stop 6
|
||||
'''
|
||||
self.np_buy: int = 0
|
||||
self.np_open: int = 1
|
||||
self.np_close: int = 2
|
||||
self.np_sell: int = 3
|
||||
self.np_high: int = 4
|
||||
self.np_low: int = 5
|
||||
self.np_stop: int = 6
|
||||
self.np_bto: int = self.np_close # buys_triggered_on - should be close
|
||||
self.np_bco: int = self.np_open # buys calculated on - open of the next candle.
|
||||
self.np_sto: int = self.np_low # stops_triggered_on - Should be low, FT uses close
|
||||
self.np_sco: int = self.np_stop # stops_calculated_on - Should be stop, FT uses close
|
||||
# self.np_sto: int = self.np_close # stops_triggered_on - Should be low, FT uses close
|
||||
# self.np_sco: int = self.np_close # stops_calculated_on - Should be stop, FT uses close
|
||||
|
||||
if 'backslap' in config:
|
||||
self.use_backslap = config['backslap'] # Enable backslap - if false Orginal code is executed.
|
||||
else:
|
||||
self.use_backslap = False
|
||||
|
||||
logger.info("using backslap: {}".format(self.use_backslap))
|
||||
|
||||
self.debug = False # Main debug enable, very print heavy, enable 2 loops recommended
|
||||
self.debug_timing = False # Stages within Backslap
|
||||
self.debug_2loops = False # Limit each pair to two loops, useful when debugging
|
||||
self.debug_vector = False # Debug vector calcs
|
||||
self.debug_timing_main_loop = False # print overall timing per pair - works in Backtest and Backslap
|
||||
|
||||
self.backslap_show_trades = False # prints trades in addition to summary report
|
||||
self.backslap_save_trades = True # saves trades as a pretty table to backslap.txt
|
||||
|
||||
self.stop_stops: int = 9999 # stop back testing any pair with this many stops, set to 999999 to not hit
|
||||
|
||||
self.backslap = Backslapping(config)
|
||||
|
||||
@staticmethod
|
||||
def get_timeframe(data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
timeframe = [
|
||||
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
|
||||
for frame in data.values()
|
||||
]
|
||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||
max(timeframe, key=operator.itemgetter(1))[1]
|
||||
|
||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
"""
|
||||
stake_currency = str(self.config.get('stake_currency'))
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_percent.sum() * 100.0,
|
||||
result.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||
len(result[result.profit_abs > 0]),
|
||||
len(result[result.profit_abs < 0])
|
||||
])
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
"""
|
||||
|
||||
tabular_data = []
|
||||
headers = ['Sell Reason', 'Count']
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
tabular_data.append([reason.value, count])
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||
|
||||
def _store_backtest_result(self, recordfilename: Optional[str], results: DataFrame) -> None:
|
||||
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
if records:
|
||||
logger.info('Dumping backtest results to %s', recordfilename)
|
||||
file_dump_json(recordfilename, records)
|
||||
super().__init__(config)
|
||||
|
||||
def _get_sell_trade_entry(
|
||||
self, pair: str, buy_row: DataFrame,
|
||||
@ -217,13 +55,14 @@ class Backtesting(object):
|
||||
sell = self.strategy.should_sell(trade, sell_row.open, sell_row.date, buy_signal,
|
||||
sell_row.sell)
|
||||
if sell.sell_flag:
|
||||
|
||||
return BacktestResult(pair=pair,
|
||||
profit_percent=trade.calc_profit_percent(rate=sell_row.open),
|
||||
profit_abs=trade.calc_profit(rate=sell_row.open),
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
trade_duration=int((
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=False,
|
||||
@ -240,7 +79,7 @@ class Backtesting(object):
|
||||
open_time=buy_row.date,
|
||||
close_time=sell_row.date,
|
||||
trade_duration=int((
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
sell_row.date - buy_row.date).total_seconds() // 60),
|
||||
open_index=buy_row.Index,
|
||||
close_index=sell_row.Index,
|
||||
open_at_end=True,
|
||||
@ -253,14 +92,7 @@ class Backtesting(object):
|
||||
return btr
|
||||
return None
|
||||
|
||||
def s(self):
|
||||
st = timeit.default_timer()
|
||||
return st
|
||||
|
||||
def f(self, st):
|
||||
return (timeit.default_timer() - st)
|
||||
|
||||
def backtest(self, args: Dict) -> DataFrame:
|
||||
def run(self, args: Dict) -> DataFrame:
|
||||
"""
|
||||
Implements backtesting functionality
|
||||
|
||||
@ -275,50 +107,32 @@ class Backtesting(object):
