Merge pull request #5607 from TreborNamor/develop

a new hyperopt loss created that uses calmar ratio
This commit is contained in:
Matthias 2021-10-29 09:20:44 +02:00 committed by GitHub
commit 201fe108bc
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 101 additions and 14 deletions

View File

@ -116,7 +116,7 @@ optional arguments:
ShortTradeDurHyperOptLoss, OnlyProfitHyperOptLoss,
SharpeHyperOptLoss, SharpeHyperOptLossDaily,
SortinoHyperOptLoss, SortinoHyperOptLossDaily,
MaxDrawDownHyperOptLoss
CalmarHyperOptLoss, MaxDrawDownHyperOptLoss
--disable-param-export
Disable automatic hyperopt parameter export.
--ignore-missing-spaces, --ignore-unparameterized-spaces
@ -524,6 +524,7 @@ Currently, the following loss functions are builtin:
* `SortinoHyperOptLoss` - optimizes Sortino Ratio calculated on trade returns relative to **downside** standard deviation.
* `SortinoHyperOptLossDaily` - optimizes Sortino Ratio calculated on **daily** trade returns relative to **downside** standard deviation.
* `MaxDrawDownHyperOptLoss` - Optimizes Maximum drawdown.
* `CalmarHyperOptLoss` - Optimizes Calmar Ratio calculated on trade returns relative to max drawdown.
Creation of a custom loss function is covered in the [Advanced Hyperopt](advanced-hyperopt.md) part of the documentation.

View File

@ -25,6 +25,7 @@ ORDERTIF_POSSIBILITIES = ['gtc', 'fok', 'ioc']
HYPEROPT_LOSS_BUILTIN = ['ShortTradeDurHyperOptLoss', 'OnlyProfitHyperOptLoss',
'SharpeHyperOptLoss', 'SharpeHyperOptLossDaily',
'SortinoHyperOptLoss', 'SortinoHyperOptLossDaily',
'CalmarHyperOptLoss',
'MaxDrawDownHyperOptLoss']
AVAILABLE_PAIRLISTS = ['StaticPairList', 'VolumePairList',
'AgeFilter', 'OffsetFilter', 'PerformanceFilter',
@ -53,7 +54,6 @@ ENV_VAR_PREFIX = 'FREQTRADE__'
NON_OPEN_EXCHANGE_STATES = ('cancelled', 'canceled', 'closed', 'expired')
# Define decimals per coin for outputs
# Only used for outputs.
DECIMAL_PER_COIN_FALLBACK = 3 # Should be low to avoid listing all possible FIAT's
@ -67,7 +67,6 @@ DUST_PER_COIN = {
'ETH': 0.01
}
# Source files with destination directories within user-directory
USER_DATA_FILES = {
'sample_strategy.py': USERPATH_STRATEGIES,
@ -198,7 +197,7 @@ CONF_SCHEMA = {
'required': ['price_side']
},
'custom_price_max_distance_ratio': {
'type': 'number', 'minimum': 0.0
'type': 'number', 'minimum': 0.0
},
'order_types': {
'type': 'object',
@ -351,13 +350,13 @@ CONF_SCHEMA = {
},
'dataformat_ohlcv': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'json'
'enum': AVAILABLE_DATAHANDLERS,
'default': 'json'
},
'dataformat_trades': {
'type': 'string',
'enum': AVAILABLE_DATAHANDLERS,
'default': 'jsongz'
'enum': AVAILABLE_DATAHANDLERS,
'default': 'jsongz'
}
},
'definitions': {

View File

@ -0,0 +1,64 @@
"""
CalmarHyperOptLoss
This module defines the alternative HyperOptLoss class which can be used for
Hyperoptimization.
"""
from datetime import datetime
from math import sqrt as msqrt
from typing import Any, Dict
from pandas import DataFrame
from freqtrade.data.btanalysis import calculate_max_drawdown
from freqtrade.optimize.hyperopt import IHyperOptLoss
class CalmarHyperOptLoss(IHyperOptLoss):
"""
Defines the loss function for hyperopt.
This implementation uses the Calmar Ratio calculation.
"""
@staticmethod
def hyperopt_loss_function(
results: DataFrame,
trade_count: int,
min_date: datetime,
max_date: datetime,
config: Dict,
processed: Dict[str, DataFrame],
backtest_stats: Dict[str, Any],
*args,
**kwargs
) -> float:
"""
Objective function, returns smaller number for more optimal results.
Uses Calmar Ratio calculation.
"""
total_profit = backtest_stats["profit_total"]
days_period = (max_date - min_date).days
# adding slippage of 0.1% per trade
total_profit = total_profit - 0.0005
expected_returns_mean = total_profit.sum() / days_period * 100
# calculate max drawdown
try:
_, _, _, high_val, low_val = calculate_max_drawdown(
results, value_col="profit_abs"
)
max_drawdown = (high_val - low_val) / high_val
except ValueError:
max_drawdown = 0
if max_drawdown != 0:
calmar_ratio = expected_returns_mean / max_drawdown * msqrt(365)
else:
# Define high (negative) calmar ratio to be clear that this is NOT optimal.
calmar_ratio = -20.0
# print(expected_returns_mean, max_drawdown, calmar_ratio)
return -calmar_ratio

View File

@ -85,6 +85,8 @@ def test_loss_calculation_has_limited_profit(hyperopt_conf, hyperopt_results) ->
"SharpeHyperOptLoss",
"SharpeHyperOptLossDaily",
"MaxDrawDownHyperOptLoss",
"CalmarHyperOptLoss",
])
def test_loss_functions_better_profits(default_conf, hyperopt_results, lossfunction) -> None:
results_over = hyperopt_results.copy()
@ -96,11 +98,32 @@ def test_loss_functions_better_profits(default_conf, hyperopt_results, lossfunct
default_conf.update({'hyperopt_loss': lossfunction})
hl = HyperOptLossResolver.load_hyperoptloss(default_conf)
correct = hl.hyperopt_loss_function(hyperopt_results, len(hyperopt_results),
datetime(2019, 1, 1), datetime(2019, 5, 1))
over = hl.hyperopt_loss_function(results_over, len(results_over),
datetime(2019, 1, 1), datetime(2019, 5, 1))
under = hl.hyperopt_loss_function(results_under, len(results_under),
datetime(2019, 1, 1), datetime(2019, 5, 1))
correct = hl.hyperopt_loss_function(
hyperopt_results,
trade_count=len(hyperopt_results),
min_date=datetime(2019, 1, 1),
max_date=datetime(2019, 5, 1),
config=default_conf,
processed=None,
backtest_stats={'profit_total': hyperopt_results['profit_abs'].sum()}
)
over = hl.hyperopt_loss_function(
results_over,
trade_count=len(results_over),
min_date=datetime(2019, 1, 1),
max_date=datetime(2019, 5, 1),
config=default_conf,
processed=None,
backtest_stats={'profit_total': results_over['profit_abs'].sum()}
)
under = hl.hyperopt_loss_function(
results_under,
trade_count=len(results_under),
min_date=datetime(2019, 1, 1),
max_date=datetime(2019, 5, 1),
config=default_conf,
processed=None,
backtest_stats={'profit_total': results_under['profit_abs'].sum()}
)
assert over < correct
assert under > correct