|
||||
position_stacking: do we allow position stacking? (default: False)
|
||||
:return: DataFrame
|
||||
"""
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
position_stacking = args.get('position_stacking', False)
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
for pair, pair_data in processed.items():
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
use_backslap = self.use_backslap
|
||||
debug_timing = self.debug_timing_main_loop
|
||||
|
||||
if use_backslap: # Use Back Slap code
|
||||
return self.backslap.run(args)
|
||||
else: # use Original Back test code
|
||||
########################## Original BT loop
|
||||
|
||||
headers = ['date', 'buy', 'open', 'close', 'sell']
|
||||
processed = args['processed']
|
||||
max_open_trades = args.get('max_open_trades', 0)
|
||||
position_stacking = args.get('position_stacking', False)
|
||||
trades = []
|
||||
trade_count_lock: Dict = {}
|
||||
|
||||
for pair, pair_data in processed.items():
|
||||
if debug_timing: # Start timer
|
||||
fl = self.s()
|
||||
|
||||
pair_data['buy'], pair_data['sell'] = 0, 0 # cleanup from previous run
|
||||
|
||||
ticker_data = self.advise_sell(
|
||||
ticker_data = self.advise_sell(
|
||||
self.advise_buy(pair_data, {'pair': pair}), {'pair': pair})[headers].copy()
|
||||
|
||||
# to avoid using data from future, we buy/sell with signal from previous candle
|
||||
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
||||
# to avoid using data from future, we buy/sell with signal from previous candle
|
||||
ticker_data.loc[:, 'buy'] = ticker_data['buy'].shift(1)
|
||||
ticker_data.loc[:, 'sell'] = ticker_data['sell'].shift(1)
|
||||
|
||||
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||
ticker_data.drop(ticker_data.head(1).index, inplace=True)
|
||||
|
||||
if debug_timing: # print time taken
|
||||
flt = self.f(fl)
|
||||
# print("populate_buy_trend:", pair, round(flt, 10))
|
||||
st = self.s()
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
ticker = [x for x in ticker_data.itertuples()]
|
||||
|
||||
# Convert from Pandas to list for performance reasons
|
||||
# (Looping Pandas is slow.)
|
||||
ticker = [x for x in ticker_data.itertuples()]
|
||||
|
||||
lock_pair_until = None
|
||||
for index, row in enumerate(ticker):
|
||||
if row.buy == 0 or row.sell == 1:
|
||||
continue # skip rows where no buy signal or that would immediately sell off
|
||||
lock_pair_until = None
|
||||
for index, row in enumerate(ticker):
|
||||
if row.buy == 0 or row.sell == 1:
|
||||
continue # skip rows where no buy signal or that would immediately sell off
|
||||
|
||||
if not position_stacking:
|
||||
if lock_pair_until is not None and row.date <= lock_pair_until:
|
||||
@ -328,178 +142,22 @@ class Backtesting(object):
|
||||
if not trade_count_lock.get(row.date, 0) < max_open_trades:
|
||||
continue
|
||||
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
trade_count_lock[row.date] = trade_count_lock.get(row.date, 0) + 1
|
||||
|
||||
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
||||
trade_count_lock, args)
|
||||
trade_entry = self._get_sell_trade_entry(pair, row, ticker[index + 1:],
|
||||
trade_count_lock, args)
|
||||
|
||||
if trade_entry:
|
||||
lock_pair_until = trade_entry.close_time
|
||||
trades.append(trade_entry)
|
||||
else:
|
||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||
# This happens only if the buy-signal was with the last candle
|
||||
lock_pair_until = ticker_data.iloc[-1].date
|
||||
if trade_entry:
|
||||
lock_pair_until = trade_entry.close_time
|
||||
trades.append(trade_entry)
|
||||
else:
|
||||
# Set lock_pair_until to end of testing period if trade could not be closed
|
||||
# This happens only if the buy-signal was with the last candle
|
||||
lock_pair_until = ticker_data.iloc[-1].date
|
||||
|
||||
if debug_timing: # print time taken
|
||||
tt = self.f(st)
|
||||
print("Time to BackTest :", pair, round(tt, 10))
|
||||
print("-----------------------")
|
||||
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||
|
||||
return DataFrame.from_records(trades, columns=BacktestResult._fields)
|
||||
####################### Original BT loop end
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
Run a backtesting end-to-end
|
||||
:return: None
|
||||
"""
|
||||
data = {}
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
|
||||
|
||||
if self.config.get('live'):
|
||||
logger.info('Downloading data for all pairs in whitelist ...')
|
||||
for pair in pairs:
|
||||
data[pair] = self.exchange.get_ticker_history(pair, self.ticker_interval)
|
||||
else:
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=self.config.get('refresh_pairs', False),
|
||||
exchange=self.exchange,
|
||||
timerange=timerange
|
||||
)
|
||||
|
||||
ld_files = self.s()
|
||||
if not data:
|
||||
logger.critical("No data found. Terminating.")
|
||||
return
|
||||
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
|
||||
if self.config.get('use_max_market_positions', True):
|
||||
max_open_trades = self.config['max_open_trades']
|
||||
else:
|
||||
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||
max_open_trades = 0
|
||||
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
t_t = self.f(ld_files)
|
||||
print("Load from json to file to df in mem took", t_t)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self.get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
|
||||
# Execute backtest and print results
|
||||
results = self.backtest(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'position_stacking': self.config.get('position_stacking', False),
|
||||
}
|
||||
)
|
||||
|
||||
if self.config.get('export', False):
|
||||
self._store_backtest_result(self.config.get('exportfilename'), results)
|
||||
|
||||
if self.use_backslap:
|
||||
logger.info(
|
||||
'\n====================================================== '
|
||||
'BackSLAP REPORT'
|
||||
' =======================================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results
|
||||
)
|
||||
)
|
||||
# optional print trades
|
||||
if self.backslap_show_trades:
|
||||
TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs',
|
||||
'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1)
|
||||
|
||||
def to_fwf(df, fname):
|
||||
content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql')
|
||||
print(content)
|
||||
|
||||
DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt")
|
||||
|
||||
# optional save trades
|
||||
if self.backslap_save_trades:
|
||||
TradesFrame = results.filter(['open_time', 'pair', 'exit_type', 'profit_percent', 'profit_abs',
|
||||
'buy_spend', 'sell_take', 'trade_duration', 'close_time'], axis=1)
|
||||
|
||||
def to_fwf(df, fname):
|
||||
content = tabulate(df.values.tolist(), list(df.columns), floatfmt=".8f", tablefmt='psql')
|
||||
open(fname, "w").write(content)
|
||||
|
||||
DataFrame.to_fwf = to_fwf(TradesFrame, "backslap.txt")
|
||||
|
||||
else:
|
||||
logger.info(
|
||||
'\n================================================= '
|
||||
'BACKTEST REPORT'
|
||||
' ==================================================\n'
|
||||
'%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results
|
||||
)
|
||||
)
|
||||
|
||||
if 'sell_reason' in results.columns:
|
||||
logger.info(
|
||||
'\n' +
|
||||
' SELL READON STATS '.center(119, '=') +
|
||||
'\n%s \n',
|
||||
self._generate_text_table_sell_reason(data, results)
|
||||
|
||||
)
|
||||
else:
|
||||
logger.info("no sell reasons available!")
|
||||
|
||||
logger.info(
|
||||
'\n' +
|
||||
' LEFT OPEN TRADES REPORT '.center(119, '=') +
|
||||
'\n%s',
|
||||
self._generate_text_table(
|
||||
data,
|
||||
results.loc[results.open_at_end]
|
||||
)
|
||||
)
|
||||
|
||||
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the backtesting
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
config['backslap'] = args.backslap
|
||||
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
||||
constants.UNLIMITED_STAKE_AMOUNT)
|
||||
|
||||
return config
|
||||
|
||||
|
||||
|
||||
def start(args: Namespace) -> None:
|
||||
|
@ -276,7 +276,7 @@ class Hyperopt(Backtesting):
|
||||
self.strategy.stoploss = params['stoploss']
|
||||
|
||||
processed = load(TICKERDATA_PICKLE)
|
||||
results = self.backtest(
|
||||
results = self.run(
|
||||
{
|
||||
'stake_amount': self.config['stake_amount'],
|
||||
'processed': processed,
|
||||
|
322
freqtrade/optimize/optimize.py
Normal file
322
freqtrade/optimize/optimize.py
Normal file
@ -0,0 +1,322 @@
|
||||
# pragma pylint: disable=missing-docstring, W0212, too-many-arguments
|
||||
|
||||
"""
|
||||
This module contains the backtesting logic
|
||||
"""
|
||||
import logging
|
||||
import operator
|
||||
from abc import ABC, abstractmethod
|
||||
from argparse import Namespace
|
||||
from copy import deepcopy
|
||||
from datetime import datetime, timedelta
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, List, NamedTuple, Optional, Tuple
|
||||
|
||||
import arrow
|
||||
from pandas import DataFrame
|
||||
from tabulate import tabulate
|
||||
|
||||
from freqtrade import DependencyException, constants
|
||||
from freqtrade.arguments import Arguments
|
||||
from freqtrade.configuration import Configuration
|
||||
from freqtrade.exchange import Exchange
|
||||
from freqtrade.misc import file_dump_json
|
||||
import freqtrade.optimize as optimize
|
||||
from freqtrade.strategy.interface import SellType
|
||||
from freqtrade.strategy.resolver import IStrategy, StrategyResolver
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class BacktestResult(NamedTuple):
|
||||
"""
|
||||
NamedTuple Defining BacktestResults inputs.
|
||||
"""
|
||||
pair: str
|
||||
profit_percent: float
|
||||
profit_abs: float
|
||||
open_time: datetime
|
||||
close_time: datetime
|
||||
open_index: int
|
||||
close_index: int
|
||||
trade_duration: float
|
||||
open_at_end: bool
|
||||
open_rate: float
|
||||
close_rate: float
|
||||
sell_reason: SellType
|
||||
|
||||
|
||||
class IOptimize(ABC):
|
||||
"""
|
||||
Backtesting Abstract class, this class contains all the logic to run a backtest
|
||||
|
||||
To run a backtest:
|
||||
backtesting = Backtesting(config)
|
||||
backtesting.start()
|
||||
"""
|
||||
|
||||
def __init__(self, config: Dict[str, Any]) -> None:
|
||||
self.config = config
|
||||
|
||||
# Reset keys for backtesting
|
||||
self.config['exchange']['key'] = ''
|
||||
self.config['exchange']['secret'] = ''
|
||||
self.config['exchange']['password'] = ''
|
||||
self.config['exchange']['uid'] = ''
|
||||
self.config['dry_run'] = True
|
||||
self.strategylist: List[IStrategy] = []
|
||||
if self.config.get('strategy_list', None):
|
||||
# Force one interval
|
||||
self.ticker_interval = str(self.config.get('ticker_interval'))
|
||||
for strat in list(self.config['strategy_list']):
|
||||
stratconf = deepcopy(self.config)
|
||||
stratconf['strategy'] = strat
|
||||
self.strategylist.append(StrategyResolver(stratconf).strategy)
|
||||
|
||||
else:
|
||||
# only one strategy
|
||||
strat = StrategyResolver(self.config).strategy
|
||||
|
||||
self.strategylist.append(StrategyResolver(self.config).strategy)
|
||||
# Load one strategy
|
||||
self._set_strategy(self.strategylist[0])
|
||||
|
||||
self.exchange = Exchange(self.config)
|
||||
self.fee = self.exchange.get_fee()
|
||||
|
||||
def _set_strategy(self, strategy):
|
||||
"""
|
||||
Load strategy into backtesting
|
||||
"""
|
||||
self.strategy = strategy
|
||||
self.ticker_interval = self.config.get('ticker_interval')
|
||||
self.tickerdata_to_dataframe = strategy.tickerdata_to_dataframe
|
||||
self.advise_buy = strategy.advise_buy
|
||||
self.advise_sell = strategy.advise_sell
|
||||
|
||||
def _get_timeframe(self, data: Dict[str, DataFrame]) -> Tuple[arrow.Arrow, arrow.Arrow]:
|
||||
"""
|
||||
Get the maximum timeframe for the given backtest data
|
||||
:param data: dictionary with preprocessed backtesting data
|
||||
:return: tuple containing min_date, max_date
|
||||
"""
|
||||
timeframe = [
|
||||
(arrow.get(frame['date'].min()), arrow.get(frame['date'].max()))
|
||||
for frame in data.values()
|
||||
]
|
||||
return min(timeframe, key=operator.itemgetter(0))[0], \
|
||||
max(timeframe, key=operator.itemgetter(1))[1]
|
||||
|
||||
def _generate_text_table(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generates and returns a text table for the given backtest data and the results dataframe
|
||||
:return: pretty printed table with tabulate as str
|
||||
"""
|
||||
stake_currency = str(self.config.get('stake_currency'))
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['pair', 'buy count', 'avg profit %', 'cum profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for pair in data:
|
||||
result = results[results.pair == pair]
|
||||
tabular_data.append([
|
||||
pair,
|
||||
len(result.index),
|
||||
result.profit_percent.mean() * 100.0,
|
||||
result.profit_percent.sum() * 100.0,
|
||||
result.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(result.trade_duration.mean()))) if not result.empty else '0:00',
|
||||
len(result[result.profit_abs > 0]),
|
||||
len(result[result.profit_abs < 0])
|
||||
])
|
||||
|
||||
# Append Total
|
||||
tabular_data.append([
|
||||
'TOTAL',
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
def _generate_text_table_sell_reason(self, data: Dict[str, Dict], results: DataFrame) -> str:
|
||||
"""
|
||||
Generate small table outlining Backtest results
|
||||
"""
|
||||
tabular_data = []
|
||||
headers = ['Sell Reason', 'Count']
|
||||
for reason, count in results['sell_reason'].value_counts().iteritems():
|
||||
tabular_data.append([reason.value, count])
|
||||
return tabulate(tabular_data, headers=headers, tablefmt="pipe")
|
||||
|
||||
def _generate_text_table_strategy(self, all_results: dict) -> str:
|
||||
"""
|
||||
Generate summary table per strategy
|
||||
"""
|
||||
stake_currency = str(self.config.get('stake_currency'))
|
||||
|
||||
floatfmt = ('s', 'd', '.2f', '.2f', '.8f', 'd', '.1f', '.1f')
|
||||
tabular_data = []
|
||||
headers = ['Strategy', 'buy count', 'avg profit %', 'cum profit %',
|
||||
'total profit ' + stake_currency, 'avg duration', 'profit', 'loss']
|
||||
for strategy, results in all_results.items():
|
||||
tabular_data.append([
|
||||
strategy,
|
||||
len(results.index),
|
||||
results.profit_percent.mean() * 100.0,
|
||||
results.profit_percent.sum() * 100.0,
|
||||
results.profit_abs.sum(),
|
||||
str(timedelta(
|
||||
minutes=round(results.trade_duration.mean()))) if not results.empty else '0:00',
|
||||
len(results[results.profit_abs > 0]),
|
||||
len(results[results.profit_abs < 0])
|
||||
])
|
||||
return tabulate(tabular_data, headers=headers, floatfmt=floatfmt, tablefmt="pipe")
|
||||
|
||||
def _store_backtest_result(self, recordfilename: str, results: DataFrame,
|
||||
strategyname: Optional[str] = None) -> None:
|
||||
|
||||
records = [(t.pair, t.profit_percent, t.open_time.timestamp(),
|
||||
t.close_time.timestamp(), t.open_index - 1, t.trade_duration,
|
||||
t.open_rate, t.close_rate, t.open_at_end, t.sell_reason.value)
|
||||
for index, t in results.iterrows()]
|
||||
|
||||
if records:
|
||||
if strategyname:
|
||||
# Inject strategyname to filename
|
||||
recname = Path(recordfilename)
|
||||
recordfilename = str(Path.joinpath(
|
||||
recname.parent, f'{recname.stem}-{strategyname}').with_suffix(recname.suffix))
|
||||
logger.info('Dumping backtest results to %s', recordfilename)
|
||||
file_dump_json(recordfilename, records)
|
||||
|
||||
def start(self) -> None:
|
||||
"""
|
||||
Run a backtesting end-to-end
|
||||
:return: None
|
||||
"""
|
||||
data = {}
|
||||
pairs = self.config['exchange']['pair_whitelist']
|
||||
logger.info('Using stake_currency: %s ...', self.config['stake_currency'])
|
||||
logger.info('Using stake_amount: %s ...', self.config['stake_amount'])
|
||||
|
||||
if self.config.get('live'):
|
||||
logger.info('Downloading data for all pairs in whitelist ...')
|
||||
for pair in pairs:
|
||||
data[pair] = self.exchange.get_candle_history(pair, self.ticker_interval)
|
||||
else:
|
||||
logger.info('Using local backtesting data (using whitelist in given config) ...')
|
||||
|
||||
timerange = Arguments.parse_timerange(None if self.config.get(
|
||||
'timerange') is None else str(self.config.get('timerange')))
|
||||
data = optimize.load_data(
|
||||
self.config['datadir'],
|
||||
pairs=pairs,
|
||||
ticker_interval=self.ticker_interval,
|
||||
refresh_pairs=self.config.get('refresh_pairs', False),
|
||||
exchange=self.exchange,
|
||||
timerange=timerange
|
||||
)
|
||||
|
||||
if not data:
|
||||
logger.critical("No data found. Terminating.")
|
||||
return
|
||||
# Use max_open_trades in backtesting, except --disable-max-market-positions is set
|
||||
if self.config.get('use_max_market_positions', True):
|
||||
max_open_trades = self.config['max_open_trades']
|
||||
else:
|
||||
logger.info('Ignoring max_open_trades (--disable-max-market-positions was used) ...')
|
||||
max_open_trades = 0
|
||||
all_results = {}
|
||||
|
||||
for strat in self.strategylist:
|
||||
logger.info("Running backtesting for Strategy %s", strat.get_strategy_name())
|
||||
self._set_strategy(strat)
|
||||
|
||||
# need to reprocess data every time to populate signals
|
||||
preprocessed = self.tickerdata_to_dataframe(data)
|
||||
|
||||
# Print timeframe
|
||||
min_date, max_date = self._get_timeframe(preprocessed)
|
||||
logger.info(
|
||||
'Measuring data from %s up to %s (%s days)..',
|
||||
min_date.isoformat(),
|
||||
max_date.isoformat(),
|
||||
(max_date - min_date).days
|
||||
)
|
||||
|
||||
# Execute backtest and print results
|
||||
all_results[self.strategy.get_strategy_name()] = self.run(
|
||||
{
|
||||
'stake_amount': self.config.get('stake_amount'),
|
||||
'processed': preprocessed,
|
||||
'max_open_trades': max_open_trades,
|
||||
'position_stacking': self.config.get('position_stacking', False),
|
||||
}
|
||||
)
|
||||
|
||||
for strategy, results in all_results.items():
|
||||
|
||||
if self.config.get('export', False):
|
||||
self._store_backtest_result(self.config['exportfilename'], results,
|
||||
strategy if len(self.strategylist) > 1 else None)
|
||||
|
||||
print(f"Result for strategy {strategy}")
|
||||
print(' BACKTESTING REPORT '.center(119, '='))
|
||||
print(self._generate_text_table(data, results))
|
||||
|
||||
print(' SELL REASON STATS '.center(119, '='))
|
||||
print(self._generate_text_table_sell_reason(data, results))
|
||||
|
||||
print(' LEFT OPEN TRADES REPORT '.center(119, '='))
|
||||
print(self._generate_text_table(data, results.loc[results.open_at_end]))
|
||||
print()
|
||||
if len(all_results) > 1:
|
||||
# Print Strategy summary table
|
||||
print(' Strategy Summary '.center(119, '='))
|
||||
print(self._generate_text_table_strategy(all_results))
|
||||
print('\nFor more details, please look at the detail tables above')
|
||||
|
||||
@abstractmethod
|
||||
def run(self, args: Dict) -> DataFrame:
|
||||
"""
|
||||
Runs backtesting functionality.
|
||||
|
||||
NOTE: This method is used by Hyperopt at each iteration. Please keep it optimized.
|
||||
Of course try to not have ugly code. By some accessor are sometime slower than functions.
|
||||
Avoid, logging on this method
|
||||
|
||||
:param args: a dict containing:
|
||||
stake_amount: btc amount to use for each trade
|
||||
processed: a processed dictionary with format {pair, data}
|
||||
max_open_trades: maximum number of concurrent trades (default: 0, disabled)
|
||||
position_stacking: do we allow position stacking? (default: False)
|
||||
:return: DataFrame
|
||||
"""
|
||||
|
||||
|
||||
def setup_configuration(args: Namespace) -> Dict[str, Any]:
|
||||
"""
|
||||
Prepare the configuration for the backtesting
|
||||
:param args: Cli args from Arguments()
|
||||
:return: Configuration
|
||||
"""
|
||||
configuration = Configuration(args)
|
||||
config = configuration.get_config()
|
||||
|
||||
# Ensure we do not use Exchange credentials
|
||||
config['exchange']['key'] = ''
|
||||
config['exchange']['secret'] = ''
|
||||
|
||||
if config['stake_amount'] == constants.UNLIMITED_STAKE_AMOUNT:
|
||||
raise DependencyException('stake amount could not be "%s" for backtesting' %
|
||||
constants.UNLIMITED_STAKE_AMOUNT)
|
||||
|
||||
return config
|
Loading…
Reference in New Issue
Block a user